The Monad.Reader Issue 20

by Tillmann Vogt (tillk.vogt@googlemail.com)
and Jan Stolarek (jan.stolarek@p.lodz.pl)
and Julian Porter (julian.porter@porternet.org)

August 25, 2012

Edward Z. Yang, editor.

Contents

Edward Z. Yang
Editorial

Tillmann Vogt
Enumeration of Tuples with Hyperplanes

Jan Stolarek
Understanding Basic Haskell Error Messages

Julian Porter
The MapReduce type of a Monad

21

43

Editorial

by Edward Z. Yang (ezyang@mit.edu)

It’s not dead, it’s resting!

Awakening from its slumber, The Monad Reader shambles back to life with
three new articles for your perusal. The authors in this issue have my gratefulness
for putting up with what ended up being a very long editing cycle, and you, fair
reader, have my thanks for waiting patiently. Enjoy!

Enumeration of Tuples with
Hyperplanes

by Tillmann Vogt (tillk.vogt@googlemail.com)

Enumeration means assigning an integer value to a structure or, looking at the
Haskell Prelude, defining an Enum instance. There are Enum instances for basic
types like Bool or Char. But why are there no Enum instances for tuples? Given
that the elements of a tuple are enumerable, the combination ought to be enumerable
too. Unfortunately, it takes too long to e.qg. enumerate all 7-tuples of Chars to find
"Haskell”. Another problem is that the classic method (imagine a counter ticking
upwards) makes the digits increase with different speed and is therefore unusable
for combinatorial problems where you want a quick variation of every digit. The
solution that people most of the time chose in such a situation is a random function.
The problem with a random function (apart from not being side effect free) is that
you never have the confidence of having examined at least a defined part of the
search space exhaustively. Using an enumeration as we present here, you can halt
the processing e.qg. in a proving system or a genetic algorithm, see how long it took
to compute, add constraints, and continue with the assurance of not having missed
a solution. In this article, we will describe a method how to enumerate tuples in a
fair manner that could be used in such cases.

Cartesian product of small sets

The most straightforward way to enumerate tuples is to generate all combinations
of elements of (finite) sets like this:

cartProd (set:sets) = let cp = cartProd sets
in [x:xs | x <- set, xs <- cp]
cartProd [1 = [[]]

The Monad.Reader Issue 20

This is a Cartesian product in maths, which can be found in the library haskell-
for-maths. The exact way how the sets are enumerated does not matter because
usually every element is used.

To understand what this function does, let’s look at an example:

cartProd [[0..3],[0..3],[0..3]11],

evaluates to:

[[0,0,0],
[0,0,1],
[0,0,2],
[0,0,3],
[0,1,0],
[0,1,1],
[0,1,2], ...].

One can see that this is counting of numbers with base 4. This is fine if every
combination has to be examined and the sets are small. If the sets become too big
there is no way to go through all combinations. In that case, this enumeration is
problematic for several reasons:

1. It is not able to enumerate an infinite set at one of its digits. For example,

cartProd [[0..3],[0..3],repeat 0]
will only produce lists of [0,0,0] because it is stuck in the third list that
contains infinitely many 0s.

2. It does not distribute the changes fairly among the digits. The above enu-
meration is a lexicographic ordering that changes the last digit in the tuple
all the time and the first rarely. In the next subsection we will see an enu-
meration (repeated diagonalization) that solves the first point but not this
point.

3. Every set has to be of the same type, because it is a list. This limitation
could be easily changed by transforming the lists into tuples and maybe do
a lookup with the integer values in a table .

Enumerating Q

There is another way to enumerate tuples that every computer scientist learns
when showing that the rational numbers are enumerable. A rational number can
be enumerated by giving an axis of natural numbers to each numerator and denom-
inator. Then an enumeration is a path consisting of increasingly longer diagonals
(Figure 1). For a way to avoid duplicates in this enumeration (like 2/2) see [1].

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

0.4)

(0,0) (4,0)

Figure 1: Enumeration of 2-tuples

The next question, typically raised in an exercise course, is how to enumerate 3-
tuples. While everybody is thinking hard about a path through three dimensional
space, somebody suggests to use the 2-tuples as a new axis and do the same
diagonalization again. This gets the job done, because it allows infinite sets in
the digits (here N), but is unfair: there are many more 2-tuples than single values
(O(x?) against O(z), = being the size of each set at a digit). The result is an
unfair distribution (see the left picture of Figure 2 that shows the path that is
biased towards one axis). To make matters worse, doing this trick repeatedly
results in distributions where one digit grows with O(z?) for 4-tuples, O(z*) for
5-tuples.

This unfairness can be avoided in 4-tuples, generally 2"-tuples, and at least be
made less severe by choosing tuples for both axes, but it still leaves the non-2"-
tuples with an unfair distribution.

Diagonals are Hyperplanes

If you look again at the diagonals of the enumeration of 2-tuples, you can ob-
serve that a diagonal (e.g. [(0,4), (1,3),(2,2),(3,1),(4,0)]) always consists of tu-
ples whose sum of digits is constant: [(z,y) | z +y = ¢|, ¢ € N. The same idea can
be applied to 3-tuples. The right picture of Figure 2 shows an enumeration path
where the sum of the digits stay constant for an enumeration plane:

[(z,y,2) |z +y+2z=c,ceN.

The idea can be generally stated as grouping tuples by the distance to the origin
with a norm. Then these tuples can be enumerated by arranging them mono-
tonically increasing. Instead of planes, one could imagine to use sphere surfaces,
though it is probably much harder to calculate the n-th tuple in this case (and this
is necessary as we will see later to make a proper Enum instance).

The enumeration with planes in the right picture of Figure 2 generates tuples
with a fair distribution of changes in the digits. It is especially fair in the beginning.

The Monad.Reader Issue 20

Figure 2: Enumeration with repeated diagonalization (left), with hyperplanes
(right)

An enumeration of n-tuples switches every digit once in the first n+1 values. For
3 tuples it is for example:

(¢0,0,0), (1,0,0), (0,1,0), (0,0,1), ...]

For higher values it becomes unfairer, though other solutions (like hyperspheres)
may have much more complicated algorithms and formulas. While the 3D enu-
meration uses planes, in higher dimensions hyperplanes have to be used. In fact,
diagonals in 2D are hyperplanes, since hyperplanes are a (n—1)-dimensional subset
of a n-dimensional space that divides the space in two.

Enum Instances

The first experiments of this enumeration algorithm generated a list of tuples of
natural numbers. Ideally, we would like to replace natural numbers with arbitrary
types as long as they can be enumerated. That of course also includes tuples itself.
Haskell has a very nice feature called typeclass that permit the nesting of arbitrary
tuples and values whose type have an Enum instance. Take for example the Enum
instance for 2-tuples:

instance (Enum a, Enum b, Eq a, Eq b, Bounded a, Bounded b)
=> Enum (a, b) where

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

If a is enumerable and b is enumerable then the tuple (a,b) is also enumerable.
Because the values are enumerated from the low boundary to the high boundary
and comparisons have to be made, a and b are also in Eq and Bounded. The goal
is now to be able to write

(enumFrom (0,(1,2),3)) :: [(Word8, (Word8,Word8) ,Word8)]

This is an example for an arbitrary nesting, with arbitrary starting values, that
evaluates to (you will see later why):

£¢0,(1,2),3), (0,(2,1),4), (0,(3,0),5), ...]

A type that is enumerable can be made an instance of the Enum typeclass by
defining at least two functions:

toEnum :: Int > a
which returns a value of type a to a number and
fromEnum i a —-> Int

which returns a number to a value of type a. There exist instances for primitive
types like Char, Bool and Int. The following functions are defined with toEnum
and fromEnum, but can be overridden:

succ, pred a > a

enumFrom a —> [a] -— [n..]
enumFromThen a > a -> [a] -- [n,n’..]
enumFromTo a > a -> [a] -- [n..m]
enumFromThenTo a->a->a > [a] -— [n,n’..m]

In our case, we will overwrite succ (the successor in the enumeration) and pred
(the predecessor), because they can be calculated more quickly than the default
implementation:

succ = toEnum . (‘plusInt‘ oneInt) . fromEnum

succ, pred

In order to understand the following code, it’s worth keeping the image Figure 2 in
your head. Changes happen when a 0 is reached in the tuple. Because enumeration
of arbitrary types should be possible, 0 is replaced by minBound. Instead of looking
at a tuple it is faster to look only at the important digits:

The Monad.Reader Issue 20

succ (a,b,c) =

if ¢ == minBound then
if b == minBound then
if a == minBound then (succ a, b , C) —— (0,0,0)
else (pred a, succ b, c) —— (a,0,0)
else (a , pred b, succ ¢c) -- (a,b,0)
else
if b == minBound then -- switching to the next hyperplane
if a == minBound then (toEnum (fc+1), minBound, minBound) -- (0,0,c)
else (pred a , toEnum (fc+1), minBound) -- (a,0,c)
else (a , pred b , succ ¢) -- diagonals
where

fc = fromEnum c

The last tuple generates diagonals and every else in the first half of this code generates
a higher dimensional hyperplane. The line (toEnum (fc+1), minBound, minBound)
makes a switch to a new hyperplane, that is one bigger in the sum of digits than the last
hyperplane. Because the types in the tuple can be different from each other, fromEnum c
and toEnum (fc+1) have to be used instead of succ and pred. The function pred for
3-tuples is implemented similarly:

pred (x,y,z) =

if z == minBound then
if y == minBound then
if x == minBound then
error "Enum.pred{(x,y,z)}: tried to take ‘pred’ of minBound"
else (minBound, minBound, toEnum (fx-1)) -- (fy,fz) was (0,0)
else (succ x , minBound, toEnum (fy-1)) -- fz was 0
else (x , succ y , pred z)
where
fx = fromEnum x

fy = fromEnum y
Here the line (minBound, minBound, toEnum (fx-1)) makes a switch to a lower hy-
perplane.

Avoiding some typewriting

The function succ could be defined for the other tuples in the same way, but this is a
lot of typing for 15-tuples (the biggest tuple for which there exist typeclass instances in
the base libraries of Haskell). There is a pattern in the tuple that is produced when a
certain pattern of zero or non-zero values in an inbound tuple occurs. One can come up
with functions that do the same as the upper succ function when seeing an n-tuple as a
list. But a tuple can have all kinds of types and therefore cannot be encoded as ordinary

10

Tillmann Vogt: Enumeration of Tuples with Hyperplanes
lists. What to use? A heterogeneous list? One can also use a trick that transforms a
tuple into a finite list-like structure and back:
to5Tuple ((((a,b),C),d),e) = (a,b,c,d,e)

Then succ can be defined like this:

succ fz s ((x,y),2)

| y /= minBound && z == minBound = ((x,pred y), succ z)

| v == minBound && z == minBound = (succ fz False (x,y), z)

| y /= minBound && z /= minBound = ((x,pred y), if s then succ z else toEnum (fz+1))
| v == minBound && z /= minBound = (succ fz False (x,toEnum fz), minBound)

Here y and z should be imagined as single values while x can be the list-like structure.
Unfortunately the upper code gives a type error in Haskell: “Occurs check: cannot con-
struct the infinite type: t0 = (t0, a0).” This is understandable, since the compiler can’t
know that this nesting terminates without a termination analyzer. In the expression
((a,b),c) the value a must not stand for another tuple e.g. (((d,e),b),c); the com-
piler does not know that we are not constructing an infinite type. We can hack our way
around this by defining succ for all tuples, like this:

:: (Enum a, Enum b, Enum ¢, Eq a, Eq b, Eq c,
Bounded a, Bounded b, Bounded c) =>
Int -> Bool -> ((((a,p),0)|,d),e) -> ((((a,p),0)],d),e)
fz s ((x,y),2)

/= minBound && z == minBound = ((x,pred y), succ z)

== minBound && z == minBound (fz False (x,y), z)

z
minBound && z /= minBound =((x,pred y), if s then succ z else toEnum (fz+1))
z

/= minBound = (fz False (x,toEnum fz), minBound)

<9< <<
~N
I

== minBound &&

To define the other succ functions one only has to change the number after the two
succ-functions in the body accordingly.

I haven’t found an easy way to do the same with pred, because the last value in the
tuple depends on values at various positions.

The size of enumeration hyperplanes

The sizes of the enumeration hyperplanes are needed in order to assign numbers to tuples
(toEnum) or to find the place of a tuple in an enumeration (fromEnum). From the right
picture of Figure 2, it can be seen that the 2D-hyperplanes consist of 1D-hyperplanes
(diagonals). Generally an n-dimensional space is enumerated with (n — 1)-dimensional
hyperplanes. These hyperplanes are again enumerated by (n — 2)-dimensional hyper-
planes, and so on. The size of an n-dimensional enumeration hyperplane can be deduced
by looking at the two and three dimensional case.

11

The Monad.Reader Issue 20

The size of our 2D-hyperplane (a plane of diagonals) is a well known problem that
Gauf3 solved at the age of nine:

1+
(1+1)+
(1+141)+... (1)

n
142434445 +n=> k=n(n+1)/2
k=1

A 3D-hyperplane consists of increasingly larger 2D-hyperplanes:

1+
(1+42)+
(14+2+3)+..
= k(k+1)/2 (2)
k=1
:i(ﬁ_'_lf): n(n+1) +2n3+3n2—|—n
2 2 2 %2 62

e
Il
—_

In (2), we sum over the polynomial of the Gaul sum (1).
To calculate the sum of k?’s, the Bernoulli formula for sums of powers was used:

n—1 p

1 p+1 i
S S (P gy G
k=1 p =\ 7

Applying this pattern again leads to the size of a 4D-hyperplane:

1+
(1+(1+2))+

n

Z(k:(k+1) 2k3 4+ 3k% + k
2% 2 6 x 2

I+Q+2)+(1+2+43)+...=)

Calculating it

The last section showed that the size of a hyperplane can be given with a polynomial.
The common way to represent a polynomial is to only use its coefficients. Therefore a
function is needed to evaluate a polynomial in n:

12

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

polynomial :: Int -> [Rational] -> Rational
polynomial n coeffs = foldr (+) O (zipWith nPowerP coeffs [1..])
where nPowerP a_j p = a_j * (fromIntegral (n"p))

The coefficients of a polynomial in n that results from ZZ;% kP are needed. At position
nPH1=J this is:

1 (p+1
coefficient(j) = ——) . 5
=177)

The combinat library, which can be found on Hackage, provides some parts of the
Bernoulli formula: the Bernoulli numbers 3; and the binomial coefficient. With this, a
part of the Bernoulli formula can be implemented by:

sumOfPowers :: Int -> [Rationall
sum0fPowers p = reverse [bin j * ber j / fromIntegral p + 1 | j <- [0..p]]
where bin j = fromIntegral (binomial (p+1) j)
ber j | j == 1 = negate (bernoulli j) -- see wikipedia entry
|

otherwise = bernoulli j

Because of the —j in nP*17J, a reverse is needed. We apply this formula to a
polynomial with increasing degree: first k, then % + %2,

The size of an n-dimensional hyperplane can be calculated by repeatedly applying the
Bernoulli formula (map sumOfPowers) to the nP after the coefficients of a polynomial
and adding the coefficients (merge):

hyperplaneSize :: Int -> Int -> Int
hyperplaneSize dim n = round (genPolynom 1 [1])

where genPolynom :: Int -> [Rational] -> Rational
genPolynom d coeffs | d == dim = polynomial n coeffs
| otherwise = genPolynom (d+1)

(merge coeffs (map sumOfPowers [1..(length coeffs)]))

merge coeffs 1ls = foldr myZip [] multiplied_ls
where multiplied_1s = zipWith (\c 1 -> map (c*) 1) coeffs 1ls
myZip (10:10s) (11:11s) = (10+11) : (myZip 10s 11s)
myZip a b = a ++ b

fromEnum

The function fromEnum takes a tuple and gives back an integer. If we want to calculate
e.g. fromEnum (True,’a’,2) we first apply fromEnum to every argument:

fromEnum (fromEnum True, fromEnum ’a’, fromEnum 2)

13

The Monad.Reader Issue 20

The tuple now only consists of integers (here fromEnum (1,97,2)). Using fromEnum
at every digit of the tuple, a general function fe can be constructed that transforms an
arbitrary sized list of integers:

fromEnum (a,b,c) = fe [fromEnum a, fromEnum b, fromEnum c]

To understand how fe works, recall that a hyperplane consists of all tuples whose sum
of digits is constant. For the upper 3-tuple there is one 2D-plane that is located at the
sum of the three integers. All the hyperplanes below this one have to be summed up. To
calculate a tuple’s position inside the 1D-hyperplane (diagonal) of this plane, the plane
is projected to a lower dimension by setting one coordinate to zero. Instead of planes in
3D, we now have diagonals in 2D. The sum of the tuple values of this smaller tuple give
us again a hyperplane and the hyperplane-sizes below have to be added to the overall
sum. This process ends with a position inside of a 1D-line.

The decision of which dimension to set to zero is a degree of freedom, but the choice
must be made consistently in toEnum, succ and pred. There are two ways to do this in
2D, three ways in 3D, generally n ways in an n-dimensional space.

In the last section, we saw how to calculate the size of the nth enumeration hyperplane
of a d-dimensional space. The function fe uses lists of these sizes and an increasingly
larger sum of hyperplanes:

ssizes d = [sum (take n sizes) | n <- [1..]]
where sizes = [hyperplaneSize d i | i <- [0..]]

summedSizes :: Int -> Int -> Int
summedSizes dim n = (ssizes dim) !! n

For the upper 3-tuple, we always set the first value to zero, and thus calculate:

(summedSizes 2 (al+bl+cl)) + -- al = fromEnum a
(summedSizes 1 (bl+cl)) + --— bl = fromEnum b
cl -- ¢l = fromEnum c

For all dimensions:

fe [x] = x
fe (x:xs) = (summedSizes (length xs) (foldr (+) 0 (x:xs))) + (fe xs)

toEnum

To calculate toEnum, we have to invert the upper process. If toEnum gets the argument
n and the tuple has dimension d, then we search for where n is located between the sums
of hyperplanes by summarizing the smaller hyperplanes until n is reached and continue
with the lower dimensions. But, instead of values for each tuple position, we get sums of
subtuple values. To see how to extract values at each position from the sums, look again
at the example of a 3-tuple: To get al, it is enough to know the two sums (al+bl+cl)
and (bl+c1l) and calculate the difference:

14

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

differences :: [Int] -> [Int]
differences [x] = [x]
differences (x:y:ys) = (x-y) : (differences (y:ys))

But first, we calculate each of these sums (like the one belonging to al+bl+c1), put
them in the list planes and also remember the rest for the next round:

hplanes :: Int -> ([Int],Int) -> ([Int],Int)
hplanes d (planes,rest) = ((fst hp):planes, snd hp)
where hp = hyperplane d rest

hyperplane dim n = ((length s) - 1, n - (if null s then O else last s))
where s = filterAndStop [summedSizes (dim-1) i | i <- [0..]]
filterAndStop (x:xs) | x <= n = x : (filterAndStop xs)
| otherwise = []

te uses the upper functions and works for an arbitrary dimensioned tuple:

te :: Int -> Int -> [Int]
te dim n = differences $ reverse $ fst $ foldr hplanes ([],n) [1..dim]

Reaching boundaries

Until now only tuples with large sets were enumerated where it takes a long time to
reach boundaries. But if tuples with Bools are enumerated (or with only four elements
like in figure 3), boundaries are quickly reached. Notice that in figure 3 the diagonals are
enumerated from bottom right to top left and only half of the last line is subtracted. For
non-quadratic rectangles it is also easier to subtract triangular shapes than to calculate
the red area (especially in higher dimensions as we see later).

(0,0) (3,0)

Figure 3: Reaching boundaries in two dimensions

Figure 4 shows boundaries in 3D where the enumeration planes in 3D form a tetra-
hedron starting at the origin. From this base tetrahedron, we must subtract three

15

The Monad.Reader Issue 20

tetrahedra translated by the size of the boundary in the respective dimension (also try
to imagine a book shape instead of a cube in the picture). The intersections of these
three tetrahedra make it necessary to add again three smaller tetrahedra that start at
two added boundaries. In the former sections, we could see a pattern from the 2D to
the 3D case and deduce a general pattern. There seems to be no obvious pattern in this
case, as we don’t know how hypertetrahedra intersect in higher dimensions.

Figure 4: Left: Enumeration planes that intersect a bounded space. Right: The
tetrahedra that have to be subtracted (red, green, blue) and added again (violet,
yellow, blue-green)

Intersections of hypertetrahedra

To get an idea of how many intersections there are we generate a 5D-hypertetrahedron
(allbs is an enumeration from (0,0,0,0,0)):

setb :: Word8 -> [(Word8,Word8,Word8,Word8,Words)]
setb s = [(a,b,c,d,e) | (a,b,c,d,e) <- take 5000 allbs, a+b+c+d+e <= s]
set510 = setb 10

Then we translate this hypertetrahedron by the same length in each dimensions re-
spectively and look at all combinations of intersections. The library haskell-for-maths
gives us a function that generates all subsets of size k:

combinationsOf 0 _ = [[]]
combinationsOf 0=100

16

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

combinationsOf k (x:xs) =
map (x:) (combinationsOf (k-1) xs) ++ combinationsOf k xs

The following function returns sets of indices to hypertetrahedra where the index
specifies in which dimension they were translated.

intersectionSets = concat $ map (\k -> combinations0f k [0..4]) [2..5]
has the value

tfo,11,f0,2]1,0,3]1,[0,4]1,[1,2],[1,3],[1,4]1,[2,3],[2,4], (3,41,
(o,1,21,[0,1,31,[0,1,4],[0,2,3], [0,2,4], [0,3,4], [1,2,3],[1,2,4],
(1,3,4]1,[2,3,4]1,[0,1,2,3],[0,1,2,4],[0,1,3,4],[0,2,3,4],
[1,2,3,41,[0,1,2,3,4]1].

If we do an intersectionTest with

intersectionTest =
filter (\set -> (length (intersection set)) > 1) intersectionSets
intersection set = intersectAll (map translated set)
intersectAll set = foldr intersect (head set) (tail set)
translated dim = map (add5 (tr5 dim 5)) set510
where add5 (a,b,c,d,e) (f,g,h,i,j) = (at+f,b+g,c+h,d+i,e+j)

we get (g) = 10 intersections:
tfo,1],[o,21,[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]

In higher dimensions it seems that all intersections of 2 hypertetrahedra exist, but
three or more hypertetrahedra never intersect at more than one point.

fromEnum with boundaries

In the bounded case, fromEnum is calculated nearly in the same way as in the previ-
ous sections. Looking again at Figure 4, there is a top hyperplane below which the
other hyperplanes are summed up. They form the base hypertetrahedron from which d
tetrahedra (as many as the tuple has dimensions) have to be subtracted (sum (map in-
tersection comb)) and because they also intersect between each other hypertetrahedra
have to be added again in an alternating fashion (add0rSub):

feb :: [(Int,Int)] -> Bool -> Int
feb [(x,b)]
feb xs start

X

sum (map intersection comb)
recursion

+

where
recursion | start = feb xs False

17

The Monad.Reader Issue 20

| 4 >0 = feb (tail xs) False
| otherwise = 0

ys = map fst xs
bs = map snd xs
1 = (length ys) - 1
d | start =1
| otherwise = 1-1
s = foldr (+) 0 ys
s2 = foldr (+) 0 (tail ys)

comb :: [[Int]]
comb = concatMap (\x -> combinationsOf x [0..1]) range
range :: [Int]

range | start = [0..2]
| otherwise = [0..1]
intersection ts = add0OrSub * tbs
where
tbs | start = tbs’ (s -sumBs)
| elem O ts = tbs’ (s3-sumSpecial)

| otherwise = tbs’ (s2-sumBs)
tbs’ delta = if delta > O then summedSizes d delta else O
sumBs | null ts = 0

| otherwise = sum (map (+1) (map (bs!!) ts))

sumSpecial = sum (map tetra ts)
tetra O = O -— because the special tetrahedron starts at O
tetra i = (bs!!i)+1
-- size of special tetrahedron (begins a zero)
specialTetra = s - (head bs)
s3 | s2 <= specialTetra = s2

| otherwise = specialTetra
add0rSub | even (length ts) =1
| otherwise = -1

In the upper code we have to introduce the bool argument start to cope with a
strange effect. Although our experiment showed that there are only intersections of at
most two hypertetrahedra, this is only true in the beginning. Once we project the tuple
to one dimension below, there are more intersections. Consider this example: in four
dimensions we have to subtract four hypertetrahedra. These hypertetrahedra are the
original 4D enumeration, translated in each of the four dimensions respectively, e.g.

(1,0,0,0)
(0,1,0,0)
(0,0,1,0)
(0,0,0,1)

18

Tillmann Vogt: Enumeration of Tuples with Hyperplanes

This 4D enumeration consists of repeated 3D enumerations. If we are only interested
in the last 3D object in 4D space (the hyperplane that belongs to the sum of all digits),
we get four 3D objects in 4D space. What do they look like? We can project them one
dimension lower by setting one dimension to zero. Three 3D objects are still translated,
but one is set to the origin. So the 3D objects are in each of the four corners of a normal
3D-tetrahedron. That is one tetrahedron more than in right part of Figure 4. Does this
mean that if we start with a 10-dimensional tuple, the plane in 2D has a very complicated
shape? Fortunately, with every dimension we go, the lower hypertetrahedron that is at
the origin is parallel to the enumeration and does not influence the intersections at
the top hyperplane where we go next. Instead of only at most two hypertetrahedra
intersecting, all hyperplanes intersect. Try to imagine this in 3D with four tetrahedra in
four corners and arbitrary sizes.

toEnum, succ and pred with boundaries

The only thing that is left is to implement the function toEnum, adjusted to the boundary
case in the same way as we showed for fromEnum. The functions succ and pred currently
just run over the boundary by switching to an Int representation and searching for the
next tuple inside of the boundaries. There may be some speed improvements that have
not been considered, but our focus was on a correct implementation.

Conclusion

The idea to enumerate tuples this way originated from my diploma thesis, where I used
an automata to generate tuples. When I started to make Enum-instances for tuples, it
became much more involved—interesting enough to write an article about it. So far, I
could not find a reference mentioning the enumeration of tuples with hyperplanes (e.g.
[3]), but the field of mathematics and informatics is vast and the problem may have been
called a different name or considered not worth spending time on.

The problem of the long calculation time still remains. Going back to the example
in the introduction (reaching "Haskell” in an enumeration of 7-tuples) one could use
syllables instead of characters. For this there have to be list-like data types with Enum
instances. This should allow to set priorities which could be given by the user or found
by a fitness function. Then it should also be possible to fix values inside of a tuple
and do all kinds of filtering. The application I have in mind are user interfaces where
one obviously has to make a lot of decisions. Another interesting challenge would be to
implement this algorithm in a typical imperative language.

I want to thank Edward Z. Yang for his patience and the helpful editing.

Appendix

The images were generated with the library collada-output and blender for the 3D
images and diagrams for the 2D-diagrams. Here is the code for one diagram:

19

main = B.writeFile "test.svg" $ tolLazyByteString $
renderDia SVG (SVGOptions (Dims 100 100)) (enum2 ||| enum3)

—— 2D enumeration

enum2 = ((stroke (mconcat $ translatedPoints))
fc black # fillRule Even0dd)
<> enumLines
<> (translate (-1,-1) $ text’ "(0,0)")
<> (translate (4 ,-1) $ text’ "(4,0)")
<> (translate (-1, 4.25) $ text’ "(0,4)")

translatedPoints = map (\v -> translate v (circle 0.15)) points

points = map (\(x,y) -> (fromIntegral x, fromIntegral y))
$ take 15 (all2s :: [(Word8,Word8)])

enumLines = mconcat $
colorize (map enumLine (pointList points []) # 1w 0.1)
where enumLine 1 = fromVertices (map P 1)
pointList [] 1= [1]
pointList ((0,y):ps) 1 = ((0,y):1) : (pointList ps [])
pointList ((x,y):ps) 1 = pointList ps (1 ++ [(x,y)])

colorize = zipWith (\¢ d -> d # lc c) [yellow,red,green,blue,orange]

text’ t = stroke (textSVG t 0.8) # fc black # fillRule Even0dd

References

[1] David Lester Jeremy Gibbons and Richard Bird. Functional pearl: Enumerating
the rationals. Journal of Functional Programming, Volume 16 Issue 3:pages 281-291
(May 2006).

[2] http://hackage.haskell.org/package/tuple-gen.

[3] Donald Knuth. The Art of Computer Programming: Fascicle 2: Generating All
Tuples and Permutations: 4. Addison-Wesley Longman, Amsterdam (2005).

http://hackage.haskell.org/package/tuple-gen

Understanding Basic Haskell Error
Messages

by Jan Stolarek (jan.stolarek@p.lodz.pl)

Haskell is a language that differs greatly from the mainstream languages of today.
An emphasis on pure functions, a strong typing system, and a lack of loops and
other conventional features make it harder to learn for programmers familiar only
with imperative programming. One particular problem I faced during my initial
contact with Haskell was unclear error messages. Later, seeing some discussions
on #haskell, I noticed that I wasn’t the only one. Correcting a program without
understanding error messages is not an easy task. In this tutorial, I aim to remedy
this problem by explaining how to understand Haskell’s error messages. 1 will
present code snippets that generate errors, followed by explanations and solutions.
Tused GHC' 7.4.1 and Haskell Platform 2012.2.0.0 [1] for demonstration. I assume
reader’s working knowledge of GHCi. I also assume that reader knows how data
types are constructed, what type classes are and how they are used. Knowledge of
monads and language extensions is not required.

Compilation errors

Simple mistakes

I'll begin by discussing some simple mistakes that you are likely to make because
you’re not yet used to the Haskell syntax. Some of these errors will be similar to
what you know from other languages—other will be Haskell specific.

Let’s motivate our exploration of Haskell errors with a short case study. Stan-
dard Prelude provides some basic list operating functions like head, tail, init
and last. These are partial functions. They work correctly only for a subset of
all possible inputs. These four functions will explode in your face when you apply
them to an empty list:

The Monad.Reader Issue 20

ghci> head []
**x*x Exception: Prelude.head: empty list

You end up with an exception that immediately halts your program. However, it
is possible to create a safe version of head function which will work for all possible
inputs without throwing an exception. Such functions are called total functions.

To reach our goal we will use the Maybe data type. The function will return
Nothing when given an empty list; otherwise, it will return the result of applying
head to xs wrapped in the Just constructor. Here’s our completely bugged first
attempt:

safeHead [a] -> Maybe a
safeHead [] = Nothing
safeHead xs = Maybe head xs

The first line is intended to be a type annotation, while the remaining two lines
are the actual code. Loading this sample into ghci produces a parse error:

ghci> :1 tmr.hs
[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:1:14: parse error on input ‘->’
Failed, modules loaded: none.

Parse errors indicate that the program violates Haskell syntax. The error message
starts in the third line (not counting the blank one). It begins with name of the file
and exact location of the error expressed as line and column numbers separated
with colons. In this case the error is in the first line, which means our intended
type annotation. The compiler complains about -> which was not expected to
appear at this location. The problem is that the name of a function should be
separated from type annotation with ::. If there’s no : :, the compiler assumes we
are defining a function body, treats [a] as a pattern binding and expects that it is
followed either by = or | (a guard). Of course there are lots of other ways to cause
parse error, but they all are dealt with in the same way: use your favourite Haskell
book or tutorial to check what syntax Haskell expects for a particular expression.
Let’s fix this particular mistake by adding the missing : : symbol:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead xs = Maybe head xs

and see what happens:

22

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:3:15: Not in scope: data constructor ‘Maybe’
Failed, modules loaded: none.

Now that the type annotation is correct, it turns out that there’s an error in third
line. Not in scope means that some variable, function or, as implied in this case,
a data constructor, is not known to the compiler. You certainly know this kind of
error from different programming languages. Let’s look at the definition of Maybe
data type to understand what is wrong:

ghci> :i Maybe
data Maybe a = Nothing | Just a -- Defined in ‘Data.Maybe’

In this definition, Maybe is a type constructor, while Nothing and Just are value
constructors, also referred to as data constructors. This means that when you
want to create a value of a given type you must use either Nothing or Just. In our
code we have mistakenly used Maybe. There is no data constructor called Maybe:
there is a type constructor called Maybe. Let’s replace that Maybe with Just, which
was our original intention:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead xs Just head xs

The previous error is gone, only to produce a new one, shown in Listing 1. This
time, the first two lines of the error message are quite explanatory, if you know

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)
tmr.hs:3:15:

The function ‘Just’ is applied to two arguments,

but its type ‘a0 -> Maybe a0’ has only one

In the expression: Just head xs

In an equation for ‘safeHead’: safeHead xs = Just head xs
Failed, modules loaded: none.

Listing 1: Applying data constructor to too many arguments.

23

The Monad.Reader Issue 20

that every data constructor is in fact a function. The definition of Maybe data
type shows that the Just value constructor takes one parameter, while in our code
we have mistakenly passed two parameters: head and xs. From a formal point
of view this is a type system error. These will be discussed in more detail in the
next section, but we treat this one here because it is very easy to make if you
forget that function application is left-associative and that functions are curried
by default. This means that Just head xs is the same as ((Just head) xs). We
can use either parentheses or function composition and the $ operator to override
the default associativity. I've elaborated on the second approach on my blog [2] so
I will not go into explaining it here; we’ll just use the parentheses:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead xs = Just (head xs)

Surprise, surprise! The code finally compiles:

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)
Ok, modules loaded: Main.

Our function safeHead now works as intended:

ghci> safeHead []
Nothing

ghci> safeHead [1,2,3]
Just 1

You could implement safe versions of other unsafe functions in the same way,
but there’s no need to: there already is a library called safe [3], which provides
different safe versions of originally unsafe functions.

Let’s recall the not-in-scope error that we saw earlier. It was caused by using
a function which didn’t exist. Another common situation in which this error arises
is when you use an existing function, but fail to import it. Let’s look at a simple
piece of code in which a different name is given to an already existing function:

module Main where
sortWrapper xs = sort xs

Loading this code also produces the not in scope error:

24

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)
tmr.hs:2:22:

Not in scope: ‘sort’
Perhaps you meant ‘sqrt’ (imported from Prelude)
Failed, modules loaded: none.

GHCi doesn’t know sort function, but it knows sqrt from standard Prelude and
suggests that we might have made a typo. The sort function we want to use is
not in the standard Prelude so it must be explicitly imported. A problem arises
if you know that a certain function exists, but you don’t know in which package it
is located. For such situations use hoogle [4]. If you have hoogle installed localy
you can look up package name like this:

[jan.stolarek@GLaDOS : ~] hoogle --count=1 sort
Data.List sort :: Ord a => [a] -> [a]

Module name is located before the function name. In this case it is Data.List.
Now we can import module like this:

module Main where
import Data.List (sort)
sortWrapper xs = sort xs

or even more explicitly:

module Main where
import qualified Data.List as Lists (sort)
sortWrapper xs = Lists.sort xs

So if you get a not-in-scope error, but you know that the function really exists,
the missing import is most likely the culprit.

Another common mistake made by beginners is attempting to invoke functions
directly from a module. A typical example might look like this

module Main where

fact :: Int -> Int

fact 0 = 1

fact n =n * fact (n - 1)

print (fact 5)

25

The Monad.Reader Issue 20

This code gives a correct definition of factorial function and then tries to print
the result of invoking this function. This, however, is incorrect and results in a
following error:

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:6:1: Parse error: naked expression at top level
Failed, modules loaded: none

In Haskell everything in the module must be enclosed within function definitions. It
is forbidden to call functions directly in a way shown in the above example. There
are two possible solutions: first is removing the call to print (fact 5), loading
module into GHCi and invoking fact 5 from interactive prompt. Alternatively,
if you want your program to run as a separate executable, enclose the call to
print (fact 5) within the main function, which is an entry point to every Haskell
program:

module Main where
fact :: Int -> Int

fact 0 =1
fact n =n * fact (n - 1)
main = print (fact 5)

This code can be compiled and executed as a standalone executable:

[jan.stolarek@GLaDOS : ~] ghc --make tmr.hs

[1 of 1] Compiling Main (tmr.hs, tmr.o)
Linking tmr ...

[jan.stolarek@GLaDOS : ~] ./tmr

120

A naked expression error can also be easily caused by accidentally typing Import
instead of import:

module Main where
Import Data.List
sortWrapper xs = sort xs

This results in an error, because compiler treats Import as an application of data
constructor to the parameter Data.List. Remember: capitalization matters in
Haskell!

26

Jan Stolarek: Understanding Basic Haskell Error Messages

Type system errors

The complexity of Haskell’s strong static type system can cause problems for be-
ginners. Seemingly identical errors can result in very different error messages, and
dealing with this can be a challenge. In this section I will discuss some common
type system errors.

ghci> True && 1

<interactive>:23:9:
No instance for (Num Bool)
arising from the literal ‘1’
Possible fix: add an instance declaration for (Num Bool)
In the second argument of ‘(&&)’, namely ‘1’
In the expression: True && 1
In an equation for ‘it’: it = True && 1

Listing 2: Non-exhaustive pattern in a guard.

I’ll begin exploring errors related to type system with a very simple example
shown in Listing 2. It demonstrates what can happen when you pass parameters
of the wrong type to a function. The statement No instance for (Num Bool)
arising from the literal ‘1’ is the key to understanding the error message.
The last three lines of the error message provide information on exact expression
that caused the error. In our case that’s the second argument of (&&) operator!.
Even without knowing what exactly happened, it seems clear that there’s a problem
with 1 literal.

To understand what is going on, you need to know that numbers in Haskell are
polymorphic. This means that when you write an integer literal in Haskell—just as
we’ve written 1 in our example—it can be interpreted as different type depending
on the context it is used in. Here’s an example:

ghci> 1 :: Int

1

ghci> 1 :: Double
1.0

In the first case, the literal 1 is interpreted as an Int; in the second one, it is
interpreted as a Double. Both uses are correct and don’t cause a type error. This

'The it value, mentioned in the last line, is equal to the value of last expression evaluated in
GHCi.

27

The Monad.Reader Issue 20

ghci> :i Bool
data Bool = False | True -- Defined in GHC.Bool

instance Bounded Bool -- Defined in GHC.Enum
instance Enum Bool -- Defined in GHC.Enum
instance Eq Bool -- Defined in GHC.Classes
instance Ord Bool —- Defined in GHC.Classes

instance Read Bool -- Defined in GHC.Read
instance Show Bool -- Defined in GHC.Show

Listing 3: Information about Bool data type.

works as if the fromInteger function defined in the Num class was called implicitly
on the numeric literal. This means that True && 1 and True && fromInteger 1
are equivalent expressions. Let’s check the type signature of fromInteger:

ghci> :t fromInteger
fromInteger :: Num a => Integer -> a

This means that fromInteger takes an Integer and returns a value of any type
a, with a restriction that the type a belongs to the Num type class. What type
exactly should be returned? That depends on the context in which fromInteger
was applied. For example, if the return value is required to be Int then the
implementation of fromInteger defined in the Num Int instance declaration is
called. That specific implementation returns a value of type Int. This mechanism
allows integer literal to become an instance of a type belonging to Num type class.

With this knowledge, we can go back to our example in which integer literal 1 was
used as a parameter to (&&) function. This function takes two Bool parameters
and returns a single Bool:

ghci> :t (&&)
(&%) :: Bool -> Bool -> Bool

which means that in order for literal 1 to be a valid parameter to (&&), the type
returned by fromInteger should be Bool. There is one problem though. The
Bool type is not an instance of Num type class, as shown in Listing 3. However,
it should be, since the fromInteger function imposes a constraint that its return
value belongs to Num type class. This is exactly what the error message said and
that is the reason why a type error occurs. The next line of the error message
suggests a solution: Possible fix: add an instance declaration for (Num
Bool). Indeed, if we made Bool type an instance of Num type class the problem
would be gone. In some cases, this may be the solution. Deriving Bool to be an

28

Jan Stolarek: Understanding Basic Haskell Error Messages

instance of Num is certainly a good exercise that you can try out. In many other
cases however this error means you wanted something different than you actually
wrote. Let’s assume here that we wanted 1 to denote logical truth. Fixing that is
easy:

ghci> True && True
True

The constraints imposed by the type classes propagate in the type system. Here’s
a simple example that demonstrates this: let’s say we want to write a function that
tells if the two parameters passed to it are equal:

isEq :: a -> a -> Bool
isEgxy=x==y

Our isEq function expects two parameters that are of the same type and returns
a Bool. Our code looks perfectly reasonable, but loading that code into GHCi
results with an error shown in Listing 4.

ghci> :1 tmr.hs
[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:14:
No instance for (Eq a)
arising from a use of ‘==’
In the expression: x ==y
In an equation for ‘isEq’: isEq x y = x ==y
Failed, modules loaded: none.

Listing 4: Error caused by a lack of type class constraint.

The first two lines of this message are the most important: they say that type
a should be an instance of Eq type class and that this requirement is imposed by
the use of == function. Let’s inspect the type of (==):

ghci> :t (==
(==) :: Eq a => a -> a -> Bool

Indeed the (==) function expects that its arguments are instances of Eq type class.

That constraint was propagated to isEq function, which uses (==). We must
therefore add a type class constraint to parameters of isEq:

29

The Monad.Reader Issue 20

[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:17:
Could not deduce (b ~ a)
from the context (Eq a, Eq b)
bound by the type signature for
isEq :: (Eq a, Eq b) => a -> b -> Bool
at tmr.hs:2:1-17
‘D’ is a rigid type variable bound by
the type signature for iskEq :: (Eq a, Eq b) => a -> b -> Bool
at tmr.hs:2:1
a’ is a rigid type variable bound by
the type signature for iskEq :: (Eq a, EqQ b) => a -> b -> Bool
at tmr.hs:2:1
In the second argument of ‘(==)’, namely ‘y’
In the expression: x ==
In an equation for ‘isEq’: isEq x y = x ==
Failed, modules loaded: none.

4

Listing 5: Comparing two different instances of Eq type class.

isEq :: Eq a => a -> a -> Bool
isEgxy=x==y

This fixes the problem. Let’s now see what happens if we try to compare param-
eters of two different types, both belonging to Eq type class:

isEq :: (Eq a, EqQ b) => a -> b -> Bool
iskg x y=x ==y

The error message is shown in Listing 5. The (b ~ a) notation indicates equality
of the types a and b. The compiler uses this notation to say Could not deduce
(b ~ a), which means that a and b should be identical, but the type definition we
provided does not guarantee it. The requirement of types a and b being of the same
type is a direct consequence of a type signature of (==) which, as we recall, requires
its parameters to be of the same type. The term rigid type variable indicates
that our types a and b have been directly specified by the type annotation [5] and
the compiler is not free to unify them?. We have already seen a correct version of
this code, but we can also make it work in a different way:

2Unification of two types means that they are assumed to be the same type.

30

Jan Stolarek: Understanding Basic Haskell Error Messages

{-# LANGUAGE TypeFamilies #-}

isEq :: (Eq a, EQ b, a “ b) => a -> b -> Bool
isEg x y = x ==

Enabling TypeFamilies language extension and adding a ~ b type constraint in-
forms the compiler that a and b can be unified to be the same type. The above
code is for demonstration purposes: it makes no real sense to write the type dec-
laration in this way, since a and b will be unified into one type. It can be written
in a more straightforward way. Loading this into GHCi and checking type of isEq
will show that it’s actually isEq :: Eq b => b -> b -> Bool. The two distinct
types introduced deliberately have disappeared because the compiler was allowed
to unify them.

When you begin working with type classes, you may find it difficult what type
class constraints to impose on your functions. Here’s where the Haskell’s type
inference is useful: write down your function without the type declaration, load it
into GHCi and use Haskell’s type inference to determine function’s type for you.
This can be done using the :t command on a function. Suppose the isEq function
was written without type declaration. Here’s what Haskell infers about the isEq’s

type:

ghci> :t isEq
isEq :: Eq a => a -> a -> Bool

This is a correct type signature and you can simply copy it to your code.

We've seen what will happen when type signature does not contain appropriate
class restrictions. Let’s now see what happens when a function’s type signature is
inconsistent with function’s implementation. Assume we want to write a function
that returns a first letter from a String. We could want to have a type signature

like this:
getFirstLetter :: String -> String

This means that getFirstLetter function takes a value of type String and re-
turns a value of type String. For example, if we pass "Some string" as a pa-
rameter then getFirstLetter will return value "S". Since String in Haskell is
a synonym for [Char] (list of Chars) we could use head function to take the first
element of a String. Our getFirstLetter function would then look like this:

getFirstLetter :: String -> String
getFirstLetter = head

31

The Monad.Reader Issue 20

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)
tmr.hs:2:18:

Couldn’t match expected type ‘String’ with actual type ‘Char’
Expected type: String -> String
Actual type: [Char] -> Char
In the expression: head
In an equation for ‘getFirstLetter’: getFirstLetter = head
Failed, modules loaded: none

Listing 6: Expected and actual type mismatch error.

The head function has type [a] -> a, which means it takes a list of some type
a and returns a single element of type a, not a list. However, the type signature for
getFirstLetter requires that the return argument be a list of Chars. Therefore,
the provided signature is inconsistent with the actual return type of the function.
Haskell will notice that when you try to load the code into GHCi and report an
error as shown in Listing 6. It says that type annotation in the source code defines
the return type to be [Char], but the actual type inferred by the compiler is Char.
There are two possible fixes for this problem. First, if we are really fine with
getting a single Char instead of a String, we can change the type signature to
String -> Char (or [Char] -> Char, since it’s the same due to type synonyms).
On the other hand, if we really expect to get a String from our function, we need
to change the implementation. In this case the result of head should be wrapped
in a list, which can be done like this:

getFirstLetter :: String —-> String
getFirstLetter xs = [head xs]

or using a point-free style:

getFirstlLetter :: String -> String
getFirstLetter = (: []) . head

The type mismatch error is probably the one you’ll be seeing most often. There
is really no way of anticipating all possible situations where it might occur. The
above case was easy, because the implementation of a function was correct and the
only problem was fixing the type annotation. Most often however you’ll end up
in situations where you’ve written some code and the type-checker complains that
this code is type-incorrect. Here’s an example of how this may look like:

32

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> :r
[1 of 1] Compiling Main (tmr.hs, interpreted)
tmr.hs:4:26:

Couldn’t match expected type ‘Int’ with actual type ‘Char’
In the first argument of ‘(x*)’, namely ‘acc’
In the first argument of ‘(+)’, namely ‘acc * 10’
In the expression: acc * 10 + digitToInt x
Failed, modules loaded: none.

Listing 7: Expected and actual type mismatch error.

import Data.Char

asInt :: String -> Int
asInt = foldl (\x acc -> acc * 10 + digitToInt x) O

This code takes a String representation of a number and turns it into an Int.
Well. . . almost: if you try to compile it you’ll get an error about mismatching
types, as shown in Listing 7. The message says that acc (accumulator) is of the
wrong type—Char instead of Int. In such cases it might not be immediately
obvious what exactly is wrong. The only way to deal with such errors is to inspect
the incorrect expressions. In this example the code isn’t really complicated so this
will be easy. The asInt function uses only foldl and one anonymous lambda
function. Let’s begin by checking the type signature of foldl:

ghci> :t foldl
foldl :: (a->b ->a) > a -> [b] -> a

This type signature says that foldl takes three parameters. These parameters are
a function of type a -=> b -> a, an accumulator of type a and a list containing
elements of type b. By looking at the type variables in this signature—that is, a and
b—ryou can see that the first parameter to folding function, the accumulator and
the return value of foldl are of the same type a. We passed 0 as the accumulator
and expect the return value of asInt function to be Int. Therefore type a is
inferred to be Int. The compiler complains, however, that variable acc used as
parameter to (%) is of type Char, not Int. The parameters to the lambda function
are x and acc. According to type signature of foldl, x should be of type Int,
because it is of the same type as the accumulator. On the other hand acc is of
the same type as elements of the list passed as third parameter to foldl. In this

33

The Monad.Reader Issue 20

ghci> :m + Data.lList
ghci> ’A’ ‘isPrefix0f‘ "An error"

<interactive>:8:1:
Couldn’t match expected type ‘[a0]’ with actual type ‘Char’
In the first argument of ‘isPrefix0f’, namely ’A’
In the expression: ’A’ ‘isPrefix0f‘ "An error"
In an equation for ‘it’: it = ’A’ ‘isPrefix0f‘ "An error"

Listing 8: Passing argument of wrong type to a function.

example, the list is of type [Char] so acc, being a single element, is of type Char.
Well, this should be the other way around: acc should be of type Int; x should
be of type Char. We conclude this error was caused by writing the parameters of
lambda in incorrect order. The correct code therefore is:

import Data.Char

asInt :: String -> Int
asInt = foldl (\acc x -> acc * 10 + digitToInt x) O

In some cases you will get an error message that doesn’t specify concrete type.
Consider example shown in Listing 8. The isPrefix0f function expects its both
parameters to be lists of the same type:

ghci> :t isPrefixO0f
isPrefix0f :: Eq a => [a] -> [a] -> Bool

As soon as compiler realizes that the first parameter is not a list, it complains.
It doesn’t even reach the second parameter to analyze it and infer that the first
list should contain Chars. That is the reason why it uses a list [a0], where a0
represents any type. Listing 9 shows the result of swapping the two parameters.
This time, the compiler is able to infer the exact type of the elements required in
the second list. By the time compiler reaches the second parameter, it has already
analyzed the first one and it knows that that parameter was a list of Chars.
Another common error related to types is type ambiguity. I'll demonstrate it
using the read function, which is used to convert String representation of some
value to that value. The read function is defined in the Read type class and has
type signature read :: Read a => String -> a. All data types within standard
Prelude, except function types and I0 types, are instances of Read. Every type

34

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> "An error" ‘isPrefix0f‘¢ A’

<interactive>:9:25:
Couldn’t match expected type ‘[Char]’ with actual type ‘Char’
In the second argument of ‘isPrefix0f’, namely ’A’
In the expression: "An error" ‘isPrefix0f‘ ’A’
In an equation for ‘it’: it = "An error" ‘isPrefix0f‘ ’A’

Listing 9: Passing argument of a wrong type to a function.

ghci> read "5.0"

<interactive>:11:1:
Ambiguous type variable ‘a0’ in the constraint:
(Read a0) arising from a use of ‘read’
Probable fix: add a type signature that fixes these
type variable(s)
In the expression: read "5.0"
In an equation for ‘it’: it = read "5.0"

Listing 10: Type ambiguity.

that is an instance of Read type class provides its own definition of read function.
This means that the compiler must know what resulting type to expect in order to
call a correct implementation of the read function®. This is polymorphism, which
was already discussed when we talked about fromIntegral function. Listing 10
shows that the error that occurs when the polymorphic type variable cannot be
inferred to a concrete type. In this case, the compiler doesn’t know which version
of read function should be called. It suggests that we can solve the problem by
adding a type signature. Let’s try that:

ghci> read "5.0" :: Double
5.0

It is important to provide correct type signature:

ghci> read "5.0" :: Int
**x*x Exception: Prelude.read: no parse

3Even if there was only one instance of Read class, the compiler wouldn’t know that and you
would get type ambiguity error.

35

The Monad.Reader Issue 20

ghci> id -1

<interactive>:16:4:
No instance for (Num (a0 -> a0))
arising from a use of ‘-’
Possible fix: add an instance declaration for (Num (a0 -> a0))
In the expression: id - 1
In an equation for ‘it’: it = id - 1

Listing 11: Incorrect usage of unary negation.

This code produces an exception because implementation of read for Int instances
of Read doesn’t expect any decimal signs.

The type system can come into play in very unexpected moments. Let’s play
a little bit with id, the identity function, which returns any parameter passed to
it:

ghci> id 1

1

ghci> id O

0

ghci> id (-1)
-1

Notice that the negative parameter was wrapped in parentheses. Had we neglected
this, it would result in a No instance for (Num (a0 -> a0)) error, as shown in
Listing 11. We've already seen this error before when we talked about polymor-
phism of integer literals. This time the compiler expects the a0 -> a0 type to be
an instance of Num type class. The a0 -> a0 denotes a function that takes an value
of type a0 and returns a value of the same type a0. What seems strange is the fact
that the compiler expects literal 1 to be of type a0 -> a0. The problem here is
that the (=) sign is treated as an infix binary operator denoting subtraction, not
as unary negation operator as we expected 4. The strange error message blaming
1 literal is caused by the fact that (=) operator expects its parameters to be of
the same type:

ghci> :t (-)
(=) :: Numa=>a->a->a

4Section 3.4 of Haskell 2010 Language Report [6] gives more detail on that matter.

36

Jan Stolarek: Understanding Basic Haskell Error Messages

ghci> id - "a string"

<interactive>:11:6:
Couldn’t match expected type ‘a0 -> a0’ with actual type ‘[Char]’

In the second argument of ‘(-)’, namely ‘"a string"’
In the expression: id - "a string"
In an equation for ‘it’: it = id - "a string"

Listing 12: Error caused by incorrect parameters that should be of the same type.

The type of first parameter was inferred to be a0 -> a0. Therefore the second
parameter is also expected to be of type a0 -> a0, but this type is not an in-
stance of Num type class. Just as before, this error results from the implicit use
of fromIntegral function. In this example, however, there’s one thing that you
might be wondering. From the type signature of (=), we can see that its parame-
ters should belong to Num type class. The question is this: how can we be certain
that this error is raised by the constraint in the fromIntegral function and not by
the constraint in the (=) function itself? There’s an easy way to verify this. Let’s
replace the second argument of (=) with a value of type String. We use String,
because string literals don’t implicitly call any function that would impose addi-
tional type constraints. The error that results in this case, shown in Listing 12,
says that compiler expects the second argument to be the same type as the first
one, which is a restriction resulting from the type signature of (-). There is no
complaint about Num type class, which allows to infer that at this point Num type
class constraint imposed by (=) hasn’t been checked yet. Let’s verify this conclu-
sion by supplying (=) with two arguments of the same type that is not an instance
of Num. The result is shown in Listing 13. This time the compiler successfully
verified that both parameters of (=) are of the same type a0 -> a0, and it could
go further to check if type class constraints are satisfied. However, the a0 -> a0
type is not an instance of Num type class, hence the type class constraint is violated
and No instance for error arises.

Some runtime errors

We finally managed to get past the compilation errors. It was a lot of work, prob-
ably more than in other programming languages. That’s another characteristic
feature of Haskell: the strong type system moves much of the program debug-
ging up front, into the compilation phase. You probably already heard that once
a Haskell program compiles it usually does what the programmer intended. That’s

37

The Monad.Reader Issue 20

ghci> id - id

<interactive>:20:4:
No instance for (Num (a0 -> a0))
arising from a use of ‘-’
Possible fix: add an instance declaration for (Num (a0 -> a0))
In the expression: id - id
In an equation for ‘it’: it = id - id

Listing 13: Another No instance for (Num (Int -> Int)) error.

mostly true, but this doesn’t mean that there are no runtime errors in Haskell. This
section will discuss some of them.

Runtime errors in Haskell most often take the form of runtime exceptions. At
the very beginning of this paper, I showed you that some functions don’t work for
all possible inputs and can raise an exception:

ghci> head []
**%*x Exception: Prelude.head: empty list

In languages like Java, exceptions are your friend. They provide a stack trace that
allows to investigate the cause of an error. It is not that easy in Haskell. Runtime
exceptions don’t give you any stack trace, as this is not easily implemented in
a language with lazy evaluation. You are usually left only with a short error
message and line number.

One of the most commonly made errors resulting in runtime exceptions is non-
exhaustive patterns in constructs like function definitions or guards. Let’s recall
safeHead function that we’ve written in the first section:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHEad xs = Just (head xs)

This function contains a typo: the function name in the third line is misspelled as
safeHEad (notice the capital E). This code compiles perfectly, but will result in
an error if we try to call safeHead function for non-empty list:

ghci> safeHead []

Nothing

ghci> safeHead [1,2,3]

**%*x Exception: tmr.hs:2:1-21: Non-exhaustive patterns in function
safeHead

38

Jan Stolarek: Understanding Basic Haskell Error Messages

The argument [1,2,3] passed to the function safeHead couldn’t be matched
against any pattern in the function definition. That’s what non-exhaustive pat-
tern error means. This is due to the typo I made in the third line. For Haskell
compiler everything is perfectly fine. It treats the code as definition of two dif-
ferent functions: safeHead, matching only empty lists, and safeHEad, matching
both empty and non-empty lists. Note that applying safeHEad to empty list will
result in a runtime exception.

We were unexpectedly hit by the non-exhaustive pattern problem during runtime
because GHCi has most warnings disabled by default. You can enable most of the
warnings by passing -Wall command line switch when running ghci command®.
Now GHCi will warn us during the compilation about non-exhaustive patterns in
safeHead function and lack of type signature for accidentally defined safeHEad
function. See Listing 14.

ghci> :1 tmr.hs
[1 of 1] Compiling Main (tmr.hs, interpreted)

tmr.hs:2:1:
Warning: Pattern match(es) are non-exhaustive
In an equation for ‘safeHead’: Patterns not matched: _ : _
tmr.hs:3:1:
Warning: Top-level binding with no type signature:
safeHEad :: forall a. [a] -> Maybe a
Ok, modules loaded: Main.

Listing 14: Compilation warnings.

The non-exhaustive pattern error can also occur in an incorrect guard. To
illustrate this, let’s create our own signum function:

mySignum :: Int -> Int
mySignum x
| x >0
| x ==

o
(@3N

You see the error, don’t you? Listing 15 show what happens when we call mySignum
function for negative arguments. This error is easily corrected by adding the third
guard:

°See [7] for more details.

39

The Monad.Reader Issue 20

ghci> mySignum 1

1

ghci> mySignum O

0

ghci> mySignum (-1)

x*x* Exception: tmr.hs:(14,1)-(16,16): Non-exhaustive patterns in
function mySignum

Listing 15: Non-exhaustive pattern in a guard.

mySignum :: Int -> Int
mySignum x

| x >0 =1
| otherwise = -1

The otherwise function is defined to always return True, so the third guard
will always evaluate if the previous guards didn’t. The compiler can also give
a warning about non-exhaustive guards in a same way it gives warning about
non-exhaustive patterns in function definition. Remember that order of guards
matters, so otherwise must always be the last guard.

Summary

This completes our overview of basic Haskell error messages. By now, you should
know how to read error messages and how to correct the problems in your code
that caused them. The above list is by no means an exhaustive one: there are a lot
of different errors you will encounter when you start using some more advanced
features of Haskell. Perhaps one day you’ll even write a program that will cause
My brain just exploded error. Until then, happy error solving!

Acknowledgements

I thank the great Haskell community at #haskell IRC channel. They helped me to
understand error messages when I was beginning my adventure with Haskell. Many
thanks go to Edward Z. Yang for his feedback. I also thank Marek Zdankiewicz
for reviewing draft version of this paper.

40

References

http://hackage.haskell.org/platform/.

http://ics.p.lodz.pl/ stolarek/blog/2012/03/function-composition-and-dollar-operator-in-ha
http://hackage.haskell.org/package/safe.

http://wuw.haskell.org/hoogle/.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In ICFP, pages 5061
(2006).

http://www.haskell.org/onlinereport/haskell12010/.

http://www.haskell.org/ghc/docs/latest/html/users_guide/
options—-sanity.html.

http://hackage.haskell.org/platform/
http://ics.p.lodz.pl/~stolarek/blog/2012/03/function-composition-and-dollar-operator-in-haskell/
http://hackage.haskell.org/package/safe
http://www.haskell.org/hoogle/
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/ghc/docs/latest/html/users_guide/options-sanity.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/options-sanity.html

The MapReduce type of a Monad

by Julian Porter (julian.porter@porternet.org)

MapReduce is a popular paradigm for distributed computing that is particularly
important as a framework for massively parallel computation. Many existing al-
gorithms have been recast in terms of MapReduce, and new algorithms are being
discovered in the paradigm. The MapReduce framework imposes a fized structure
on algorithms: they consist of one or more stages, which are executed in series.
Each stage takes as input a list of key/value pairs and produces as output another
such list. In each stage, the input key/value pairs are sorted on the key value and
divided into chunks, one per key value. FEach chunk is passed to a transformation
function. The resulting key/value pairs are gathered together and output as a list
which can be passed to the next stage.

In this paper, we build on our earlier paper [1], where we showed that MapReduce
can be implemented as a kind of monad, with == corresponding to the composition
of processing steps, and demonstrated a simple application (word count). Here
we show how this can be seen as the result of applying a general transformation,
which is a kind of monad transformer, to the List monad. Finally, we show that
the familiar Haskell State monad can be seen as equivalent to the MapReduce type
associated to the reader monad, of functions s — a for fived s. This raises the
question of how many other applications, apart from the obvious one of MapReduce
itself, this transformer might have.

All of the ideas described in this paper have been implemented, and we have suc-

cessfully demonstrated a MapReduce application using the transformed List monad
to represent MapReduce. A DARCS repository containing the code may be found

at [2].

The Monad.Reader Issue 20

The idea

MapReduce in a nutshell

We start with a brief summary of the MapReduce algorithm. MapReduce takes a
list of key/value pairs and processes them using a cluster of many processing nodes
and one control node. A MapReduce algorithm consists of a number of repetitions
of a basic processing step, which has two parts:

1. Map. The control node distributes the list of values randomly between the
processing nodes. Each processing node applies a function called a mapper
to its values and produces a new list of key/value pairs, which it returns to
the control node.

2. Reduce. This has three sub-parts:

a) The control node gathers the outputs from each of the processing nodes,
concatenates them and sorts the resulting list by the key. It divides the
sorted list into chunks, one per key value and distributes the chunks
among processing nodes, each chunk to one node.

b) Each processing node takes the chunk of key/value pairs it has been
passed and uses them as input to a function called a reducer. This
produces a list of values.

c¢) The processing nodes return their output lists to the control node, which
concatenates them to form a single list of values.

The control node then concatenates these output lists and proceeds to use them
as input to the Map part of the next stage of processing.

Observe that we if we modify this by making Reduce produce not key/value pairs
with random keys, then the random distribution of values among processing nodes
in Map can be done with the distribution algorithm used in Reduce. Therefore.
we can treat Map and Reduce as being two instances of the same basic processing
stage.

Generalising MapReduce

Looking at this abstractly, what we have is a function

fra—=[(z0)] = [(y,0)]

Here and elsewhere, z, y and z are value types and a, b and c are key types. The
first argument is the key value that selects a chunk of data and the second argument
is the data, consisting of key/value pairs. The function therefore corresponds to
selecting a key, extracting the corresponding values and applying a mapper or
reducer to them.

The mapper and reducer transform lists of values into lists of key/value pairs

44

Julian Porter: The MapReduce type of a Monad

[2] = [(y, b)]

where z, y and b are as above, so a stage takes a function (mapper or reducer)
[z] = [(y, b)] and turns it into a function ¢ — [(z,a) — (y, b)], and so looks like

wrap == ([#] = [(y, b)]) = a = [(z, a)] = [(y, b)]

Looking at the algorithm as a whole, a MapReduce process is a function

[(,0)] = [(y,0)]

where z, y, a, and b are as above. Applying a mapper or reducer to the output
of a MapReduce process gives another MapReduce process, so the act of adding a
new stage to the end of a chain of processing can be described as

([(z, a)] = [(y,0)]) = (b = [(y,0)] = [(z, 0)]) = [(x,)] = [(2,¢)]

where z is a value type and c is a key type, where the existing process is the first
argument, the additional stage is the second, and the resulting combined process is
the output. This looks like the signature of a monadic bind where the underlying
type is a function ([(a,z)] — [(b,y)]). Therefore, MapReduce can be expressed
as

MR MR MR
. S=wrap map >= wrap reduce >= ...

MR . . .
where >= is a suitable bind function.

A quasi-monadic approach to MapReduce

Quasi-monads
A standard monad is a parameterised type m u with operations

return ;4 — m u
(>=) “mu—(u—>mv)—>muv

We need to generalise this. First, we need monads with two parameters. There are
several ways of doing this; for our purposes, we take types m ¢t v with operations

return::t — mtt
(>=) smtu—=(u—=>muv)—=muv

We need one further generalisation. The structure we will define obeys natural
generalisations of the first two monad laws, but the third breaks down. The third
monad law is

45

The Monad.Reader Issue 20

(z>=f)>=g=a>= Ny~ fy>=g)

To see why it must break down, let us se how we could interpret this in terms of
the model set out above, where x is a MapReduce process and f and g correspond
to individual stages.

The left hand side has obvious meaning: z is a process to which we append first
the stage f and then the stage g. On the right hand side we have Ay — f y St g
which is the concatenation of two stages, but we cannot append ¢ to f until we
know what the output of f is, because a critical part of appending a stage to
a process is dividing the process output into chunks based on their key. So for
MapReduce, Ay — f y 5 ¢ is meaningless: the only meaningful order in which
to apply stages is one at a time starting from the left:

(¢ 3= f) 3= g) >=h) >=

That is to say, stages cannot be composed together without an input being speci-
fied. Thus, we cannot expect MapReduce to obey the third monad law, because of
the sorting and partitioning on keys that is a fundamental part of the algorithm.

Looking at this another way, we can, of course, combine two stages, but the
resulting entity is not itself a stage. A single stage sorts on the key, passes the
resulting chunks through a function, then recombines the result, represented by

this data-flow pattern:
f
o —>0
/ f \
[} [] [J ®
\ f /
o ——0

So combining two stages gives the pattern:
f g
o —0 o —>0
/ f \ / g \
[} ® [] [J [] [J []
\\ f / \ g /
o —©0 o ——0

which is clearly only equivalent to a single stage when f and ¢ are extremely simple.
This is not surprising: otherwise MapReduce could be collapsed down to a single
stage, and would not be a very interesting processing paradigm. What this means,
then, is that if it were possible to compute

46

Julian Porter: The MapReduce type of a Monad

Ny —=fy>=yg
then it would not be anything that could be composed with z via g;, SO
3= (\y = fy>=g)

is meaningless. Sorting on keys therefore makes it impossible that MapReduce
could obey the third monad law.

Therefore, we coin the term quasi-monad to indicate an object that has monadic
operations and obeys natural generalisations of the first two monad laws, but does
not obey the third law. We have just seen that any complex stage-based distributed
algorithm must fail to obey the third law, and so is at most a quasi-monad. In
fact, MapReduce is a two-parameter quasi-monad:

newtype MapReduce a y b = MR {run :: ([(z,a)] = [(y,0)])}

We shall assume that all key types belong to the class Fq, which is necessary
to enable sorting and partitioning on keys.) This should remind us of the State
monad with, as it turns out, good reason. The monadic operations are:

1 return :: b — MapReduce x a z b
2 return k = MR (map (first $ const k))

(%) :: MapReduce © a y b — (b — MapReduce y b z ¢) — MapReduce x a z ¢

MR

3

4 (>=)f g= MR (Nkvs —
5 let

6 fs = run f kvs
7 gs = map g nub fst @ fs
8§ in

9 concatMap (Ax — run z fs) gs)

So return forces all keys to a given quantity. To see how = works, rewrite lines
6 and 7 as

fs = run f kvs
ks = nub (fst @ fs)
gs = map g gs

So fs is the output of the mapper/reducer, ks is the set of keys from the output,
and gs is a set of functions, one per key in the set. So we have one function per
key in the output of f. Then in concatMap, we apply each function to the full
data set (leaving it to each function to decide what subset of the data to process)
and combine the result.

47

The Monad.Reader Issue 20

They do this with the help of the function wrap, which, we recall, takes a key
and a function and then applies the function to those records matching the key.
We can now write wrap as

wrap’ :: ([z] = [(b,y)]) = (a — MapReduce z a y b)
wrap’ f = (Ak — MR (g k))

where

gk kds = f$snd @ filter (\kd — k = fst kd) kds

As can be seen, it selects the key/value records in kds whose key is k, extracts
their values and then pushes the resulting list through f.

MapReduce as a monad transformer

The MapReduceT type

[] is a monad with >= = concatMap, so MapReduce can be thought of as a
transformation of the list monad. It turns out that there is a very natural way of
describing a general transformer that will apply to any monad, with MapReduce
the result of applying it to [].

So, let m be a monad; then the MapReduceT type of m is

newtype (Monad m) = MapReduceT m t w= MR {run::mt— m u}

From now on, m will be a monad type, while ¢, u and v are arbitrary data types
parameterising m. There is also a natural way to lift monads into the transformer:

lift :: (Monad m) = m t — MapReduceT m t t
lift © = MR (const x)

In addition, we define the operations:

(>):: MapReduceT m t v — MapReduceT m v v — MapReduceT m t v
(>)fg = MR (Ass— run g$run f ss)
(=) :: MapReduceT mtu— mt— mu
(<)fz=runfuzx

These are arrow-like but MapReduceT m is not itself an arrow. Note that & is just
function composition in disguise, and — is just function application in disguise.

Now, if MapReduceT is to be a monad transformer, then MapReduceT m
must be a quasi-monad with a [ift operation. The quasi-monadic operations for
MapReduceT m are:

48

Julian Porter: The MapReduce type of a Monad

return :: (Monad m) = t — MapReduceT m t t
return x = lift (return’ x)

1
2
3 bind :: (Monad m) = MapReduceT m u u — MapReduceT m t u
4 — (u — MapReduceT m u v) — MapReduceT m t v
5 bind p f g = MR (Axs — ps xs >= gs 15)
6 where

7 pszs = (f>p)—=<us

8 gsaxsx = (f>gx)—=<us

where >= is bind in m and return’ is return in m. If p :: MapReduceT m u u
define

(>=,) = bind p

The parameter p seems mysterious, and it is not clear why we do not just take
p = MR id. The reason is that, in order to generalise MapReduce, we need a way
of filtering the output of f before passing it to g. So p is the equivalent of the
nub o snd@®) in S=.

It can be shown that that MapReduceT m obeys natural modifications of the
first and second monad laws, but the third law breaks down entirely, as expected.
Subject to the reasonable assumption that run p $ return’ x = return’ z, which is
certainly true in all the cases we care about, we have:

[>=, return
return r >=, f

f>=p
return « > f (return’ x)

which are natural generalisations of the standard monadic laws. Any attempt
at proving an analogue to the third law quickly becomes intractable, however,
because the crucial filter function p mixes with the monadic functions in complex
and confusing ways.

Equivalence to MapReduce

Before we can show that MapReduce is equivalent to MapReduceT [] we need to
choose a filter function, that is, a suitable value of p. Define

dedupe :: (Eq a) = MapReduceT [] (a,z) (a,x)
dedupe = MR (nubBy (Akd kd' — fst kd = fst kd'))

Clearly dedupe takes a list of key/value pairs and returns a list with one pair per

unique key (whose value is ill-defined but irrelevant). If we wanted to be really
rigorous we could amend the definition to read

49

The Monad.Reader Issue 20

dedupe’ :: (Eq a) = MapReduceT [] (a, Maybe z) (a, Maybe x)
dedupe’ = MR (Avks — second (const Nothing) @ (nubBy (Akd kd' — fst kd = fst kd'))

which makes the output determinate at the price of hugely complicating the proof

of equivalence and adding no meaningful value. Therefore we stick with dedupe.
Let z, y and z be value types and a, b and ¢ be key types, and set ¢ = (a, z),

u=(b,y) v=_c, z). Therefore, trivially, at the level of type definitions

MapReduce = a y b = MapReduceT [] t u

We now show that this equality extends to the quasi-monadic structures.
Say we are given f :: MapReduce x a y b and g :: (b — MapReduce y b z ¢). We
rewrite the definition of 3= as:

MR

f>=g= MR (\1s —

let

fs=f—<us

gs = map (g o fst) $ dedupe — fs
in

concat $ map (A\y — y —< fs) gs)

Rewriting this some more we get:

MR

f>=g= MR (\1s —

let

fs=f—<us

ks = dedupe — fs
in

concatMap (Ak — (g o fst) k —< fs) ks)

But in the list monad zs >= f = concatMap f zs, so we can write this as:

MR

f>=g= MR (\1s —
let
bs ys = f > dedupe — ys
hs ys z = f»(gofst) z—ys
in
bs xs >= hs xs)

where we have used the trivial identity n — (m —[) = (m$n) — [. Therefore
Proposition 1. The MapReduce monad is equivalent to MapReduceT || with

F329 2 f >=goupe (g0 fst)

Proof. The identity was proved above; the return functions are trivially identical.
O

50

Julian Porter: The MapReduce type of a Monad

MapReduceT and the State Monad

There is an obvious similarity between MapReduceT and the state monad, in that

members of MapReduceT m are functions m a — m b while members of State s

are functions s — (s, a). In fact this similarity runs very deep, and it turns out

that the state monad can be related to MapReduceT of a very simple monad.
Define the Reader Monad:

data Hom a b= H {run:(a —b)}
and make Hom s a monad by taking

return x = H (const x)
f3=g =HQz—g (fv)a)
where f' = run f and ¢’ z y = run (g x) y. Define
(>):: Hom a b — Hom b ¢ — Hom a ¢
(>) f g=HS (run g)o (run f)
id :: Hom a a

od = H id

Now consider MapReduceT (Hom s) b ¢, which consists of functions Hom s b —
Hom s c.

Lemma 2. There is a natural map
hom :: Hom b ¢ — MapReduceT (Hom s) b ¢
Such that

(hom q) S=pom p (hom) = hom $ (¢>p) 3= (¢>r)

Proof. Define

hom f = MR$ Ah — H (run f) o (run h)
= MRS AL — h>f

We have the following, easily proved, identities:

hom$ f>g = hom f>hom g
run o hom f =Xz — x> f

from which we can deduce that

o1

The Monad.Reader Issue 20

(hom q) >=pom p (hom r) = MR $ Az — (run o hom ¢>run o hom p) <z

H
>=\y — (run o hom q>run o hom (r y)) <z
= MRS Az — run $ hom (¢>p) <=z

S=\y — run $ hom (¢g=(ry)) <=z
= MRSz — (g>p >Hﬁ/\y—>Q>'(7" y) <z
= MR$ Az — 2>$(g>p) S=Xy — (¢>=7)
= hom $ (¢>p) >= (¢>71)

We can now prove:
Proposition 3. Given f :: State s a, g :: a — State s b, and
p=HS3$ Nz — (e,snd x) :: Hom (s,a) (s, a)

Then there exist ¢ :: Hom (s, a) (s,a) depending only on f and r :: (s,a) —
Hom (s, a) (s,b) depending only on g such that

(hom q) S=hom p (hom 1) = hom $ (H fst)>H (run $ f == g)

Proof. Define

m:s— (s, a)
n:a—s—(s0b)

f = state m
g = Az — state (n x)

In the state monad, the bind function - obeys

f =g =state$ (\s — n (snd $m s) (fst $m s))
= state $ run $ u = v

where
u =HS$sndom ::Hom s a

vy =n"z(my) :a — Hom s (s,b)
nxy=HS$nz (fsty):a— Hom (s,a) (s,b)

52

Julian Porter: The MapReduce type of a Monad

Now pick an arbitrary value e :: s (if s is a monoid we can take e = mempty, but
the value is irrelevant). Define

p=HS$ Az — (e, snd 1) :: Hom (s, a) (s, a)
g=HS$mo fst :: Hom (s, a) (s, a)
r=Xe— HS$\y—n'(sndx)y:(s,a) = Hom (s,a) (s,b)

SO

qr = HS$(runf)o fst
rey=HSrun (g (snd z)) (fst y)

and these functions are thus the natural extension of f and ¢ to functions where
all variables are of type (s, a). Now

(q=p) 3= (¢>=r)= Az — H$ (e, snd o mo fst z) S=Az — n/ (snd z) (m o fst)
=Xz —n' (sndomo fst x)(mo fst z)
= (H fst)> (u 3= v)

And, putting this together with the identity proved above, we get

(hom q) >=pom p (hom) = hom'$ (¢>p) >= (¢>r)
= hom $ (H fst) > (u 3= v)
= hom $ (H fst)>H (run $ f == g)

]

This is a very complex expression, and one may object that the =, , join
gives rise to a map (s, a) — (s, b) while the = join is a map s — (s, b). So let us
unpick the type-structure of the two sides. On the left-hand side

hom q :: MapReduceT (Hom s) (s, a) (s, a)
hom 7 :: (s, a) — MapReduceT (Hom s) (s, a) (s, b)

S0
(hom q) >=pom p (hom r):: MapReduceT (Hom s) (s, a) (s, b)
On the right-hand side

f i State s a
g:a— State s b

SO

53

f>;g::5'tatesb:>run$f>3>g::5—>(s,b)
Now fst :: (s, a) — s, which means that
H fstsH (run'$ f == g) :: Hom (s, a) (s, b)
and so
hom $ H fst>H (run$ f = g) :: MapReduceT (Hom s) (s, a) (s, b)

and so the two sides do have the same type.

Conclusion

Implementation

We have implemented MapReduce and MapReduceT as simple libraries and im-
plemented a simple test application using the standard word-count MapReduce
algorithm (see [2]). It turns out that swapping out MapReduce and replacing it
with MapReduceT [] has no effect on the output. Practical results therefore bear
out the theoretical equivalence proved above.

Future directions

The obvious next step is to examine and analyse MapReduceT of other well
known monads, e.g. Maybe. Given that the richness of MapReduce arises from
MapReduceT applied to the list monad, this is obviously of some interest.

It is also worth examining the role of the choice of filtering function p. Taking
p = dedupe on the list monad gave us classical MapReduce, but the condition that
p o return’ x = return’ x simply states that p is the identity on singletons, which
is not a particularly strong condition. Therefore there is the possibility of there
being MapReduce-like algorithms for other choices of p.

Finally, the concept of the pseudo-monad is surely an interesting generalisation
in and of itself.

References

[1] Julan Porter. Mapreduce as a monad. The Monad Reader, 18:pages 5-16 (2011).
http://themonadreader.files.wordpress.com/2011/07/issuel8.pdf.

[2] Distributed mapreduce project darcs repository. http://code.haskell.org/
MapReduce.

http://themonadreader.files.wordpress.com/2011/07/issue18.pdf
http://code.haskell.org/MapReduce
http://code.haskell.org/MapReduce

	Edward Z. Yang: Editorial
	Tillmann Vogt: Enumeration of Tuples with Hyperplanes
	Jan Stolarek: Understanding Basic Haskell Error Messages
	Julian Porter: The MapReduce type of a Monad

