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ABSTRACT

Users have an uncertain relationship with online analytics and
advertisement. This is understandable with the lack of public un-
derstanding about the practice and its model of consent. Given this,
it is important to understand the defenses a user can employ to
protect their privacy. In this work we find that blocking extensions
vary significantly in their impact on user privacy, reducing aver-
age exposure to advertising and analytic domains by 9-23% in the
worst case and 95-96% in the best case. Similar impact is observed in
other extensions focused on empowering users to control requests
from their browser, and can not be explained by Acceptable Ad-
vertisement programs or completeness of advertising and analytic
domains blocked as was previously believed. Our findings on block-
ing list composition and efficacy in protecting privacy improve our
recommendations to users and blocking tool developers.
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1 INTRODUCTION

Advertising is an important piece of the current web experience
and economy. Most users’ search engine is Google and its parent
corporation, Alphabet, drives its 800 billion USD market cap by
deriving 83% of its revenue from advertising [5]. Users have a
complicated relationship with ads, and for good reason: despite
being intrusive on their experience, ads can provide benefit if they
are relevant [58]. It is in search of relevance by advertisers for
being profitable, that many online advertisers target ads. However,
underlying the targeted advertisements are user profiles built to
enable the targeted ads.

The underlying profile building and tracking that supports ad-
vertisements is where the users can come to harm. Anecdotally,
pregnancy status [36] and sexual orientation [35] have been dis-
closed accidentally without direct access to the user’s profile. In one
study, a majority of users were uncomfortable with any targeted
advertising based on common interests inferred by advertisers.
These same users were made even more uncomfortable by interests
pertaining to their health or religion [21]. This says nothing of
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inferences that combine credit card history, voter registration, and
browsing behavior used by journalists specifically to demonstrate
the power of targeted advertising [56].

In lieu of a strong model of consent, some users have turned to
using browser extensions to prevent being tracked. This is not to
be confused with the separate but related phenomenon of ad block-
ers [44]. It is easy to confuse the categories of blocking extensions:
ad blockers advertise their utility in preserving privacy [3, 26] and
use some of the same rules to block requests.

Researchers have studied several aspects of these browser ex-
tensions and the block lists that direct them how to behave. This
even includes some comparative evaluation of these extensions to
inform recommendations to users. However, these comparisons
do not do enough to look into the factors that contribute to the
extensions’ effectiveness, leaving us asking the central question of
our work: what are the roles of manual list creation, organizational
mission, and the connections explicitly white-listed from blocking
in the limits of ad blocking extensions as deployed today?

In this paper we look to understand blocking extensions better
and unpack these factors as they impact extension efficacy. To do
this we visit a list of the top million sites with Firefox. Our model of
the blocking extensions behavior is more accurate than prior work.
We also compare browser extensions’ blocking behavior over all
rules defined in each of their rule-sets, reducing reliance on crawls
limited in scope and subject to transient advertiser practices.

We infer how many page visits would be disclosed to tracking
companies over our crawl, and use this information to evaluate
the browser extension efficacy. Browser extensions are evaluated
both with and without their Acceptable Ads programs enabled, and
find results that contradict those of prior work: Acceptable Ads
programs are not the primary reason for their extensions’ poor
performance.

We use the inclusion graph of our crawl to identify advertisers
not in the hand-curated lists used by blocking extensions. The
size of these newly discovered advertiser lists help us understand
the completeness of the manual curation of the lists over their
target communities. When combined with our understanding of
Acceptable Ads programs and the stated missions of the browser
extension authors, this lets us better understand the factors that
contribute to extension efficacy.

Our work answers 3 questions that had not been previously
answered. 1) How effectively do the full population of A&A compa-
nies track users across the web? 2) What tools are most effective in
stopping this tracking? 3) What factors of the effective tools most
contribute?
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2 RELATED WORK

In this section we describe the research that comprises the back-
ground of and is related to our own work.

One subarea of web tracking research is the human interaction
with web trackers and defenses. Some work has focused on user
understanding and perceptions of targeted ads [16, 21, 45, 58, 63],
finding significant gaps in knowledge and inconsistent user mental
models. More closely related to our work, research has focused on
user adoption of both ad blockers [51] and blocking extensions more
generally [44] finding diverse reasons for adopting these extensions
and little issue with website breakage. Finally, the justification for
inclusion in the Acceptable Ads program by AdBlock Plus was
refuted [62].

Some studies have focused on cookies, one of the most conspicu-
ous means of identifying users uniquely. Much of the research has
looked at identifying unique identifiers in cookies and how third
parties share these identifiers to synchronize identities across mul-
tiple tracking networks [12, 28, 30, 49, 53, 65]. Some work in this
area has focused on policy, specifically considering implications of
cookies on governmental mass surveillance [24] and EU privacy
law [18, 57, 59].

Much research has been performed to understand the behaviors,
weaknesses, and extent of the advertising ecosystem [8, 10, 13—
15, 31, 42, 50, 52, 61, 64]. In particular, some work focused on out-
of-band exchanges of information between advertisers [9] and chal-
lenges in attributing advertisements [40]. These show limitations
in fully automated, but much larger measurement techniques such
as our own. Also, some research has analyzed these same questions
for defensive countermeasures used by ad networks to circumvent
blockers [37].

We draw much inspiration from the work of Bashir et al. [11].
In particular, the view of the entire advertising ecosystem as a
graph, similar to that of Kalavri et al. [38] and Gomer et al. [32],
shaped our thinking. Kalavari et al., however, focused on automatic
identification of trackers using machine learning to replace current
blocking extensions, supporting this by analyzing the referrer graph
structure. Gomer et al. studied a different graph representation of
the tracking ecosystem, creating a bipartite graph of first-parties
and the third-parties they load, rather than the structure of the
third-party ecosystem itself. Bashir et al. study the same graph
that we do and compare some blocking extensions. However, by
focusing our study on the blocking extensions and by studying a
different, more diverse, and larger population of web pages with a
more accurate blocking extension model we were able to come to
deeper conclusions about blocking extensions and refute proposed
explanations for findings of that work.

The closest research to our own is in the evaluation of existing
solutions to online tracking. Early work identified the futility of
the DNT header [7]. Other studies focus on the interaction of ad-
blocking tools and advertisers in an arms race of detection [46, 48].
However, these fail to account for out-of-band communication
between A&A companies and did not explore causes of ineffective
blocking as deeply as in this work, also identifying Acceptable Ads
as the reason for AdBlock Plus’s poor performance. The work of
Malloy et al. [43] focuses on the market penetration of ad blockers,
and focuses on impact of advertisements displayed, not tracking.
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The work of Karaj et al. [39] and the work of Yu et al. [64] focus on
the users of a single browser extension which, while very useful,
is biased in uncharacterized ways and did not try to generalize
beyond their primary study population. Gervais et al. [29] and
Bashir et al. [11] perform less focused studies over a very small
number of popular websites. We demonstrate in this work that our
population of trackers discovered is larger than that measured in
these papers and that tracking is quantitatively different from the
top thousand to the top million (which are equally weighted under
typical Zipf-ian assumptions). Merzdovnik et al. [46] provides a
focused analyses of a large-scale top domain list. However, they do
not study the A&A ecosystem outside of 30 actors and additionally
fail to analyze how information is shared in an RTB system. This
work and that of Bashir et al. [11] show that out-of-band RTB
sharing has significant impact on user privacy. However, they do not
explore deeply enough which tools are more effective at stopping
tracking and why, only analyzing one ad blocker and one privacy
tool, and also concluding incorrectly that Acceptable Ads are the
reason for AdBlock Plus’s poor performance. Bashir et al. [11] also
used a less accurate representation of the acceptable ads list and a
data set focused on popular online shopping sites, which led to a
limited scope of A&A websites. Walls et al. [62] studied the impact
of acceptable advertisement lists, but focused on the composition,
evolution, and user impressions of the list; this omits analysis of
the impact of the list on user privacy. Vastel et al. [60] studies filter
list composition, but pursues questions on how to trim filter lists of
rarely used rules. This did not consider the impacts to user privacy
due to out-of-band communication by A&A companies or the most
effective trackers and did not seek to explain why different tools
were more effective. This insights of our work are complementary
to those of Vastel et al.for these reasons.

3 METHODS

To support the analyses in the remainder of this paper we employ
methods we develop ourselves as well as methods taken from prior
work. We present the methods in this section, referencing them in
later sections as they are used.

Throughout we use the acronyms FQDN and eFLD. These are
the Fully Qualified Domain Name (e.g. www. foo. co.uk) and the
effective First Level Domain (e.g. foo.co. uk).

3.1 Web Crawl

Prior work has studied many websites’ tracking behavior using
OpenWPM, an instrumented browser measurement platform [23].
We re-use this tool and its standard data formats, allowing re-use
of our analyses over future and past crawls. To facilitate this, we
release our source code and data at [redacted for anonymous sub-
mission].

Also like prior studies, we crawl the homepages of a large top
domain list. We use the Tranco list ! [41] created on 07 July 2019.
This improves reproducibility while maintaining the scale of the
largest prior work and reducing bias from domain fluctuations
known to be in the more commonly used Alexa top list [4, 54]. We
compare the top crawl targets and advertising and analytic domains

! Available at https://tranco-list.eu/list/J96Y.
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Table 1: Comparison of Top Domain List to Prior Work. We
compare both the top ten in each list, accounting for 20%
of Zipf-weighted visits, and the top ten eFLDs blocked by
EasyList and EasyPrivacy as trackers.

Alexa (Jan 2015) Tranco (Jul 2019)
‘ Targets Trackers ‘ Targets Trackers
google.com google-analytics.com google.com doubleclick.net
facebook.com  doubleclick.net netflix.com google.com

youtube.com facebook.com facebook.com  facebook.com

1

2

3

4 | baidu.com googlesyndication.com | youtube.com googlesyndication.com
5 | yahoo.com googleadservices.com | twitter.com google-analytics.com

6 | amazon.com google.com microsoft.com  youtube.com

7 | wikipedia.com  twitter.com wikipedia.org  facebook.net

8 qq.com adnxs.com baidu.com pubmatic.com

9 | google.co.in blekai.com linkedin.com adnxs.com

1

5]

twitter.com

mathtag.com instagram.com  wp.com

contacted in our study to the most recent publicly available Alexa
crawl [23] in Table 1.

We attempt to load the HTTP version of all one million domains
with OpenWPM in a stateless crawl using Firefox, storing HT TP
request, response, and redirect data. We performed these measure-
ments from a dedicated research scanning subnet from 12 July—27
July 2019. Of the 1M input list, OpenWPM received responses for
895,856 sites, missing 10.5% due to timeouts, unavailable destina-
tions, and various other errors; this error rate is similar to prior
measurements of top million sites. This results in 89,136,479 total
requests during the crawl to 62,970,931 unique urls.

3.2 Blocking List Testing

We compare six different blocking extensions, selected for their
popularity: AdBlock Plus [26], AdGuard [3], Disconnect.me [20]
(whose rules are used by Firefox in its tracking protection [47]),
DuckDuckGo [22], Ghostery [17], and uBlock Origin [34]. We eval-
uate each tools’ default configuration; however it is possible for
users to improve the efficacy of each extension and even import
filter lists from other extensions in most cases. We also use Ea-
syList and EasyPrivacy [55] throughout our evaluation to identify
previously known A&A domains. EasyList and EasyPrivacy are
community created lists for blocking advertisements and tracking
respectively, and are imported by some tools to verify We define
previously known A&A domains heuristically as in prior work [11]:
any domain that is blocked more than 10% of the time by EasyList
and EasyPrivacy. We use blocking lists retrieved on April 23rd, 2019
for all extentions.

Our method of evaluating blocking lists is an improvement over
prior work, as we show in Section 6.4. We more closely reflect
the actual behavior of the blocking extensions while still testing
over 29M requests. We enabled this in two pre-computation stages:
normalizing each tool’s behavior to a single syntax and reducing
sets of regular expressions into single prefix-structured regular
expressions.

3.2.1 Normalizing Blocking Syntax. Before we take any steps to
speed up our request testing process, we first standardize our block-
ing list syntax. Fortunately, three extensions (AdBlock Plus [27], Ad-
Guard [1], and uBlock Origin [33]) of the six we study and EasyList
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and EasyPrivacy use a very similar syntax. While these syntaxes
vary, the commonly used features are shared.

The syntax for blocking rules we normalize to is a shared subset
of these powerful syntaxes. Each rule is a newline-delimited string
with two parts, separated by a $ character. The first part is a sim-
plified regular expression syntax and the second part is a series of
flags and corresponding values. The regular expression syntax has
only five special strings that are not interpreted literally: “| |”, “|”
“x”, “~” and “@@”. Each of these have the same meaning among all
of the tools and either have a direct translation to standard regu-
lar expression syntax or indicate that the rule should be inverted,
specifying requests to allow rather than to block (“@@”).

The flag portion of these powerful syntaxes is often overlooked;
it is not mentioned at all in the application of rules in prior work.
In fact, the syntax for AdBlock Plus, AdGuard, and uBlock Origin
vary primarily in what flags they support. We support the following
flags: important, domain, and third-party. Respectively, these
rules bypass whitelisting caused by other rules, enforce the rule
only on requests originating from specific domains, and enforce
the rule only on third-party requests. The only rules we ignore
that could be used to aid privacy and are used in more than 1%
of rules are those that block requests for types of resources, i.e.
script, image, etc.. This leads to over-estimation of the power of
the blocking tools, however the tools are treated equally.

Our implemented subset of these rules also elides an entire class
of specification: cosmetic rules. These rules mark elements on the
page as hidden and do not prevent requests from being sent. There-
fore, we find it acceptable to omit them entirely for measurement
of web tracking.

Tools that do not use this standard syntax are converted into the
standard syntax. We take each of the specified rules and convert
them into an identical rule that blocks exactly the same resources
and subdomains, using only the limited regex syntax and domain
flag. These rules can then be treated as the other canonicalized rule
lists are in the subsequent steps.

s

3.22 Efficiently Evaluating Regular Expressions. During initial ex-
periments it became clear that evaluation of all rules over all re-
quests of our crawl performed naively would be impractical. Evalu-
ating 89M requests against over 130K regular expressions proved
to be a significant bottleneck, even with early-exit optimizations.
To speed up our evaluation, we reduce the number of comparisons
required in a few ways that are layered hierarchically.

First we note that some rules are only in use on very few domains.
To take advantage of this, for each tool’s rule list we create rule lists
for each domain explicitly mentioned in the constraints. Those rules
we do not have any constraint on, or only whitelist explicit domains
from having the rule applied, are added to the default collection
which is applied to all domains. In effect, we have created a blocking
list for each referring origin that would change the behavior of the
blocking tool. These lists being much smaller allows much less
comparison in an initial check that may return a result quickly. If a
result is not obtained from the first check, we then compare on the
larger list that contains rules that apply to all referring origins.

Next we note that there is a priority order of rules that goes
from a small subset to a large subset as the priority decreases:
another opportunity for early exit. First, we can search in the set
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of “important” rules that bypass whitelisting, and are the smallest
set. Then we can look at the whitelist rules, those that begin with
“@e”. Finally we compare the remaining rules. To allow this ordered
evaluation, at this stage we further partition the rules along these
lines, within each domain constraint’s list.

Finally, and perhaps most importantly for our speed, we reduce
all of the regular expressions in each partition into a single regular
expression. Doing this naively, simply listing each expression, and
separating them by |’ in standard regex syntax, would provide
little speedup over comparing each rule to the URL. This is the
exact underlying behavior the regex engine takes in its evaluation.
Instead, we convert the rules into a prefix tree of their equivalent
regular expressions, then convert this prefix tree into a reduced
regular expression. For example, rather than converting a search for
either “food” or “fold” into “(food|fold)”, this is converted into the
regex “fo(ld|od)”, removing duplicated comparison to the common
prefix “fo’. This takes ideas from prior work in optimizing regular
expression validation [6], without having to write a custom engine.

So, in review, to compare a single URL requested from a given
origin, we take the following steps: first find the longest FQDN with
domain constraints for which our referring origin is a subdomain
and check if it is blocked or explicitly whitelisted by that struc-
ture. If not, or if there is no such subdomain, check if it is blocked
or explicitly whitelisted by the rules with no domain constraints.
Both of these checks are done by evaluating the next layer of the
hierarchy: comparing against the important rules, whitelist rules,
and other rules of that structure in that order. Again, to do this we
proceed down the structure, comparing against the regular expres-
sions built for this constraint and priority, and returning whether
or not a match was found. Finally, if the result is that we found no
matching rules, we interpret this as an unblocked request. In this
way, we have traversed only the relevant partitions of the rules we
created for this blocking tool.

While this is more complicated, it does capture the entirety of
our normalized subset of the blocking syntax. Additionally, it sped
our evaluation of requests from our crawl by over 1000x, letting
us finish evaluation of all six tools in under six hours on a single
8-core Intel Xeon E5-2690. This made the comparison of multiple
tools over a very large crawl practical.

3.3 Blocking List Probing

Initial analysis of how each tool performed on our crawl revealed
that most rules blocking entire domains were not used at all during
our crawl. We want to present an alternative perspective when
comparing tools that is not biased by the particular crawl. To do
this we created probing lists from each tool’s blocking rules.

Each blocking rule that includes a specified domain name is
mechanically converted to a set of rules that capture some of the
cases a rule may apply to. Multiple transformation may occur for
each special character, causing exponential growth in the number
of special characters. In practice each probe list does not grow
impractically large.

Rules that begin with the special character “|” simply have the
character removed. Rules that begin with the special sequence
“l|” have the sequence replaced by both “http://” and “https://”.
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Figure 1: Cumulative Unique Inclusion Graph Nodes and
Edges. We graph the cumulative number of unique eFLDs
(dark lines) and inclusions between eFLDs (light lines) as
we conduct our crawl. Blue lines represent the graph of all
third-parties and red lines represent the subgraph of only
third-parties that are known A&A domains.

The special character “*” is replaced by a “/” and optionally re-

moved if at the end of the rule. Finally, the “*” is replaced by an
empty string, “1”, “/”, and the random string “b75de6c2/2ce0Obae5”
which occurs nowhere in the block list definitions. These sim-
ple transformations capture much of the diversity of behavior of
the limited syntax provided by the blocking extensions. For ex-
ample, the rule “||foo.com”"” is expanded to the following prob-
ing links: “http://foo.com/”, “http://foo.com”, “https://foo.com/”,
“https://foo.com”.

Rules are tested with referring origins taken from the domain re-
strictions and an unrestricted referring origin. We group the probes
by eFLD of the request and compare two test lists by checking if all
test probes in the same eFLD have the same outcome.

3.4 Inclusion Graph

Prior work has demonstrated use of the inclusion graph to demon-
strate interrelationship among known A&A domains [11]. The
inclusion graph is a representation of a web crawl where parties
(in prior work canonicalized domain name) are node and directed
edges indicate that the source party initiated a request to the des-
tination party in some page visit of that crawl. This is in contrast
to the referrer graph where an edge indicates the source appeared
as the referrer in the destinations’ request. JavaScript requests are
a source of disagreement between these two graphs and are used
often in the A&A ecosystem. We construct the inclusion graph sim-
ilarly, however we our graph is over all third-parties, rather than
only known advertisers. We are also able to analyze the subgraph
of only known advertisers for direct comparison.

The graph we produce represents only the sample of domains we
perform; there may be some number of nodes or edges not included
in our sample that exist in the population. We can tell if the number
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of nodes and edges continue to increase as we near the end of our
crawl. We show the growth of these through our crawl in Figure 1.

Our crawl does not saturate the number of eFLDs nor edges
between them from our population. This is despite finding a larger
number of them than prior work that found saturation in its inclu-
sion graph. This is because we study a much larger population that
is not restricted by type of domain or to only the top few thousand
domains in a rank list.

This does not preclude use of the graph for the uses in this paper,
however we do not compute graph statistics to compare to prior
work as they would not be representative.

3.5 Privacy Metrics

Finally, we analyze the impact of blocking strategies on our crawl.
Prior work has defined disclosure of a page visit, sometimes termed
impression, and we use these definitions. In particular, an A&A
party learns that a particular user has requested the main page of
a particular visit if in the course of that visit it is sent a request.
Additionally, an A&A party may learn of a request if it is shared
with them through other means. We consider two such means in
this work?: Cookie Matching and Real-Time Bidding,

In the Cookie Matching model, we assume information sharing
along all directed edges known to perform ad-redirection [9].

In the Real-Time Bidding model, we attempt to capture infor-
mation disclosure that occurs when ad exchanges solicit bids from
Demand Side Platforms and advertisers for a given impression. To
do this, we designate some eFLDs as belonging to ad exchanges,
using heuristics described in Section 5, and have these exchanges
disclose all visits they are aware of to all eFLDs they include dur-
ing our crawl. We investigate the sensitivity to the number of ad
exchanges included in Section 6.1.

The metric we use to evaluate any A&A domain in our crawl
is how many page visits cause the domain to receive a request or
be further notified by another third party. To measure if a domain
would receive a request, we build the inclusion graph for just that
page visit and compute the reachable origins if only non-blocking
requests and out-of-band disclosures proceed.

Performing this inclusion graph construction and evaluation
of sharing is also expensive to do at scale. To cope with this we
only perform these computations over a random sample of 54, 000
visits, weighted with a Zipf-ian distribution over their top site rank
to approximate user traffic patterns. We graph several cumulative
distributions of this metric over previously known A&A domains.
By the Dvoretzky-Kiefer-Wolfowitz inequality this places the en-
tire CDF within the line width on our figures with 95% likelihood,
even with Holm-Bonferroni correction. As such we present the
distributions without explicit error bars.

4 COMPARING BLOCKING LISTS

In this section we lay the foundation of our new understanding of
blocking extensions by comparing the blocking lists that define the
behavior of these extensions. We evaluate the extensions’ behavior
both over our web crawl and our constructed probing lists.

2Both of these are taken from Bashir et al. [11], corresponding to Cookie Matching
and Real-Time Bidding — Constrained respectively
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4.1 Default Extension Behavior

Blocking extensions rule lists have been compared to each other
in prior work in their rate of blocking and the privacy that affords.
However, some aspects of our comparison are novel. Our compar-
isons are used to help disambiguate the impacts of different factors
on the privacy provided by these tools. Also, our evaluation uses
rule lists to generate test lists providing a larger perspective and one
that lets us ignore issues of the coverage of a single crawl. Finally,
our data set enables insight into a larger test list than prior work
focused on blocking extensions, and the first top-million study of
web tracking in four years.

An important distinction must be made when evaluating the size
of lists is whether the measure used is one that is evaluating the
list itself or is grounded in a sample of requests. We compare list
sizes in Table 2 using both.

The largest lists by size and by domain explicitly mentioned
in their rule set are AdBlock Plus and AdGuard, however it is
not the case that these most active filtering tools based on our
crawl. AdGuard blocks the second fewest requests to a relatively
diverse set of domains while one of the smallest lists, Disconnect.me,
provides the most requests blocked. This disagreement highlights
a difference in strategy between growing a large test list that does
not block entire domains as third parties and entirely blocking a
few major actors.

While comparing the list sizes by measure does tell us some
differences between the tools, it does not show the intersections
of each tools” behavior. To do this, we must compare this tools
pairwise. Understanding the relative intersections of tools exposes
which tools may source their rules from one another and how
independent other tools are in their behavior.

There are subtleties in comparing different tools under metrics
that can be described other than “blocked” or “not blocked”. For
example, comparing the domains that two tools block can be done
by taking the domains mentioned explicitly in each tools’ test list,
however test lists can hold exceptions for many domains and may
have more generic rules that do not explicitly mention all of the
same domains. To counter this, we can compare the domains that
are blocked under at least the same conditions as the other test list.
This can be done using our probing lists described in Section 3.2.
Note that this comparison is asymmetric, e.g. only Tool 1 may block
example.com/foo and only Tool 2 may block example.com/bar.

In Figure 2a we compare tools by which domains where tools’
test lists explicitly block any resource from a given domain and
in Figure 2b we compare the relative coverage of those lists using
our generated probe sets from Section 3.3. We include EasyList and
EasyPrivacy as a baseline as it is used in prior work as a baseline.

In both figures the vertical bar corresponding to uBlock Ori-
gin’s performance on their peers’ test lists show the most consis-
tent coverage. It has the strongest definitions when evaluated on
other tools’ probe lists, with the exception of Disconnect and Duck-
DuckGo’s similar definitions. uBlock Origin shows similar behavior
to AdGuard and AdBlock Plus: all three appear to be derived from
EasyList with varying degrees of difference. Notably, uBlock Origin
is the only that gets stronger when diverging from the EasyList def-
inition, observed by comparing squares reflected over the diagonal
line that is all black.
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Table 2: Tool Block List Sizes. We compare six browser extensions’ block list sizes and coverage in our crawl data set. Our
counts are by rules after canonicalization, explicitly mentioned eFLDs in rules, requests blocked, and the number of eFLDs
with at least 10% of requests blocked.

AdBlock Plus  AdGuard Disconnect.me DuckDuckGo  Ghostery uBlock Origin
Canonicalized Rules 50,844 51,552 2,568 1,789 4,667 65,772
Explicit eFLDs 28,529 31,427 2,117 1,736 3,658 37,912
Blocked Requests 9,580,925 12,276,925 30,840,615 20,073,773 24,019,804 25,692,118
A&A eFLDs 2,545 2,981 1,340 943 2,190 6,115

AdBlock Plus
AdGuard

Disconnect
DuckDuckGo

Ghostery

ulock Origin

Easyist & EasyPrivacy

S
&

(a) Definition - Any

(b) Definition - Covered

(c) Measured - Any (d) Measured - Covered

Figure 2: Comparing Extensions Pairwise. We compare each extension to all others, and EasyList and EasyPrivacy in four
different ways. The comparisons are made over both the definition of the rules and how they behave in our crawl (Defini-
tion vs Measured) as well as if the tool blocks the domain at all versus if the tool blocks the domain in at least the same in-
stances as the tool it is compared to (Any vs Covered). For example, the entirely black square in the upper right corner of
(c) means that for every eFLD we observed a request blocked by AdBlock Plus, we also observed a request to that same eFLD

blocked by EasyList and EasyPrivacy.

Additionally, we observe that Disconnect and DuckDuckGo have
similar list definitions, with Disconnect’s definitions being stronger.
It is not explicitly stated that one derives from the other, however
this is one simple explanation.

While these comparisons describe the broadest possible coverage
of each list, we are not able to infer how these lists compare on
resources from real websites. To do this, we must utilize our crawl
data set. We perform similar comparisons with this practical data:
Figure 2c shows how many domains have at least one domain
blocked by both tools and Figure 2d shows the number of domains
that are blocked in at least the same cases for a pair of tools. Both
values are taken as a fraction of the number of domains blocked
ever by the baseline tool.

In our crawl, the strongest tool, uBlock Origin, performs even
better, as does Ghostery. Overall our observations from the com-
parison of list definitions are borne out in our crawl data.

The smaller test lists by rule count perform poorly against the
domains blocked by larger test lists in these figures. We count by
eFLDs, so this does not reflect total requests blocked, nor does it
reflect the privacy impact of blocking each domain. In Section 6,
we will analyze the privacy benefits of these tools.

4.2 Explicit A&A Exceptions

Some blocking extensions are straightforward in their effort to
reclaim user experience and privacy without consideration for the
advertising and analytics companies. Others explicitly exempt some

Table 3: Tool Block List Size, Explicit Exception Impact.
We show the changes to the scope of each blocking tool
when their explicit exceptions are removed. Counting is per-
formed identically to that of Table 2.

AdBlock Plus AdGuard Disconnect.me

Canonicalized Rules -8,468 -30 +512
Explicit Domains -1,892 -10 +4
Blocked Requests +2,365,442 0 +55,248
A&A Domains +26 0 +3

requests as acceptable, despite their known analytic or tracking
nature. While these exceptions are made for a variety of reasons,
we compare them directly to determine their impact. To clarify, we
do not include all rules that white-list requests; their exclusion may
be because they are not related to tracking despite being caught in
another rule, to circumvent anti-ad-blocker tools, or to allow an
analytics company to perform analytics on its own domains. These
are all examples of what is not exempt A&A behavior.

In order to understand the impacts of the acceptable advertise-
ment lists, we repeat some of our analysis in the previous sec-
tion, removing the explicit exceptions. Only AdBlock Plus [25],
AdGuard [2], and Disconnect [19] claim to have these explicit ex-
ceptions.
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We show differences in list size in measures affected by the
removal of explicit exceptions. Table 3 shows that only AdBlock
Plus is affected significantly by their “Acceptable Advertising” list.
AdGuard showed only 30 rules that reference 10 domains removed,
and none were utilized during our crawl.

Disconnect.me showed effectively no change in its behavior
with and without its exception list removed. The default behavior
of Disconnect.me’s browser extension and the content of its publicly
available block list include those sites it claims it does not block in
its list. This means that when we introduce the domains claimed
to be excluded from their default list, we gain 4 new rules and
508 duplicate rules. The number of rules went up as an artifact
of how we constructed the test list; our default test list includes
only those that ship with the browser extension, with no care taken
to exclude the alleged exceptions. This resulted in 3 new domains
being blocked in our crawl and a 0.2% increase in blocked requests.

If AdBlock Plus were to block its “Acceptable Advertising” it
would increase the requests blocked by 20% and while only in-
creasing the domains that have 10% of requests blocked by 1%.
These eFLDs are all blocked in over half of requests by EasyList and
EasyPrivacy. Included in these are eFLDs with more than 50,000 re-
quests: yahoo.com, media.net, linkedin.com, and bttrack.com.

We do not find agreement with prior work on the scope of the Ac-
ceptable Advertising list in our more precise model. Prior work [11]
included major ad networks in the domains excluded by Acceptable
Advertising, however we find that this is not the case in practice.
This is due to our more faithful representation of the block lists,
in particular implementing domain restrictions; the ad networks
do show up in our Acceptable Advertising list, however the vast
majority are restricted to being whitelisted on a small number of
websites. Two notable exceptions are Google AdSense® and subre-
sources of some advertisers used to monitor advertisement clicks?,
which are permitted on all but a few sites. Despite these broad ex-
ceptions and their potential for misuse by advertisers, ad networks
are still blocked by AdBlock Plus because of the broad restrictions
on most exceptions. This refutes a previous belief that AdBlock
Plus performs poorly because of the Acceptable Ads program.

4.3 EasyList Variants

Three tools we test are at least in part based upon EasyList or
EasyPrivacy: uBlock Origin, AdBlock Plus, and AdGuard. Notably,
uBlock Origin is the only of the three that adds blocking behavior
to EasyList and EasyPrivacy combined. It adds separate resources
for malware risks, privacy, and resource abuse above its bulk import
of EasyList and EasyPrivacy.

Both ad blockers are based upon EasyList, but do not import
EasyPrivacy. However, EasyList blocks several ad exchanges that
are allowed by the ad blockers. AdBlock Plus directly imports Ea-
syList, then adds exception rules for some ad exchanges and web-
sites. AdGuard, on the other hand, imports EasyList, then applies
changes to form a single modified list. Their behavior blocking
ad exchanges compared to EasyList and EasyPrivacy is shown in
Figure 4.

3This change was not discussed in a public forum:
https://hg.adblockplus.org/exceptionrules/rev/c182d9dc5600

4This change was discussed in a public forum, but at a high level and without consid-
eration of potential abuse: https://adblockplus.org/forum/viewtopic.php?p=179030
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Table 4: Exchange Comparison on Easylist Variants. Here
we show the reduction of blocking the top ad exchanges
from Easylist and Easyprivacy for the Ad Blockers. Both ad
blockers show significantly reduced blocking of most ad ex-
changes, even though they are based upon Easylist. Neither
ad blocker incorporates Easyprivacy. Percentages indicate
the percent of requests blocked by EasyList and EasyPrivacy
that were not blocked by the tested tool (0% indicating no
change and 100% indicating no blocking).

Domain AdGuard Reduction ABP Reduction
doubleclick.net 28% 41%
googlesyndication.com 3% 37%
pubmatic.com 0% 52%
adnxs.com 0% 0%
openx.net 0% 46%
rubiconproject.com 0% 46%
2mdn.net 1% 0%
yandex.ru 100% 100%
amazon-adsystem.com 0% 21%
bidswitch.net 100% 100%

Some ad exchanges, like adnxs . com, show no change in behav-
ior in ad blockers while others, like yandex. ru, show complete
whitelisting. More interesting are those that show partial reduction
of blocking. We observe through manual inspection that the vast
majority of the partial reductions are to allow cookie matching
behavior by loading empty content or tracking pixels. AdBlock Plus
allows more of these tracking pixels to proceed from a more diverse
set of sources.

5 BLOCKING COMPLETENESS

Most current blocking extensions build their rule sets of what to
block through manual effort. In this section we quantify the com-
pleteness of these efforts for different blocking extensions. Naively,
we could look at all known advertisers and treat this as each exten-
sions’ ideal, however this fails to account for the different subsets
of the A&A ecosystem each extension wishes to block. Instead,
we identify ad exchanges blocked by each extension and label the
eFLDs that receive at least 10% of their connections from these
extensions as advertisers for that extension.

Prior work using inclusion graphs has identified ad exchanges
using heuristics on the ratio of indegree and outdegree and out-
degree alone of nodes in the A&A inclusion graph. Ad exchanges
must have large outdegree to other advertisers to be effective. They
also have approximately equal indegree and outdegree. Too large
an indegree indicates a tracker that only ingests information with-
out selling impressions, while too small an indegree indicates an
SSP that is not purchasing ads from a large number of platforms.
We look at the values of outdegree and degree ratio for known ad
exchanges and determine that an outdegree > 50 and in/out degree
ratio € [.5, 2.0] was representative. For EasyList and EasyPrivacy,
this labeled 47 ad exchanges, enumerated in Appendix A. This
is performed over the subgraph of our inclusion graph that only
includes A&A eFLDs.
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Table 5: List Coverage Quantifiaction. We show the results of
quantifying missed A&A subdomains over the tested exten-
sions using our exchange in-degree metric from Section 5.
Note that this does not quantify privacy loss; this does not
account for the blocking that prevents further requests from
being performed.

List Known A&A eFLDs Discovered A&A eFLDs

AdBlock Plus 2,545 3,853 (151%)

AdGuard 2,981 3,893 (131%)
Disconnect.me 1,340 4,397 (328%)
DuckDuckGo 943 3,277 (347%)
Ghostery 2,190 5,397 (246%)
uBlock Origin 6,115 4,289 (70%)

With ad exchanges labeled for each extension, we then identify
the eFLDs that are advertisers. We note that we labeled eFLDs
as advertising or analytic if they were blocked more that 10% of
the time. Since connections to ad exchanges would be blocked,
preventing them from including any further domains, we look at
the percent of connections each eFLD receives from ad exchanges.
Therefore, we label all eFLDs with at least 10% of their connections
coming from ad exchanges as advertisers. The results of this process
are show in Table 5.

Note that while this quantifies coverage of the block lists, a lack
of coverage does not inherently mean that privacy is adversely
affected. We found these advertisers by identifying domains that
would have been blocked by the tool in some cases by virtue of
blocking ad exchanges. However, blocking the advertisers them-
selves can be useful to block their direct inclusion from publishers
or otherwise unblocked members of the A&A ecosystem.

In Table 5 we see that the lowest coverage is observed by the
smallest lists. These lists, on manual inspection, seem to focus on
the larger players in the analytics ecosystem and are focused in
their mission to provide privacy. A focused effort on the actors that
share information the most seems to be an efficient use of manual
effort; in Section 6 we will quantify the efficacy of this effort on
privacy.

The best coverage of domains is provided by uBlock Origin.
uBlock Origin curates its block list through a large community
effort. This effort shows in the size and diversity of eFLDs blocked
by its list as shown in Table 2.

6 PRIVACY IMPACTS

One aspect of the comparison of different blocking extensions in
Section 4 is evaluating the number of blocked requests in our web
crawl. While this does provide a rough proxy for privacy offered by
the extension over the crawl, it is inaccurate for two main reasons.
First, it does not evaluate how much of the tracking information
is shared with each individual domain or out-of-band information
sharing, such as that performed by ad exchanges. Second, it does
not account for the impact of blocking one request that would
otherwise lead to many other requests. We use an approximation of
what impressions are learned by each advertiser to take these factors
into consideration and more accurately reflect privacy violations.
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Figure 3: Ad Exchange Count Sweep. We show the degree of
sensitivity to the number of ad exchanges on various per-
centiles of vist leakage. We add brokers in the order of the
number of advertisers the initate connections to in our web
crawl. Each line represents some Nth percentile of success
in observing as many page visits as possible over our web
crawl.

6.1 Exchange Sensitivity

While we believe we understand the A&A ecosystem well enough
to identify the ad exchanges, we wish to understand the impact
of this classification on our privacy metrics. Our classification de-
pends upon the ad hoc selection of thresholds of outdegree and
in/outdegree ratio, so we desire more context of the impact this
makes on privacy.

To show the effect this selection has on privacy, we sweep the
number of ad exchanges we include from 0 up to the 47 selected
in Section 5, always adding the origin that connects to the most
distinct A&A domains. We graph the Nth percentile ad exchange’s
visibility into site impressions as we vary the number of exchanges.
The results of this are shown in Figure 3.

The most impactful ad exchanges on the privacy of end-users
are generally the largest, which we add first in our sweep. We
observe this by the majority of growth in each percentile we show
occurring over the first few exchanges we add. Beyond this point,
each exchange has very little impact on the number of impressions
observed by each A&A domain. This is consistent with prior work
and intuition: those agents that share information most broadly are
those most impactful to privacy.

6.2 Tool Evaluation

With inclusion graphs for each site impression and the blocking
behavior of six different tools captured, we can compare the privacy
granted through the use of each tool. We add a seventh measure-
ment to our six tools we analyze in previous sections: the control, in
which we perform no blocking. Further details of how we perform
this analysis are in Section 3.5 and both models of information shar-
ing are described in Section 3.5. The distributions of information
sharing under these models are shown in Figure 4.
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Figure 4: Privacy Evaluation of Blocking Extensions. We show the rate of visit disclosure over our known advertisers using
two different disclosure models. At the left we see the Cookie Matching model and at right we see the Real-Time Bidding

model.

In the Cookie Matching model there is much less impression
disclosure. Any blocking performs better than nothing, however
the advertising focused services (AdGuard and AdBlock Plus) pro-
vided very little benefit in blocking the worst case A&A domains.
The remaining blocking tools performed similarly better with Dis-
connect.me having the clearly best worst-case performance. In the
Real-Time Bidding model we see similar trends, but with overall
more disclosure as exchanges provide more sharing.

In the Real-Time Bidding model, we observe substantial improve-
ments in user privacy by some extensions, and similarly we see
the least improvement in tools focused on advertisement blocking.
However, there is no uniformly best extension for user privacy:
Disconnect.me again has the best worst case performance, but lags
Ghostery and uBlock Origin in the 85th to 99th percentile of A&A
domains. Depending on threat model, concern with the most privi-
leged A&A domain, specific A&A domains, or average performance
may be used to select the defense among extensions focused on
privacy. This figure the used to generate it are needed to answer
those questions quantitatively.

Tools have similar classes of performance grouped based upon
their mission and similar order of worst case performance in both
cases. It is unclear whether there is a universal best strategy inde-
pendent of threat model and user behavior. However, tools with an
emphasis on privacy show large improvements to user privacy.

Overall, several aspects of these distributions are interesting in
comparison to prior work. The rates of observation by publishers
are lower, providing a more optimistic view of third-party tracking
than other studies. There are several possible explanations for this:
differences in how these rates of observation are computed, differ-
ences in the population of sites being measured, and differences
in how sites are sampled from this population. For example, we
do not focus our study on sites that have a higher incidence of
tracking techniques, e.g. shopping sites. Also, as shown in Figure 5,
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Figure 5: Exchange Connection Frequency by Rank. We
demonstrate on a scatter plot with best fit line that ad
exchanges generally are five times as likely to be on a
website in the top thousand than in the rest of the top
million domains. This is with the removal of the outlier
doubleclick.net, at the upper right of the plot.

ad exchange prevalence is reduced in sites beyond the top thousand,
where prior work has focused.

However, we see similar qualitative differences between the
Cookie Matching model and Real-Time Bidding model, described in
Section 3.5, as the prior work that introduced them. Under Cookie
Matching, very few A&A parties have significant access to the
users’ browsing patterns. Under Real-Time Bidding, there are some
number of A&A domains that observe almost no traffic, and a wide
variety of scopes of observation for the most well positioned A&A
domains.
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Figure 6: Evaluating Acceptable Advertisements. We show
the impact of the Acceptable Advertising list on the privacy
of AdBlock Plus in our crawl over both models of informa-
tion sharing,.

6.3 Acceptable Advertisement

In Section 4.2 we observed that only AdBlock Plus has any change
in blocking behavior when the rules explicitly allowing domains
are removed. It is also the worst performing blocking extension. We
know that some privacy is lost due to the Acceptable Advertising
list, and prior work has identified it as a major source of reduced
efficacy. However, we find this not to be the case under our more
accurate representation of the filter lists. Figure 6 shows the effect
of removing the Acceptable Advertising list from AdBlock Plus.

We see statistically significant difference between the two in
the Two-sample Kolmogorov-Smirnov test (p < 0.05). However,
the effect size of this difference does not in either case account for
the entire difference between AdBlock Plus and the most similar
tool in the composition of its rule list, uBlock Origin. Instead it
only accounts for the difference to AdGuard, another advertising
focused blocking extension. This indicates that most of AdBlock
Plus’ failures to protect its users are in its focus on advertising
instead of its Acceptable Ads program.

6.4 Improved Model

In Section 3.2, we noted that our model of blocking rules is more
detailed than that of prior work, and that allows us to better under-
stand the role of acceptable advertising programs. To justify this,
we repeat our experiments from Section 6.3 without consideration
for rule flags, to show how results change under a simplified model
like that of prior work. This is shown in Figure 7.

The effects of the acceptable advertising program is exagger-
ated without the rule flags. With flags removed, the tool performs
even better without exceptions and even worse with exceptions.
Particularly notable is that when we do not consider rule flags,
we reproduce, from Bashir et al., that AdBlock Plus performs very
similarly to the control. This is due to the inclusion of many ad ex-
changes in the exception list that have ignored domain constraints.
We note that in our experiments, the difference between AdBlock
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Figure 7: Evaluating Acceptable Advertisements Under Sim-
plified Model. We show the impact of the Acceptable Adver-
tising list on the privacy of AdBlock Plus in our crawl over
both models of information sharing when the rule flags are
not considered, as in prior work. The impact of the Accept-
able Ads program is exaggerated.

Plus without rule flags and no blocking exists, but is within the
confidence interval our sample size allows.

7 DISCUSSION

In this paper, we have quantified several aspects of popular blocking
extensions. We found considerable differences between the exten-
sions and a few surprising similarities. Our results lead us to a few
key lessons, caveated by the limitations of this work.

7.1 Findings and Lessons

Several key lessons can be drawn from our results. First, we found
that extensions focused on ad blocking (AdGuard and AdBlock Plus)
provide the weakest practical protection for users. This is despite
using privacy as a marketing tactic on their websites. Second, we
found that despite building off of EasyList and EasyPrivacy to build
their block lists, uBlock Origin, AdGuard, and AdBlock Plus all be-
have very differently in what they block and how much protection
they provide the end user. Third, we found evidence that while
AdBlock Plus has the only significant Acceptable Advertisement
program, it only accounts for a 9% increase in total impression
disclosures in the Real-Time Bidding model. Finally, we find that
completeness of manual effort to enumerate advertisers to block
does not correspond to better user privacy; Disconnect.me has the
worst measured completeness and has strong privacy properties.
From these findings, we can draw the following lessons.

If users seek a blocking extension that benefits their privacy,
they should focus on those whose primary emphasis is privacy or
user agency. In particular, Disconnect.me provides the best pro-
tection against the very strongest web trackers and uBlock Origin
and Ghostery provide slightly better protection against the next
thousand best web trackers. If users are comfortable configuring
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their extension with custom block lists, they may not even have to
make this tradeoff.

We also learn that distributed manual effort is not needed to cu-
rate an effective block list. The roughly 500 domains identified and
blocked by Disconnect.me provided some of the best coverage we
saw. A focus on continued identification and third-party blocking
of major players in the advertising ecosystem is likely to provide
the best trade-off of effort for privacy. Additionally, this may help
future performance optimization of tracker blocking tools. This is
likely because of the significant presence and interconnectedness a
few players have in this ecosystem.

Finally, we learn that despite their marketing, and even with
Acceptable Ads programs disabled, ad blockers are not nearly as
effective privacy enhancing technologies as their peers that focus
on user privacy and agency.

7.2 Limitations

Our work presents an improved understanding of the Advertising
and Analytics ecosystems over state of the art. However it is impor-
tant to understand where the potential shortcomings of our model
fall so that we can both understand our results in the appropriate
context and understand avenues of future work.

For example, our implementation of blocking rule application
implements more features than other work that were critical to
understanding the role of Acceptable Advertising programs [11].
However, we do not implement all documented features, let alone
capture any possible undocumented features of each tool. While
this may reduce our accuracy, we believe our improvement and the
insight it provides is significant.

Additionally, our results driven by our crawl data are restricted
to the sites we evaluate: home pages of the Tranco top million
sites. However, we add to the literature an updated million site
measurement measurement not drawn from proprietary data.

We do not evaluate the quality of the candidate advertisers we
discover through our heuristics. It is a open problem to automat-
ically differentiate between “breaking” a site such that it is no
longer functional and effectively blocking A&A techniques. Cur-
rent promising approaches are browser instrumentation of what
sites cause users to disable their blocking extension. We consider
this evaluation out of scope, and believe that our small candidate
lists are currently useful for several purposes: manual evaluation
for current browser extensions and a test-list with low false positive
rate to reduce base-rate concerns when automatically adding them
to browsers to be evaluated.

Finally, we acknowledge that our results on user privacy are
based on a model of information sharing that is an approximation
of one aspect of the A&A ecosystem. The model does not capture
all active members of the ecosystem or information channels that
do not involve interaction with the end-user machine. For example,
first-parties collecting information for sale is missed in our models.

8 CONCLUSION

The insight we gain into blocking extensions from this work will
help further improvement of these blocking extensions and privacy
advice surrounding them. We are able to identify similarities be-
tween tool behavior that indicate list sharing. We use these lists
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to identify ad exchanges and candidate advertisers using simple
heuristics of the inclusion graph. We discover that only AdBlock
Plus has a significant explicit exception program. We find that these
features are not just true of the rules exercised by our crawl, but
also of the rules defined overall.

We identify privacy impacts of browser extensions by analyzing
how each extension affects which parties receive requests from
page visits in our crawl. This allows evidence driven recommen-
dations to use Disconnect.me, Ghostery, or uBlock Origin to users
and support for Firefox’s selection of the Disconnect.me list for
its content blocking deployment. The differences we observe also
allow inference that organizational mission plays the largest part
in determining an extension’s efficacy against third party tracking
under default configurations. Also, we confirm that list size is not a
meaningful proxy for provided privacy.

These results comprise a significant improvement in our under-
standing of blocking extensions and our ability to aid in the defense
of user privacy from third-party web tracking.
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A AD EXCHANGES

Table 6: Ad Exchanges. Ad exchanges, as determined by Sec-
tion 5 are shown here, with the parameters used to classify
them. These parameters are the out degree and ratio of in
degree to out degree in the Inclusion graph including only
nodes that are advertising and analytics domains.

Domain Out-degree  In/Out-degree Ratio
doubleclick.net 585 1.22
adnxs.com 449 0.66
googlesyndication.com 274 1.48
rubiconproject.com 254 0.57
openx.net 200 0.55
demdex.net 193 0.70
bidswitch.net 191 0.61
pubmatic.com 191 0.75
mathtag.com 189 0.58
adform.net 170 1.01
amazon-adsystem.com 163 0.67
criteo.com 153 0.64
turn.com 142 0.52
yahoo.com 140 0.78
taboola.com 137 0.75
crwdentrl.net 133 0.70
bluekai.com 129 0.76
lijit.com 129 0.93
krxd.net 127 0.76
contextweb.com 127 0.68
smartadserver.com 122 0.65
w55c.net 105 0.52
everesttech.net 103 0.64
Trx.io 100 0.66
tapad.com 94 0.74
31lift.com 86 0.74
gumgum. com 86 0.78
spotxchange.com 80 0.51
serving-sys.com 79 1.95
wp.com 75 1.52
2mdn.net 73 1.51
teads. tv 71 0.86
imasdk.googleapis.com 68 1.40
outbrain.com 68 0.56
sharethrough.com 66 0.68
yandex.ru 66 0.76
adition.com 62 1.05
sonobi.com 62 0.77
addthis.com 62 1.15
rfihub.com 59 0.69
sharethis.com 59 0.71
eyeota.net 58 0.55
stickyadstv.com 58 0.66
yimg.com 57 0.96
33across.com 57 1.19
media.net 56 0.89

bttrack.com 51 0.65

B QUANTIFIED PRIVACY IMPACT

Table 7: Quantified Privacy Impact. We provide here the nu-
merical values achieved for our privacy evaluation experi-
ments in Section 6. The percent of visits disclosed averaged
over all know A&A domains and to the most priveleged A&A
domain are provided for both information sharing models
we considered. This is a tool to clarify details that may be
obscured by overlapping lines or hard to visually compare,
such as area under the curve. We note that overlapping lines
indicate that we did not observe a significant difference.

Cookie Matching Real-Time Bidding

Average Worst  Average Worst
Control 0.238% 36.90% 4.475% 40.88%
AdBlock Plus 0.183% 36.78% 4.063% 39.60%
AdGuard 0.162% 36.75% 3.667% 38.88%
Disconnect.me 0.015% 2.30% 0.309% 3.38%
DuckDuckGo 0.028% 13.10% 0.718% 16.38%
Ghostery 0.016% 10.70% 0.181% 11.43%
uBlock Origin 0.011% 10.65%  0.158% 11.45%
AdBlock Plus (Exceptionless) 0.166% 36.78% 3.720% 38.98%
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