
Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

Collec>ons	Refueled	
Collec&ons	Framework	Enhancements	in	Java	9+	

Stuart	W.	Marks	
OpenJDK	Core	Libraries	Developer	
Java	PlaLorm	Group,	Oracle	
	
TwiQer:	@stuartmarks	
Hashtag:	#Collec>onsRefueled	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

Safe	Harbor	Statement	

The	following	is	intended	to	outline	our	general	product	direc>on.	It	is	intended	for	
informa>on	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	func>onality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	>ming,	and	pricing	of	any	
features	or	func>onality	described	for	Oracle’s	products	may	change	and	remains	at	the	
sole	discre>on	of	Oracle	Corpora>on.	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Twenty	Years	of	Java	Collec>ons	
•  JDK	1.0	–	1996	
– “Legacy	Collec>ons”:	Vector,	Hashtable	
•  JDK	1.2	–	1998	
– Collec>ons	Framework	introduced:	Collec>on,	List,	Set,	Map,	ArrayList,	HashMap	

•  Java	SE	5.0	–	2004	
– generics	introduced,	collec>ons	generified	
– java.u>l.concurrent	
•  Java	8	–	2014	
– lambda,	streams;	default	methods	enhanced	all	exis(ng	collec>ons	

3	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Java	9	–	Collec>ons	Convenience	Factory	Methods	
• Convenient	and	Concise	
•  Space	Efficient	
• Unmodifiable	

4	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Java	9	–	Collec>ons	Convenience	Factory	Methods	
•  Library-only	API;	no	language	changes	
– sta>c	factory	methods	for	crea>ng	new	lists,	sets,	maps	
– gets	~80%	of	the	benefit	of	language	changes	at	a	>ny	frac>on	of	the	cost	
• Why	not	“collec>on	literals”	as	in	other	languages?	
– Java’s	only	built-in	aggrega>on	constructs	are	arrays	and	classes	
– higher-level	abstrac>ons	(collec>ons)	are	delegated	to	libraries	
– binding	Java	language	and	libraries	too	>ghtly	would	create	design	discomfort	
•  in	par>cular,	the	language	would	now	depend	on	collec>ons	implementa>ons	in	java.u>l	

5	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

6	

List.of()
List.of(e1)
List.of(e1, e2) // fixed-arg overloads up to ten elements
List.of(elements...) // varargs supports arbitrary number of elements

Set.of()
Set.of(e1)
Set.of(e1, e2) // fixed-arg overloads up to ten elements
Set.of(elements...) // varargs supports arbitrary number of elements

Map.of()
Map.of(k1, v1)
Map.of(k1, v1, k2, v2) // fixed-arg overloads up to ten key-value pairs

Map.ofEntries(entry(k1, v1), entry(k2, v2), ...) // varargs

Map.entry(k, v) // creates a Map.Entry instance

New	Java	9	APIs:	Sta>c	Methods	on	Interfaces	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		 7	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

8	

// Java 8

 List<String> stringList =
 Collections.unmodifiableList(
 Arrays.asList("a", "b", "c"));

// Java 9

 List<String> stringList = List.of("a", "b", "c");

List	Example	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

9	

// Java 8

 Set<String> stringSet =
 Collections.unmodifiableSet(
 new HashSet<>(
 Arrays.asList("a", "b", "c")));

// Java 9

 Set<String> stringSet = Set.of("a", "b", "c");

Set	Example	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

10	

// Java 8

 Map<String, Integer> stringMap = new HashMap<>();
 stringMap.put("a", 1);
 stringMap.put("b", 2);
 stringMap.put("c", 3);
 stringMap = Collections.unmodifiableMap(stringMap);

// Java 9

 Map<String, Integer> stringMap = Map.of("a", 1, "b", 2, "c", 3);

Map	Example	(<=	10	entries)	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

11	

Map<String, TokenType> tokens = Map.ofEntries(
 entry("@", AT),
 entry("|", VERTICAL_BAR),
 entry("#", HASH),
 entry("%", PERCENT),
 entry(":", COLON),
 entry("^", CARET),
 entry("&", AMPERSAND),
 entry("!", EXCLAM),
 entry("?", QUESTION),
 entry("$", DOLLAR),
 entry("::", PAAMAYIM_NEKUDOTAYIM),
 entry("=", EQUALS),
 entry(";", SEMICOLON)
);

Map	Example	(>	10	entries)	

Each	call	to	entry()	returns	a	
single	instance	of	Map.Entry	

The	Map.ofEntries()	method	
accepts	a	varargs	argument	
of	Map.Entry	instances	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Implementa>on	Characteris>cs	
• Unmodifiable	
• Nulls	Disallowed	
• Randomized	Itera>on	Order	(Sets	and	Maps)	
• Duplicates	Disallowed	(Sets	and	Maps)	
•  Space	Efficient	
•  Serializable	

12	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Unmodifiable	
• Collec>ons	returned	by	the	new	sta>c	factory	methods	are	unmodifiable	
– aQempts	to	add,	set,	or	remove	throw	UnsupportedOpera>onExcep>on	

• What	good	is	an	unmodifiable	collec>on?	
– collec>ons	ouen	ini>alized	from	known	values,	never	changed	
– can	pass	internal	collec>on	to	client	without	fear	of	accidental	modifica>on	
– one	step	towards	thread-safety	
– provides	opportuni>es	for	space	efficiency	

•  These	collec>ons	themselves	are	unmodifiable	
– compare	Collec>ons.unmodifiableList()	etc.	wrappers	around	another	collec>on	

13	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Unmodifiable	Collec>ons	vs.	Unmodifiable	Wrappers	
• What’s	the	difference	between	list1	and	list2?	

List<Integer>	inner	=	Arrays.asList(1,	2,	3);	
List<Integer>	list1	=	Collections.unmodifiableList(inner);	
List<Integer>	list2	=	List.of(1,	2,	3);	

•  Similari>es	
–  Mutator	methods	add(),	remove(),	set()	etc.	throw	UnsupportedOpera>onExcep>on	

•  Differences	
–  list1	is	an	unmodifiable	view	of	the	underlying	list	inner	
–  inner	can	be	modified,	and	modifica>ons	to	it	are	visible	to	list1	
–  list2	cannot	be	modified	at	all	

14	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Nulls	Disallowed	
• Nulls	disallowed	as	List	or	Set	members,	Map	keys	or	values	
– NullPointerExcep>on	thrown	at	crea>on	>me	

• Allowing	nulls	in	collec>ons	back	in	1.2	was	a	mistake	
– no	collec>on	in	Java	5	or	later	(esp.	java.u>l.concurrent)	has	permiQed	nulls	
– classic	collec>ons	like	ArrayList,	HashMap	s>ll	allow	nulls	

• Why	not?	
– nulls	are	a	source	of	NPEs	in	applica>ons,	seman>cally	confusing	
– nulls	useful	as	sen>nel	values	in	APIs,	e.g.,	Map.get(),	Map.compute()	
– nulls	useful	as	sen>nel	values	for	op>mizing	implementa>ons	

15	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Randomized	Itera>on	Order	
•  Itera>on	order	for	Set	elements	and	Map	keys	
– HashSet,	HashMap:	order	is	officially	unspecified	
– however,	usually	consistent	for	long	periods	of	>me	(>	1	JDK	release	cycle)	
– inadvertent	order	dependencies	can	creep	into	code	
•  Lots	of	code	breaks	when	itera>on	order	is	changed	
– occasionally	necessary	to	improve	performance	or	fix	security	holes	
– lots	of	code	probably	has	latent	itera>on	order	dependencies	(i.e.,	bugs!)	
– “just	change	this	HashMap	to	a	LinkedHashMap”	–	random	bugs	disappear	

16	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Randomized	Itera>on	Order	
•  Solu>on:	randomized	itera>on	order	for	new	collec>ons	
– make	itera>on	order	predictably	unpredictable!	
–  itera>on	order	will	be	stable	within	a	JVM	instance	
– but	will	change	from	one	run	to	the	next	

•  Precedents:	Go	language;	Python	3.0	–	3.5	
•  Goal:	“toughen	up”	user	code	to	prevent	itera>on	order	dependencies	
– bugs	flushed	out	in	development	and	test,	before	produc>on	(we	hope)	

•  Applies	only	to	new	collec>ons	implementa>ons	
– by	defini>on,	no	exis>ng	code	depends	on	their	itera>on	order	
– exis>ng	collec>ons	will	remain	the	same	

• Worried?	Use	LinkedHashSet	/	LinkedHashMap	

17	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Duplicates	Disallowed	
• Duplicate	set	elements	or	map	keys	throw	IllegalArgumentExcep>on	
• Duplicates	in	a	“collec>on	literal”	are	most	likely	a	programming	error	
•  Ideally	this	would	be	detected	at	compile	>me	
– values	aren’t	compile->me	constants	
– next	best	thing:	fail-fast	on	crea>on	at	run>me	

• Very	few	other	systems	do	this	
– most	are	“last	one	wins”	
– Clojure	and	ECMAScript	(strict)	are	notable	outliers	

18	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

19	

Map<String, TokenType> tokens = Map.ofEntries(
 entry("@", AT),
 entry("|", VERTICAL_BAR),
 entry("#", HASH),
 entry("%", PERCENT),
 entry(":", COLON),
 entry("^", CARET),
 entry("&", AMPERSAND),
 entry("|", EXCLAM),
 entry("?", QUESTION),
 entry("$", DOLLAR),
 entry("::", PAAMAYIM_NEKUDOTAYIM),
 entry("=", EQUALS),
 entry(";", SEMICOLON)
);

Example:	Map	With	Duplicate	Keys	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Space	Efficiency	
• All	implementa>ons	are	private	classes	hidden	behind	sta>c	factory	
– sta>c	factory	method	chooses	the	implementa>on	based	on	number	of	elements	

• Different	data	organiza>ons	
– field-based	implementa>ons	for	0,	1,	2	elements	
– array-based	with	closed	hashing	for	>	2	elements	
– implementa>ons	can	be	changed	compa>bly	in	any	JDK	release	

• Benefits	
– less	space	overall	
– fewer	objects	result	in	improved	locality	of	reference	

20	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Space	Efficiency	
• Consider	an	unmodifiable	set	containing	two	strings	

Set<String>	set	=	new	HashSet<>(3);		//	3	is	the	number	of	buckets	
set.add("foo");	
set.add("bar");	
set	=	Collections.unmodifiableSet(set);	

• How	much	space	does	this	take?	Count	objects.	
– 1	unmodifiable	wrapper	
– 1	HashSet	
– 1	HashMap	
– 1	Object[]	table	of	length	3	
– 2	Node	objects,	one	for	each	element	

21	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Space	Efficiency	

22	

set	

unmod	wrapper	

HashSet	

HashMap	 table	

Node	

Node	

"foo"	
PRESENT	

"bar"	
PRESENT	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Space	Efficiency	
• Object	size	es>mate	
– 12	byte	header	per	object	
– plus	4	bytes	per	int,	float,	or	reference	field	
– (assume	64-bit	JVM	with	compressed	OOPS)	

•  Total	collec>on	overhead	(not	coun>ng	contents)	
– unmod	wrapper:	header	+	1	field	=	16	bytes	
– HashSet:	header	+	1	field	=	16	bytes	
– HashMap:	header	+	6	fields	=	36	bytes	
– table:	header	+	4	fields	=	28	bytes	
– Node:	header	+	4	fields	=	28	bytes	x	2	=	56	bytes	

23	

Total	152	bytes	to	store	
two	object	references!	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Space	Efficiency	
•  Field-based	set	implementa>on	

Set<String>	set	=	Set.of("foo",	"bar");	

• One	object,	two	reference	fields	
– 20	bytes,	compared	to	152	bytes	for	conven>onal	structure	

•  Efficiency	gains	
– lower	fixed	cost:	fewer	objects	created	for	a	collec>on	of	any	size	
– lower	variable	cost:	fewer	bytes	overhead	per	collec>on	element	

24	

Set2	 "foo"	
"bar"	set	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	

25	

// Copy Factories – for making shallow copies
// short-circuits copying if not necessary
// if src is unmodifiable, returns 'this'

List.copyOf(Collection<T> src)
Set.copyOf(Collection<T> src)
Map.copyOf(Map<K,V> src)

// Stream Collectors
// produce same implementations as List.of(), Set.of(), Map.of()

Collectors.toUnmodifiableList()
Collectors.toUnmodifiableSet()
Collectors.toUnmodifiableMap(keyFunc, valFunc)
Collectors.toUnmodifiableMap(keyFunc, valFunc, mergeFunc)

Addi>onal	APIs	in	Java	10	

allows	duplicates	

allows	duplicates	

Copyright	©	2018,	Oracle	and/or	its	affiliates.	All	rights	reserved.		

#Collec>onsRefueled	
Summary	
• Collec>ons	framework	is	20	years	old,	s>ll	useful	and	extensible!	
•  Java	9	&	10	add	Collec>on	Factory	Methods	&	Stream	Collectors	
– convenient,	concise	API	
– space-efficient,	unmodifiable	implementa>on	
– space	and	performance	improvements	from	use	inthe	JDK	itself	

• Ques>ons?	
– TwiQer: 	 	@stuartmarks	 	#Collec>onsRefueled	

26	

