Collections Refueled

Collections Framework Enhancements in Java 9+

Stuart W. Marks
OpenlDK Core Libraries Developer
Java Platform Group, Oracle

Twitter: @stuartmarks
Hashtag: #CollectionsRefueled

O e ®
R CI-E Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

OO0 O 0O O SeEee
EEEEEEER
EEEEEEERN

ORACL -
ODE
_

Live for
the Code




#CollectionsRefueled

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, timing, and pricing of any
features or functionality described for Oracle’s products may change and remains at the
sole discretion of Oracle Corporation.

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.



#CollectionsRefueled
Twenty Years of Java Collections

* JDK 1.0 -1996

— “Legacy Collections”: Vector, Hashtable

* JDK 1.2 -1998

— Collections Framework introduced: Collection, List, Set, Map, ArrayList, HashMap

* Java SE 5.0 - 2004

— generics introduced, collections generified
— java.util.concurrent

* Java 8 — 2014

— lambda, streams; default methods enhanced all existing collections

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 3



#CollectionsRefueled
Java 9 — Collections Convenience Factory Methods

* Convenient and Concise
* Space Efficient
* Unmodifiable

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 4



#CollectionsRefueled
Java 9 — Collections Convenience Factory Methods

* Library-only API; no language changes
— static factory methods for creating new lists, sets, maps
— gets “80% of the benefit of language changes at a tiny fraction of the cost

* Why not “collection literals” as in other languages?
—Java’s only built-in aggregation constructs are arrays and classes
— higher-level abstractions (collections) are delegated to libraries

— binding Java language and libraries too tightly would create design discomfort
* in particular, the language would now depend on collections implementations in java.util

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 5



#CollectionsRefueled
New Java 9 APIs: Static Methods on Interfaces

List.of ()
List.of(el)
List.of(el, e2) // fixed-arg overloads up to ten elements

List.of(elements...) // varargs supports arbitrary number of elements

Set.of()

Set.of(el)
Set.of(el, e2) // fixed-arg overloads up to ten elements
Set.of(elements...) // varargs supports arbitrary number of elements

Map.of()

Map.of(kl, v1)

Map.of(kl, v1, k2, v2) // fixed-arg overloads up to ten key-value pairs
Map.ofEntries(entry(kl, v1), entry(k2, v2), ...) // varargs

Map.entry(k, v) // creates a Map.Entry instance

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.



ORACLE

static

static

static

static

static

static

static

static

static

static

static

<K, V>

<K,V>

<K,V>

<K, V>

<K, V>

<K, V>

<K, V>

<K, V>

<K, V>

<K, V>

<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

Map<K, V>

of()
Returns an immutable map containing zero mappings.

of(K k1, V vl)
Returns an immutable map containing a single mapping.

of(K k1, V vl, K k2, V v2)
Returns an immutable map containing two mappings.

of(K k1, V vl, K k2, V v2, K k3, V v3)
Returns an immutable map containing three mappings.

[N
pF (K kd, Mavl K k2, Viv2o e Ktk3 5 Vav3s Ko kd o Viavd))
Returns an immutable map containing four mappings.

of(K k1, V vl1, K k2, V v2, K k3, V v3, K k4, V v4,
Returns an immutable map containing five mappings.

of(K k1, V vl1, K k2, V v2, K k3, V v3, K k4, V v4,
Returns an immutable map containing six mappings.

of(K k1, Vv vl, K k2, V v2, K k3, V v3, K k4, V v4,
V v7)

Returns an immutable map containing seven mappings.

oF (16 eNav NI k25 Vo 2a = K k3 o Ve v B K kds - Vv
V v7, K k8, V v8)

Returns an immutable map containing eight mappings.

of(K k1, V vl1, K k2, V v2, K k3, V v3, K k4, V v4,
V v7, K k8, V v8, K k9, V v9)

Returns an immutable map containing nine mappings.

of(K k1, V vl, K k2, V v2, K k3, V v3, K k4, V v4,
V v7, Kk8, Vv8, KKk9, VvI, K k10, V v10)
Returns an immutable map containing ten mappings.

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

K5,

k5,

k5,

k5,

k5,

k5,

v5)

v5,

v5,

v5,

v5,

v5,

K k6,

K k6,

K k6,

K k6,

K k6,

v6)

v6,

v6,

v6,

v6,

K k7,

K k7,

K k7,

K k7,



#CollectionsRefueled
List Example

// Java 8
List<String> stringlList =

Collections.unmodifiablelList(
Arrays.asList("a", "b", "c"));

// Java 9

List<String> stringlList = List.of("a", "b", "c");

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.



#CollectionsRefueled
Set Example

// Java 8

Set<String> stringSet =
Collections.unmodifiableSet(
nhew HashSet<>(
Arrays.asList("a", "b", "c")));
// Java 9

Set<String> stringSet = Set.of("a", "b", "c");

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.



#CollectionsRefueled

Map Example (<= 10 entries)
// Java 8

Map<String, Integer> stringMap = new HashMap<>();
stringMap.put('a", 1);

stringMap.put("b", 2);

stringMap.put("c", 3);

stringMap = Collections.unmodifiableMap(stringMap);

// Java 9

Map<String, Integer> stringMap = Map.of("a", 1, "b", 2, "c"

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

3);

10



#CollectionsRefueled

Map Example (> 10 entries)

Map<String, TokenType> tokens
entry("@",

);

entry(

entry("#",

entry("%",
entry(":",
entry("A",
entry("&",
entry("!",
entry("?",

entry("$",

entry("::
entl"y(" "
entry(";

ORACLE

= Map.ofEntries(

AT), ‘k\\\\\
VERTICAL_BAR), The Map.ofEntries() method

HASH) , accepts a varargs argument

PERCENT) , .
COLON), of Map.Entry instances

CARET),

AMPERSAND) ,

EXCLAM) ,

QUESTION),

DOLLAR),
PAAMAYIM_NEKUDOTAYIM),
EQUALS),

SEMICOLON)

Each call to entry() returns a
single instance of Map.Entry

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 11



Implementation Characteristics
* Unmodifiable

* Nulls Disallowed

* Randomized Iteration Order (Sets and Maps)
* Duplicates Disallowed (Sets and Maps)

* Space Efficient

* Serializable

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserve

d.

#CollectionsRefueled

12



#CollectionsRefueled

Unmodifiable

* Collections returned by the new static factory methods are unmodifiable
— attempts to add, set, or remove throw UnsupportedOperationException

* What good is an unmodifiable collection?
— collections often initialized from known values, never changed
— can pass internal collection to client without fear of accidental modification
— one step towards thread-safety
— provides opportunities for space efficiency

* These collections themselves are unmodifiable
— compare Collections.unmodifiableList() etc. wrappers around another collection

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 13



#CollectionsRefueled
Unmodifiable Collections vs. Unmodifiable Wrappers

* What’s the difference between list1l and list2?
Arrays.aslList(1, 2, 3);
Collections.unmodifiableList(inner);
List.of(1, 2, 3);

List<Integer> inner
List<Integer> listl
List<Integer> list2

* Similarities

— Mutator methods add(), remove(), set() etc. throw UnsupportedOperationException
* Differences

— list1 is an unmodifiable view of the underlying list inner

— inner can be modified, and modifications to it are visible to listl

— list2 cannot be modified at all

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 14



#CollectionsRefueled
Nulls Disallowed

* Nulls disallowed as List or Set members, Map keys or values
— NullPointerException thrown at creation time

* Allowing nulls in collections back in 1.2 was a mistake
—no collection in Java 5 or later (esp. java.util.concurrent) has permitted nulls
— classic collections like ArrayList, HashMap still allow nulls
* Why not?
—nulls are a source of NPEs in applications, semantically confusing
— nulls useful as sentinel values in APIs, e.g., Map.get(), Map.compute()
— nulls useful as sentinel values for optimizing implementations

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 15



#CollectionsRefueled
Randomized Iteration Order

* [teration order for Set elements and Map keys
— HashSet, HashMap: order is officially unspecified
— however, usually consistent for long periods of time (> 1 JDK release cycle)
— inadvertent order dependencies can creep into code

* Lots of code breaks when iteration order is changed
— occasionally necessary to improve performance or fix security holes
— lots of code probably has latent iteration order dependencies (i.e., bugs!)
— “just change this HashMap to a LinkedHashMap” — random bugs disappear

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 16



#CollectionsRefueled

Randomized lteration Order

 Solution: randomized iteration order for new collections
— make iteration order predictably unpredictable!
— iteration order will be stable within a JVM instance
— but will change from one run to the next

* Precedents: Go language; Python 3.0—-3.5

* Goal: “toughen up” user code to prevent iteration order dependencies
— bugs flushed out in development and test, before production (we hope)

* Applies only to new collections implementations
— by definition, no existing code depends on their iteration order
— existing collections will remain the same

* Worried? Use LinkedHashSet / LinkedHashMap

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

17



#CollectionsRefueled

Duplicates Disallowed

* Duplicate set elements or map keys throw lllegalArgumentException
* Duplicates in a “collection literal” are most likely a programming error

* |deally this would be detected at compile time
—values aren’t compile-time constants
— next best thing: fail-fast on creation at runtime

* Very few other systems do this
— most are “last one wins”
— Clojure and ECMAScript (strict) are notable outliers

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

18



Example: Map With Duplicate Keys

Map<String, TokenType> tokens = Map.ofEntries(

entry("@",
entry("|",
entry("#",
entry("%",
entry(":",
entry("A",
entry("&",
entry("|",
entry("?",
entry("$",
entry("::",
entry("=",

entry(";",
);

ORACLE

AT),
VERTICAL_BAR),
HASH) ,
PERCENT),
COLON) ,
CARET),
AMPERSAND) ,
EXCLAM) ,
QUESTION),
DOLLAR),

PAAMAYIM_NEKUDOTAYIM),

EQUALS),
SEMICOLON)

Copyright © 2018, Oracle and/or its affiliates. All rights reserve

#CollectionsRefueled

19



#CollectionsRefueled

Space Efficiency

* All implementations are private classes hidden behind static factory
— static factory method chooses the implementation based on number of elements

* Different data organizations
— field-based implementations for 0, 1, 2 elements
— array-based with closed hashing for > 2 elements
— implementations can be changed compatibly in any JDK release

* Benefits
— less space overall
— fewer objects result in improved locality of reference

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 20



Space Efficiency

* Consider an unmodifiable set containing two strings

#CollectionsRefueled

Set<String> set = new HashSet<>(3); // 3 is the number of buckets

set.add("foo");
set.add("bar");
set = Collections.unmodifiableSet(set);

* How much space does this take? Count objects.
— 1 unmodifiable wrapper
— 1 HashSet
— 1 HashMap
— 1 Object]] table of length 3
— 2 Node objects, one for each element

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

21



Space Efficiency

set

\ 4

unmod wrapper

HashMap

ORACLE

\ 4

table

Node

‘=::::::::

Node

<=::::::::

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

#CollectionsRefueled

II_FOOII
PRESENT

|lbar\ll
PRESENT

22



#CollectionsRefueled

Space Efficiency

* Object size estimate
— 12 byte header per object
— plus 4 bytes per int, float, or reference field
— (assume 64-bit JVM with compressed OOPS)

* Total collection overhead (not counting contents)
—unmod wrapper: header + 1 field = 16 bytes
— HashSet: header + 1 field = 16 bytes
— HashMap: header + 6 fields = 36 bytes
—table: header + 4 fields = 28 bytes
— Node: header + 4 fields = 28 bytes x 2 = 56 bytes

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 23

Total 152 bytes to store
two object references!



#CollectionsRefueled

Space Efficiency

* Field-based set implementation
Set<String> set = Set.of("foo", "bar");

* One object, two reference fields
— 20 bytes, compared to 152 bytes for conventional structure

* Efficiency gains
— lower fixed cost: fewer objects created for a collection of any size
— lower variable cost: fewer bytes overhead per collection element

‘} II_FOOII
ﬁ\ llbar\ll

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

v

set Set2

24



#CollectionsRefueled

Additional APIs in Java 10

// Copy Factories - for making shallow copies
// short-circuits copying if not necessary
// if src is unmodifiable, returns 'this'

List.copyOf(Collection<T> src)

Set.copyOf(Collection<T> src)
Map.copyOf (Map<K,V> src)

allows duplicates

// Stream Collectors

// produce

Collectors
Collectors
Collectors
Collectors

same implementations as List.of(), Set.of(), Map.of()

.toUnmodifiableList()

.toUnmodifiableSet () allows duplicates
.toUnmodifiableMap(keyFunc, valFunc)
.toUnmodifiableMap(keyFunc, valFunc, mergeFunc)

ORACLE

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. 25



#CollectionsRefueled

Summary

* Collections framework is 20 years old, still useful and extensible!
* Java 9 & 10 add Collection Factory Methods & Stream Collectors

— convenient, concise API

— space-efficient, unmodifiable implementation

— space and performance improvements from use inthe JDK itself
* Questions?

— Twitter: @stuartmarks #CollectionsRefueled

O c ®
R CI-G Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

26



