
Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Collec>ons	
 Refueled	

Stuart	
 Marks	

Core	
 Libraries	

Java	
 PlaIorm	
 Group,	
 Oracle	

	

@stuartmarks	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Collec>ons	
 Refueled	

• Brief	
 History	
 of	
 Collec>ons	

•  Java	
 8	
 Collec>ons	
 Enhancements	

•  Java	
 9	
 Collec>ons	
 Enhancements	

•  Future	
 Collec>ons	
 Work	

2	

Twi$er	
 hashtag	
 for	

ques1ons	
 and	
 comments	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

(Almost)	
 Twenty	
 Years	
 of	
 Java	
 Collec>ons	
 On	
 One	
 Slide	

•  JDK	
 1.0	
 –	
 “Legacy	
 Collec>ons”	
 (1996)	

– Vector,	
 Hashtable,	
 Enumera>on,	
 Dic>onary,	
 Stack	

•  JDK	
 1.2	
 –	
 The	
 Collec>ons	
 Framework	
 (1998)	

–  interfaces:	
 Collec>on,	
 List,	
 Set,	
 Map,	
 Iterator,	
 Comparable,	
 Comparator	

– concrete	
 classes:	
 ArrayList,	
 HashSet,	
 HashMap,	
 TreeSet,	
 TreeMap	

•  Java	
 SE	
 5.0	
 –	
 (2004)	

– generics	

–  java.u>l.concurrent	

•  ConcurrentHashMap,	
 CopyOnWriteArrayList,	
 various	
 concurrent	
 Queues	
 and	
 Deques	

•  Other	
 (various	
 releases)	

– ArrayDeque,	
 PriorityQueue,	
 EnumMap,	
 Iden>tyHashMap,	
 LinkedHashMap,	
 WeakHashMap	

3	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Java	
 8	
 Collec>ons	
 Enhancements	

4	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Java	
 8	
 Collec>ons	
 Enhancements	

•  Lambda/Streams	

– Collec>ons	
 are	
 most	
 common	
 stream	
 source	
 and	
 des>na>on	

•  Interfaces:	
 Default	
 Methods,	
 Sta>c	
 Methods	

– Java	
 8	
 language	
 feature	

– allows	
 interfaces	
 to	
 be	
 extended	
 compa>bly	

• Collec>on	
 interface	
 enhancements	

– first	
 changes	
 in	
 >	
 15	
 years!	

– Iterable,	
 Collec>on,	
 List	
 got	
 a	
 few	
 new	
 methods	

– Map,	
 Comparator	
 got	
 a	
 lot	
 of	
 new	
 methods	

– Most	
 new	
 methods	
 leverage	
 lambdas	
 and	
 method	
 references	

5	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Iterable	
 Interface	

•  Iterable.forEach	

	

//	
 Java	
 7	

List<String>	
 list	
 =	
 ...	
 ;	

for	
 (String	
 str	
 :	
 list)	

	
 	
 	
 	
 System.out.println(str);	

	

//	
 Java	
 8	

list.forEach(System.out::println);	

	

• Collec>on	
 is	
 a	
 subinterface	
 of	
 Iterable,	
 so	
 this	
 works	
 for	
 all	
 Collec>ons	

6	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Iterable	
 Interface	

•  Iterator.remove	

• Most	
 Iterators	
 don’t	
 support	
 removal,	
 so	
 everybody	
 had	
 to	
 write:	

	

@Override	

public	
 void	
 remove()	
 {	

	
 	
 	
 	
 throw	
 new	
 UnsupportedOperationException();	

}	

	

• Default	
 implementa>on	
 for	
 remove()	
 does	
 exactly	
 this	

•  To	
 write	
 a	
 non-­‐removing	
 Iterator,	
 just	
 omit	
 remove()	
 !	

•  To	
 write	
 an	
 Iterator	
 that	
 supports	
 remove(),	
 just	
 override	
 it	
 as	
 usual	

7	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Collec>on	
 Interface	

• Collec>on.removeIf	
 –	
 bulk	
 muta>ng	
 opera>on	

	

//	
 Java	
 7	

for	
 (Iterator<String>	
 it	
 =	
 coll.iterator()	
 ;	
 it.hasNext()	
 ;	
)	
 {	

	
 	
 	
 	
 String	
 str	
 =	
 it.next();	

	
 	
 	
 	
 if	
 (str.startsWith("A"))	

	
 	
 	
 	
 	
 	
 	
 	
 it.remove();	

}	

	

//	
 Java	
 8	

coll.removeIf(str	
 -­‐>	
 str.startsWith("A"));	

8	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Collec>on	
 Interface	

• Collec>on.removeIf	
 –	
 bulk	
 muta>ng	
 opera>on	

	

//	
 Java	
 7	

for	
 (Iterator<String>	
 it	
 =	
 coll.iterator()	
 ;	
 it.hasNext()	
 ;	
)	
 {	

	
 	
 	
 	
 String	
 str	
 =	
 it.next();	

	
 	
 	
 	
 if	
 (str.startsWith("A"))	

	
 	
 	
 	
 	
 	
 	
 	
 it.remove();	

}	

	

//	
 Java	
 8	

coll.removeIf(str	
 -­‐>	
 str.startsWith("A"));	

9	

If	
 collec1on	
 is	
 an	
 ArrayList:	

O(n2)	

	

O(n)	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

List	
 Interface	

•  List.replaceAll	
 –	
 bulk	
 muta>on	
 opera>on	

•  Transforms	
 each	
 element	
 in-­‐place	

	

//	
 Java	
 7	

for	
 (ListIterator<String>	
 it	
 =	
 list.listIterator()	
 ;	
 it.hasNext()	
 ;	
)	

	
 	
 	
 	
 it.set(it.next().toUpperCase());	

	

//	
 Java	
 7	
 (alt)	

for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 list.size();	
 i++)	

	
 	
 	
 	
 list.set(i,	
 list.get(i).toUpperCase());	

	

//	
 Java	
 8	

list.replaceAll(String::toUpperCase);	

	

10	

Can’t	
 change	
 the	
 element	
 type.	

To	
 do	
 that,	
 use	
 a	
 stream.	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

List	
 Interface	

•  List.sort	
 –	
 sorts	
 a	
 list	
 in-­‐place	

• Why	
 is	
 this	
 beoer	
 than	
 Collec>ons.sort?	

– old	
 Collec>ons.sort	
 used	
 three	
 step	
 process:	

•  copy	
 into	
 an	
 temporary	
 array	

•  sort	
 the	
 array	

•  copy	
 back	
 to	
 the	
 list	

•  List.sort	

– default	
 does	
 exactly	
 the	
 above	

– ArrayList.sort	
 overrides	
 and	
 sorts	
 in-­‐place	
 –	
 no	
 copying!	

– Collec>ons.sort	
 now	
 just	
 calls	
 list.sort	
 –	
 callers	
 automa>cally	
 benefit	

11	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

12	

//	
 Java	
 7	

	

	
 	
 	
 	
 for	
 (Map.Entry<String,String>	
 entry	
 :	
 map.entrySet())	

	
 	
 	
 	
 	
 	
 	
 	
 System.out.println(entry.getKey()	
 +	
 entry.getValue());	

	

//	
 Java	
 8	

	

	
 	
 	
 	
 map.forEach((k,	
 v)	
 -­‐>	
 System.out.println(k	
 +	
 v));	

	

Map	
 Interface:	
 forEach	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

13	

//	
 Java	
 7	

	

	
 	
 	
 	
 for	
 (Map.Entry<String,String>	
 entry	
 :	
 map.entrySet())	

	
 	
 	
 	
 	
 	
 	
 	
 entry.setValue(entry.getValue().toUpperCase());	

	

//	
 Java	
 8	

	

	
 	
 	
 	
 map.replaceAll((k,	
 v)	
 -­‐>	
 v.toUpperCase());	

	

Map	
 Interface:	
 replaceAll	

Replaces	
 map	
 values	
 with	
 values	

of	
 the	
 same	
 type.	
 Can’t	
 change	

keys,	
 key	
 type,	
 or	
 value	
 type.	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Map	
 Interface:	
 “Mul>-­‐map”	
 Example	

• Mul>map:	
 like	
 a	
 map,	
 with	
 mul>ple	
 values	
 for	
 each	
 key	

– Guava	
 and	
 Eclipse	
 Collec>ons	
 have	
 nice	
 implementa>ons	

•  Example:	
 simplified	
 Mul>map	
 using	
 Map<String,	
 Set<Integer>>	

	

	
 	
 	
 	
 	
 	
 	
 	
 Map<String,	
 Set<Integer>>	
 multimap	
 =	
 new	
 HashMap<>();	

	

– doing	
 this	
 in	
 plain	
 Java	
 7	
 is	
 quite	
 painful	

	
 	
 	
 	

	

14	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

15	

//	
 put(str,	
 i)	

	

Set<Integer>	
 set	
 =	
 multimap.get(str);	

if	
 (set	
 ==	
 null)	
 {	

	
 	
 	
 	
 set	
 =	
 new	
 HashSet<>();	

	
 	
 	
 	
 multimap.put(str,	
 set);	

}	

set.add(i);	

	

//	
 remove(str,	
 i)	

	

Set<Integer>	
 set	
 =	
 multimap.get(str);	

if	
 (set	
 !=	
 null)	
 {	

	
 	
 	
 	
 if	
 (set.remove(i)	
 &&	
 set.isEmpty())	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 multimap.remove(str);	

	
 	
 	
 	
 	
 	
 	
 	
 ...	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 BLEAH!	

Map	
 Interface:	
 “Mul>-­‐map”	
 Example	
 –	
 Java	
 7	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

16	

//	
 put(str,	
 i)	

multimap.computeIfAbsent(str,	
 x	
 -­‐>	
 new	
 HashSet<>()).add(i);	

	

//	
 remove(str,	
 i)	

multimap.computeIfPresent(k,	
 (k1,	
 set)	
 -­‐>	
 set.remove(v)	
 &&	
 set.isEmpty()	
 ?	
 null	
 :	
 set);	

	

//	
 contains(str,	
 i)	

multimap.getOrDefault(str,	
 Collections.emptySet()).contains(i);	

	

//	
 size()	

multimap.values().stream().mapToInt(Set::size).sum();	

	

//	
 values()	

multimap.values().stream().flatMap(Set::stream);	

Map	
 Interface:	
 “Mul>-­‐map”	
 Example	
 –	
 Java	
 8	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Comparator	
 Interface	

• Anybody	
 enjoy	
 wri>ng	
 comparators?	

• Comparators	
 are	
 difficult	
 because	
 there	
 are	
 lots	
 of	
 condi>onals	
 and	

repeated	
 code	

•  Java	
 8	
 adds	
 sta>c	
 and	
 default	
 methods	
 to	
 Comparator	
 that:	

– avoid	
 repeated	
 code	

– allow	
 composi>on	
 of	
 arbitrary	
 comparators	
 to	
 make	
 more	
 complex	
 ones	

– easily	
 create	
 null-­‐friendly	
 comparators	

• Comparator	
 example	

– two-­‐level	
 sort:	
 sort	
 by	
 last	
 name,	
 then	
 by	
 nullable	
 first	
 name,	
 nulls	
 first	

17	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

18	

	
 	
 	
 	
 Collections.sort(students,	
 new	
 Comparator<Student>()	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 @Override	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 int	
 compare(Student	
 s1,	
 Student	
 s2)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 r	
 =	
 s1.getLastName().compareTo(s2.getLastName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (r	
 !=	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 r;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 f1	
 =	
 s1.getFirstName();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 f2	
 =	
 s2.getFirstName();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (f1	
 ==	
 null)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 f2	
 ==	
 null	
 ?	
 0	
 :	
 -­‐1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 f2	
 ==	
 null	
 ?	
 1	
 :	
 f1.compareTo(f2);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 });	

Comparator	
 Example	
 –	
 Java	
 7	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

19	

	
 	
 	
 	
 	
 	
 	
 	
 students.sort((s1,	
 s2)	
 -­‐>	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 r	
 =	
 s1.getLastName().compareTo(s2.getLastName());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (r	
 !=	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 r;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 f1	
 =	
 s1.getFirstName();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 f2	
 =	
 s2.getFirstName();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (f1	
 ==	
 null)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 f2	
 ==	
 null	
 ?	
 0	
 :	
 -­‐1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 f2	
 ==	
 null	
 ?	
 1	
 :	
 f1.compareTo(f2);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 });	

	

Comparator	
 Example	
 –	
 Java	
 8	
 Statement	
 Lambda	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

20	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 students.sort(comparing(Student::getLastName)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .thenComparing(Student::getFirstName,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nullsFirst(naturalOrder())));	

	

Comparator	
 Example	
 –	
 Java	
 8	
 Comparator	
 Methods	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

21	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 students.sort(comparing(Student::getLastName)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .thenComparing(Student::getFirstName,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nullsFirst(naturalOrder())));	

	

Comparator	
 Example	
 –	
 Java	
 8	
 Comparator	
 Methods	

“natural	
 order”	
 is	
 result	
 of	

calling	
 compareTo()	
 to	
 compare	

two	
 objects	
 of	
 type	
 Comparable	

thenComparing()	
 can	
 take	
 two	

args:	
 a	
 key	
 extractor,	
 and	
 a	

comparator	
 that’s	
 used	
 to	

compare	
 the	
 extracted	
 keys	

nullsFirst()	
 modifies	
 a	
 comparator,	

making	
 it	
 null-­‐safe,	
 and	
 sor1ng	

nulls	
 before	
 non-­‐nulls	

comparing()	
 extracts	
 a	
 key	

and	
 creates	
 a	
 Comparator	

that	
 compares	
 that	
 key	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Java	
 9	
 Collec>ons	
 Enhancements	

22	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Java	
 9	
 Collec>ons	
 Enhancements	

• History	
 &	
 Background	

– Java	
 7	
 Project	
 Coin	
 –	
 Collec>on	
 Literals	
 proposal	

– Post	
 Java	
 8	
 –	
 JEP	
 186	
 Collec>on	
 Literals	
 “research	
 JEP”	

– both	
 were	
 proposals	
 to	
 enhance	
 the	
 Java	
 language	

• Collec>ons	
 are	
 at	
 “arm’s	
 length”	
 from	
 the	
 Java	
 language	

– many	
 other	
 languages	
 have	
 collec>ons	
 built-­‐in	

– Java’s	
 only	
 built-­‐in	
 aggrega>on	
 constructs	
 are	
 arrays	
 and	
 classes	

– higher-­‐level	
 collec>on	
 features	
 are	
 delegated	
 to	
 libraries	

– binding	
 language	
 and	
 collec>on	
 libraries	
 too	
 >ghtly	
 created	
 design	
 discomfort	

	

23	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

JEP	
 269	
 –	
 Convenience	
 Factory	
 Methods	
 for	
 Collec>ons	

•  Library-­‐only	
 alterna>ve	
 to	
 collec>on	
 literals	

– no	
 language	
 changes	

– gets	
 ~80%	
 of	
 the	
 benefit	
 of	
 language	
 changes	
 at	
 a	
 >ny	
 frac>on	
 of	
 the	
 cost	

• Main	
 goals	

– convenience	
 and	
 brevity	

– space	
 efficiency	

– immutability	

•  Status	

– integrated,	
 available	
 in	
 any	
 recent	
 JDK	
 9	
 build	

– surfaced	
 a	
 surprising	
 number	
 of	
 API	
 and	
 implementa>on	
 issues	

24	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 25	

List.of()	

List.of(e1)	

List.of(e1,	
 e2)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 fixed-­‐arg	
 overloads	
 up	
 to	
 ten	
 elements	

List.of(elements...)	
 	
 	
 	
 	
 //	
 varargs	
 supports	
 arbitrary	
 number	
 of	
 elements	

	

Set.of()	

Set.of(e1)	

Set.of(e1,	
 e2)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 fixed-­‐arg	
 overloads	
 up	
 to	
 ten	
 elements	

Set.of(elements...)	
 	
 	
 	
 	
 	
 //	
 varargs	
 supports	
 arbitrary	
 number	
 of	
 elements	

	

Map.of()	

Map.of(k1,	
 v1)	

Map.of(k1,	
 v1,	
 k2,	
 v2)	
 	
 	
 //	
 fixed-­‐arg	
 overloads	
 up	
 to	
 ten	
 key-­‐value	
 pairs	

	

Map.ofEntries(entry(k1,	
 v1),	
 entry(k2,	
 v2),	
 ...)	
 	
 	
 	
 	
 //	
 varargs	

JEP	
 269	
 API	
 Overview	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 26	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

27	

//	
 Java	
 8	

	

	
 	
 	
 	
 List<String>	
 stringList	
 =	
 Arrays.asList("a",	
 "b",	
 "c");	

	
 	
 	
 	
 Set<String>	
 stringSet	
 =	
 new	
 HashSet<>(Arrays.asList("a",	
 "b",	
 "c"));	

	
 	
 	
 	
 Map<String,Integer>	
 stringMap	
 =	
 new	
 HashMap<>();	

	
 	
 	
 	
 stringMap.put("a",	
 1);	

	
 	
 	
 	
 stringMap.put("b",	
 2);	

	
 	
 	
 	
 stringMap.put("c",	
 3);	

	

//	
 Java	
 9	

	

	
 	
 	
 	
 List<String>	
 stringList	
 =	
 List.of("a",	
 "b",	
 "c");	

	
 	
 	
 	
 Set<String>	
 stringSet	
 =	
 Set.of("a",	
 "b",	
 "c");	

	
 	
 	
 	
 Map<String,Integer>	
 stringMap	
 =	
 Map.of("a",	
 1,	
 "b",	
 2,	
 "c",	
 3);	

	

Examples	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

28	

Map<String,	
 TokenType>	
 tokens	
 =	
 Map.ofEntries(

	
 	
 	
 	
 entry("@",	
 	
 	
 	
 	
 AT),	

	
 	
 	
 	
 entry("|",	
 	
 	
 	
 	
 VERTICAL_BAR),	

	
 	
 	
 	
 entry("#",	
 	
 	
 	
 	
 HASH),	

	
 	
 	
 	
 entry("%",	
 	
 	
 	
 	
 PERCENT),	

	
 	
 	
 	
 entry(":",	
 	
 	
 	
 	
 COLON),	

	
 	
 	
 	
 entry("^",	
 	
 	
 	
 	
 CARET),	

	
 	
 	
 	
 entry("&",	
 	
 	
 	
 	
 AMPERSAND),	

	
 	
 	
 	
 entry("!",	
 	
 	
 	
 	
 EXCLAM),	

	
 	
 	
 	
 entry("?",	
 	
 	
 	
 	
 QUESTION),	

	
 	
 	
 	
 entry("$",	
 	
 	
 	
 	
 DOLLAR),	

	
 	
 	
 	
 entry("::",	
 	
 	
 	
 PAAMAYIM_NEKUDOTAYIM),	

	
 	
 	
 	
 entry("=",	
 	
 	
 	
 	
 EQUALS),	

	
 	
 	
 	
 entry(";",	
 	
 	
 	
 	
 SEMICOLON)	

);	

	

Example:	
 Map	
 With	
 Arbitrary	
 Number	
 of	
 Pairs	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Design	
 and	
 Implementa>on	
 Issues	

• Handling	
 arbitrary	
 number	
 of	
 mappings	

•  Immutability	

•  Itera>on	
 Order	

• Nulls	
 Disallowed	

• Duplicate	
 Handling	

•  Space	
 Efficiency	

•  Serializability	

29	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

API	
 Design:	
 Handling	
 Arbitrary	
 Number	
 of	
 Mappings	

•  List	
 and	
 Set	
 have	
 obvious	
 varargs	
 extensions,	
 not	
 so	
 for	
 Map	

•  Inves>gated	
 about	
 15	
 different	
 approaches	

– technical	
 evalua>on:	
 “they	
 all	
 suck”	

– this	
 is	
 the	
 case	
 where	
 language	
 syntax	
 support	
 would	
 be	
 most	
 helpful	

• Criteria	

– simple,	
 liole	
 boilerplate	

– compile-­‐>me	
 type-­‐safe	

– number	
 of	
 elements	
 known	
 at	
 compile	
 >me	
 (avoid	
 resizing/rehashing)	

– each	
 key	
 and	
 value	
 should	
 be	
 adjacent	
 in	
 source	
 code	

– avoid	
 boxing	

30	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

API	
 Design:	
 Handling	
 Arbitrary	
 Number	
 of	
 Mappings	

•  Solu>on:	
 Map.ofEntries(Map.Entry...	
 entries)	

• Add	
 Map.entry()	
 sta>c	
 factory	
 method	
 returning	
 Map.Entry	

– suitable	
 for	
 sta>c	
 import;	
 can	
 use	

entry(key,	
 value)	

– instead	
 of	

new	
 AbstractMap.SimpleImmutableEntry<>(key,	
 value)	

•  Sa>sfies	
 all	
 criteria	
 except	
 for	
 boxing	

– maybe...	
 the	
 Map.Entry	
 can	
 be	
 turned	
 into	
 a	
 value	
 type	
 in	
 the	
 future	

• Overall	
 a	
 reasonable	
 compromise	

31	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Immutability	

• Collec>ons	
 returned	
 by	
 the	
 new	
 sta>c	
 factory	
 methods	
 are	
 immutable	

•  “Conven>onal”	
 immutability,	
 not	
 “immutable	
 persistent”	

– aoempts	
 to	
 add,	
 set,	
 or	
 remove	
 throw	
 UnsupportedOpera>onExcep>on	

•  Immutability	
 is	
 good!	

– common	
 case:	
 collec>on	
 ini>alized	
 from	
 known	
 values,	
 never	
 changed	

– automa>cally	
 thread-­‐safe	

– provides	
 opportuni>es	
 for	
 efficiency,	
 especially	
 space	

• No	
 general-­‐purpose	
 immutable	
 collec>ons	
 exist	
 in	
 the	
 JDK	

– unmodifiable	
 wrappers	
 are	
 a	
 poor	
 subs>tute	

32	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Randomized	
 Itera>on	
 Order	

•  Itera>on	
 order	
 for	
 Set	
 elements	
 and	
 Map	
 keys	

– HashSet,	
 HashMap:	
 order	
 is	
 officially	
 unspecified	

– however,	
 usually	
 consistent	
 for	
 long	
 periods	
 of	
 >me	
 (>	
 1	
 JDK	
 release	
 cycle)	

– inadvertent	
 order	
 dependencies	
 can	
 creep	
 into	
 code	

•  Lots	
 of	
 code	
 breaks	
 when	
 itera>on	
 order	
 is	
 changed	

– occasionally	
 necessary	
 to	
 improve	
 performance	
 or	
 fix	
 security	
 holes	

– lots	
 of	
 code	
 probably	
 has	
 latent	
 itera>on	
 order	
 dependencies	

•  bugs	
 just	
 wai>ng	
 to	
 happen	

– “just	
 change	
 this	
 HashMap	
 to	
 a	
 LinkedHashMap”	

•  random	
 bugs	
 disappear	

33	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Randomized	
 Itera>on	
 Order	

•  Solu>on:	
 randomized	
 itera>on	
 order	
 for	
 JEP	
 269	
 collec>ons	

– make	
 itera>on	
 order	
 predictably	
 unpredictable!	

– itera>on	
 order	
 will	
 be	
 stable	
 within	
 a	
 JVM	
 instance	

– but	
 will	
 change	
 from	
 one	
 run	
 to	
 the	
 next	

•  Goal:	
 “toughen	
 up”	
 user	
 code	
 to	
 prevent	
 itera>on	
 order	
 dependencies	

– bugs	
 flushed	
 out	
 in	
 development	
 and	
 test,	
 before	
 produc>on	
 (we	
 hope)	

• Applies	
 only	
 to	
 new	
 collec>ons	
 implementa>ons	

– by	
 defini>on,	
 no	
 exis>ng	
 code	
 depends	
 on	
 their	
 itera>on	
 order	

– exis>ng	
 collec>ons	
 will	
 remain	
 the	
 same	

34	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Nulls	
 Disallowed	

• Nulls	
 disallowed	
 as	
 List	
 or	
 Set	
 members,	
 Map	
 keys	
 or	
 values	

– NullPointerExcep>on	
 thrown	
 at	
 crea>on	
 >me	

• Allowing	
 nulls	
 in	
 collec>ons	
 back	
 in	
 1.2	
 was	
 a	
 mistake	

– no	
 collec>on	
 in	
 Java	
 5	
 or	
 later	
 has	
 permioed	
 nulls	

– par>cularly	
 the	
 java.u>l.concurrent	
 collec>ons	

• Why	
 not?	

– nulls	
 are	
 bad!	
 source	
 of	
 NPEs	

– nulls	
 useful	
 as	
 sen>nel	
 values	
 in	
 APIs,	
 e.g.,	
 Map.get(),	
 Map.compute()	

– nulls	
 useful	
 as	
 sen>nel	
 values	
 for	
 op>mizing	
 implementa>ons	

35	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Throw	
 Excep>ons	
 on	
 Duplicates	

• Duplicate	
 set	
 elements	
 or	
 map	
 keys	
 throw	
 IllegalArgumentExcep>on	

• Duplicates	
 in	
 a	
 “collec>on	
 literal”	
 are	
 most	
 likely	
 a	
 programming	
 error	

•  Ideally	
 this	
 would	
 be	
 detected	
 at	
 compile	
 >me	

– values	
 aren’t	
 compile-­‐>me	
 constants	

– next	
 best	
 thing:	
 fail-­‐fast	
 on	
 crea>on	
 at	
 run>me	

• Very	
 few	
 other	
 systems	
 do	
 this	

– most	
 are	
 “last	
 one	
 wins”	

– Clojure	
 and	
 ECMAScript	
 (strict)	
 are	
 notable	
 outliers	

36	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

37	

Map<String,	
 TokenType>	
 tokens	
 =	
 Map.ofEntries(

	
 	
 	
 	
 entry("@",	
 	
 	
 	
 	
 AT),	

	
 	
 	
 	
 entry("|",	
 	
 	
 	
 	
 VERTICAL_BAR),	

	
 	
 	
 	
 entry("#",	
 	
 	
 	
 	
 HASH),	

	
 	
 	
 	
 entry("%",	
 	
 	
 	
 	
 PERCENT),	

	
 	
 	
 	
 entry(":",	
 	
 	
 	
 	
 COLON),	

	
 	
 	
 	
 entry("^",	
 	
 	
 	
 	
 CARET),	

	
 	
 	
 	
 entry("&",	
 	
 	
 	
 	
 AMPERSAND),	

	
 	
 	
 	
 entry("|",	
 	
 	
 	
 	
 EXCLAM),	

	
 	
 	
 	
 entry("?",	
 	
 	
 	
 	
 QUESTION),	

	
 	
 	
 	
 entry("$",	
 	
 	
 	
 	
 DOLLAR),	

	
 	
 	
 	
 entry("::",	
 	
 	
 	
 PAAMAYIM_NEKUDOTAYIM),	

	
 	
 	
 	
 entry("=",	
 	
 	
 	
 	
 EQUALS),	

	
 	
 	
 	
 entry(";",	
 	
 	
 	
 	
 SEMICOLON)	

);	

	

Example:	
 Map	
 With	
 Duplicate	
 Keys	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Space	
 Efficiency	

• Consider	
 an	
 unmodifiable	
 set	
 containing	
 two	
 strings	

Set<String>	
 set	
 =	
 new	
 HashSet<>(3);	
 	
 //	
 3	
 is	
 the	
 number	
 of	
 buckets	

set.add("foo");	

set.add("bar");	

set	
 =	
 Collections.unmodifiableSet(set);	

• How	
 much	
 space	
 does	
 this	
 take?	
 Count	
 objects.	

– 1	
 unmodifiable	
 wrapper	

– 1	
 HashSet	

– 1	
 HashMap	

– 1	
 Object[]	
 table	
 of	
 length	
 3	

– 2	
 Node	
 objects,	
 one	
 for	
 each	
 element	

38	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Space	
 Efficiency	

39	

set	

unmod	
 wrapper	

HashSet	

HashMap	
 table	

Node	

Node	

"foo"	

PRESENT	

"bar"	

PRESENT	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Space	
 Efficiency	

•  Size	
 es>mate	

– 12	
 byte	
 header	
 per	
 object	

– (assume	
 64-­‐bit	
 JVM	
 with	
 <	
 32	
 GB	
 heap,	
 allowing	
 compressed	
 OOPS)	

– plus	
 4	
 bytes	
 per	
 int,	
 float,	
 or	
 reference	
 field	

• Object	
 sizes	

– unmod	
 wrapper:	
 header	
 +	
 1	
 field	
 =	
 16	
 bytes	

– HashSet:	
 header	
 +	
 1	
 field	
 =	
 16	
 bytes	

– HashMap:	
 header	
 +	
 6	
 fields	
 =	
 36	
 bytes	

– table:	
 header	
 +	
 4	
 fields	
 =	
 28	
 bytes	

– Node:	
 header	
 +	
 4	
 fields	
 =	
 28	
 bytes	
 x	
 2	
 =	
 56	
 bytes	

40	

Total	
 152	
 bytes	
 to	
 store	

two	
 object	
 references!	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Space	
 Efficiency	

•  Field-­‐based	
 set	
 implementa>on	

Set<String>	
 set	
 =	
 Set.of("foo",	
 "bar");	

• One	
 object,	
 two	
 fields	

– 20	
 bytes,	
 compared	
 to	
 152	
 bytes	
 for	
 conven>onal	
 structure	

•  Efficiency	
 gains	

– lower	
 fixed	
 cost:	
 fewer	
 objects	
 created	
 for	
 a	
 collec>on	
 of	
 any	
 size	

– lower	
 variable	
 cost:	
 fewer	
 bytes	
 overhead	
 per	
 collec>on	
 element	

41	

FieldBasedSet2	
 "foo"	

"bar"	
 set	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Mul>ple	
 Implementa>ons	

• All	
 implementa>ons	
 are	
 private	
 classes	
 hidden	
 behind	
 sta>c	
 factory	

– sta>c	
 factory	
 method	
 chooses	
 the	
 implementa>on	
 class	
 based	
 on	
 size	

• Different	
 data	
 organiza>ons	

– field-­‐based	
 implementa>ons	

•  specialized	
 implementa>ons	
 for	
 0,	
 1,	
 2,	
 ...	
 elements	

– array-­‐based	
 with	
 closed	
 hashing	

– can	
 be	
 changed	
 compa>bly	
 even	
 in	
 minor	
 releases	

• Benefits	

– less	
 space	
 overall	

– fewer	
 objects	
 result	
 in	
 improved	
 locality	
 of	
 reference	

42	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Serializa>on	

• All	
 collec>ons	
 will	
 be	
 serializable	

– yes,	
 people	
 really	
 use	
 serializa>on	

– default	
 serialized	
 form	
 would	
 “leak”	
 informa>on	
 about	
 internal	
 implementa>on	

•  this	
 can	
 be	
 a	
 compa>bility	
 issue	
 if	
 you’re	
 not	
 careful	

• New	
 collec>ons	
 implementa>ons	
 will	
 have	
 custom	
 serial	
 form	

– serializa>on	
 emits	
 serial	
 proxy	
 to	
 keep	
 implementa>ons	
 opaque	

– deserializa>on	
 chooses	
 implementa>on	
 based	
 on	
 current	
 criteria	
 in	
 effect	

– single,	
 common	
 serial	
 proxy	
 shared	
 by	
 all	
 implementa>ons	

43	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Summary	

• Collec>ons	
 framework	
 is	
 19	
 years	
 old,	
 s>ll	
 useful	
 and	
 extensible!	

•  Java	
 8	
 Enhancements	

– default	
 methods	
 enhance	
 all	
 exis>ng	
 collec>ons	

– Comparator	
 methods	
 allow	
 building	
 Comparators	
 by	
 composi>on	

•  Java	
 9	
 Enhancements	
 –	
 JEP	
 269	
 Convenience	
 Factories	

– convenient,	
 space-­‐efficient,	
 immutable	

– promising	
 space	
 savings	
 from	
 use	
 in	
 JDK	
 9	
 itself	

– JEP	
 269:	
 hop://openjdk.java.net/jeps/269	

•  Try	
 out	
 JDK	
 9	
 builds:	
 hop://jdk9.java.net	

44	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Safe	
 Harbor	
 Statement	

The	
 preceding	
 is	
 intended	
 to	
 outline	
 our	
 general	
 product	
 direc>on.	
 It	
 is	
 intended	
 for	

informa>on	
 purposes	
 only,	
 and	
 may	
 not	
 be	
 incorporated	
 into	
 any	
 contract.	
 It	
 is	
 not	
 a	

commitment	
 to	
 deliver	
 any	
 material,	
 code,	
 or	
 func>onality,	
 and	
 should	
 not	
 be	
 relied	
 upon	

in	
 making	
 purchasing	
 decisions.	
 The	
 development,	
 release,	
 and	
 >ming	
 of	
 any	
 features	
 or	

func>onality	
 described	
 for	
 Oracle’s	
 products	
 remains	
 at	
 the	
 sole	
 discre>on	
 of	
 Oracle.	

45	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Future	
 Collec>ons	
 Work	

47	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Short-­‐term,	
 Conven>onal	
 Enhancements	

• Depreca>on	

– deprecate	
 “legacy	
 collec>ons”	
 (Vector,	
 Hashtable,	
 etc.)	

– deprecate	
 LinkedList?	

• Core	
 collec>ons	
 enhancements	

– add	
 opt-­‐in	
 randomized	
 itera>on	
 order	
 for	
 core	
 collec>ons	

– new	
 mutator	
 default	
 methods	

– indexed	
 access	
 for	
 ArrayDeque	
 (making	
 it	
 List-­‐like)	

•  JEP	
 269	
 collec>ons	
 enhancements	

– improve	
 performance	

– add	
 ordered	
 Set/Map	

48	

UNPLANNED	
 FUTURE	
 WORK	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Far	
 Distant	
 Future	
 –	
 Project	
 Valhalla	

• Value	
 types	
 –	
 like	
 immutable	
 structs,	
 with	
 no	
 iden>ty	

– “codes	
 like	
 a	
 class,	
 works	
 like	
 an	
 int”	
 –	
 John	
 Rose	
 (Oracle	
 JVM	
 Architect)	

– includes	
 generic	
 specializa>on	

• Great	
 poten>al	
 for	
 improving	
 conven>onal,	
 mutable	
 collec>ons	

– collec>ons	
 of	
 primi>ves:	
 List<int>	

– uses	
 not	
 obvious,	
 though;	
 can’t	
 just	
 replace	
 red-­‐black	
 tree	
 nodes	
 with	
 value	
 types	

– possibility:	
 reorganize	
 internal	
 structures	
 to	
 improve	
 locality	

•  Immutable	
 Persistent	
 Collec>ons?	

– need	
 new	
 APIs,	
 can’t	
 be	
 retrofioed	
 into	
 exis>ng	
 interfaces	

– actually	
 orthogonal	
 to	
 value	
 types	

49	

IN	
 OTHER	
 WORDS,	
 HE’S	
 LYING	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Map.merge(key,	
 newValue,	
 (oldV,	
 newV)	
 -­‐>	
 mergeV)	

• More	
 condi>onal	
 execu>on	

•  If	
 key	
 is	
 absent	

– simply	
 stores	
 key	
 and	
 newValue	

•  If	
 key	
 is	
 present	

– fetches	
 the	
 old	
 value	

– invokes	
 merge	
 func1on	
 on	
 old	
 and	
 new	
 values	
 to	
 produce	
 merged	
 value	

– stores	
 the	
 key	
 and	
 merged	
 value	

• Opera>on	
 is	
 atomic	
 for	
 ConcurrentMap	
 implementa>ons	

50	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

51	

//	
 store	
 or	
 append	
 a	
 string	
 to	
 an	
 existing	
 value	

	

	
 	
 	
 	
 Map<String,String>	
 map	
 =	
 new	
 HashMap<>();	

	

//	
 OLD	

	

	
 	
 	
 	
 String	
 oldValue	
 =	
 map.get("key");	

	
 	
 	
 	
 if	
 (oldValue	
 ==	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 map.put("key",	
 "newValue");	

	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 map.put("key",	
 oldValue	
 +	
 "newValue");	

	

//	
 NEW	

	

	
 	
 	
 	
 map.merge("key",	
 "newValue",	
 String::concat);	

Map.merge	
 Example	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Collec>ons	
 Corner	
 Cases	
 –	
 Design	
 Notes	

• Collec>ons	
 Framework	
 Interfaces	
 (Collec>on,	
 List,	
 Set,	
 Map)	

– lasted	
 16	
 years	
 with	
 no	
 modifica>ons	

– legacy	
 collec>ons	
 were	
 all	
 concrete	
 classes	

•  custom	
 collec>ons	
 forced	
 to	
 use	
 override/delegate	
 an>paoern	

•  EclipseLink	
 JPA	
 did	
 this	
 with	
 Vector	
 to	
 provide	
 a	
 laziness	

•  broken	
 in	
 Java	
 8	
 when	
 default	
 methods	
 were	
 added	

•  same	
 things	
 happen	
 when	
 people	
 subclass/override	
 ArrayList	
 to	
 customize	
 its	
 behavior	

– recommenda>on	

•  always	
 start	
 from	
 interfaces	
 or	
 one	
 of	
 the	
 Abstract*	
 classes	

52	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Collec>ons	
 Implementa>on	
 Policies	

• Policies	

– concurrent	
 modifica>on	

•  fail-­‐fast,	
 snapshot,	
 weakly	
 consistent	

•  (there	
 is	
 NO	
 SUCH	
 THING	
 as	
 a	
 fail-­‐safe	
 iterator!)	

– itera>on	
 order	

– null	
 handling	

– serializability	

– concurrency	
 proper>es	
 (atomicity)	

• Policies	
 are	
 specified	
 on	
 implementa>ons,	
 not	
 interfaces	

– if	
 you	
 write	
 a	
 custom	
 collec>on,	
 you	
 should	
 specify	
 these	

53	

Copyright	
 ©	
 2017,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#Collec>onsRefueled	

Op>onal	
 Opera>ons	

•  Some	
 collec>ons	
 opera>ons	
 are	
 op>onal	

– if	
 not	
 implemented,	
 they	
 throw	
 UnsupportedOpera>onExcep>on	

– mostly	
 for	
 mutator	
 methods	
 on	
 unmodifiable	
 collec>ons	

• How	
 strictly	
 is	
 this	
 enforced?	

– consider:	
 list.addAll(Collec>on.emptyList())	

– suppose	
 ‘list’	
 is	
 unmodifiable	

– should	
 this	
 throw	
 UOE	
 or	
 be	
 a	
 no-­‐op?	

– answer:	
 inconsistent!	

• Collec>ons.unmodifiable*	
 and	
 JEP	
 269	
 factories	
 always	
 throw	
 UOE	
 	

– others,	
 e.g.	
 Collec>ons.emptyList(),	
 allow	
 this	
 as	
 a	
 no-­‐op	

54	

