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Editorial

by Edward Z. Yang (ezyang@cs.stanford.edu)

This issue’s Monad Reader clocks a record page count, with over a hundred pages
of Haskell goodness from nine authors. Given that there’s so much; I thought this
issue’s editorial would be best devoted to giving teasers for each of the articles
herewithin.

» Ever wanted to solve a programming interview question by writing a domain-
specific language on the fly? In FizzBuzz in Haskell, Maciej takes a whimsical
look at the classic interview question, dancing through syntax, semantics and
algebraic transformations to arrive at a solution that would be called elegant
by most people.

» Ilya and Dimitur write in with a somewhat apologetic but very interesting tu-
torial about Supercompilation, a whole-program transformation technique.
It is a nice introduction to the subject, and comes with running code to boot.

» In a break from the usual uses of Haskell, Henrik, Daniel and Mikael describe
Haskell sound specification DSL used in service of a live action role-playing
game situated in the Battlestar Galactica universe.

» Alberto talks about his web framework, MFlow, which provides a continuation-
like method of structuring web applications, without actually opening the can
of worms that is explicitly serializing continuations.

» And last but not least, Neil offers a gentle introduction to Practical Type
System Benefits, giving a taster of some of the more intermediate features of
Haskell, including generic programming, parallelism, newtypes, quasiquoting
and lightweight contracts.

Take a look!






FizzBuzz in Haskell by Embedding
a Domain-Specific Language

by Maciej Pirég (maciej.adam.pirog@gmail.com)

The FizzBuzz problem is simple but not trivial, which makes it a popular puzzle
during job interviews for software developers. The conundrum lies in a peculiar
but not unusual control-flow scenario: the default action is executed only if some
previous actions were not executed. In this tutorial, we ask if we can accomplish
this without having to check the conditions for the previous actions twice; in other
words, if we can make the control flow follow the information flow without loosing
modularity. The goal is to have the most beautiful code!

We deliver a rather non-standard, and a bit tongue-in-cheek solution. First, we
design a drastically simple domain-specific language (DSL), which we call, after the
three commands of the language, Skip-Halt-Print. For each natural number n, we
devise a Skip-Halt-Print program that solves FizzBuzz for n. Then, we implement
this in Haskell, and, through a couple of simple transformations, we obtain the final
program. The corollary is a reminder of the importance of higher-order functions
i every functional programmer’s toolbox.

The FizzBuzz problem

FizzBuzz is a simple game for children, and therefore a really hard nut to crack
for programmers and computer scientists. To quote the rules [1]:

Players generally sit in a circle. The player designated to go first says
the number ‘1’, and each player thenceforth counts one number in
turn. However, any number divisible by three is replaced by the word
fizz and any divisible by five by the word buzz. Numbers divisible by
both become fizzbuzz.
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In this tutorial, we focus on a single step of the game, that is to convert a natural
number n into fizz, buzz, fizzbuzz, or its string representation.

There are a lot of solutions floating around the Internet, but most of them are,
from our point of view, unsatisfactory. Exhibit A:

fizzbuzz = Int — String
fizzbuzz n =
if n‘mod°3=0An ‘mod'5 =0 then
"fizzbuzz"
else if n ‘mod‘ 3 = 0 then
"fizz"
else if n ‘mod‘ 5 = 0 then
"buzz"
else
show n

Exhibit B:

fizzbuzz :: Int — String
fizzbuzz n =
if n‘mod*3 =0
then "fizz" H+if n ‘mod‘' 5 =0
then "buzz"
else "
else if n ‘mod'5 =0
then "buzz"
else show n

Though both programs are correct with respect to the specification, Exhibit A, in
some cases, performs the ‘mod‘3 and ‘mod*5 tests more than once, while Exhibit B
disperses the buzzing code into more than one place in the program. Meanwhile,
we want there to be at most one place that outputs fizz, buzz, or the string rep-
resentation, and each test to be performed only once. Outputting fizzbuzz should
be done by executing the (one and only) piece of code that outputs fizz, followed
by the (one and only) piece that outputs buzz. That is because fizzing and buzzing
are two separate activities — consider the FizzBuzzHissHowl problem, where hiss
and howl are printed for multiples of 7 and 11 respectively. The program design
of Exhibit A and B would lead to an explosion of code complexity.

We can examine the output itself, which gives us an opportunity for yet another
unsatisfactory attempt, Exhibit C:

(<) :: String — String — String
nn < S =38
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a d4s=a

fizzbuzz :: Int — String

fizzbuzz n = (((if n ‘mod‘ 3 = 0 then "fizz" else "")
+if n ‘mod‘ 5 = 0 then "buzz" else "")
< show n

The problem with this solution is far more subtle: many might say this solution is
simple and elegant. Be that as it may, we do not like the fact that the < operator
has to check if its first argument is empty. After all, we have already checked
the conditions ‘mod‘3 and ‘mod‘5, so the third test (<I’s pattern matching) seems
redundant from the information-flow point of view (compare Exhibit B, which
always performs only two tests).

So, is out there a program that reflects the information-flow structure as Ex-
hibit B, but, at the same time, is as modular as Exhibit C? Let’s find out!

Skip-Halt-Print and contexts

If one feels overwhelmed by the number of (better or worse) possible ways to
solve such a simple problem as FizzBuzz in Haskell, they can start with a simpler
language. The one we propose is called Skip-Halt-Print, and it is very imperative.

A program in Skip-Halt-Print is a (possibly empty) list of commands, which are
executed sequentially. There are only three different commands:

» SKIP is an idle instruction; it does nothing at all;

» HALT stops the computation; the rest of the program is not executed;

» PRINT s prints out the string s.
More formally, the syntax is given by the following grammar, where ¢ denotes
commands, p denotes programs, and € is the empty program:

¢ := SKIP | HALT | PRINT s
pu=cple

For brevity, we will give s also as an integer literal with implicit conversion. For
example, the command PRINT 42 is meant to print out the string of characters 42.

The formal semantics can be given by a denotation function [—] : p — String,
where String is the set of all strings of characters. In the following, + denotes
concatenation and "" denotes the empty string.

[Skip; p] = [p]
[HaLT; p] = [ = "
[PRINT s; p] = s+ [p]
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For example:

[PRINT "studio"; SKIP; PRINT 54] = studiob54
[PRINT "nuts"; HALT; PRINT "and bolts"| = nuts

For every natural number n, we construct a Skip-Halt-Print program that solves
FizzBuzz for n. The building blocks for this construction are called contexts — they
are programs with holes (one hole per context). We denote contexts by putting
angle brackets (—) around the programs, while holes are denoted by the e symbol.
For example:

(PRINT "keep"; o; PRINT "calm")

A hole is a place in which we can stick another program and get a new program
as a result. We denote this operation by juxtaposition:

(PRINT "keep"; ®; PRINT "calm") (PRINT "nervous and never")
= PRINT "keep"; PRINT "nervous and never"; PRINT "calm"

Two contexts can be composed, and for that we use the o symbol:

(SKIP; e; PRINT 0) o (HALT; e)
= (Sk1p; HALT; e; PRINT 0)

What does the FizzBuzz program do? Essentially, it prints out n, unless some-

thing else (like fizzing or buzzing) happens. This behaviour is captured by the
following context:

base(n) = (o; PRINT n)

What about fizzing? If only n is divisible by 3, it prints out fizz, but it also needs
to prevent the default action from happening by HALT-ing the computation. In
between PRINT-ing and HALT-ing anything (like buzzing) can happen:

(PRINT "fizz"; e; HALT) if nmod3 =0
fize{n) = .
(o) otherwise

The context for buzzing is analogous:

(PRINT "buzz"; e; HALT) if nmod5 =0
buzz(n) =

(o) otherwise

10
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The program that solves FizzBuzz for n, which we call fb(n), is a composition
of all these contexts, which we cork with SKip:

fb(n) = (base(n) o fizz(n) o buzz(n)) SKIP

Examples:

Exercise 1. For any natural number n, give a Skip-Halt-Print program that solves
the FizzBuzzHissHowl problem for n.

Exercise 2. What is the formal definition of the operations on contexts described
above? Show that contexts with composition form a monoid; that is, o is associa-
tive, (fog)oh = fo(goh), and (e) is its left and right unit, (e) o f = f and
f o (e) = f respectively.

Haskell implementation

Now, to solve FizzBuzz in Haskell, we implement Skip-Halt-Print, both syntax and
semantics, together with the language of contexts. For each n, we construct the
right composition of contexts as described above and then execute the resulting
program.

Then, we apply a series of algebraic transformations that simplify the code into
our proposed solution. By “algebraic”, we mean transformations that depend only
on local properties of the components, without the actual understanding of the
implemented algorithm. In other words, something that can be deduced solely
from the shape of the code, like the fold pattern, and applied by simple equational
calculation.

Direct definition

The commands of Skip-Halt-Print are implemented as a three-constructor data
type Cmd, and the program is, of course, a list of commands. We call the [—]
function interp.

data Cmd = Skip | Halt | Print String
type Program = [ Cmd]

11
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interp :: Program — String

interp (Skip  : xs) = interp xs
interp (Halt — :zs) =""

interp (Print s : zs) = s H interp zs
interp [] =

Contexts are more tricky. Instead of specifying their syntax and operations, we
encode them as functions from programs to programs (this technique is sometimes
called higher-order abstract syntax). In this case, sticking the program in a context
becomes Haskell’s function application, and the composition of contexts becomes
simply Haskell’s o. However, note that not every Haskell function of the type
Program — Program is a valid context in the sense specified in the previous
section.

type Cont = Program — Program

fizz, buzz, base :: Int — Cont
fizz n | n‘mod'3=0= Az — [Print "fizz"| # x H [Halt]

| otherwise =d

buzz n | n‘mod'5 =0= Az — [ Print "buzz"| # = + [Halt]
| otherwise =id

base n = Az — = H [Print (show n)]

fb :: Int — Program
Jb n = (base n o fizz n o buzz n) [Skip]

fizzbuzz - Int — String
fizzbuzz n = interp (fb n)

Interpretation is a fold

To solve FizzBuzz for n, we first build a program (a datastructure) and then
interpret it (by traversing the datastructure). This calls for some deforestation —
the removal of the intermediate structures! First, we notice a known pattern here:
interp is a fold. We can rewrite it as follows:

step :: Cmd — String — String
step Skip t=1t

step Halt t=n"n

step (Print s) t = s+t

interp = foldr step ""

Additionally, foldr has the following property (see Exercise 3):

12
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foldr step """ p = foldr (o) id (fmap step p) ""

So, instead of writing programs like
[ Skip, Halt, Print "c"|

and interpreting them by folding with step, we can write programs like
[step Skip, step Halt, step (Print "c")]

and interpret them by folding o. Also, we can inline the definition of step:

[step Skip, step Halt, step (Print "c")]
= [Mt = £, AL — " NE = et ¢
— [Zd, const nu, (HCII_H__)]

Why build and then interpret? We can manually deforest the situation by fusing
the two: instead of

foldr (o) id [id, const, ("c"H)]
we write
id o const o ("c"+H)

In summary, we can define the next version of Skip-Halt-Print commands as fol-
lows:

type Program = String — String
skip, halt :: Program

skip = 1id

halt = const ""

print .2 String — Program
print = (+)

Now, our programs look like this:
print "hello" o skip o print "world" o halt

To execute them, we apply them to an empty string, for example:
(print "hello" o skip o print "world" o halt) "" = "helloworld"

We need to accordingly adjust the bodies of our contexts:

13
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type Cont = Program — Program

fizz, buzz, base :: Int — Cont
fizz n|n‘mod'3=0= Az — print "fizz" oz o halt

| otherwise =id

buzz n | n‘mod'5 =0 = Az — print "buzz" o z o halt
| otherwise =id

base n = Az — x o print (show n)

fizzbuzz = Int — String
ﬁZZb’LLZZ n = (base n OﬁZZ n o buzz n) Sk'lp nn

Notice that o is now overloaded: it composes both programs from commands (as
in the bodies of functions fizz, buzz, and base) and contexts (as in the body of

fizzbuzz).

Inlining

The truth is that we do not need to implement the entire Skip-Halt-Print language
to solve FizzBuzz — our three contexts suffice. Thus, we inline the definitions of
base, skip, halt, and print in fizzbuzz. We also put fizz and buzz as local definitions,
so that we don’t have to pass n around:

fizzbuzz = Int — String
fizzbuzz n = (fizz o buzz) id (show n)

where
fizz | n‘mod‘3=0= Ar — const ("fizz" H z "")
| otherwise =1d
buzz | n‘mod‘5 =0 = Az — const ("buzz" H# x "")
| otherwise =id

Final polishing

As the last step, we abstract over the divisor and the printed message in fizz and
buzz:

fizzbuzz :: Int — String
fizzbuzz n = (test 3 "fizz" o test 5 "buzz") id (show n)
where
test d s x | n‘mod*d =0 = const (s # 1z "")
| otherwise =z

What is going on in this program? The (higher-order) function test has the
following, longish type:

14
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test :: Int — String — (String — String) — String — String

To understand its logic, it is convenient to name the last argument and rewrite the
function to the following equivalent definition:

test dszv|n‘modd=0=s+Hz""
| otherwise = T

The argument v :: String represents the default value of the function (originally set
by the function fizzbuzz to the string representation of n), while z:: String — String
represents a continuation — the rest of the computation parametrised by a new
default value. If the modulus test fails, we change neither the continuation nor
the default value. If the test succeeds, we print out the string s, but also change
the default value to the empty string, so that the string representation of n is not
printed out.

Exercises

Exercise 3. Prove that for f::t — s — s and a :: s, the following equality holds:

foldr f a xs = foldr (o) id (fmap f xs) a

Exercise 4. In the “Inlining” step, we silently performed some cleaning-up. In
reality, a bald inlining of base and skip in fizzbuzz yields

(Ax — z o (H) (show n)) o fizz o buzz) id ""

Show that it is equal to (fizz o buzz) id (show n).

Exercise 5. Adjust the final solution to the FizzBuzzHissHowl problem. Do you
have to go through the entire derivation once more, or is the final solution modular?

Summary

To solve a trivial problem, we went through a bit of a hassle: formal language
design and semantics, embedded DSLs, interpreters, higher-order abstract syntax
to implement contexts, algebra of programming in the form of reasoning about
folds. One might also argue that the obtained solution is not too intuitive. Do we
really need such heavy artillery to solve FizzBuzz?

Though this tutorial is not meant to be dead serious and is mostly a pretext
for some fun with the functional programming technologies listed above — also,
going through this derivation might be a risky move during a job interview —

15



there is a small point it wants to convey: Functional programmers! Remember
higher-order functions! They are your tool to express programs with non-trivial
structure, to follow the information-flow more closely, to dynamically build your
programs in runtime. A harsh, cantankerous functional programming pedagogue
might say that they are such a basic tool that the final FizzBuzz program shouldn’t
appear complicated at all (and could be easily written by hand) if one knows their
paradigm.

Closing remarks

The Skip-Halt-Print language is based on Edsger W. Dijkstra’s Skip-Abort, which
can be found in his textbook A Discipline of Programming [2, Chapter 4] (I am
grateful to Tomasz Wierzbicki for the reference.) However, one needs to be aware of
a difference in semantics between HALT and ABORT: the former peacefully ends
the computation (like return in C-like languages), while the latter atrociously
breaks it (like Haskell’s error function).

I would also like to thank Jeremy Gibbons for his comments. The first idea for
this tutorial sparkled in my head after Laurence E. Day’s Facebook post:

I can write doctoral level Haskell without so much as missing a beat,
but I'd have a genuinely hard time writing a FizzBuzz program in Java.

The main point of this tutorial is that FizzBuzz is not at all trivial, but, many
thanks to higher-order functions in Haskell, solvable. I don’t know about Java.

References

[1] Wikipedia. http://en.wikipedia.org/wiki/Fizz_buzz.

[2] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall series in automatic
computation, Prentice-Hall, Incorporated (1976).
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Supercompilation: ldeas and
Methods

by llya Klyuchnikov (ilya.klyuchnikov@gmail.com)
and Dimitur Krustev (dkrustev@gmail.com)

Supercompilation (supervised compilation) is a program transformation tech-
nique based on the construction of a full and self-contained model of the
program.

We illustrate the fundamental ideas and methods of supercompilation with a
working supercompiler called SC Mint [T, 3] for a very simple purely functional
language.

The Essence of Supercompilation

Supercompilation was invented by V. F. Turchin in the Soviet Union during the
1970s. In his own words [1]:

A program is seen as a machine. To make sense of it, one must observe
its operation. So a supercompiler does not transform the program by
steps; it controls and observes (SUPERvises) the machine, let us call it
M, which is represented by the program. In observing the operation
of M, the supercompiler COMPILES a program which describes the
activities of M;, but it makes shortcuts and whatever clever tricks it
knows, in order to produce the same effect as My, but faster. The goal
of the supercompiler is to make the definition of this program (ma-
chine) My self-sufficient. When this is achieved, it outputs Ms in some
intermediate language L**P and simply throws away the (unchanged)
machine M. ..

A supercompiler would run M; in a general form, with unknown val-
ues of variables, and create a graph of states and transitions between
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possible configurations of the computing system ...in terms of which
the behavior of the system can be expressed. Thus the new program
becomes a self-sufficient model of the old one.

Article Goals

Functional programming practitioners, who are aware of supercompilation, have
various opinions. The most common reaction is one of mistrust or even full rejec-
tion, mostly because of the fact that there is no industrial-strength supercompiler
yet. All existing supercompilers have an experimental status and, in most cases,
are only successfully used by their own authors.

Supercompilation is, in a certain sense, a very general method, but, in practice,
only specialized tools — re-using just some of the ideas of supercompilation — work
well enough to be useful. This clashes with the expectation that a general tool
should come out of a general idea. Another possible reason for the mistrust is the
fact that supercompilation is still lacking a “killer application”.

One common misconception persists: that supercompilation is only a tool for
program optimization. Supercompilation is a program transformation technique.
Program transformations can have different goals. One such goal can be optimiza-
tion, another — program analysis. Supercompilation is equally applicable to both
these goals. Most works dealing with supercompilation consider only the opti-
mization aspect, but we should not be misled that optimization is the only useful
application of supercompilation.

We must distinguish the notions of supercompilation and a supercompiler.
Many articles describe various technical difficulties arising from the implemen-
tation of a specific supercompiler and ways to overcome these difficulties, while
mostly leaving aside the underlying key ideas of supercompilation. In most cases,
the parts of a given supercompiler interact in intricate ways, which may give the
impression of a complicated monolithic construction. Or, as Simon Peyton-Jones
put it in the interview [2]: “...To build a supercompiler, if you look at how it
works, there are a number of things all wound together in one rather complicated
ball of mud. I found it extremely difficult when I really wanted to understand it.
I found it very difficult to understand the papers. ...”.

The main goal of this article is to give a clear and concise illustration of the afore-
mentioned Turchin’s quote, describing the essence of supercompilation by using a
minimalistic example supercompiler. The accent is on delineating and explaining
the basic building blocks and showing how these blocks can be implemented and
made to work together in a clear and simple fashion.

Organization of the article: A important companion to this article is the full
source code of the toy supercompiler SC Mini, with detailed comments [?] (250

18
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lines of main code + 200 lines of auxiliary utilities in Haskell). The text of the ar-
ticle itself can be seen as an introduction to studying these supercompiler sources.
The article introduces and explains the main supercompiler terminology and ingre-
dients, and we illustrate SC Mini’s behavior on suitable examples. These examples
are chosen to be neither too complicated, nor oversimplified. The reader is thus
invited to carefully study all examples.

Things left out: Do not expect to find a detailed comparison of supercompila-
tion to other methods of program optimization/transformation — it would require
a survey article of a much larger scope. A comprehensive bibliography of super-
compilation literature is similarly out of scope, although we do give many useful
references where relevant.

Supercompilation by Example

The advantages of every formal language are determined not only by
its ease of use by humans, but also by the amenability of its texts to
formal transformations.

V.F. Turchin [4]

It would be nice if all computer-science articles were accompanied by some formal
executable description (in the form of a program or a formal specification) in order
to ensure reproducibility of results.

The SC Mini supercompiler is such an executable description of the fundamental
methods of supercompilation, which are the main topic of this article. SC Mini is
based on the supercompiler described in the groundbreaking MSc thesis of Morten
H. Sgrensen [5] (which remained only on paper).

No supercompilation description is complete without describing subtle funda-
mental notions such as program semantics, evaluation results, computation state.
All these notions are formally represented in the sources of SC Mini, which helps
avoid ambiguities.

SC Mini transforms programs written in a toy language called SLL (= Simple
Lazy Language; corresponding roughly to Sgrensen’s My). Paraphrasing Turchin’s
quote from the beginning of the section, we argue that SLL’s main advantages are:

1. A simple language definition, and

2. A simple definition of a supercompiler for SLL programs.

Despite the fact that SC Mini is a supercompiler for a specific language, the
methods used in its construction are fairly general and appear with only small
variations in most supercompilers.

19
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P = d;...d, program
d == f(vr,...,0,) =¢€; “indifferent” function
| g(p1,v1,...,0,) = e€1; “curious” function
g(pmuvla 7Un> = €m,;
e = expression
v variable
| Cler,...,en) constructor
| fler, ... en) function call
p == C(u,...,v,) pattern

Figure 1: SLL abstract syntax

We shall see further through several examples that SC Mini can optimize pro-
grams (giving first a formal definition of a program optimizer), and it can also be
used to automatically prove different program properties.

SLL Object Language

Defining a language entails defining its syntax and semantics. Syntax is typically
defined using a context-free grammar. One possible way to define semantics is
to implement an interpreter for the language. The following natural-language de-
scription is more succinctly and simply re-expressed — using Haskell — in SC Mini’s
sources.

Fig. 1 gives the abstract syntax of SLL. An SLL expression can be one of the
following;:

» variable,
» constructor, having SLL expressions as arguments, or a
» function call, having SLL expressions as arguments.

We assume further the same convention as in Haskell: constructor names start
with an uppercase letter; variable names start with a lowercase letter.

An SLL expression consisting only of constructors is called a value. An SLL
expression without any variables inside is called a closed expression. We define
configuration as an alias of an SLL expression with free variables.

An SLL program consists of function definitions. We distinguish two kinds of
functions — “indifferent” and “curious” (originally called by Sgrensen in [5] f- and
g-functions respectively). Curious functions replace case expressions (which are

20
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add(z (O, y) = y;
add (S(x), y) S(add(x), y);

mult(ZO), y)
mult (S(x), y)

YAQN
add (y, mult(x, y));

sqr (x) = mult(x, x);

even(Z()) = True();
even(S(x)) = odd(x);
0dd(Z()) = False();
0dd (S(x)) = even(x);
add’ (2O, y) = vy;

add’ (S(v), y) add’ (v, S(y));

Figure 2: progl: Working with Peano numbers

always lifted to the top level). Indifferent functions just transfer their arguments to
other functions or constructors; their definition is just a single expression. Curious
functions perform a simple pattern match on their first argument; their definitions
consist of many expressions — one per case.

SLL has no built-in data types (Booleans, numbers; etc.). SLL can be straight-
forwardly extended with Haskell-like data-type declarations and Hindley-Milner
type inference, but we ignore issues of typing from now on, silently assuming that
all programs under consideration would be well-typed under such a type system.
We assume the following convention:

» the constructors True() and False() represent Boolean values,

» the value Z() represents 0, S(Z()) - 1, S(S(Z())) - 2, etc. If the value n
corresponds to the natural number n, then the value S(n) corresponds to
the natural number n + 1 (the so-called Peano numbers).

Fig. 2 shows a program defining some functions for working with Peano numbers.

It contains a single indifferent function — squaring (sqr). All the other functions
are curious, as they do a pattern match on their first argument.

A substitution binds variables vy, vq, ..., v, to expressions e, éq,...,¢e, and is
written as a list of pairs {v; :=eq,...,v, ;= e,}. Application of a substitution to
an expression e is defined in the usual way, and is denoted e/{vy ;=€ ..., v, =€, }.

Exercise 6. In SC Mini’s sources substitution is literally represented as a list of
pairs. Application of a substitution s to an expression e is denoted as e // s.

21
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Z,[e] ? e 1 (11)
Z,[C(e1, ..., en)] = C(Lple], - - -, Zylen]) (1)
Llcon{f(er,....en))] = Ty[conle/{vy :=e1,..., v, := e, })] (I3)

if f(vg,...,0,) = e
Llcon{g(C(er, ..., em), emits---sen))]= Lcon{e/{vy :=e1,...,v, = e, })] (14)

if g(C(v1,. . s Vm), Uity Un) =€

Figure 3: SLL: interpreter Z, for a program p

con == ()| g(con,...) context
red = f(er,...,e,) | g(Cler,...,en),...)  redex

Figure 4: SLL: context and redex

Find e, v1, el, v2, e2, such that
e // [(v1, el), (v2, e2)] #e // [(v1, eD)] // [(v2, e2)].

Fig. 3 shows the formal reduction semantics of SLL expressions. The notation
e1 = ey means that the program p contains a definition e; = e,. The semantics
is defined through a rewriting SLL interpreter with normal-order reduction. The
SLL interpreter Z, processing a program p evaluates, step by step, each closed SLL
expression to an SLL value (or falls into an infinite loop, or terminates with an
error message, but we shall often ignore the last case for simplicity). As far as
reduction is concerned, we distinguish two kinds of closed expressions:

1. e = C(ey,...,c,) — a constructor is “pushed” outside, and we proceed to
reduce its arguments.
2. e # C(ey,...,c,) — then we locate the leftmost reducible function call (redex,

see Fig. 4) and unfold it according to the corresponding definition from the

program. A function call is reducible if it is a call to 1) an indifferent function

or 2) a curious function, where the first argument starts with a constructor.

The rules for evaluating SLL expressions are (as typical for functional languages)

compositional, meaning that, if the expression e;/{v := e} is closed, then (taking
laziness into account):

Loler/{v = ea}] = Tp[er/{v := L[ea] }]
Remark that we can consider Z, as a machine, describing the program p.

Exercise 7. In SC Mini the interpreter is defined as a function eval. The notation
Z,[le] corresponds to the call eval p e. Prove that the evaluation of
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(even(sqr(sS(x))), progl)

x := 20
Gven(ﬁqu(S(Z())))) S0
@ven(mult(S(Zl()), 5(z0))) st
(even(add(s(20), mlult(Z(), 5(ZON)) 82
(even(s(add(20), mullt(Z(), 5(ZONN)) 3
(0dd(add (z(), mullt(Z(), 5(z0»))) =4

l

@dd(mult(z(), s(z())))) s5

0dd(Z()) s6
False() s7

Figure 5: An example of a task evaluation

eval p (el // [(v, e2)]) == eval p (el // [(v, eval p e2)])
cannot give False.

We call an SLL-task (or sometimes simply task) the pair (e, p) of a configuration
e and a program p (recall that a configuration is simply an expression with free
variables). The evaluation of a task (e,p) on arguments args is defined as:

Replargs] = Lp[e/args]

(In SC Mini the corresponding call is s11_run (e, p) args.)

Fig. 5 shows an example of evaluating the expression even(sqr(S(Z()))) with
the interpreter for the program progl. The redexes are underlined. The root node
represents the task with its arguments.

Next, we formally define what is an optimizer of SLL tasks. An SLL optimizer
takes a task (e,p) as input and outputs another task (¢/,p’). Our first requirement
is correctness: for all arguments args, the results of both tasks must be the same:

Replargs] = R pylargs]

Our second requirement is optimization: the evaluation of the second task must
require no more reduction steps than the evaluation of the first one. (The number
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of steps of a reduction sequence can be computed by the function sl1_trace in
SC Mini’s sources.)

An Overview of SC Mini

SC Mini transforms a task (e, p) into another task (¢’,p’), proceeding as follows:

1. It constructs a “machine” M,,, which encodes the behavior of the interpreter
T, of a program p over a generalized input — configurations (instead of values);

2. It performs a finite (but large enough) number of executions of the machine
M, analyzing their results;

3. It builds a finite “graph of configurations”, which fully describes the behavior
of M,, during those executions; and

4. Tt simplifies the graph of configurations and builds a new task (¢’,p’) from
it.

We now explain these steps in detail.

Driving

What would happen, if we tried to perform the following task on an empty list of
arguments?

(even(sqr(S(x))), progl)

The SLL interpreter is defined in such a way that it can actually evaluate (to
some degree) expressions with free variables:

Ceven(&i(s(x) ))) s0

@ven(mult(Sl(x), 5(0)))) st
(even(add (s (), lmult(x, 5())))) s2
(even(s (add(x, mlult(x, 5()))))) 3

(odd(add(x, mullt(x, 5())))) s4
l

ERROR

The interpreter does not expect a variable as a first argument of add. The
presence of such a free variable x, however, does not stop it from performing some
initial reduction steps, mostly thanks to the call-by-name reduction strategy.
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Let us “extend” the interpretation process Z: instead of stopping with an error,
let us consider the different ways in which evaluation might proceed. The definition
of add in progl provides 2 possibilities: either x = Z(), or x = S(x1):

@dd(@(x, mult (x, s<x>>))) s4

x = Z(/ \c = S(v1)

@dd(mult(x, S(x)))) s5a @dd(S(add(vl, mult (x, S(xm))) s5b

Now evaluation can proceed with the right subexpression, and so on:

@@(S(add(m, mlt (x, s(x)>>))) s5b

@ven(add(vl, mult (x, S(X)))D s6b

The interpreter Z, is intended to reduce step-by-step closed expressions. The re-
sult of interpretation Z,[e] is some SLL value (unless there is an infinite loop). We
introduce a machine M,,, which will compute over configurations. Each transition
of this machine — M, [c] — models a step of the interpreter; it can produce one
or several new configurations, labeled with the kind of step taken. We distinguish
the following kinds of machine steps:

1. Transient step — the corresponding interpretation step does not depend on
the value of any free variable in the configuration. Example: the move from
state sO to state s1.

2. Stop — further modeling is not possible. This occurs when the expression to
be reduced is a variable or a value.

3. Decomposition — some part of the result is already known. Example: in the
expression S(sqr(x)), the outer constructor is clearly a part of the result.
We can continue processing its subexpressions.

4. Case analysis — modeling cannot proceed unambiguously. We can, however,
consider all possible further steps of the interpreter, as defined in the pro-
gram. Example: the transitions from state s4 to states sba and s5b.

Such modeling — which is a key part of supercompilation — is called driving. The

preceding paragraph informally defines one driving step.

Exercise 8. In the SC Mini sources building the machine M, is performed by
driveMachine p. Show that driveMachine p is powerful enough to evaluate
closed expressions. In other words, define a function £, such that

f (driveMachine p) e = eval p e
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Trees of Configurations

The tree of configurations for an SLL task (e,p) is built in the following way.
We create a machine M, modeling p. In the beginning, the tree starts as a
single node, labeled with the start configuration e (the task goal). Then, for each
tree leaf n, which contains a configuration ¢, we perform one machine transition
M, [c] and attach new children nodes to n, each of them containing one of the
configurations resulting from this transition. We repeat the process for each new
leaf. The resulting tree is called “tree of configurations”, as each node is labeled by
a configuration. Note that the trees of configurations are sometimes called “process
trees” in the literature.

Of course, the tree built in this way will be infinite in general. But we can
always consider the tree only up to a given (finite) depth (in the previous subsec-
tion we have already seen an example — the top of the tree arising from the task
(even(sqr(S(x))), progl)).

Exercise 9. SC Mini builds the tree of configurations for a task (e, p) as follows:
buildTree (driveMachine p) e

Try to find a characterization of the class of tasks, which result in finite trees of
configurations.

The notion of a tree of configurations is not strictly necessary for building a
working supercompiler. Many existing supercompilers, especially those built in
recent years, make no explicit use of either trees of configurations or graphs of
configurations (which will be introduced shortly). Trees and graphs of configura-
tions can be useful, however, both from theoretical and from educational point of
view, as they open the way for defining a much more modular supercompiler.

Let’s assume for a moment, that we can build (and somehow store) infinite trees
of configurations. Then, if for a task (e, p), using a machine M,, we have built a
tree of configurations ¢, we can throw away the program p and the machine M,,
and only work with the tree . This is possible, as the tree t fully describes the
computation of the task (e, p) without any reference to the text of the program p.

Exercise 10. SC Mini sources contain an executable evidence for the last state-
ment — a “tree interpreter” intTree, which can perform tasks using only the cor-
responding tree of configurations, and not the original program. If t is the tree
of configurations for the task (e, p), then intTree t args gives the result of
computing the task over arguments args. Convince yourselves that

eval (e, p) args == intTree (buildTree (driveMachine p) e) args
cannot produce False.
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Folding

Infinite driving graphs are useful in many ways, but to use a graph as
an executable program it must be finite.

V. F. Turchin [6]

We can evaluate even(sqr(S(x))) for each x, by building the tree of configu-
rations and then using the “tree interpreter” intTree. The tree of configurations
is, however, infinite. The goal of folding is to turn the infinite tree into a finite
object, from which we could recover the original infinite tree, if needed.

How does folding work? Assume that, while building the tree of configurations,
there is a path with nodes ny = ... =+ n; — ... = n; — ... Assume further that
the configuration in node n; is a renaming (differs only in the choice of variable
names) of the configuration in another node n; (i < j). It is clear that we can
reconstruct the subtree starting from node n; by the subtree starting from node
n; if we systematically rename the variables in the corresponding configurations.

Consider the tree of configurations for the task (even(sqr(x)), progl):

ng (even(sqr(x))

ni (even(mult (x, X)))

N= S(v1)

n2 @ven(add(x, mult(vl, x))) J------- .

even(Z())

X = Z()/ \x = S(v2) //

True() ) N3 (even(mult(vi, x))) ( ) ,’/

vl = 20 vl = S(v2) /

/
/

(even(Z()) Ty (even(add(x, mult(v2, x)))}ﬂ-/(vl 1= v2)

( True() )

The configuration in node ny is a renaming of the one in node ny. The (infinite)
subtrees starting from node ny and from ny4 differ only by the names of the variables
in the corresponding nodes. So, we can simply memorize that the subtree from
ny can be built by a given renaming from the subtree starting at nsy, without
building explicitly this subtree. It is important to note that the reconstruction of
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the subtree ny from the subtree ny does not require the original program (nor the
machine M,,).

We denote such situations with a special kind of edge, leading from the lower
node to the upper one. As a result, the tree of configurations is no longer a tree
but rather a graph of configurations (also sometimes called “process graph”).

We are lucky with the tree of configurations for the task (even(sqr(x)),
progl) — it folds into a graph. We can see, that in such a way we can turn
some infinite trees into finite graphs. The resulting graph will serve as a new self-
contained representation of the given task. We shall denote the graph for the task
t as G;.

Exercise 11. Just some small modifications of the tree interpreter intTree are
sufficient to make it work also with folded graphs of configurations. Take a look
in SC Mini’s sources to see how it is done.

The graph G, for the task t = (e, p) can be converted into a new task (¢’, p’). The
resulting program p’ is called residual, and we shall also call the corresponding
task (¢/, p') residual.

Exercise 12. SC Mini’s sources contain a function residuate: residuate g trans-
forms a graph of configurations g into a new task (e’, p’).

Generalization: converting a tree into a foldable tree

We were lucky with the example in the previous subsection, as it was possible
to fold the tree into a graph. It would be splendid if all trees of configurations
were foldable! Unfortunately, this is not the case in general. The program progi
contains a function add’, which defines addition using an accumulating parameter.
The construction of the tree of configurations for (add’(x, y), progl) goes as

follows:
= S(v1)

(ada’ (v1, 5(y)))
vi = 20 N - S(v2)

@dd’(vQ, s<s<y))>)

v2 v2 = S(v3)

@dd’(vs, s(s(s(y)))))
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This tree is not folding. Indeed, a configuration can only be a renaming of
another if both have the same size. In this example, the path through the rightmost
branches of the tree contains ever-growing configurations. However, if the size of
configurations be bounded, the tree will always fold to a finite graph.

Exercise 13. Try to prove the last statement. Hint: To what kind of relation does
renaming naturally give rise?

We can thus apply a divide-and-conquer heuristics. We limit the size of configu-
rations inside nodes by some constant sizeBound, and if the size of a configuration
becomes larger than this constant, we split it into smaller parts which we can pro-
cess independently.

Recall that the evaluation of closed SLL expressions is compositional. For a
closed expression e /{v := ey} we have:

Llei/{v = ea}] = Lpler/{v := L[ea]}]

The same property of compositionality holds for evaluation of tree of configu-
rations. (Look into SC Mini source code to see how intTree handles splitted
configurations.)
SC Mini limits the size of configurations in the tree and builds a foldable tree
in the following way:
» if while building the tree a configuration e is encountered, which is a function
call, and whose size is greater than sizeBound, then this configuration is

splitted,
» otherwise, the construction of the tree is done in the standard way.
Splitting represents the configuration e as e = e;/(v := ey), where ey is the

largest subexpression of e, and e; — the original expression e, in which e is replaced
by a (fresh) variable v. Such configurations are encoded as let-expressions let v =
es in e1. Then we process the configurations e; and ey independently.

Exercise 14. We do not need to check the size of constructor nodes. Why?

The configuration e; is a generalization of e. And e is, in turn, a special in-
stance of e;. By a slight abuse of terminology, the process of transforming the
tree of configurations into a foldable one — as described above — is also called
generalization.

Now, if we limit the growth of configurations (by size), for any task we can
build a (potentially infinite) tree of configurations, which will in all cases be folded
into a finite graph of configurations. Returning to our current example, if we set
sizeBound equal to 5, then as a result of generalizing the rightmost configuration
we obtain:
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(add’ (v1, (1))

1 = 20 Sl - s

TEEE)

Exercise 15. What properties should a task have, in order for the configuration
tree to be foldable without using generalization?

Exercise 16. It is very easy to extend intTree with treatment of let-expressions.
Check how it is done in the SC Mini sources.

The idea of generalizing configurations is one of the cornerstones of supercom-
pilation. What we have described above is one of the possibly simplest and least
sophisticated ways to perform generalization.

The supercompiler part responsible for deciding when to generalize is historically
called the whistle. Whistles in most existing supercompilers are typically more
complicated than just limiting configuration size.

The term “whistle”, despite sounding a bit unscientific, is generally accepted and
used in most descriptions of supercompilation. The whistle is a heuristic compo-
nent, whose task is to signal the danger of possibly non-foldable (and thus infinite)
fragments appearing in the tree of configurations. Of course, this task is an in-
stance of the halting problem (if the object language is Turing-complete) and does
not have an exact solution. Any whistle will necessarily give only approximative
results, and even the best heuristics cannot guarantee the absence of blunders,
such as whistling just a few steps before an actually foldable configuration. The
only strict requirement is to always err on the side of caution and never let infinite
tree paths slip through, as it would make the supercompiler itself loop.

Supercompiler prototype

In the SC Mini sources generalization and folding are implemented via following
functions:
» buildFTree — it builds a foldable tree of configurations by limiting size of
configurations (by means of splitting)

30



Ilya Klyuchnikov, Dimitur Krustev: Supercompilation: Ideas and Methods

» foldTree — it takes a (possibly infinite) tree of configurations and folds it
into a finite graph.
Let’s create the following program transformer:

transform :: Task -> Task
transform (e, p) =
residuate $ foldTree $ buildFTree (driveMachine p) e

A most interesting thing in this transformer happens there: the machine M,, is
not only run — the result of its run is analyzed, and possibly a decision to generalize
is taken.

We argue that this program transformer fulfills the requirements of the previ-
ously stated definition of “supercompiler”. Although this transformer performs no
interesting optimizations, it can serve as a foundation for a full-blown supercom-
piler. We shall use it as a baseline to which we shall compare the transformers
that follow (deforestation and supercompilation).

Exercise 17. Try to show that for each task (e, p) and each substitution s the
computation s11_run (e’, p’) s (where (e’, p’) is the corresponding residual
task) requires exactly as many reduction steps as the computation s11_run (e,
p) s. That means that the transformer transform does not degrade performance,
but it does not improve it either.

Does this transformer modify the input program at all? Yes, and here is an
example:

transform
_>

(even(sqr(x)), progl) (f1(x), proglT)

Where progiT =

f1(x) = g2(x, x);

g2(z(O), x) = £30);

g2(S(vl), x) = g4(x, x, vi);

£3() = True();

gd(Zz(O), x, v1) = gb(vl, x);
gd(S(v2), x, vl1) = £7(v2, vl, x);
gh(z(), x) = £6();

gb(S(v2), x) = g4(x, x, v2);

f6() = True();

f7(v2, v1, x) = g8(v2, vl, x);
g8(Z2(), vi, x) = g9(vl, x);
g8(sS(v3), vi, x) = f16(v3, vl, x);
g9(z(), x) = f100);

g9(sS(v3), x) = gli(x, x, v3);
f10() = False();

gl1i(z(O, x, v3) = g9(v3, x);
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gl1(S(v4), x, v3) = f12(v4, v3, x);
f12(v4, v3, x) = gl3(v4, v3, x);
gl3(Z(O, v3, x) = gld4a(v3, x);
g13(S(vhs), v3, x) = £f7(vb, v3, x);
glda(z(), x) = £150);

glda (S(vh), x) = g4(x, x, vb);
£15() = True();

f16(v3, v1, x) = g17(v3, vi, x);
gl7(Z(O, vi, x) = gl18(vl, x);
gl7(S(v4), vi, x) = £7(v4, v1, x);
g18(z(), x) = £f190);

g18(S(v4), x) = gb4(x, x, v4);
£19() = True();

We can easily detect at least one property of the transformer — the resulting
program contains no nested function calls: it is “flat”.

KMP Test

Consider the program in Fig. 6 (where function names are deliberately short, to
keep the drawings of graphs of configurations small): the function match(p, s)
checks if a string p is contained inside the string s. For simplicity we use a 2-letter
alphabet — ‘A’ and ‘B’. Strings are represented — as in Haskell — by lists of char-
acters. We also use some list/string syntactic sugar from Haskell for readability,
even if it is not actually implemented in SLL.

The function match is general, but inefficient. Consider the call match("AAB",
s), which checks if the substring (pattern) "AAB" appears inside the string s. Our
program will perform this check in the following way: compare ‘A’ with the first
character of s, ‘A’ — with the second one, B’ — with the third one. If any of
these comparisons fails, we restart the comparison sequence after skipping the
first character of s. This strategy is far from optimal, however. Let’s assume
that the string s starts with "AAA...". The first 2 comparisons will succeed,
the 3rd one will fail. It is inefficient to repeat the same sequence of comparisons
on the tail "AA...", as we already have enough information to know, that the
first 2 comparisons of "AAB" with "AA..." will succeed. The deterministic finite
automaton (DFA), built by the Knuth-Morris-Pratt algorithm [7], will consider
each character of s at most once.

A simple way to estimate the power of an optimizing transformation is to see if it
can produce — fully automatically — a well-known efficient algorithm from a “naive”,
less-efficient one. In the case of supercompilation, it turns out that — starting from
a naive string-matching algorithm, and fixing the value of the substring we try to
match — we can automatically obtain an efficient specialized matching program,
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match(p, s) = m(p, s, p, s);

-- matching routine

-- current pattern 1is empty, so match succeeds
m("", ss, op, os) = True();

-- proceed to match first symbol of pattern
m(p:pp, ss, op, os) = x(ss, p, pp, Op, 0S);

-- matching of the first symbol
-- current string <1s empty, so match fails
x("", p, pp, op, os) = False();
-- compare first symbol of pattern with first symbol of string
x(s:ss, p, pp, op, 0s) =
if (eq(p, s), m(pp, ss, op, os), n(os, op));

-- failover

-- current string <1s empty, so match fails
n("", op) = False();

-- trying the rest of the string

n(s:ss, op) = m(op, ss, op, ss);

-- equality routines

eq(’A’, y) = eqA(y); eqA(’A’) = True();
eqB(’A’) = False();
eq(’B’, y) = eqB(y); eqA(’B’) = False();

eqB(’B’) = True();

-- if/else

if (True(), x, y) = Xx;
if (False (O, x, y) = y;

Figure 6: prog2: find a substring inside a string

analogous in action to the well-known Knuth-Morris-Pratt algorithm (hence the
name of the test).

Our original simple transformer transform is unable to obtain an efficient
matching program. But in the next couple of sections, we will augment trans-
form using two “tricks”, which are key ingredients of “real” supercompilers, and
the transformer supercompile produces a residual task exactly corresponding to
this DFA.

This program is the so-called KMP-test, which is a classical example in the
context of supercompilation, as it demonstrates its greater power compared to
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similar program transformations like deforestation and partial evaluation[5, 8§].
This test is not only a good demonstration of the combined effect of the two
tricks mentioned above, but it also gives some measure of the extent of program
transformations performed by supercompilation.

Our original simple transformer transform gives the following result:

transform
>

(match ("AAB", s), prog2) (f1(s), prog2T)

where prog2T is:

f1(s) = f2(s);

f2(s) = g3(s, s);

g3("", s) = False();

g3(vi:v2, s) = f4(vl, v2, s);
f4a(vl, v2, s) = gb(vl, v2, s);
gb(’A’, v2, s8) f6(v2, s);
gb(’B’, v2, s) £f22(v2, s);
fe(v2, s) = f7(v2, s);

f7(v2, s) = g8(v2, s);

g8("", s) False ();

g8(v3:v4, s) = f9(v3, v4, s);
f9(v3, v4, s) = glo(v3, v4, s);
glo(’A’, v4, s) = f11(v4, s);
glo(’B’, v4, s) = £20(v4, s);

f11(vd, s) = f12(vd, s);
f12(v4, s) = g13(v4, s);
gl3("", s) = False();

gl3(vb:v6, s) = f14(vb5, v6, s);
f14(v5, v6, s) = glb(vb6, v6, s);
gl5(’A’, v6, s) = f16(v6, s);
g15(’B’, v6, s) = £18(v6, s);
f16(v6, s) = gl7(s);

gl7("") = False();

gl7(v7:v8) = £2(v8);

f18(v6, s) = f19(v6, s);
f19(v6, s) = True();
£20(v4, s) = g21(s);

g21("") = False();
g21(v5:v6) = £2(v6);
£f22(v2, s) = g23(s);
g23("") = False();
g23(v3:v4) = f2(v4d);

This long listing is reproduced here only to serve as a baseline for comparison.
Note that the residual program contains no nested function calls, but each of the

34



Ilya Klyuchnikov, Dimitur Krustev: Supercompilation: Ideas and Methods

characters of s may be checked multiple times, as in the input program.

Transient step removal

Very often graphs of configurations contain fragments of the following kind:

cl - c2 — c3

where the transition c2 — ¢3 corresponds to a transient step (as defined in sub-
section “Driving”). We can always — thanks to the absence of side effects in SLL —
replace such a fragment by:

cl — c3

As an example, consider the top part of the graph of configurations for the
KMP-test program, which is produced by transform:

@atch("AAB", s))

S

(m("AAB", s, "AAB", §) ) -----------ooo--ooooooooo .

l \
\
\

x(s, *A’, "AB", "AAB", 5)) \

s ="t = vl:v2 \
(False()> @f(eq(’A’, v1), m("AB", v2, "AAB", s), n(s, “AAB"))) |

(if(qu(vl), m("AB"), v2, "AAB", s), n(s, "AAB"))) '

v1=/’A/ Nl = ’B’ ‘

( ) (if(False(), m("AB", v2, "AAB", s), n(s, ”AAB")D\\\
<
SR x
s ="" = v3:v4d \‘\

( False )(m("AAB", vd, "AAB", v4))----- J

The transient steps are displayed with zigzag arrows. If we remove them, the
cleaned-up graph of configurations will look like this:
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(m("AAB", s, "AAB", §))-----------ooo--oooo- -
X(S, JA7, IIABII’ IIAAB", S)) \\\

g =" \s\= vi:v2 .

(if(qu(vi), m("AB", v2, "AAB", s), n(s, "AAB“)))

The SC Mini sources contain a transformer deforest — a modification of trans-
form — which removes transient edges and the corresponding nodes from the graph
of configurations.

If we pass the test program through deforest, we get:

(match ("AAB", s), prog2) gggﬁ% (f1(s), prog2D)

where prog2D =

fi(s) = g2(s, s);

g2("", s) = False();
g2(vi:v2, s) = g3(vl, v2, s);
g3(’A’, v2, s) = g4(v2, s);
g3(’B’, v2, s) gl0(s);
ga("", s) = False();
gd(v3:v4, s) = gb(v3, v4, s);
gb(’A’, v4, s) = g6(vd, s);
gs(’B’, v4, s) = g9(s);
g6("", s) = False();
g6(vb:v6, s) = g7(vh, v6, s);
g7(’A’, v6, s) = g8(s);
g7(’B’, v6, s) = True();
g8("") = False();

g8(v7:v8) = £1(v8);

g9 ("") = False();

g9(vb5:v6) = £1(v6);

glo("") = False();

glo(v3:v4) = f1(v4d);

The deforested program contains less than half the number of functions (23 vs.
10) compared to the result of transform, as some intermediate functions were
removed (roughly speaking, inlined). Although the residual program is smaller, it
still contains the same inefficiency we discussed above.
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The removal of transient edges is a form of simplification of graphs of configu-
rations. This simplification is one of the two main mechanisms for optimization,
which are employed by supercompilation. It is most effective when used in con-
junction with the second mechanism — information propagation — which we shall
discuss next.

Exercise 18. It is also possible to remove transient steps from the tree of con-
figurations (before folding it to a graph). What pitfalls might such an approach
have?

There is a separate program transformation technique called deforestation [9,
10]. Its main goal is to reduce the creation of intermediate data structures — lists,
trees (hence the name), etc. — which arise as a result of composing different func-
tions in a program. Ferguson et al. [10] describe deforestation for a language very
similar to SLL. Classical deforestation does not require generalization, as it con-
siders only programs conforming to certain syntactic restrictions (which guarantee
that the resulting tree is always foldable). A practical advantage of deforestation
is that for many special cases it can be formulated as a simple set of rewrite rules
(shortcut deforestation, or shortcut fusion - see for example [?]), which are easy
to implement. A form of shortcut deforestation is implemented inside GHC, for
example.

Information propagation

Here is the graph of configurations for the KMP test produced by deforest:

(m("AAB", s, "AAB", §))-------------oo--ooo- -

X(S, ’A’, “AB", "AAB", S)) N

s ="" ~s8 = vi1:v2 "

= N
(False()> (if(qu(vl), m("AB", v2, "AAB", s), n(s, "AAB")))

It contains a step which checks if the string s is empty or not (underlined).
Below it, there is another step, which makes the same check (double-underlined),
although we have assumed already that s is not empty (in the corresponding
subtree after the first check). Such repeated checks are clearly redundant.
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Supercompilers remove such redundancies as follows: each time case analysis

is performed during driving, information about its outcome is propagated in each
corresponding subtree.

Let’s propagate the fact that s =

v1:v2 (and hence non-empty) in the corre-
sponding subtree:

@(HAABU, S, IIAAB"’ S))<

(x(s, ’A’, "AB", "AAB", 5)) 1

s =% \s\= vl:v2 l,
(FalseO ) @f(qu(vl), m("AB"), v2, "AAB", v1:v2), n(vi:v2, "AAB"))).
vl = ’A/ Syl = B’ ‘]

C -+ ) (aCB:v2, "arB") ‘]

$ \

(m("8AB", v2, "AAB", v2)) /

We have not only removed a superfluous test, but we have also unmasked a tran-
sient step, which can be further removed. As a result we obtain

@("AAB", s, "AAB", s))«

X(S, 7A7’ IIABII’ IIAABII, S))

s = " s.= viiv2 \

(False()) Gf(qu(vl), m("AB"), v2, "AAB", v1:v2), n(vi:v2, "AAB")))

vl = ’A/ Syl = ’B’
( )@("AAB", v2, "AAB", vz)} :

The transformer supercompile (inside SC Mini sources) implements such in-
formation propagation. In contrast to deforest, each time driving performs case
analysis, its results are propagated in the corresponding new configurations. Re-
call that SLL contains just a single kind of test — matching the first argument of
a curious function against a list of simple patterns. Hence, the only kind of infor-
mation we can propagate is that a given configuration variable is equal to a given
pattern. Such a (restricted) form of information propagation is called positive
information propagation. Correspondingly, supercompilers propagating only pos-
itive informtion are called positive supercompilers. If, for example, SLL permitted
also default clauses (in curious-function definitions), we could propagate also neg-
ative information — in the default clause — that the variable is not equal to any
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of the patterns in the list. A supercompiler, which propagates both positive and
negative information, is called perfect [?]. It is also possible to have intermediate
situations, where only some forms of negative information are propagated.

Here is the final result of supercompiling our KMP test:

supercompile
=

(match ("AAB", s), prog2) (f1(s), prog2s)

where prog2Ss =

f1(s) = g2(s);

g2("") = False();
g2(vli:v2) = g3(vl, v2);
g3(’A’, v2) = g4(v2);
g3(’B’, v2) = f1(v2);
gd("") = False();
gd(v3:v4) = gb(v3, v4);
gb(’A’, v4) = £f6(v4);
g5 ("B’, v4) = f1(vd);
6 (v4) g7 (v4);

g7 ("") = False();
g7(vb:v6) = g8(vh, v6);
g8(’A’>, v6) = £6(v6);
g8(’B’, v6) True () ;

We finally obtain the desired effect: each character of the string s is considered
at most once.

Exercise 19. Prove the last statement.

The information propagation we have just described is the second optimization
mechanism employed by supercompilation (the first was the removal of transient
steps). This propagation has 3 important effects:

1. No variable is tested twice.

2. Avoiding repeated tests uncovers further possibilities for removing transient

steps.

3. The graph of configurations is pruned of unreachable branches, which results

in dead-code removal in the residual program.
In the example above, the graph built by deforest contains the following path:

{s = vi1:v2} - ... =5 {s = """}

It is clear that no actual computation can take this path. Deforestation, however,
leaves it in the residual program; as a result the deforested program prog2d above
contains a function g10 whose first argument can never be an empty string:

glo("") = False();
gl0(v3:v4) = f1(vd);
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As a result of supercompiling the KMP test, we obtained a program which
contains no dead code. Of course, this is not always possible, as dead-code removal
is undecidable in general. In the case of supercompilation, dead code may still
appear in the residual program if we have applied generalization.

Exercise 20. Most works discussing supercompilation interweave information prop-
agation with other aspects of the transformation (for example, with transient-step
removal). Check if this is the case as well inside SC Mini’s sources.

The essence of SC Mini

This section turned out rather long, so let’s take a brief look — from a slightly
different angle — at what it covered.

The SC Mini supercompiler is an attempt to build a minimalistic supercompiler
in Haskell. Its main goal is to delineate the main ingredients which are present in
most supercompilers and show how they can be combined to work well together.

Let’s review the gradual transition from the basic transformer transform (which
neither improves, nor degrades performance), passing through deforest, and fi-
nally arriving at the ultimate transformer supercompile.

Starting from the baseline transformer transform...

transform :: Task -> Task
transform (e, p) =
residuate $ foldTree $
buildFTree (driveMachine p) e

...we add simplification of the graph of configurations by removing transient
steps. ..

deforest :: Task -> Task
deforest (e, p) =
residuate $ simplify $§ foldTree $

buildFTree (driveMachine p) e
...and we finish by adding information propagation:

supercompile :: Task -> Task
supercompile (e, p) =
residuate $ simplify $ foldTree $
buildFTree (addPropagation $ driveMachine p) e

Thanks to propagating test outcomes in the corresponding consequent config-
urations and further simplifications of the graph, our minimalistic supercompiler
managed to convert a naive substring search algorithm into the well-known efficient
KMP algorithm.
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Not only optimization

SC Mini can also be used to check different program properties. Let’s show that
the operation add — defined in progl — is associative, that is, for all arguments
args:

s1l_run (add(add(x,y),z), pl) == sll_run (add(x,add(y,z), pl)
We could of course prove this by induction (using the rules of SLL operational

semantics). But we can also compare the residual programs produced by SC Mini
in both cases — they turn out syntactically equivalent:

supercompile

(add (add(x, y), z), pl)
(add(x, add(y, z)), pl)

(gi(x, y, z), prog3sS’)

supercompile
>

(gi(x, y, z), prog3sS’)
where prog3s’ =

gl(Zz(O, y, z) = g2(y, z);
gl(8(vl), y, z) = S(gi(vl, y, z));
g2(2(), z) = z;

g2(S(v1), z) = S(g2(vl, z));

This is enough to prove associativity of add (assuming of course that SC Mini
always preserves the semantics of the input program), as we have:

sll_run (add(add(x, y), z), pl) ==
sll_run (gi(x, y, z), prog3S’) ==
sll_run (add(x, add(y, z)), pl)

Problems

The aim of this section is to outline what are the practical problems our simple
supercompiler faces. These problems are typical — in varying degrees — for most
existing supercompilers.

Result unpredictability

The KMP test we saw indeed shows supercompilation at its best. We were lucky
that the whistle did not blow, allowing us to fold the tree of configurations to a
graph without resorting to generalization. In many other cases, however, the size
of configurations in the tree will continue to grow, and, sooner or later, we shall
be forced to perform generalization in order to ensure building a finite graph of
configurations.

Recall a task we have already seen:
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(even(sqr(x)), progl)

Deforestation manages to build a finite graph of configurations without applying
generalization. This is not the case when we use supercompilation instead — gen-
eralization becomes necessary. This is one drawback of information propagation,
as it typically increases the size of the new configuration. The appendix accom-
panying this article lists the results of deforesting and of supercompiling this task.
It also gives a comparison of the speed of the corresponding residual programs.
Based on these observations, we can draw the following conclusions:

1. The supercompiled program is much larger than the deforested one.

2. For small numbers x the supercompiled program works faster. Exactly the

opposite is true for big numbers x however.

In a way, this example is an antithesis of the KMP test, as it displays the main
weaknesses of the SC Mini supercompiler. (We shall call it anti-KMP-test for
brevity. Such an example can be found for each of the other existing supercompil-
ers.)

While missing optimization opportunities is a feature we can readily consider
acceptable, the fact that the supercompiler can produce much larger residual pro-
gram, compared to the input one, is a more critical issue. The danger of code
explosion is an important problem for supercompilation in general. In the case
of SC Mini, by limiting configuration size we indirectly limit the growth of graph
width as well. There is no similar indirect limit to the growth of graph depth
(apart for ensuring it is finite), and this can result in very large residual programs.

Exercise 21. Try to modify SC Mini, by imposing an explicit limit on graph depth
as well. What changes in the examples we considered so far?

Exercise 22. Can we estimate the size of the residual program for a given input?

SC Mini is built in such a way as to guarantee that the residual program never
takes more reduction steps than the input one. This is but one possible measure
of efficiency. Another one is memory consumption, and here the story is not so
rosy. Existing supercompilers can produce programs, which — although requiring
less reduction steps — can sometimes consume considerably more memory than the
original ones.

Scalability issues

The supercompiler imitates the behavior of the input program by taking into
account the dynamic interactions of all its parts. This can result, unfortunately,
in the size of the model (the graph of configurations), growing very superlinearly
as a function of the size of the input program. For example, a new input program,
larger by just 30%, can make the supercompiler work 10 times longer.
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Exercise 23. Try to find such examples for SC Mini.

What is worse, the running time of the supercompiler usually depends superlin-
early on the size of the graph of configurations.

Exercise 24. Show that this statement is true for SC Mini as well.

Supercompiling big programs can be a very unpredictable process: in the worst
case, the supercompiler may take a lot of time, and it may produce a huge program,
which works only slightly faster than the original.

Supercompilation performs a global optimization for a given entry point. It is
an open question how to apply supercompilation methods to optimize libraries.

What about debugging?

Supercompilation — being a form of program transformation — converts the input
program into a new one, which is then submitted to the usual programming lan-
guage compiler or interpreter. What if we want to debug the resulting program?
It appears possible in principle — in a way similar to standard compilers generating
“debug” info — to generate some information about the correspondence of resid-
ual program lines to input program lines. This can be a tedious task, however,
and authors of experimental supercompilers avoid it. We can hope that one day
industrial-strength supercompilers will support this feature as well.

Details, details, details. ..

We saw only a very small, toy supercompiler — for a toy language — which has some
obvious deficiencies. Building a supercompiler for a similar toy language, but not
having the problems we mentioned, is already a complicated, PhD-level task. If
we consider more realistic programming languages, we will quickly stumble upon
a number of details, which must be taken care of.

Global state, side effects: SC Mini uses the compositionality of SLL semantics
in an essential way in order to perform generalization:

Llei/{v = e}l = Lpler/{v := L[ea]}]

The expression e; may be evaluated outside of the context, where it appears in
the input program.

If the language features global state and/or side effects (which is inevitable in
one form or another for any practical programming language), then the notion of
compositionality becomes more complicated, if it can be formulated at all. In order
to take this into account, an additional analysis phase appears necessary. Things
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can get even more complicated in the presence of concurrency. What makes the
situation less bleak is that many modern programming languages follow the lead
of Haskell and provide means to isolate pure functional code from side-effecting
code. In such cases a simple solution is to supercompile only the purely functional
parts of the program, leaving the side-effecting parts unmodified.

Taking strictness and laziness into account: SC Mini owes its simplicity, to a
large extent, to the fact that we assumed a call-by-name semantics for SLL. Driving
is simplest in the case of call-by-name evaluation. Call-by-name typically leads to
bad performance, however, and most programming languages do not use it as the
default evaluation mechanism. Call-by-value or call-by-need is used instead. While
recent research has shown it is possible to build a supercompiler for a call-by-need
[11, 12, 13] or a call-by-value [14, 15] language, the supercompilation process is
typically much more involved, compared to the case of call-by-name.

Exercise 25. Write a call-by-value interpreter for SLL. Find a program, which
behaves differently after supercompilation by SC Mini, when run by the new in-
terpreter.

Exercise 26. Write a call-by-need interpreter for SLL. Compare its size to the
call-by-name one. What differences in driving would you expect in the case of
call-by-need?

Why is it worth it then?

The open problems of supercompilation are wide, the results of supercompilation
difficult to rely on. Why is it, then, that interest in supercompilation has repeatedly
resurfaced and grown in the several decades since its invention, with the latest wave
of renewed interest starting 6-7 years ago [16, 17, 13, 15, 18, 19, 20]?

First of all, it turns out that many program optimization methods can be seen as
special cases of supercompilation. This includes deforestation, partial evaluation,
different kinds of fusion, inlining, defunctionalization, etc. (While this statement
will be intuitively obvious to most researchers in the area of supercompilation,
not all of these cases have been formally described in research papers.) It is most
impressing when a (relatively) simple supercompiler can optimize some programs
equally well (or better!) than some other complicated specialized tool.

A second important reason is the conceptual simplicity of supercompilation.
Supercompilation is not tied to a single specific language, nor even to a family of
languages, although most of the existing research has been done in the context of
functional languages.

Another valuable feature of supercompilation is that it has applications beyond
optimization. There are very successful attempts to apply it to program analysis,
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for example. It is tempting to image a 2-in-1, or even 3-in-1 tool, which can cover
program optimization, analysis, synthesis, etc.

Last but not least, supercompilation is itself just a specialized application of a
very general philosophical principle, invented also by V. F. Turchin — the theory
of “metasystem transitions”. We shall speak a bit more about that in the next
section.

A little history

Valentin Fyodorovich Turchin (1931-2010) — the creator of supercompilation —
could be called a Programmer-Philosopher.

“Valentin Fedorovich Turchin, born in 1931, holds a doctor’s degree in the physi-
cal and mathematical sciences. He worked in the Soviet science center in Obninsk,
near Moscow, in the Physics and Energetics Institute and then later became a se-
nior scientific researcher in the Institute of Applied Mathematics of the Academy
of Sciences of the USSR. In this institute he specialized in information theory and
the computer sciences. While working in these fields he developed a new computer
language that was widely applied in the USSR, the "Refal” system. After 1973
he was the director of a laboratory in the Central Scientific-Research Institute for
the Design of Automated Construction Systems. During his years of professional
employment Dr. Turchin published over 65 works in his field. In sum, in the 1960s
and early 1970s, Valentin Turchin was considered one of the leading computer spe-
cialists in the Soviet Union.” (from L. R. Graham’s foreword to “The phenomenon
of science” by Turchin [21].)

“The intellectual pivot of the book is the concept of the metasystem transition —
the transition from a cybernetic system to a metasystem, which includes a set of
systems of the initial type organized and controlled in a definite manner. I first
made this concept the basis of an analysis of the development of sign systems
used by science. Then, however, it turned out that investigating the entire process
of life’s evolution on earth from this point of view permits the construction of a
coherent picture governed by uniform laws....” (from the introduction to “The
phenomenon of science” by Turchin [21].)

In 1966, Turchin invented Refal (REcursive Functions Algorithmic Language) —
a programming language that was quite different from most other existing ones.
Refal was oriented towards describing and processing other languages. Even a brief
description of Refal is beyond the scope of this article, let’s just simply mention
that it quickly gathered a small group of active supporters which met regularly in
Moscow. The next 5-6 years were devoted to creating an efficient implementation
of Refal — first an interpreter, and later a compiler as well. The compiler was
itself written in Refal: it took Refal programs as input and generated assembly
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programs as output. But nothing prevented the generation of Refal as output as
well. This was how the idea of driving was born, which Turchin originally described
as “equivalent transformations of Refal functions”. In 1974, driving was described
already in the context of the theory of metasystem transitions.

In 1977, Turchin was forced to leave the Soviet Union; in the same year an
English translation of Turchin’s “opus magnum” — the book “The phenomenon of
science” — was published in the USA. This book was already finished in 1970 and
ready for printing in 1973, but its publication in the Soviet Union was blocked
for political reasons. Since then, Turchin lived and worked in New York, first in
the Courant Institute, later in the City College. Starting from 1989, Turchin was
again able to visit Russia, which he did regularly till his death in 2010.

We can distinguish — quite subjectively — 3 periods in the history of supercom-
pilation.

» 1970s-1980s. Refal supercompilers. Starting from 1979, Turchin published
(with coauthors) several tens of articles on supercompilation and metacom-
putation. It is now obvious that a huge number of interesting ideas lies
scattered inside these articles. The problem was that many concepts were
given in only a semi-formal, fragmentary way, and only in terms of Refal:
for Turchin, Refal and supercompilation were inseparable. Unfortunately,
for most people at the time even the description of driving seemed too com-
plicated and incomprehensible. And no article contained a full and self-
contained description of the complete process of supercompilation. For these
reasons, in spite of the large number of publications on the subject, till the
early 1990s supercompilation remained understood and appreciated only by
a small number of “initiates”. Turchin’s articles [4, 22, 1, 23, 24, 25, 26| are
some of the milestones of this period.

» 1990s. Supercompilation of first-order functional languages. Andrei Klim-
ov’s and Robert Gliick’s article “Occam’s Razor in Metacompuation: the
Notion of a Perfect Process Tree” [27] about the essence of driving was the
first work aimed at understanding supercompilation as a general technique,
independent of Refal. In 1994 Morten H. Sgrensen made an important further
step — in his MSc thesis, “Turchin’s Supercompiler Revisited: an Operational
Theory of Positive Information Propagation,” [5] he reformulated the key
ideas of supercompilation in the context of a simple first-order functional
language (essentially the same as SLL). This was the first work describing
the process of supercompilation in full. It was followed by a number of other
articles [28, 29, 30, 31, 8, 32| explaining supercompilation and comparing it
to other program-transformation methods.

46



Ilya Klyuchnikov, Dimitur Krustev: Supercompilation: Ideas and Methods

» 2000s. Supercompilation of higher-order functional languages. The latest
wave of renewed interest in supercompilation started in the second half of
the 2000s. Many new milestones were passed (supercompilers for call-by-
need, call-by-value, etc.), but the single most important shift so far has been
from first-order to higher-order functional languages. Regular international
workshops on supercompilation are being held — META-2008 [33], META-
2010 [34], META-2012 [35], META-2014 [36].

Current trends

This is only an introductory article on supercompilation, and a detailed survey of
the current state of the field is beyond its scope. Instead, we list some existing
supercompilers in the next section. Very briefly, one of the main goals in current
research is to build a supercompiler which can transcend the experimental status
and become practically useful for a larger audience. Another important trend is
the application of the ideas of supercompilation in new contexts.

If you are curious to see a more detailed picture of the current state of super-
compilation research, many recent PhD theses and other articles [5, 37, 38, 11, 39,
14, 40, 15, ?] contain very good overview sections.

Existing supercompilers

We list here some existing supercompilers. The list is not exhaustive; it contains
implementations which have interesting features, are publicly accessible, and which
are either actively developed, or at least have been until recently. Note that all
these implementations are considered experimental.

» SCP4 [41]. SCP4 is the latest incarnation of the first ever supercompiler,
which was developed for the Refal language. It supercompiles programs in a
recent version of Refal, Refal-5. SCP4 utilizes some of the features of Refal,
which make it particularly suited to supercompilation, like the associativity
of sequence concatenation. It also features a number of extensions of the basic
super-compilation method: recognition of constant functions, recognition of
concatenation monomials, and collection and analysis of output formats.
SCP4 is described in detail in [39] and in the monograph [42]. SCP4 can
extend the program domain in the following sense: if the input program
loops or stops with an error on certain inputs, it is sometimes possible for
the residual program to successfully terminate on these inputs.

» A (nameless) supercompiler for the TSG language [43]. TSG is a greatly
simplified version of LISP, which is “flat” (no nested function calls are al-
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lowed). Besides the experimental supercompiler for TSG described in [32],
there exist implementations for a number of other methods, which have arisen
in the context of supercompilation, and which, unfortunately, get less atten-
tion than they deserve. These methods include neighborhood analysis, neigh-
borhood testing, inverse programming, and nonstandard semantics [28].

Jscp[44] [45]. A supercompiler for Java and the first supercompiler for an
object-oriented, real-world language. One of the main conclusions of this ex-
periment: supercompilation of non-functional languages is much more com-
plicated. Jscp, unlike most other supercompilers in this list, is closed-source.

A supercompiler for Timber [46]. Timber is a pure object-oriented language
with call-by-value semantics mostly inspired by Haskell. Its supercompiler
treats the purely functional subset of the language. The main goal of this
project is to achieve similar optimizations when supercompiling a call-by-
value language — compared to a call-by-name language — while fully preserv-
ing the semantics of the original program. Good descriptions exist in [14, 15].

Supero [47]. A supercompiler for a subset of Haskell. Supero is the first
supercompiler to treat a call-by-need language, which was actually the main
goal of the project [11, 12].

SPSC [48]. SPSC is another toy supercompiler for SLL. The main goal was
to implement positive supercompilation, as described (but not implemented)
by Serensen [31, 8]. SPSC is described in [49].

HOSC [50]. HOSC is a supercompiler for a (call-by-name) Haskell subset.
Unlike many other projects, where the main goal is program optimization,
here the main interest lies in program analysis by supercompilation. Besides
standard supercompilation, HOSC can also perform “two-level” supercompi-
lation, based on discovering and applying “improvement” lemmas [40, 51].

Optimusprime [52]. Optimizes functional programs, which are then run on
a specialized FPGA-build processor (Reduceron) [19].

CHSC [53]. Another supercompiler for a Haskell subset [13]. The main goal
of this project was to include supercompilation as an optimization pass inside
GHC. An important technical difference is that CHSC does not perform
lambda-lifting as a preprocessing step, unlike most other supercompilers for
higher-order languages.

Distillation [54]. Most supercompilers use configurations based on expres-
sions with free variables. Distillation uses configurations, each of which in
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turn is similar to a configuration graph. In other words, the nodes of distil-
lation’s configuration graphs contain nested graphs; and folding and gener-
alization must be defined over graphs. Such complications are the price for
obtaining more powerful optimizations, compared to standard supercompi-
lation [55, 56].

MRSC [57] A toolkit for building “multi-result” supercompilers. Multi-result
supercompilation [58] is another generalization of the standard supercompi-
lation technique, where the supercompiler is permitted to return multiple
residual programs (all correct, of course). While this may seem useless at
first glance, it turns our that this extension opens the way for a much more
flexible and modular description of supercompilation, and in the same time
permits some optimizations, which are out of reach for the standard methods.

A Coq framework for building formally verified supercompilers [59] A
framework in Coq for building modular supercompilers by just defining the
basic ingredients (configurations, driving, folding, etc.), and plugging them
into a prefabricated generic supercompiler [60]. The organization of the su-
percompiler is very similar to the one we have just described, and there is a
complete example supercompiler for a language very close to SLL. The main
advantage of the framework is that it facilitates formally establishing the
correctness of each new supercompiler, by just having to prove some simple
properties concerning the basic building blocks.

A supercompiler for Erlang [61] A recent first step towards a practical su-
percompiler for another popular language, Erlang.

TT-Lite [62] A supercompiler for a version of Martin-Lof’s Type Theory
(MLTT). TT-Lite is the first supercompiler for a terminating (non-Turing-
complete) language with dependent types [63]. Another interesting feature
is the generation of “certificates”, containing formal, automatically verifiable
evidence that the residual program is equivalent to the input one in each
specific instance. The certificates themselves are encoded as MLTT terms.

Instead of a conclusion

The main driving force leading to this article was the following idea: using Haskell
to describe — in a clear and modular way — the main ingredients of a minimalistic
supercompiler and show how they fit together. As a result we arrived at the
following definition:

supercompile :: Task -> Task
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supercompile (e, p) =
residuate $ simplify $ foldTree §$
buildFTree (addPropagation $ driveMachine p) e

The text of the article is, in fact, just an attempt to describe each of the parts of
this definition and to show what effects they can achieve together.

We hope the reader will take some time to study SC Mini’s sources, where
comments describe some interesting technical details of the implementation.

Where can we go from here?

If you are interested in learning more about supercompilation, here is a short list
of possible next steps:

1. The articles [8, 31] are still very good and readable introductions to the
standard techniques used in supercompilation, including some not covered
here, such as using homeomorphic embedding as a whistle and using “most
specific generalization” as a generalization algorithm.

2. the Google group “Supercompilation and Related Techniques” [64] contains
the most up-to-date discussions and announcements concerning supercompi-
lation.
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A Haskell sound specification DSL.:
Ludic support and deep immersion in
Nordic technology-supported LARP

by Henrik Baarnhielm (redstar@kth.se)
and Daniel Sundstrom (daniel@monkeydancers.com)
and Mikael Vejdemo-Johansson (mikael@johanssons.org)

In March 20183, the battleship Smaland in the Gothenburg harbor was transformed
into a spaceship, the Monitor Celestra of the Battlestar Galactica fleet, for a three
day Live Action Roleplaying Game. To support the feeling of total immersion into
the game world, we built extensive technological support for the game experience,
including a sound system with a programmable control layer written in Haskell.

In this article we will describe this control layer and our experiences building
and using it for this game project.

The Monitor Celestra is a game that transformed a World War II era battleship
into a space ship, inviting the participants of the game to enter the Battlestar
Galactica [1] universe and forge their own path into the future. The game, a Nordic
Style Live Action Roleplaying Game (LARP) assigns roles to the participants — as
crew, passengers and refugees on board the space ship — and act out the resulting
story within a framework of plots, story lines and clues. The medium differs from
theatre plays in the lack of a script and from improvised theatre in the lack of an
audience — to consume the medium is to participate in it.

Nordic Style LARPs are characterized, among other things, by a strong focus
on immersion. The goal is for participants to feel embedded in the game world
without the distraction of the real world disturbing the fiction. In recent years,
more and more games have been organized that include technological support to
improve the feeling of immersion into the game world.

For The Monitor Celestra, full immersion was implemented using a number of
different techniques: the signage of the ship was replaced with signs that were
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in the Battlestar Galactica aesthetic, the ship had custom-built control panels
controlled a space dynamics simulator, and the game master team had the ability
to trigger a large array of scripted, partially scripted or improvised events that
launch sounds and influence the ship control panels to convey the story.

An important part of this immersion was 15 pairs of loudspeakers, each pair
hooked up to a Raspberry Pi [2] and connected to a wired ethernet network.
These loudspeakers played localized sound effects as well as an ambient sound
backdrop through the entire game, drowning out the sounds of inner city Gothen-
burg and supporting the game experience by confirming consequences of player
actions through mediated responses.

Background

LARP is a form of game where participants receive roles and then proceed to enact
their roles within a framework of plots, story lines and clues. Traditionally, LARPs
have been focused on telling stories in a fantasy /medieval setting, but the form has
seen a wider spread of genres over years. LARP has developed into various design
schools and style — mostly based on geographical distribution. Thus, there are
Nordic LARPs, American LARPs and Russian LARPs, to name a few [3]. Each
school of design has its own theories on what constitutes a gopod LARP and what
goals one must strive to achieve with the game design, participation and outcome
of the game.

In the same tradition as table-top role playing games and improvisation the-
atre, LARP is played out by players in real time in the same general physical
area. Players wear costumes and make props to better simulate their respective
characters. In general, participants receive instructions beforehand regarding spe-
cific game rules, other characters, shared background information, etc. Organizers
define social mechanics and hard game rules for resolving combat, conflicts or sex.

Nordic LARP

The Monitor Celestra belonged to the Nordic LARP school of design. This school
could be argued to emphasize a few different points as being major when creating
or participating in the experience:

» The game should represent the world as faithfully and completely as possible
(games which fulfill this criterion are commonly referred to as 360° games.)
Everything players see and /or experience represents itself within the game —
a gun is a gun, a knife is a knife.

» Participants should put emotional engagement and experience above achiev-
ing in-game goals. Powerful emotional impacts should take precedence when
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deciding how to move the game forward.

» The players should control the outcome of the game. While parts of the
game might be scripted, the main outcome of the game should be left to the
players as far as possible.

Due to the nature of the Nordic school of design, games designed within that
school tend to focus on moral choices and complex social interactions rather than
traditional fantasy stories. There have been games depicting everything from Dan-
ish hobos on the road (The White Road [4]) and students investigating possessed
ladies (Prosopopeia [5, 6]), to 1950s families hiding from nuclear war (Ground
Zero [7]) and terminal cancer patients (Luminescence [7]).

LARP vs. Similar activities

What separates LARP from other similar activities such as tabletop roleplaying
games, computer games and improvised theatre is still an open question. Re-
searchers [8, 9, 10] have pointed to a few main points;

» Emotional engagements increased radically when players are physically en-
gaged in the activity [9].

» Moral choices and consequences from player actions have larger impact when
acted out by other physical players [9].

» Players allow themselves more freedom when acting within a ludic circle,’
thus allowing for a wider range of emotions, experiences and shared actions |8,
11].

» Reflections on the complexity of social and/or humanistic behavior or models
yield a higher level of understanding [10]. Research has shown that when
trying to understand complex models of human behaviour, both in extreme
situations such as emergencies and in everyday contexts - LARP tend to work
very well as tool for exploring motivations, social roles and social systems
based on incitements

It has been humorously suggested that LARPing may be seen as the “extreme”
sport of interactive experiences due to the efforts involved with staging and partic-
ipating in games, the impact on participants and the cumulative effects of player
actions and organizer design.

Similar Events

There have been other efforts to use technology to enhance LARP experiences
within the game? as a key part of staging the experience, mainly within the Nordic

Yudic circle: a shared space of playfulness, from ludic: playful
2As apart from using techonology for support functions, such as economy, participant manage-
ment etc.
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school of LARP design. Historically, these experiments have been conducted by a
small number of game designers and writers. Experiences where technology were
used in a similar capacity as on The Monitor Celestra includes:

» Prosopopeia: Bardo 1 A technology-enhanced LARP played in the autumn
of 2005. Players used technology concealed in an old reel-recorder to com-
municate with dead spirits.

» Prosopopeia: Momentum An continuation to the Prosopopeia project, Mo-
mentum played in the autumn of 2006. Players used a wide variety of tech-
nology, including hardware built using custom constructed components to
explore and wage battles against forces on the other side of death.

» Felsikert Lige A technology-enhanced LARP in the autumn of 2010 situated
in a future, post-apocalyptic world, staged in an abandoned mining town in
the north of Sweden. Technology was used to simulated surviving technology
from before the catastrophe, telling stories and providing quests, items and
treasures for the players to find and use in their own game.

An overview of similar experiments (and others) can by found in [7].

Immersive Soundscapes

Earlier efforts on immersive soundscapes include various implementations in Python,
support in most holistic game engines and similar. However, the main difference
between these implementations and the system built for The Monitor Celestra is
the spatial scale. Usually, these soundscapes are meant to be enjoyed by a single
person in headphones or a handful of persons in a single or a few rooms.

The difference in scale between these implementations and the one described in
this paper makes comparisons hard to do. Most issues met by the usual imple-
mentations were either deemed irrelevant (such as super-focused spatial placement
in the scene — a rough idea was more than enough for a battleship) or too specific
(solutions for physical placing loudspeakers in a square room).

Figure 1: Floor plan of The Monitor Celestra
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Structure of The Monitor Celestra

Every LARP differs in structure and design according to the design goals, cre-
ators and aims with the project. The Monitor Celestra had three runs with 150
participants each, split over three weekends. The runs were separated from each
other and played out the same story with different participants (even though some
participants bought tickets for all the runs).

Every run was split into four game sessions of 4-6 hours, with breaks between for
sleep and briefings. Food was distributed and eaten while in play. Even though
the battleship Smaland was equipped with bunks for its crew, fire regulations
prohibited sleeping on board the ship. Hence, the participants slept at a nearby
hostel between game days.

The story design started out in the setting of Battlestar Galactica: a fleet of
refugee spaceships carrying most of the remainder of humanity flee from robot
aggressors. In the game, The Celestra is separated from the remaining fleet by ac-
cident, and the players have to decide on their actions, while facing various threats:
robots hunting them down, colonies with radical political views and demands, and
internal conflicts on board the ship. Each of the games ended in a different way,
ranging from a valiant effort to save the human race by nuclear suicide taking out
a threat before it could reach the rest of the fleet to setting course for deep space
and forging a new path for the isolated ship.

Game control system design

The technology team for The Monitor Celestra settled at a relatively early stage

on an overall design for the game support technology; the choices made included:

» Wired ethernet communication for everything, split into three different par-

allel networks: sound, game system, and player hackable. Due to the nature

of the play area, parallel network backbones were installed for maximum
durability and error management.

» Communication between game components over AMQP from a RabbitMQ run-
ning on a local game server on the main network. Game logic, world engine
and game rules were written in Ruby.

» Game consoles and GUIs written in HTML5 Canvas rendered on Chromium
running in fullscreen.

» Game consoles able to be used interchangeably with everything being de-
signed for plug-and-play.

» No authentication required within the game network. All published messages
can be trusted on a system level.

» A single game component responsible for game world, time progression and
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synchronization; in this case, a rack server running latest stable Ubuntu LT'S.
» Connection to external network and Internet through a single point-of-entry,
the main game server.
These choices were made based on experiences from earlier projects staged in
similar contexts where the main body of the work was done by unpaid volounteers
in uncontrolled and rough environments.

Sound system design

The original specifications for the Celestra sound system were as follows:

» Fach section/room of the ship should have an independent sound producer,
so that each room could play different sounds simultaneously. Each sound
producer should be able to mix several sounds.

» It should be possible to trigger sound effects at specific locations, both auto-
matically via the game control system and manually by game masters. For
example, a torpedo sound in the torpedo room is played when a torpedo is
launched (triggered by a player), and a warning sound is played in every
room when the hull is compromised.

» To maintain immersion, the sound effects must have low latency.

» It should be possible to trigger sounds at certain future times. For instance,
it should be possible to specify that a torpedo hatch closing sound is played
exactly one second after the torpedo launch sound.

The rest of the game control system was designed to run on a relatively small
number of servers in a control room. One option for the sound system would be
to have a sound server with one sound card for each section, connected to pairs of
speakers located in each section. However, it was decided that a better solution
would be to have actual computers at each section, with their own sound cards,
connected to a central computer via wired Ethernet, which would already existed
in most rooms. This setup would be easier to build in terms of hardware and would
be easier to program for. The computers located next to the speakers in each room
then had to be inconspicuous and inexpensive, since quite a large number would
be needed. This led us to go for the Raspberry Pi (RP) setup.

The choice of RP added constraints. RP has limited RAM and CPU power;
hence, we decided to avoid adding dependencies to the game back-ends on every
RP. While most of the game control systems were written in Ruby and commu-
nicated over AMQP, we decided to implement a special purpose sound daemon in
C++, which would run on each RP and communicate with the central sound server
directly via sockets. This would enable us to achieve lower latency and not drain
resources from the RP.
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Sound daemon

All required sounds were stored as sound files on every RP, effectively creating a
global sound list S. The sound daemon should then accept a few simple commands
on the socket:

» Play sound £ from S at absolute time ¢, as sound with ID n.
» Stop sound with ID n, at absolute time .
» Change volume to v on sound with ID n, at absolute time ¢.

The idea here was that by combining these commands, it would be possible to
realise all the required sound system features. Each RP was time synced to the rest
of the network using NTP [12], hence the sound commands could have absolute
timestamps with high accuracy. To achieve the possibility of playing multiple
sounds at a single RP, the sound daemon communicated with PulseAudio [13],
creating one stream per sound being played. To achieve low latency and to simplify
the implementation, the daemon read in & to RAM upon start-up, rather than
reading a file upon each play command. This added the constraint that the total
uncompressed size of the sounds had to fit into RAM of the RP.

Ambient and story sounds

It turned out that apart from the sound effect type of sounds that the sound
daemon was created for, the game required two other types of sounds.

» Ambient sounds, which should be looped in the background in a section.
For instance, in the reactor room there should be a constant sound from the
reactor.

» Story sounds, which were played at specific events in the game. These were
typically very long compared to ordinary sound effects and were triggered
explicitly by the game masters.

These types of sounds did not quite fit into the sound daemon. The ambient
sounds required looping and needed to be cross faded into themselves to avoid
clicks; the story sounds were too large to fit into RAM. Moreover, the low latency
requirement for these sounds were much less strict.

We therefore decided to use MPD [14] for these sounds. MPD reads files from
disk, hence the sound size would not matter. It also has built-in cross fade and loop
support and can output to PulseAudio, so it was compatible with the sound dae-
mon. Each RP was running an MPD daemon, and the sound server communicated
with it using a standard MPD client library.
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Sound daemon controller

On the sound server, a small piece of controller software was running, which lis-
tened to AMQP sound commands, transformed them into sound packets for the
daemon or to commands to MPD and sent them off to an RP. It was also respon-
sible for transforming node numbers to IP addresses of RPs.

Like most of the game control software, this controller was written in Ruby.
The original idea was that this would be the entry point of the sound system.
However, it turned out that its simple interface, while in principle sufficient for
all sound purposes, was too low-level for creating the sound scenes that the sound
designers wanted to build for the game: crossfades, seamless loops and other sound
design features would require a higher abstraction than the play/loop/stop/change
volume setup for this interface

Thus, we were led to introduce the intermediate layer in Haskell, described in the
following sections. From now on, we will be referring to the sound server described
here as the low-level system, and to the Haskell layer as the high-level system.
The Haskell layer works with two separate interface layers; a low-level interface
facing the low-level system, and a high-level interface facing the game master and
sound designer teams.

Requirements on the sound scene DSL

The work on building a dedicated domain specific language (DSL) for describing
sound scenes started at a relatively late stage of the project, when most other
platform decisions had already been made. The need for an intermediate layer
emerged from the simultaneous need for low-level simple sound execution protocols
that could run on a Raspberry Pi platform and for abstract sound descriptions with
a low technical usage barrier to enable the game fiction design and sound design
crews to interact with the system.

This setting produced a number of requirements that we tried to adapt to during
the project:

Simple output Output from the DSL to the lower level systems needed to have
a simple structure, preferably consisting of discrete orders to PLAY, Loop,
STOP or ADJUST sounds at sound nodes (both addressed by integers).

Accessible input The DSL needed an easy to read and easy to write format that
the artistic side of the project could use to specify sound scenes.

Fast development The DSL needed to be developed during 4 months of volun-
teered free time, during a time span that included several major conference
deadlines. This limited the amount of programmer manpower available.
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System compatibility The DSL needed to react to AMQP messages, store state in
Redis, and format its output in a way easy to parse by the receiving low-level

and high-level interfaces.

Due to earlier experiences with Haskell, we chose GHC and the Haskell Platform
as a host system for the DSL development. An early decision was to use the
automatic parser generation in the standardized Haskell Read and Show classes;
later on, we used the Generics extension to automatically generate JSON parsers
and formatters in order to plug into the existing AMQP message passing architecture.
This reduced large amounts of DSL design to designing appropriate Haskell types:
writing native Haskell code with custom-built data types that represented the
domain allowed for large freedom in defining our own semantics while retaining
the full power of Haskell packages and programming styles.

Design of the sound scene DSL

From the overall design decisions for the entire sound system and game system,
some parts of the design of the sound scene DSL subsystem were clear: we had to
interact with a Redis database and with an AMQP communication system, and we
needed to send JSON packages according to a fixed format in order to control the
lower level system.

On top of this, we had requirements for swift development, ease of use, and
minimizing the amount of extra parsers to write. These criteria were central in se-
lecting Haskell as a platform for the tool: out of the platforms that members of the
workgroup were familiar with, Haskell was far more capable of quick development
and quick automatic generation of parsers and serializers than all the alternatives.

Our system ended up depending on a family of Haskell packages that cover
many of the interoperability requirements. In total, we relied on aeson [15],
amgp [16], attoparsec [17], base [18], bytestring [19], containers [20], ghc-
prim [18], hedis [21], mtl [22], regex-posix [23], text [24], and unordered-
containers [25], for all our library needs.

From these preconditions, we decided that the best way to construct a DSL
would be to encode all important information in terms of specific Haskell datatypes,
so that Haskell methods for generating parsers and serializers could be used. Ad-
ditionally, we needed a hierarchy of types bridging the gap between the human-
readable game master facing DSL and the machine facing (already defined) JSON
protocol.
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The resulting hierarchy of datatypes that we decided on was:

| SoundCommand SoundSpec |
[ DaemonSpec | FilterSpec |
| DaemonCommand |
| AMQPDaemon \

Figure 2: Dependency and compilation path hierarchy for the sound system.

where we had separate compilation steps to transform a SoundCommand into a
DaemonSpec, a DaemonSpec into a DaemonCommand and a DaemonCommand into an
AMQPDaemon.

These types all had different roles:

SoundCommand encoded all orders the system expected from game masters and
sound designers. In order to more easily design datatypes, we separated out
the descriptions of a sound scene and of a reaction trigger from the command
type into the subordinate types SoundSpec and FilterSpec.

DaemonSpec encoded, abstractly, the order types the lower level system accepts.
DaemonCommand encoded in full detail a single order for the lower level system.

AMQPDaemon was a datatype explicitly constructed to serialize through Aeson into
a JSON package that the lower level system could parse.

Here, the SoundCommand type encoded all orders that the game masters and
sound designers wanted to be able to give to the system, while DaemonSpec ab-
stractly encoded all command types the lower level system accepted.

All datatypes derived Read, Show and Generic, which allowed us to automate
parsing both from a Read-Evaluate-Print-Loop as well as create automatic JSON
parsers and encoders from Aeson.

SoundCommand

Our separation of the sound scene description from the Haskell layer control com-
mands and the automated reactive triggers builded on their separation into dif-
ferent datatypes. The family of datatypes we designed closely mirrored the task
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division for the system. At the top-most abstraction level, there was a data type
SoundCommand enumerating the various commands that can be given to the system.

data SoundCommand =
Define Id SoundSpec |
Commit |
Restore |
Diagnostic |
ReadState |
ReadSounds |
Compile SoundSpec |
ReadOut SoundSpec |
Execute Id SoundSpec |
Trigger Id FilterSpec SoundCommand |
SoundCommand :++ SoundCommand |
Declare Id SoundCommand |
Call Id |
Delete Id |
Nop
deriving (Eq, Show, Read, Generic)

There were commands for interacting with the database state storage: Commit
and Restore; commands for debugging and analyzing what a particular sound
scene description was interpreted to: Diagnostic, ReadState, ReadOut; com-
mands for naming and recalling both sound scenes and entire commands: Define,
Declare, Execute, Call, Delete; and commands for triggering sound scenes ei-
ther through events by Trigger or through direct command by Execute. Finally,
there was ReadSounds that reported available sound scenes up to a top level Ul
layer, and :++ for chaining commands together as well as a Nop that could finish an
automatically generated chain of commands for programmatic creation of triggers
and action chains.

The definition used the two types SoundSpec and FilterSpec to parametrize
its entries. These were given by

data SoundSpec =
Play File Segment Time Loudness |
Loop File Segment Time Loudness |
RadialDecay File Segment Time Loudness
SoundSpec :+ SoundSpec |
Use Id |
Stop Int Time |
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Fade Int Time Time Loudness |
StopId Id Time |

FadeId Id Time Time Loudness |
NopS

deriving (Eq, Show, Read, Generic)

and

data FilterSpec =
FilterSpec :& FilterSpec |
FilterSpec :| FilterSpec |
MatchAll [FilterSpec] |
MatchAny [FilterSpec] |
MatchEvent String |
MatchSender String |
MatchKeyValue String String
deriving (Eq, Show, Read, Generic, Ord)

The sound scene specification allowed for playing a sound by name or by index,
either once or on an infinite loop, and for stopping and changing volume. These
were the operations understood by the low level system as well.

In addition to these, the Haskell layer automatically generated packages to
smoothly fade between volume settings (for a spatially distributed decaying sound
scape) and for saving and recalling sound scenes. After an initial attempt to design
the fades, we ended up building in support for remembering the last set volume
for a sound, so that fades could be given by a target loudness rather than by start
and stop loudness settings.

The inclusion of Nop and NopS helped us automate generation of lists of actions;
together with the concatenation constructions given by :++ and :+, there was a full
monoidal structure on both these datatypes, enabling easy generation of composite
commands from lists of command parameters.

Since the entire system actively listened to the AMQP traffic of the entire game
system, it was easy to include a reactive component: using a simple regular
expressions-based recognition engine, we were able to write simple rules that would
when matched trigger arbitrary pre-constructed SoundCommand actions. The rules
were encoded using the type FilterSpec and their corresponding actions were
encoded with the Trigger constructor of SoundCommand. All AMQP messages in
the game system contained a sender, an event key and some collection of key-value
pairs, all of which could be regular expression matched with the rules specified as
FilterSpec entities.
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DaemonSpec

The DaemonSpec type encoded the abstract payload of a single instruction to the
low-level system. An element of type DaemonSpec encoded all the descriptive
information needed for a low-level system command, without containing transient
information required for emitting any particular command package. In particular,
there was a serial ID number assigned to low-level command packages to allow
later commands to modify a running sound. These ID numbers were not added in
the DaemonSpec representation, but rather in the next lower representation.

data DaemonSpec =
DaemonPlay Int Segment Time Loudness |
DaemonLoop Int Segment Time Loudness |
DaemonStop Int Time |
DaemonSet Int Time Loudness
deriving (Eq, Show)

DaemonCommand

The DaemonCommand encoded a message that could be sent to the lower-level sys-
tem. In particular, the command encoded a sequential id-number used for later
modifications of looping sounds and set up a datatype for easy parsing for the
receiving system.

data DaemonCommand = DaemonCommand {

node :: Int,
dcid :: Int,
sound :: Int,
time :: Int,

volume_left :: Float,
volume_right :: Float,
command :: Int

} deriving (Eq, Show, Generic)

AMQPDaemon

The type AMQPDaemon really only existed in order to wrap a DaemonCommand item
for serialization with Aeson and transport in an AMQP package. The type is defined
as:

data AMQPDaemon = AMQPDaemon {
devent :: String,
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dsender :: String,
dcmd :: DaemonCommand
} deriving (Eq, Show, Generic)

with custom JSON instances created by

instance FromJSON AMQPDaemon where
parseJSON (Object v) = AMQPDaemon <$>

v .: "event" <*>
v .: "sender" <x*>
v .: "data"

parseJSON _ = mzero

instance ToJSON AMQPDaemon where

toJSON ad = object ["event" .= devent ad,
"sender" .= dsender ad,
"data" .= dcmd adl

These were the only parser and encoder instances we wrote ourselves for this
project.

Persistent state

There was a number of pieces of information the system needed access to, with
various levels of persistence. We designed a tiered state type consisting of a seri-
alisable section and a collection of transient state properties, described by

data SST = SST {

serst :: SerST,

dbconn :: R.Connection,
achan :: A.Channel,
cmdid :: Int

3

Here, we encoded instance-specific connection data for the Redis database in
dbconn, instance-specific connection data for the AMQP communication channel
in achan, and an instance counter for sequential command ids in cmdid. The rest
of the state was stored in the serst (serializiable state) field, which was saved to
the database in order to persist settings between runs.

The serializable state in turn was given by

data SerST = SerST {
soundscapes :: M.HashMap String SoundSpec,
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commands :: M.HashMap String SoundCommand,
triggers :: [(Id, (FilterSpec, SoundCommand))],
loops :: [(Int, (Segment, Int, Loudness))],

tags :: M.HashMap String [Int]
} deriving (Show, Generic)

where we make extensive use of the strict hashmap implementation from the
unordered-containers package.

Here, soundscapes saved all named sound scape descriptions; commands saved
all named sound system commands; triggers saved trigger definitions and is
iterated through whenever a package showed up that the system might react to;
loops saved currently playing loops and their most recently known loudness; and
tags saved a lookup table from human readable names to command ids.

In addition to these, there was a pair of hardcoded lists defined in the source
code itself: playable and loopable. These two lists contained the names used
throughout the sound system to refer to all playable sounds, in an order kept
synchronized with playlists on both the lower level system daemon and on the MPD
instances. From these were also derived two hashmaps playDict and loopDict to
enable faster index lookups given the names.

Sound scape design daemon

The library described above was then used by a daemon which ran throughout the
game on one of the game control servers and reacted dynamically to instructions
arriving by AMQP. This daemon stored the state in an I0Ref and used the callback
structures in the amgp package to listen for and react to AMQP messages. The entire
logic of the server was encapsulated in this callback and the functions it called.

The callback function parsed out the payload of the received AMQP package and
checked whether it matched a regular expression. If so, it parsed the contained
command and acted on it; if not, it ran the package through all defined patterns
in triggers and ran the associated action for each matching pattern. This linear
lookup may have been slower than more complex solutions, but it had the benefit of
being easy and reliable to design and was probably fast enough for this application.
In the end, as we will describe later, there were some latency issues with the system
as a whole. Our diagnostics of the trigger list handling were inconclusive, but did
not seem to generate the observed latencies.

The function action executed a SoundCommand and carried the entire logic of the
system. This is where the data type was translated into actual reactions. Most of
the implementations were straightforward: read the current state from the I0Ref
variable, extract relevant parts of the state, and then either assemble a package for
AMQP or for Redis and send it out, or modify the running state according to the
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received instructions. By far the most involved of these was the implementation
of the Execute command, responsible for sending out low-level instructions. This
command constructed DaemonSpec descriptions, assigned sequential command id
numbers, packed the result into AMQP packages, and — depending on the exact
type of each command — modified the state to remember the details of the sent
commands for later recall when constructing fades or stops.

Large swathes of the daemon code were reused to construct a command line
interface that generated AMQP packages for controlling the system, allowing for an
accessible debugging and programming interface.

Usage examples

In this section, we will give a few example programs written in the DSL, to give
a flair for the kind of scene description language that emerged from our design
choices.

There were different types of sounds specified by game masters and sound de-
signers, based on the planned usage and design requirements of the sound. There
were ambient sound loops used to simulate states such as running the ships main
reactor or the sounds of massive computer banks running in the sensor processing
room. There were feedback sounds triggered in response to participant actions,
such as loading a torpedo or triggering a sensor sweep. These sounds mainly func-
tioned as both confirmation to the participant that the system has registered the
event and to communicate the occurrence of an event to participants in other parts
of the ship. Apart from these sounds, the game masters had access to a wide va-
riety of sounds and noises with no predetermined meaning in order to simulate
everything from debris hitting the outer hull to onboard fighting, as well as pre-
recorded prologues used to segue players into the game at the start of each game
session.

Some sounds needed to run through an Attack-Decay-Sustain-Release sequence,
composed of multiple sound files and an arbitrarily long sustain-phase. Other
sounds needed to trigger with fixed time intervals.

All sounds needed to be played on a set of speakers — but not all sounds were
to be played on all speakers when played. For example, sounds of airlock doors
opening were played in the section containing the doors and sections immediately
adjacent to it.

We built a setup script to handle all the sound setup in a repeatable and
restartable way. The script had a main consisting of:

main = mapM_ (putStrLn . show) $ <soundlist>
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where the list of sounds was constructed in bits and pieces. We will explain and
give examples for each section of the sound list here.
We also defined and used a single value for simultaneously addressing all sound
sites (except the engine room sub-woofer)

global = [1..11] :: [Segment]

as well as a utility command to help string together sound declarations using the
SoundSpec level concatenation operator:

concatSS = foldl (:+) NopS

Noises and game start sounds

The very easiest sounds to program for our DSL were the sounds that just needed
to sound somewhere once. These consisted of a single sound file which was run all
the way through.

All of these sounds were global. A typical sound definition for an environmental
noise would look like the noise of a distant explosion.

Trigger "explosion distant 5"
(MatchEvent "sound.trigger.explosion.distant.5")
(Execute "explo distant 5"
(concatsSSs
(map
(\i -> Play "Random/explosions/explo_distant_med_05" i 0 (100,100))
global)))

Listing 1: Reactive event definition to play the sound of a distant explosion.

This sound would be triggered by the game masters by pushing a button in their
sound control console that generated a sound.trigger.explosion.distant.5
event on the joint AMQP communication bus.

The four different game starting sound sequences — with mood-setting music and
a spoken recap — were triggered in the same way.

The same structure was used for game end sequences: depending on which of
the six pre-written game ending sounds was deemed appropriate, a different trigger
was sent over AMQP. This then phased over to an improvised game master epilogue
spoken over the ship’s PA system.
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Trigger "celestra act 3 trigger"
(MatchEvent "sound.trigger.act3")
(Execute "celestra act3"
(concatSS
(map
(\i -> Play "Story/Celestra_Akt3" i O (100,100))
global)))

Listing 2: Reactive event definition to start the game session starting sound se-
quences.

Participant-triggered noises

Several of the participant actions were supposed to trigger noises as well. When-
ever one of the players initiated a sensor scan or a torpedo loading procedure,
sounds were triggered that corresponded to that soundscape. The only fundamen-
tal difference between these and the game-mastering sounds described above was
that the triggers used were game system events. As an example, we can consider
the active scanning sensor system.

Trigger "dradispingtrigger"

(MatchEvent "space.sensor.dradis.ping")

(Execute "dradisping"

(concatsSs
(map
(\i -> Play "112_active_dradis" i 1000 (80,80) :+

Play "330_activating_dradis" i 0 (100,100))

global))),

Listing 3: The event definition for the sound system to react to a participant-
triggered active scan ping

As a player successfully initiates an active scan, the sensor control console sends
a space.sensor.dradis.ping message over AMQP. This is picked up both by the
game simulation system, that reacts to the use of the active sensor in the simula-
tion, and by the sound system that launches two sounds to be played on the entire
ship. First (with time-delay 0), the sound 330_activating_dradis: a synthetic
voice announcing the activation of the dradis system, and then, a second later
(time-delay 1000ms), the actual ping sound 112_active_dradis.
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Figure 3: The control panels for the active scanner and the FTL drive.

Ambient loops

The game was designed with three ambient noise loops: one global, with the
general soundscape of a space ship in action, and two localized loops with reactor
sounds and the command bridge sounds. All these needed to be started as each
game session started up, and we built a single trigger to create all of them:

The bridge was controlled by stations 811, while the large sub-woofer system
for the deafening noise of the reactor engines was sound station 12.

In addition to these loops, one more looping sound was included. If a general
alarm was sounded for some reason, the blaring siren sound sat in a loop construct.

Attack-decay-sustain-release

A large family of the sounds used in the soundscape went through a sequence of
sound files, with fades between them. First, one sound would start the sequence.
Next, a loopable sound would keep the sequence running — preferably of a length
that could be determined by the game masters at will. Finally, a sound would
finish the noise sequence, often indicating success or failure of the corresponding
player action.

These were common enough and repetitive enough that we ended up building a
specific function to generate them. In the SoundSpec.hs source file, we defined a
function attackLoopDecay that generated a sequence of chained sound commands.

First, we execute the sound atF at loudness atL and at all the locations in locs.
Next, we launch the loop after a delay of t and at loudness 0. We launch our
cross-fade sequence at t+100ms going from the attack sound to the loop sound.
Finally, we generate a family of triggers for the possible phasing out options. Each
such trigger has a numbered identifier, and contains both the required action for
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Trigger "startup loops trigger"
(MatchEvent "sound.trigger.startup")
(Execute "bridge ambience loop"
(concatSS
(map
(\i -> Loop "136_bridgeambience" i 0 (10,10))
[(8,9,10,11])) :++
Execute '"reactor ambience loop"
(Loop "124_reactor_run" 12 0 (60,60)) :++
Execute "sound of celestra loop"
(concatsSs
(map
(\i -> Loop "103_soundofcelestra" i 0 (20,20))
global))),

Listing 4: Reactive trigger that launches the ambient sound loops at the start of
the game.

Trigger "alarm trigger"
(MatchEvent "sound.trigger.alarm")
(Execute "alarm"
(concatsSs
(map
(\i -> Loop "137_generalalarm" i 0 (50,50))
global))),

Listing 5: Reactive trigger that launches the general alarm siren sound as a loop.
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attackLoopDecay ::
Id -> —— ~ Slug to generate ids for this command set
Id -> —— © atF: attack sound
Loudness -> —-- " atL: attack loudness
Int -> —- 7 t: time before fadeover
Id -> —— © 1pF: loop sound
Loudness —-> -- 7 1pL: loop loudness
[Int] -> -- ~ locs: location list
[(FilterSpec, SoundCommand)] -> -- ~ opts: Options for phasing out
SoundCommand

attackLoopDecay slug atF atL t 1pF 1pL locs opts
Execute (slug ++ "attack")
(foldl (:+) NopS (map (\i -> Play atF i O atL) locs)) :++
Execute (slug ++ "loop")
(foldl (:+) NopS (map (\i -> Play 1pF i t (0,0)) locs)) :++
Execute (slug ++ "xfade")
((FadeId (slug ++ "attack") t (t+100) (0,0)) :+
(FadeId (slug ++ "loop") t (t+100) 1pL)) :++
(foldl (:++) Nop
(map
(\\ (i,(fs,sc)) —>
Trigger (slug++"trigger"++(show 1i))

fs
(sc :++
foldl (:++)

(Execute (slug++"stop")
(StopId (slug ++ "loop") 0))
(map
(\j -> Delete (slug ++ "trigger" ++ show j))
([1..length opts]))
)
(zip [1..] opts)))

Listing 6: The attackLoopDecay utility function
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the phasing out option in sc, as well as commands to stop playing the loop and
to clean out all the alternative phase out options.

With this utility function in place, we are able to construct sound sequences for
potentially failing player-initiated events — such as using the Faster-Than-Light
jump drive.

Trigger "ftl jump trigger"
(MatchEvent "space.console.ftl_jump_started")
((Execute "ftl jump voice"
(concatSSs
(map
(\i -> Play "314_initiating FTL" i 0 (80,80))
global))) :++
(attackLoopDecay "ftl jump "
"117_FTLspinningup" (80,80) 150
"123_FTLspinupcomplete" (80,80)
global
[(MatchEvent "space.console.ftl_jump_completed",
Execute "ftl jump completed"
(concatSSs
(map
(\i -> Play "119_FTLjump" i O (80,80) :+
Play "318_FTLcomplete" i 9000 (100,100))
global))),
(MatchEvent "space.console.ftl_jump_failed",
Execute "ftl jump failed"
(concatsSSs
(map
(\i -> Play "118_FTLfail" i 0 (80,80) :+
Play "317_FTLmalfunction" i 4000 (100,100))
global)))1))

Listing 7: Reactive trigger event to launch the FTL jump sound sequence, with
two options for sequence finish: one for success, one for failure.

When the FTL command console initiates a jump sequence, the AMQP message
space.console.ftl_jump_started’ is issued. This launches a sound system re-
action that first triggers the synthetic voice announcing ship-wide that FTL has
been initiated, by playing 314_initiating_FTL everywhere.

Next, we call the attackLoopDecay construct to generate the sounds for spinning
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up and running the FTL engine. The related sounds are named ft1 jump attack,
ftl jump loop, ftl jump xfade, ft1 jump trigger 1 and ftl jump trigger
2.

The two triggerable end sounds are triggered with the game master generated
space.console.ftl_jump_completed and space.console.ftl_jump_failed mes-
sages respectively, and play a sound and a synthetic voice message corresponding
to the result.

Countdown

Never actually used in game, we also prepared a way to generate a synthetic voice
counting down. We had pre-recorded numbers that could be concatenated, but
needed to string them together programmatically.

To do this, we adapted the game engine to send out timing signals over AMQP
every second, every 10 seconds, every 30 seconds and every minute. With these, we
could construct functions that generated triggers listening to these timing signals
and generating appropriate sound commands for the countdown sequence. They
were all variants of the same fundamental structure, illustrated in Listing 8

minutes n =
Declare
("countdown " ++ show n ++ "mOs")
(Trigger "countdown"
(MatchEvent "sound.heartbeat.minute")
(Execute "countdown"

(concatSSs
(map
A\i —>

Play "Countdown/T minus" i O (100,100) :+

Play ("Countdown/" ++ show n) i 1000 (100,100) :+

Play "Countdown/Minutes and counting" i 2000 (100,100)) global)) :++
Call ("countdown " ++ show (n-1) ++ "mOs")))

Listing 8: Function to parametrically define a trigger event to launch a minute-by-
minute count down sound sequence.

Calling minutes 3 would store a SoundCommand named countdown 3mOs that
generated a trigger waiting for the next sound.heartbeat.minute event and then
playing a synthetic voice saying Countdown T minus three minutes and count-
ing. Finally, the event would look up and call the stored SoundCommand named
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countdown 2m0s.

For the last 15 minutes, the countdown would drop down to counting every
30 seconds; for the last minute, it would count every 10 seconds, for the last 10
seconds, it would count every second.

Access to these chains of callable commands was given to the game masters by
generating triggers through versions of the trigger given in Listing 9.

minuteTrigger n =
Trigger
("countdown trigger " ++ show n ++ "mOs")
(MatchEvent ("sound.trigger.countdown." ++ show n ++ "mOs"))
(Call ("countdown " ++ show n ++ "m0s"))

Listing 9: Game master callable triggers to launch the countdown sequence from
a parametrizable starting time.

When an AMQP message of the form sound.trigger.countdown.25m0s arrives,
the trigger generated by a call to minuteTrigger 25 is activated. This trigger
looks up and calls the stored SoundCommand named countdown 25mOs, which hooks
into the chains of SoundCommands described above.

Experiences

The experiences gathered in this project can be organized into the various stages
of the project.

Rapid development and package designs

It turns out that the amgp package expects lazy bytestrings and the hedis package
expects strict bytestrings. The bytestring package installed had no automatic
way to convert between these — and it took a while in the project to figure out
how to make all systems interoperate.

Several features of the resulting sound scape daemon were direct consequences
of package and platform choices. The automatically generated serialization and
parsing capabilities, both in the Show/Read dyad and in the Generic generation
of JSON and bytestring serializers all mean that parsing and serialization worked
automatically and immediately. Using the callback structure of the amqp library
also meant that a reactive server loop was provided essentially for free.

All these features contributed to a rapid development with large amounts of
functionality arriving early in the process.
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Interfacing to other component platforms

Since the entire project was communicating by AMQP with JSON-encoded packages
already, the use of these standards made interoperability easy. One of the most
difficult parts of this side of the development process was in inspecting emitted
JSON packages to figure out the particular encoding that the Generic-generated
JSON parser worked with, so that appropriate and parseable structures could be
emitted from the Ruby control interfaces.

Once the reactive interfaces through the amgp module were in place, it quickly
became clear to us that the easiest way to provide user interfaces to the daemon
would be through a Ruby web application front end that emitted packages crafted
to trigger specific rules in our trigger system.

Interfacing to creative design teams

One original expectation that did not work out as expected was to produce a lan-
guage for other users to work with; as often is the case with large scale projects
relying on voluntary work and expansive creative vision, work on the project pro-
gressed beyond the launch of the first performance. The sound design teams worked
on sound design far beyond the stage where they would have needed to familiarize
themselves with syntax and functionality of the sound specification system to use
it themselves.

Instead, as a compromise, we requested all relevant information to encode the
designed soundscapes; and iterated through requests for more information and
educated guesses until soundscapes were defined and could be tested. Here, the
choice of embedding the language within Haskell paid off; the sound specification
programmer was able to use many Haskell-specific idioms and structures to produce
long sequences of parametrized and repetitive sound scape definitions. These were
in the end stored as commands stored in triggers, listening to specific triggering
packages, often creating new triggers for later reactions. This enabled constructions
where a player action (pressing the Load Torpedos button) would start some sounds
(a loading torpedo noise), but then wait for game master confirmations before
playing further sounds (a loading-finished noise and a robotic voice confirmation).
The later sounds would be temporarily installed trigger definitions waiting for a
confirmation package and including cleanup code that erased all the temporary
trigger conditions after sound execution, as described in the examples above.

Latency in performance

There were latency issues in the performance use. We had, in the end, 320 trigger
expressions, each carrying up to 300 sound play events in short sequences. At
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the first performance, the on-site crew noticed latencies reaching up towards 810
seconds between triggering action and sound execution. Before we were able to
isolate the cause of these issues, and while we were still comparing complexity
properties of the chosen containers — Haskell lists and strict hashmaps depending
on whether inspection of all members would be a common operation or not — the
performance issues decreased to within a few seconds. Given the acoustic layout
of the ship, this was deemed sufficient for further performances.

It should be noted that the high-latency results required some dramaturgic edits;
certain sound effects were not used because they were dependent on low latency,
and thus infeasible even with the reduced performance issues. It was decided
between the first and the second performance to run with the system as built and
not try for specific further optimizations.

Hardware Issues

An issue arouse based on the hardware. Once the system was properly deployed
and the project entered the testing and verification stage, it was discovered that
before playing sounds, the system emitted a few seconds of pops and noise regard-
less of the sound played. After researching the issue, this was proven to be a known
issue with the RP platform, stemming from the way power supply is routed to the
sound chips on the PCB. Known workarounds existed which were applied [?].
These resolved enough of these issues for the solution to be acceptable.

Experiences on-site

The system was installed in the war ship two days before start of the game. Instal-
lation was done in three steps; preparing clients, server-side, and on-site configu-
ration. Since circumstances at the location were more spartan than other, off-site
locations available to the team — most preparation was done in-office and then
transported to the actual game location.

Client preparation consisted of pre-loading SD cards for the Raspberry Pis with
client daemons, the pre-configured sound library and connection bridges. A disk
image was prepared and then duplicated onto the memory cards. This saved time
at installation time, but proved to be a bad choice on-site. Certain updates could
be performed over the network — but due to issues with the disk image duplication
the memory cards had to be reprogrammed. This could only be done with the
physical cards in hand and since the Raspberry Pis were distributed over a large
area and, in many cases, in locations hard or cumbersome to reach — this proved to
be a larger job than anticipated. Apart from this, pre-loading the memory cards
worked very well.
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Server-side installation and configuration was done via cabal on the main game
server. Haskell code was kept up-to-date via a Git repo and regularly synchronized
from an online repository. Installation on server went as expected and was very
easy to get set up.

On-site configuration was designed to be done in three steps; physical installa-
tion, soundscape configuration and verification. Physical installation was cumber-
some but not beyond expectations. Soundscape configuration worked almost as
expected. The Commit command built into the system proved invaluable since it
allowed for one part of team working remotely to write an import-definition of the
soundscape then send it to the on-site team, who imported it into the server and
then made local backups and exports.

Conclusion

Haskell as a platform, coupled with programming techniques connected to a func-
tional reactive programming style, datatype construction for domain modeling and
a package collection that neatly covered all required technological dependencies all
combined to a successful project where the sound specification system produced
significant value to the game experience and to the immersion into the game world
for the participants. Features of Haskell as a platform and of the packages used
produced a more capable deliverable than the original specification had expected.

We are not releasing the source code for this system, however, we encourage
anyone interested in further details or derivative projects to get in touch with any
of the authors.
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MFlow, a continuation-based web
framework without continuations

by Alberto Gomez Corona (agocorona@gmail.com)

Most of the problems which complicate the coding and debugging of web applications
come from the same properties which make web applications scalable and flexible:
HTTP is stateless and HTML 1is untyped. Statelessness gives freedom to the user,
but it implies an inversion of control, where the HTTP requests invoke different
request handlers that manage a global state and generate individual web pages.

Digkstra’s famous admonitions about goto statements apply to request handling
mechanisms that manage these state transitions. Handlers do not share variable
scopes, so, like in the case of the goto, code relies on global variables or on global
session variables. There is no top-level structure in the code to make the main
sequence evident. For the maintainer, it is very difficult to know what any piece of
code s trying to achieve. Even worse, there is no inherent fized sequence and the
execution may be broken by out-of-order requests that do not match with the state
of the application, forcing developers to pollute code with checking conditions and
error messages.

Continuation-based frameworks solve these problems since they maintain execu-
tion state snapshots that match with each possible request. But continuations are
memory hungry, and they cannot be easily serialized and shared. This precludes
horizontal scalability and failover. As a result, these web frameworks have not been
accepted by the mainstream, despite their advantages.

In this article, I will show how an alternative monadic structure for thread state
serialization and backtracking can solve these problems. MFlow [1] is a Haskell
web framework that automatically handles the back button and other out-of-order
requests. Unlike continuation-based frameworks, each GET page is addressable
by a REST URL, and the architecture is scalable since the state is composed of
serializable events. It is based on enhanced formlets that permit the creation of fully
self-contained, composable components called widgets with high level combinators,
allowing for the creation of dynamic applications with no explicit use of JavaScript.
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Motivation: State management

Many web applications require the same sequence of steps to execute in different
contexts. Often, these sequences are merely components of a larger task that the
user is trying to accomplish. Such a reusable sequence is called a flow. User
registration, log in, checking in for a flight, applying for a loan, shopping cart
checkout, or even adding a confirmation step to a form: these are all examples
of a flow. In many of these cases, the website needs to store state, and this state
sometimes must extend across browser sessions. Storing all the state in the browser
can have security issues, and the state is limited to a single web browser. To deal
with this problem, web frameworks include server session state that every HT'TP
event handler can access and modify. The program becomes a state transition
machine: such state transitions are hard to code and maintain.

The Spring Web Flow, a flow oriented framework on top of the Java Spring
framework enumerates the following problems when developing web applications [2]:

» Visualizing the flow is very difficult.
The application has a lot of code accessing the session state.
Enforcing controlled navigation is important but not possible.
Proper browser back button support seems unattainable.
Browser and server get out of sync with “Back” button use.
Multiple browser tabs cause concurrency issues with HTTP session data.

The ideal solution would be to codify the application flow in the most natural
and maintainable way possible. It would be necessary to preserve, in the code, the
sequencing whenever the sequence exist, in the same way as a console application.
However, each individual page should be addressable by means of an URL.

There is an apparent incompatibility between the state transition machine model,
enforced by the web architecture, and the sequential description proposed above.
However, the request handlers triggered by each request can be considered as a
continuation in the flow, with the state generated by all the previous events. It
is possible to invert back the inversion of control [3] so that the program can ex-
press the flow directly in the form of a sequence which contains inputs and outputs
from/to the Web browser, just like a console application.

This transformation does not change the way the web server and the program
interact: the server invokes request handlers, but the handlers are sequenced inside
a procedure, so that they share variable scopes. Since the state is in the form
of ordinary language variables, the maintainer can observe the sequence of state
changes, and a statically typed compiler can verify the consistency of the state
transitions. Each request goes to the handler that has the appropriate state to
handle the request. This is the basic design of continuation-based frameworks
such are ocsigen (OCaml) [4] or Seaside (Smalltalk) [5].

However, serialization and sharing of continuation state across computer nodes

vvyvVvyyy
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is necessary if we want state persistence and horizontal scalability.

The input-output load involved in state sharing is the reason why REST recom-
mends to use as little state as possible. This is hard to do: even if the language
has serializable closures, a continuation includes program code which is linked
with many libraries which may render the serialization huge; additionally, it may
be linked to non serializable objects of the operating system [6].

The problem of the size and portability of serialized continuations is still un-
solved, although there have been some advances on this area in the Scala lan-
guage [7]. Another option is to store the portable state in the client [8]. This
solution constrains the state to a single browser session.

Another way to deal with these problems is to redirect every user to an unique
server. In long living flows, especially when it exceeds the mean time between fail-
ures, this can end up in loss of state. each page in a flow supposes the serialization
of the closure that handles the request of the page, so that the problem of state
management multiplies by the number of steps. Maintaining only the most recent
states impairs the navigability with the back button. These problems have main-
tained the continuation-based frameworks out of mainstream use, despite their
huge advantages.

MFlow state management

In the Haskell language, it is not possible, to date, to serialize a dynamic closure.
Cloud Haskell [?] communicate pointers to closures whose addresses are know at
compilation time. That method is not feasible for the dynamic closures generated
by continuations, that include the state of the computation.

However, it is possible to create an execution log and recover the execution state
by running the program taking as inputs the logged events when the procedure
is re-started. The log will contain the intermediate results of each step in the
computation, though not the computation itself. The machinery for log creation
and recovery can be hidden in a monad.

This is the purpose of the Workflow monad, defined in the workflow package [10].
The effect of logging and recovery are managed by the step call. The monad
is essentially a state transformer which stores intermediate values in persistent
storage.

The pseudocode of the lift operation (step) that would do logging and recovery
would be:

import Control.Monad.State
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type Workflow = StateT

step:: m a -> Workflow m a
step mx = do
st <- get
if thereRemainResultsInlLog st
then getResultfromlog st
else do
r <- mx
storelnlLog r st
return r

Since the state must be written to (read from) permanent storage, results must
be serializable, so step is not defined for all types, but for types with Serialize
instances. The real signature is:

step:: (MonadIO m, Serialize a, Typeable a) => m a -> Workflow m a

To make the logging and recovery more efficient, the workflow monad caches the
read and write operations. Serialize, from the RefSerialize [11] package, allows
incremental serializations of the modifications of a data structure in the log, rather
than logging the entire structure in each step. This is very useful when the flow
manages containers or large user-defined structures

Let’s see how to use the workflow monad. A computation in the IO monad, for
example:

main = do
n <- ask "give me the first number"
n’ <- ask "give me the second number"
print $ n + n’

ask s = do
putStrlln s

r <- getline
return $ read r

Can be lifted to the workflow monad:
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include Control.Workflow
include Control.Monad.I0.Class(1iftI0)

main = execl "wfname" $ do
n <- step $ ask "give me the first number"
n’ <- step $ ask "give me the second number"
1iftI0 . print $ n + n’

The lifted computation includes effects of logging and recovery. If we interrupt
the program before answering the second question, upon restart the computation
will not ask the first question. Instead, it will retrieve the answer from the log
and immediately ask the second question. The variables and the execution state
then will be the same than when the program was interrupted: the state has been
recovered from the log.

If we define ask to handle HTTP requests and responses instead of console
input/output, a procedure of this kind can express a web flow. In particular, the
log can be stored in the browser by means of hidden form variables. If the process is
finished after each response, that would make the server applications stateless and,
hence, very scalable and fullly REST compliant, since each page keeps its own log
state. That is the solution adopted by Peter Thiemann in WASH [12], an excellent
Web framework mistreated by its syntax. But client stored state is not appropriate
in many cases, for the functional and security reasons above mentioned. Moreover,
a re-spawn of the process and a replay of the log are necessary on every request.

MFlow takes a different approach. In this case the server stay running waiting
for the next request until a timeout is reached, instead of being stopped after each
request. The non-blocking nature of the Haskell threads make the context switch
for each request as efficient as event handlers.

After the timeout the process dies. When a new request arrive, the process
restart using the log to recover his state. Unfortunately, there is an added problem
on this new approach: the server process must synchronize in some way when the
process is running and receives out of order requests instead of the next request in
the flow sequence, e.g., when the user has pressed the back button.

Synchronization problem

To solve the back button problem, a form of backtracking is necessary, so that
when the browser send a request from of a previous page in the navigation, the
procedure can go back until a previous page handler in the flow match with the
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data sent. From this moment on, the flow proceed normally. This is the purpose
of the fail-back monad:

data FailBack a = BackPoint a | NoBack a | GoBack

newtype BackT m a = BackT { runBackT :: m (FailBack a ) }

instance Monad m => Monad (BackT m) where
fail _ = BackT $ return GoBack
return x = BackT . return $ NoBack x
x >>= f BackT $ loop
where
loop = do
v <- runBackT x

case v of
NoBack y -> runBackT (f y)
BackPoint y -> do
z <- runBackT (f y)
case z of
GoBack -> loop
other —-> return other
GoBack -> return GoBack

instance MonadTrans BackT where
1lift f = BackT $ f >>= \x -> return $ NoBack x

breturn = flowM . BackT . return . BackPoint

This monad executes as an Identity monad as long as it is handling NoBack
results. But if GoBack is returned by some statement, then, if the previous one
returned a BackPoint, it will be re-executed again.

If the previous statement was not a BackPoint, then this previous statement will
return GoBack as well, so the computation will proceed further back until another
previous BackPoint is found.

Each BackPoint in the backtrack is re-evaluated. If it returns NoBack or BackPoint,
the process will resume forward execution. If it returns GoBack, it continues back-
tracking.

This console application is the same above program lifted to the fail-back monad:
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main = runBackT $ do

1ift (print "will return here at most") >> breturn ()
n <- 1lift $ ask "give me the first number"
n’ <- lift § ask "give me the second number"
1ift $ print $ n + n’
where
ask s = do

putStrln s

s <- getLine

if s == "back" then fail "" else breturn $ read s

Here, ask is designed to return to the previous line when the string “back” is
entered. In the last line, ask either fails and initiates a backtracking to the previous
ask or returns with breturn and becomes a back point that will be called again
in case of backtracking.

If ask is redefined to accept formlets [13] descriptions instead of text, to send/re-
ceive HTTP requests and responses, then the fail-back monad can handle gracefully
the back button: it is only necessary to verify the match of the parameters with
what the formlet expects. If there is no match, it triggers backtracking until some
previous ask match. This solves the problem of the back button.

All that concerning the back button, but that does not solve the general problem
of tracking from a branch in the navigation tree to another. I will show below how
backtracking together with a careful design of link syntax make it possible to
address any page in the flow forward by means of a REST URL.

The FlowM monad is essentially the same failback transformer stacked above a
State transformer that carries out the formlet state. It may be stacked on top of the
(Workflow I0) monad or the I0 monad, depending on whether or not persistent
state is desired:

newtype FlowM v m a = FlowM {runFlowM :: FlowMM v m a}
deriving (Monad, MonadIO, MonadState (MFlowState v))

StateT (MFlowState view) m
BackT (WState view m)

type WState view m
type FlowMM view m
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User Interface

The rendering and validation in MFlow are inspired by the formlets [13] concept
The View data carries out a rendering format v for an underlying monad m, which
is I0 always, except in the case of cached widgets.

As in the case of the FlowM monad, the View data carries the formlet state
information.

The formlet information is stored in a FormElm data structure, which has the
generated rendering as well as the result of the match of the request parameters
with the formlet in a Maybe value:

newtype View v m a = View { runView :: WState v m (FormElm v a) }
data FormElm v a = FormElm [v] (Maybe a)

The v in these definitions is the particular rendering. A widget must have a
rendering format that must be an instance of the FormInput class.

class (Monoid view,Typeable view) => FormInput view where

toByteString :: view —-> B.ByteString

toHttpData :: view -> HttpData

fromStr :: String -> view

fromStrNoEncode :: String -> view

ftag :: String -> view -> view

inred :: view -> view

flink :: String -> view -> view

flinkl:: String -> view

flinkl verb = flink verb (fromStr verb)

finput :: Name -> Type -> Value -> Checked -> OnClick -> view
ftextarea :: String -> T.Text —> view

fselect :: String -> view -> view

foption :: String -> view -> Bool -> view

foptionl :: String -> Bool -> view

foptionl val msel = foption val (fromStr val) msel
formAction :: String -> view -> view

attrs :: view -> Attribs -> view
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This class describes how to create form elements, links and error messages in that
particular format. Using the class methods, the widgets are not tied to a particular
rendering. In most cases, blaze-html rendering is used, but there are also bindings
for xhtml and HSP. It is possible to create widgets that can use any render-
ing, thanks to the FormInput abstraction. The widgets in MFlow.Forms.Widgets
module are defined in this way.

The pseudocode of an Int input box would be:

getInt :: (FormInput view, MonadI0 m) => Maybe Int -> View view m Int
getInt = View $ do

parm <- genNewId

mr <- lookupParam parm

return \$ FormElm [finput "text" parm "" False Nothing ] $ mr

ask gets a widget, displays it, gets the response from the user and returns it
under the FlowM monad:

ask :: (FormInput view) => View view I0 a -> FlowM view IO a

page = ask

page is a synonym of ask
The formlets can be combined with applicative operators to create more complex
widgets. A page is a widget. For this purpose, View has an applicative instance:

instance (Functor m, Monad m) => Applicative (View view m) where
pure a = View $ return (FormElm [] $ Just a)
View f <*> View g = View $
f >>= \(FormElm forml k) ->
g >>= \(FormElm form2 x) ->
return $§ FormElm (forml ++ form2) (k <*> x)

This is a complete program that uses the FlowM monad and widgets combined

with applicative operators:

{-# LANGUAGE OverloadedStrings #-}
import MFlow.Wai.Blaze.Html.All
import Control.Applicative
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main = runNavigation "sum" . step $ do
setHeader html . body
(n1,n2) <- page $ (,) <$> getInt Nothing <++ br
<*¥> getInt Nothing <++ br
<** submitButton "send"

page $ p << (n1+n2) ++> wlink () "click to repeat"
runNavigation executes the FlowM computation in a endless loop.

runNavigation :: String -> FlowM Html (Workflow I0) () -> I0 ()

It expects persistent navigation, but the example is transient, so we apply a
single step to the transient computation. The first page rendering is an applicative
combination of getInt formlets to create a 2-tuple.

There are line breaks (br) added using blaze-html formatting. They are added
with the operator:

(++>) 0 v > View vma -> View v m a

...that add formatting to a widget.
This operator:

(k) i (v > v) >v —>v

...encloses formatting within a tag (in this case the blaze-html tag “b”). Since
m has less precedence that ++>, the composition does not need parentheses.

The second page presents an HTML paragraph with the sum of the numbers.
The wlink widget renders an HTML link, with a URL that invokes the flow again;
the page will return wlink value.

wlink :: (Typeable a, Show a, MonadIO m, FormInput view)
=> a -> view -> View view m a

Because wlink is in the last FlowM statement, runNavigation will restart the
computation again.
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Routing

Note that wlink can also consume inmediately an element of a RESTful path,
if it is available, without displaying anything. When a widget returns a match,
page does not send a page response. Instead, it returns the result to the flow
immediately. This is key for addressing any page in the flow in a REST URL:

data Option = Optionl | Option2

main = runNavigation "verb" . step $ do
r <- page $ h3 << "Alternative operator used here"
++> wlink Optionl << b << "Choose Optionl" <++ br
<|> wlink Option2 << b << "Choose Option2"

case r of
Optionl -> procl
Option2 -> proc2

In this example, URLs which start with http://host/verb/optionl/... will
go straight to proc1: the menu will not be presented. As you would expect, URLs
which start with http://host/verb/option2/.. will go straight to proc2. The
URL http://host/verb will go to the initial menu.

Thus, it is possible to express REST routes as flows using wlink. The code
above has three implicit routes.

This is combined with the backtracking mechanism to make any GET page in
the flow addressable. For example, if in the above example the flow is running the
procl branch, when the user enters the URL of the second option, the backtracking
mechanism will backtrack to /verb, after which the second wlink will match the
/option2 segment of the URL, so proc2 will be executed.

Single page applications

As seen above, the applicative instance permits the combination of widgets using
applicative operators. But View also has an Monad instance:

instance (Monad m) => Monad (View view m) where
View x >>= f = View $ do
FormElm forml mk <- x
case mk of
Just k -> do
FormElm form2 mk <- runView $ f k
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return $§ FormElm (forml ++ form2) mk
Nothing ->
return $§ FormElm forml Nothing

return = View . return . FormElm [] . Just

This monad instance is somewhat remarkable. In this monadic instance, the
second widget consumes the output of the previous statement, provided that the
latter validates. But if the previous widget return Nothing, then the computation
is interrupted and the rendering becomes what was produced until that moment.

page in this case will present the rendering again and again until the monadic
computation finish with a valid output that will be returned to the flow. Since
each iteration read the input of the previous one and each widget can modify its
presentation depending on the previous widget output, sophisticated input forms
and presentations are possible:

data Client = Person{pname, paddress :: String, age :: Int}
| Company{cname,caddress :: String, numWorkers :: Int}
main = runNavigation "input" . step $ do
page $ do

type <- getRadio[\n -> n ++> setRadioActive v n
| v <-["person","company"]
case type of
"person" -> Person

<$> "name: " ++> getString Nothing

<*> "address " ++> getString Nothing

<> "age " ++> getInt Nothing
"company" -> Company

<$>"name: " ++> getString Nothing

<*> "address " ++> getString Nothing
<*> "yorkers " ++> getInt Nothing

Here, two options in a radio button are presented. Because it is a monad, the
second statement can use the type to present the appropriate applicative form.

In the first iteration, only the radio buttons are presented. When the user
chooses one of the options, the appropriate formulary appears below the radio
buttons. When the user completes the formulary, page will return the Client
data to the flow. If the user changes the option in the radio button, the form will
change accordingly.
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To avoid sending the whole page at each iteration, there are some page modifiers
that refresh only the elements that change using AJAX. Push is also possible using
long polling. The execution of the server code is the same but only the rendering
of the widget activated by the request is refreshed in the page.

Note that the single page example above can be transformed into a two pages
example by translating the View monad to the FlowM monad with only a few
changes.

If in the bind operation of the View monad we discard the rendering of the first
formlet, the effect is that the rendering of the second formlet is substituted for the
first when the former is validated. That is how MFlow implements the callback
mechanism of the Seaside framework [?]

Using these and other combinators it is possible to create different kind of ap-
plications using basically the same above elements in a pure Haskell EDSL [15].

Web services

A widget in MFlow is essentially a request parser and a writer of responses. A
page is the composition of this kind of elements.

That parser-writer combination of the View monad can be used as a general
request-response mechanism. Adding a simple set of combinators it is possible to
create web services in an idiomatic way without the need of special constructions.

The three services implement a sum and a product of two integers.

First, a REST web service, where the parameters are in a REST path.

main = runNavigation "apirest" . step $ ask $ do
op <- getRestParam
terml <- getRestParam
term2 <- getRestParam
case (op, terml,term2) of
(Just "sum", Just x, Just y) -> wrender (x + y :: Int) **> stop
(Just "prod", Just x, Just y) -> wrender (x * y) **> stop
->do -- blaze Html
hl << "ERROR. API usage:"
h3 << "http://server/api/sum/[Int]/[Int]"
h3 << "http://server/api/prod/[Int]/[Int]"
++> stop

stop = empty

getRestParam read the next REST segment in the path if there is any.
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stop is a synomym of of the Applicative class empty method. By definition,
the computation will stop, ask will fail and the Flow will not navigate forward.
The content of the writer (the one generated by wrender) is sent as response. If
the parameters are not the expected ones, the a HTML message is sent.

Some example of invocations:

> curl "http://mflowdemo.herokuapp.com/apirest/prod/4/3"
12

> curl "http://mflowdemo.herokuapp.com/apirest/sum/5/7"
12

The second example read key-value parameters for the numbers instead of REST
parameters:

main = runNavigation "apikw" . step . ask $ do
op <- getRestParam
terml <- getKeyValueParam "t1"
term2 <- getKeyValueParam "t2"
case (op, terml, term2) of
(Just "sum", Just x, Just y) -> wrender (x + y :: Int) **> stop
(Just "prod", Just x, Just y) -> wrender (x * y) **> stop
_ —> do -- blaze-html
h1l << "ERROR. API usage:"
h3 << "http://server/api/sum?t1=[Int]&t2=[Int]"
h3 << "http://server/api/prod?tl=[Int]&t2=[Int]"
++> stop

Some example invocation:

> curl "http://mflowdemo.herokuapp.com/apikv/prod?7t1=4&t2=3"
12

> curl "http://mflowdemo.herokuapp.com/apikv/sum?t1=4&t2=3"
7

The third service uses key-value parameters as well, but there are defined parsec-
like combinators that are Widgets as well:

main = runNavigation "apiparser" . step . asks §
do rest "sum" ; disp $§ (+) <$> wint "t1" <*> wint "t2"
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<|> do rest "prod"; disp $ (%) <$> wint "t1" <*> wint "t2"
<?> do -- blaze Html
hl << "ERROR. API usage:"
h3 << "http://server/api/sum?tl=[Int]&t2=[Int]"
h3 << "http://server/api/prod?ti=[Int]&t2=[Int]"
where
asks w = ask $§ w >> stop

Some example invocation:

> curl "http://mflowdemo.herokuapp.com/apiparser/prod?t1=4&t2=3"
12

> curl "http://mflowdemo.herokuapp.com/apiparser/sum?t1=4&t2=3"
7

The combinators rest and wint are defined below, from getRestParam and
getKeyValueParam. They are part of the MFlow.Forms.WebApi module

rest verify that the next rest parameter is an expected value. wint read a
parameter of type Int which has a given key.

The operator <?> present a blaze-html message when the parser does not match,
like in a parser combinator.

disp writes the result of a computation.

It uses the same applicative, alternative and monadic combinators defined for
any other widget in MFlow.

stop = empty

restp = View $ do
mr <- getRestParam
return $ FormElm [] mr

rest v = do
r <- restp
if r ==
then return v
—-— restore the rest index and fail
else modify (\s -> s{mfPIndex = mfPIndex s-1}) >> stop

wparam par = View $ do
mr <- getKeyValueParam par
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return $ FormElm [] mr

disp :: Show a => View Html I0 a -> View Html IO ()
disp w = View $ do
elm@(FormElm f mx) <- runView w
case mx of
Nothing -> return $ FormElm f Nothing
justx@(Just x) -> return $ FormElm (f++[fromStr $ show x])
$ return ()

infixl 3 <7>
(<?>) w v = View $ do
r@(FormElm f mx) <- runView w
case mx of
Nothing -> runView $ v ++> stop
Just _ -> return r

wint p = wparam p :: View Html IO Int

Scalability

Because the logs grow by small update events, it is easy for two or more servers to
synchronize state by interchanging step events instead of entire states. The small
size of the step events makes MFlow state easier to synchronize and architecture
independent, without the problems of continuation-based frameworks.

Execution traces

Trace logging by means of hand-made statements, although tedious and cumber-
some, is a traditional way of tracking errors in web applications in production
environments

MFlow produces automatic execution traces under the FlowM v I0 monad.
These logs are produced at failure time. This log is created by the same back-
tracking mechanism of the fail-back monad.

Other exception-treatment monads like Error, Maybe or the Exception monad
fail back to the calling method. The failback monad instead returns to the previous
statement, so a trace rather than a call stack will be produced. This is a great
improvement, especially for web applications where it is necessary to extract the
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maximum amount of information from each failure in the exploitation environment.

The trace mechanism uses the monadloc[16] package. withLoc is a method of
the MonadLoc class, so it can be redefined for the particular needs of each monad.
In this case, the instance inserts an exception handler that adds the line of error
to the trace and initiates a backtracking. The backtracking proceeds back to the
beginning, following the execution history in reverse order. This is the pseudocode
of the instance:

instance MonadLoc (FlowM v I0) where
withLoc loc f = do
r <- compute f ‘catch‘ (\e ->do
insert (show e) in the list
return GoBack) -- backtrack
if trace going
prepend location (loc) info to the list

return GoBack -- continue backtracking
else
return r -- normal return

The monadloc-pp preprocessor inserts a withLoc call behind each line of code
with information about the module and line number within the first parameter.

When the backtracking is complete, the scheduler detects the trace at the root
of the execution and prints it in the console.

To see an example of trace log, see [17]. In the case of persistent flows, the
FlowM v (Workflow I0) monad generates its own log at execution time, which is
readable and can be inspected in case of error.

Conclusions

MFlow demonstrates the power of monadic computations for creating web flows
and web navigation in a concise, intuitive and maintainable way, while reducing
drastically the plumbing and the error ratio in web programming. The navigation
is verifiable at compile time, and this facilitates the testing and maintenance, while
the scalability and navigability is not compromised.

Future work

One important task in the future is to develop a synchronization mechanism for
MFlow servers to realize the theoretical scalability and failover of the architecture,
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using Cloud Haskel [18].

The routing example shows how the FlowM machinery can work as an event
scheduler without inversion of control. As such, it can be used in very different
scenarios.

The supervisor package [19] contains a enhanced version of the fail-back monad
applicable to any context. It and can perform specific actions when the computa-
tion goes forward and backward thanks to a programmer-defined instance. It will
be used by MFlow in the future to substitute the less general fail-back monad.

Event scheduling without inversion of control is ideal for process interaction in
cloud environments [20]. Optional backtracking and persistence can make it more
expressive and convenient.

Persistent flows can be used in enterprise integration scenarios [21] with long-
running transactions where backtracking can be used to perform rollbacks.
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Practical Type System Benefits

by Neil Brown (neil@twistedsquare.com)

One of Haskell’s key selling points is its type system. This article provides several
practical examples of how the type system helped while writing some data analy-
sis software. The article will touch on monads, concurrency, invariants, generic
programming, and quasi-quoters.

The Project

As part of a research project, we are collecting a large volume of Java source code
which we want to analyse!. At the time of writing, we have 50 gigabytes of source
code snapshots from six months” worth of recording. To perform the analysis, we
have a machine with two six-core hyperthreaded Xeon processors and 32 gigabytes
of RAM. I might term this “medium data”: small enough to fit on one machine, but
big enough that you can make multiple cups of tea while the analysis is running.

I felt that for writing this analysis, Haskell was a good choice. This was mainly
because of its easy support for generic programming and parallel processing, as
will be explained in the course of this article. I thought my experiences may be
of interest to others, highlighting practical uses of Haskell’'s powerful type system
in my project. The article assumes general familiarity with Haskell, and is aimed
at someone who has learned a little but wants to see what the advantages are of
learning more.

IFor more details, see “Blackbox: A Large Scale Repository of Novice Programmers’ Activity”
by Brown et al. (2014), available via http://twistedsquare.com/publications.html


http://twistedsquare.com/publications.html

The Monad.Reader Issue 23

Generic Programming

One of the main reasons that I felt Haskell would give me an advantage for per-
forming source code analysis was its easy support for generic programming?. For
example, one small analysis I wanted to perform was to look for if statements in
Java like this:

if (x <5);

Note the crucial semi-colon after the if condition; a semi-colon is a valid state-
ment in Java, so the semi-colon becomes the if body. Thus the if statement is
pointless, and the body is executed regardless of whether x is less than five. Effec-
tively, the compiler sees this version:

if (x <5)
; // if has empty body

// This is now a totally separate block of code that is executed next:

This is not a compile-time or run-time error, but without an else clause, I think
it can always be termed a programmer mistake. The first thing to do in looking
for this mistake was to parse the source into an Abstract Syntax Tree (AST) —
for this, I used (a slightly augmented version of) the language-java library from
Hackage. The relevant portion of the AST data type is this®:

data Stmt = Empty | IfThen Exp Stmt | IfThenElse Exp Stmt Stmt | ...

Exp is the data type for expressions, while Stmt is the data type for state-
ments. You can see that Stmt has a constructor for the empty statement (i.e.,
the solitary semi-colon). So my empty statement will be a value that looks like
IfThen something Empty. That’s easy to pattern-match for, given a specific Stmt.
Here’s the code:

emptylf :: Stmt -> Bool

2Generic programming refers to programming that works with multiple types. Although they
share the same name and concept, Java’s generics are a fairly restrictive form of generic
programming. An example in Haskell might be a generic fold, which can fold the contents of
a heterogenous container together.

3To be clear: the triple dots are omitted code, not Haskell syntax!
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emptylf (IfThen _ Empty) = True
emptylf _ = False

However, a full Java AST has the type CompilationUnit and can have Stmt values
in all sorts of places. For example, Java’s support for anonymous inner classes
means that statements can be inside method declarations that are inside a class
definition in an expression which itself could be in another inner class. This is
where generic programming enters the picture.

Generic programming can be used to automatically find all values of one type
(e.g. Stmt) inside a complex structure containing many different types (e.g. CompilationUnit).
The listifyDepth :: (b => Bool) => a -> [b] function finds a list of all values of
type b (Stmt) within the given value of type a (CompilationUnit) that satisfy the
given function. This particular function is implemented in the Alloy generic pro-
gramming library, but the exact same function exists in Scrap Your Boilerplate
(named listify ), and similar functions are available in other generic programming
libraries.

With this function, augmenting our program to look across the whole CompilationUnit
structure is very easy:

hasEmptylf :: CompilationUnit -> Bool
hasEmptylf = not . null . listifyDepth emptylf

-- OR:

findEmptylfs :: CompilationUnit -> [Stmt]
findEmptylfs = listifyDepth emptylf

Generic programming is particularly easy in the Haskell language, and in general,
dealing with tree structures like ASTs is much easier in Haskell than in other
languages like Java.

Concurrency and Parallelism

Being a pure functional language, Haskell has great support for functional par-
allelism: evaluating several pure functions in parallel. However, it also has good
support for concurrency: running several imperative threads of control alongside
each other. In our application, the analysis is almost always in a map-reduce style:

1. Read some initial state from the database to determine our list of tasks.

2. Run a large batch of tasks that each fetch data from the database (or some

files with cached intermediate state) and then process the data.
3. Collate the results together.
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The middle step is amenable to being run across many processor cores, but since
it requires imperative access to the database or file system, we must use imperative
forms of concurrency (i.e. forklO). The classic problem with parallel programming
is synchronising and coordinating access to mutable variables. In the default pure
functional style in Haskell, this is not an issue. However, there are still problem
with synchronising concurrent access to external resources, such as the database
connection or files. It is easy, at first, to accidentally write code like this:

do conn <- newConnection
mapM_ forklO [doTask i conn | i <= [0..9]]

This will unsafely use a single connection in parallel from many tasks, but will
produce no compile-time error. In a language like C, where a thread is run from
a different top-level function, the values shared between threads are more explicit,
and so resource- sharing mistakes can sometimes be easier to pick up. However,
Haskell makes it so easy to write inline parallelism that it can actually be less
obvious in Haskell that values like our connection handle are being improperly
shared between threads.

I found that the best way to avoid this problem was to build the connection
into a monad, using a reader monad (called DB). (A reader monad encapsulates
some read-only state, which you can read or use via a monadic action.) This
both avoided passing the connection parameter around (it could just be accessed
from the monad), and meant that I could build a parallel function that would
automatically open a new database connection for each new thread. The parallel
function had a simple API:

parallel :: [DB a] -> DB [q]

This API neatly hid the complexity of connection management. The function
started up a bunch of new worker threads (one per core) and opened a new con-
nection for each thread. Then each thread picked worker tasks from a list and
executed them, before returning the results. With lists of tasks being 10,000s,
opening a database connection per worker thread (of which there were 24) was
much lower overhead than opening one per task. I have since generalised the
functionality and released it as part of the parallel-tasks library on Hackage:
http://hackage.haskell.org/package/parallel-tasks.

Models

The database that our application is reading from was originally created by a
Ruby on Rails application. Rails uses a relational database as a persistence layer
to store objects that it calls “models”. Each model has a column for each of its
fields. The primary key, “id”, is an auto-incrementing integer, and thus foreign
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keys are also integers. Our user and session models might be stored in a database
table something like this:

User Session
Field Name  Field Type Field Name  Field Type
id 64-bit integer id 64-bit integer
uuid string user_id 64-bit integer
created_at datetime created_at datetime

A naive approach to dealing with this data from Haskell is to declare an ID type
alias:

type Id = Int64
You might get these from a query from the mysql-simple library:

do (sessionld :: Id, userld :: Id) <- query conn "select s.id, u.id

from sessions as s, users as u inner join on s.user_id = u.id"
You might then have utility functions like these:
getNewUsersSince :: Date -> DB [Id]

getUserInfo :: Id -> DB User
getSessionListForUser :: Id -> DB [Id]

getSessionInfo :: Id -> DB Session

With all these Id fields flying around, it is only a matter of time before you do
something like this:

do us <- getNewUsersSince d
mapM (\u -> do ss <- getSessionListForUser
mapM getSessionInfo us {- whoops! -}) us

Instead of passing a list of session IDs to mapM getSessionInfo, we passed user
IDs. But as they all have the same type, so this type checks. To make matters
worse, the database is fine with this too: it won’t even produce an error, just wrong
results. This small example is slightly contrived; but these things do happen,
especially if the function took a list of user IDs and a list of session IDs — it’s easy
to get the parameter order wrong.

The solution is to give each ID its own type, to prevent users from mixing them
up. A first attempt might look like this:
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newtype Userld = Userld Int64
newtype Sessionld = Sessionld Int64

data User = User { userld :: Userld,
userUuid :: String,
userCreatedAt :: Datetime }
data Session = Session { sessionld :: Sessionld,
sessionCreatedAt :: Datetime }

getNewUsersSince :: Date -> DB [Userld]
getUserInfo :: Userld -> DB User
getSessionListForUser :: Userld -> DB [Sessionld]

getSessionInfo :: Sessionld -> DB Session

The behaviour of these functions is now more apparent from their type, and
there is greater type-safety, with less possibility to mix up a Userld and Sessionld.
We now turn to look at how these types are used in the context of database queries.
One way to use these types is to apply them directly after the database query:

do (rawSessionld, rawUserld) <- query conn "select s.id, u.id
from sessions as s, users as u inner join on s.user_id = u.id"
let sessionld = Sessionld rawSessionld
userld = Userld rawUserld

-- OR:

do (sessionld , userld) <- (Sessionld xxx Userld) <$> query conn "select

s.id, u.id from sessions as s, users as u inner join on s.user_id = u.id"

A better solution is available if you know what the query function does. It has
a selection of type-classes like Result which support conversion from the database
wire protocol into recognisable Haskell types (Int32, String, etc). We don’t actually
need to know what exactly they do or how they work — using the GHC General-
izedNewtypeDeriving language feature we can just tell the compiler to port them
from Int64 to our newtype wrapper of Int64:

newtype Userld = Userld Int64 deriving (..., Result, ...)
newtype Sessionld = Sessionld Int64 deriving (..., Result, ...)

This allows us to extract these types directly from the database query without
wrapping them ourselves:
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do (sessionld :: Sessionld, userld :: Userld) <- query conn "select

s.1d, u.id from sessions as s, users as u inner join on s.user_id = u.id"

(You can omit those type declarations if type inference can infer them from
future statements.)

Increasing Type Safety

We have already prevented some mistakes by preventing Sessionlds from being
mixed up with Userlds. However, there is still potential for mistakes in our program
around the MySQL queries. A MySQL query is one of those instances where you
are dealing with external data, and just as when you read from a file or a socket,
there is the possibility to make a mismatch with the schema or protocol. The error
cannot be picked up by the compiler (unless you go to greater lengths by converting
the schema/protocol into a type or structure that the compiler understands). For
example, here’s a possible error:

do (sessionld :: Sessionld, userld :: Userld) <- query conn "select

u.id, s.id from sessions as s, users as u inner join on s.user_id = u.id"

Do you notice the problem? The query is asking for the user ID and then
a session ID (in that specific order), but the code labels the results as being a
session ID and then a user ID. We are back to the previous problem: a mixup in
parameters that cannot be detected by the compiler. In general, I find that several
problems in Haskell can be solved by involving the type system further?. What I
really want to do here is add a type annotation into the MySQL queries themselves.
We can do this using quasi-quoters — I will briefly explain what quasi-quoters are,
and then go on to show how I use them with MySQL queries.

Interlude: quasi-quoters

A quasi-quoter is a pre-compile step that is a bit like a pre-processor; it takes a
String input and, at compile-time, parses it and spits out source code which is
then fed into the full compilation. To illustrate this, consider the case when you
want to print out some text, some of which comes from a string, some from an
integer, and some from the program itself. In C, I would probably use printf for
this purpose:

char name[256];

4The trick is to involve the type system in ways that provide a big benefit for the cost, but not
going so far that the type system gets in the way of code that you know — but can’t easily
prove to the compiler — is safe

111



The Monad.Reader Issue 23

int yearOfBirth;

// ... ask user for name and year of birth

printf("Hi s, you will reach d years old this year",
name, currentYear - yearOfBirth );

In Haskell, you might write it like this:

do name <- ...
yearOfBirth <- ...
putStrLn ("Hi " ++ name ++ ", you will reach " ++
show (currentYear - yearOfBirth) ++ " years old this year")

Haskell code that is uglier than its C equivalent? Dang. A simple quasi-quoter
allows you to write a string with embedded code (a la Perl, Ruby and many others).
The substitution is done at compile-time (not at run-time using eval or similar), so
errors in the code in the string cause compile-time errors. Using the here package
from Hackage, you can write:

do name <- ...
yearOfBirth <- ...
putStrLn [i|Hi ${name}, you will reach ${currentYear - yearOfBirth}
years old this year|]

The quasiquoting syntax consists of a square bracket, the name of the quasi-
quoter function, a pipe, and then the string to be fed to the quasi-quoting function
at compile-time, which is terminated by a pipe and square bracket. I'm surprised
there aren’t more quasi-quoters around (e.g., one for processing regexes at compile-
time).

Back to our code

Let’s now return to our problem of adding type annotations to MySQL queries.
My quasi-quoter, qquery, takes a query String like this, with type annotations
inside it:

[qquery| select s.id{Sessionld }, u.id{Userld} from sessions as s, users as u
inner join on s. user_id = u.id ]

It then turns it into the same String with the annotations removed and placed
into the type of the query, i.e.:

(kauery "select s.id, u.id from sessions as s, users as u inner join
on s.user_id = u.id" :: Query (Sessionld, Userld))

Thus, if we now re-write our existing code:
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do (userld, sessionld) <- query conn [qquery| select s.id{Sessionld },
u.id{Userld} from sessions as s, users as u
inner join on s. user_id = u.id|]

The types are now annotated exactly where they are used inside the query string.
The above code will now give a compile-time error because of the mismatch in the
ordering between user ID and session ID. I have packaged this type-annotation
quasi-quoter into a library on Hackage (http://hackage.haskell.org/package/
mysql-simple-quasi), so you can use it if you wish.

As a general observation: these benefits do not come completely for free (the
quasiquoter had to be implemented), but once you have the extra capability to
add more type information, I believe it pays off time and time again in program
clarity and the ability to avoid mistakes as early as possible (compile-time). Since
I have a growing ecosystem of a core central library and lots of quickly hacked
together analysis programs to explore data, the benefits of extra safety in the core
libraries keep paying off as I use them in my small other programs.

Types as Light-Weight Contracts

After all that database talk, I will end with a simpler example of using types to
your advantage. Often, you will know a property or pre-requisite of a value, e.g.
that a particular integer is (or should be) non-negative. In my program I pull out
sorted lists from the database (or sort them myself). Later, I want to merge these
lists into a single sorted list. If I am playing it safe, I have to write the merge
functions like so:

mergeLists :: [a] -> [a] -> [a]
mergelists xs ys = mergeSorted (sort xs) (sort ys)

If the list is already sorted, as is usually the case in my program (because I use
“ORDER BY” in the database query), I am unnecessarily attempting to sort the
lists again. (This is not just slow because it makes an extra pass of the list, but
it also forces evaluation of the list, which may interfere with laziness.) Instead, I
can annotate that the lists are sorted by making a new type for this:

newtype SortedList a = Sorted [a] deriving (Eq, Ord, ...)

The type is exported opaquely: outside the module, the only way to create a
sorted list is via the exported sortList function, or a few other generators:

sortList :: [a] -> SortedList a
sortList = Sorted . sort

enumFromToSorted :: a -=> a —> SortedList a
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enumFromToSorted x y = Sorted (enumFromTo x y)

I can then write an O(n) function to merge two sorted lists and be sure that I
will never accidentally call it on an unsorted list:

mergeSorted :: SortedlList a -> SortedList a -> SortedList a

This technique can also be used in other languages (e.g., defining a new col-
lection class for sorted lists). But Haskell’s newtype wrappers make it very easy
to add a new type, with all the features of the old type (by deriving type-classes
automatically), and some more features added or removed®

Conclusion

Often, when people talk about the advantages of a particular programming lan-
guage, they talk in generalities. Pure functions make your code better; garbage
collection lets you write less code; monads are really useful. If you know nothing or
little of the language, these general benefits are often hard to understand. I hope
that in this article I have given some small, understandable, concrete examples of
how some of Haskell’s type features can be useful in a real programming project —
without turning into one of those infamously baffling monad tutorials.

®You can see more discussion, and a more complicated example of this for array index checking,
at Oleg’s site: http://okmij.org/ftp/Haskell/types.html#branding
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