MFlow, a continuation-based web
framework without continuations

by Alberto Gomez Corona (agocorona@gmail.com)

April 23, 2014

Most of the problems which complicate the coding and debugging of web applications
come from the same properties which make web applications scalable and flexible:
HTTP is stateless and HTML 1is untyped. Statelessness gives freedom to the user,
but it implies an inversion of control, where the HTTP requests invoke different
request handlers that manage a global state and generate individual web pages.

Digkstra’s famous admonitions about goto statements apply to request handling
mechanisms that manage these state transitions. Handlers do not share variable
scopes, so, like in the case of the goto, code relies on global variables or on global
sesston variables. There is no top-level structure in the code to make the main
sequence evident. For the maintainer, it is very difficult to know what any piece of
code 1s trying to achieve. Even worse, there is no inherent fized sequence and the
execution may be broken by out-of-order requests that do not match with the state
of the application, forcing developers to pollute code with checking conditions and
error messages.

Continuation-based frameworks solve these problems since they maintain execu-
tion state snapshots that match with each possible request. But continuations are
memory hungry, and they cannot be easily serialized and shared. This precludes
horizontal scalability and failover. As a result, these web frameworks have not been
accepted by the mainstream, despite their advantages.

In this article, I will show how an alternative monadic structure for thread state
serialization and backtracking can solve these problems. MFlow [1] is a Haskell
web framework that automatically handles the back button and other out-of-order
requests. Unlike continuation-based frameworks, each GET page is addressable
by a REST URL, and the architecture is scalable since the state is composed of
serializable events. It is based on enhanced formlets that permit the creation of fully

The Monad.Reader

self-contained, composable components called widgets with high level combinators,
allowing for the creation of dynamic applications with no explicit use of JavaScript.

Motivation: State management

Many web applications require the same sequence of steps to execute in different
contexts. Often, these sequences are merely components of a larger task that the
user is trying to accomplish. Such a reusable sequence is called a flow. User
registration, log in, checking in for a flight, applying for a loan, shopping cart
checkout, or even adding a confirmation step to a form: these are all examples
of a flow. In many of these cases, the website needs to store state, and this state
sometimes must extend across browser sessions. Storing all the state in the browser
can have security issues, and the state is limited to a single web browser. To deal
with this problem, web frameworks include server session state that every HTTP
event handler can access and modify. The program becomes a state transition
machine: such state transitions are hard to code and maintain.

The Spring Web Flow, a flow oriented framework on top of the Java Spring
framework enumerates the following problems when developing web applications [2]:

» Visualizing the flow is very difficult.
The application has a lot of code accessing the session state.
Enforcing controlled navigation is important but not possible.
Proper browser back button support seems unattainable.
Browser and server get out of sync with “Back” button use.
Multiple browser tabs cause concurrency issues with HTTP session data.

The ideal solution would be to codify the application flow in the most natural
and maintainable way possible. It would be necessary to preserve, in the code, the
sequencing whenever the sequence exist, in the same way as a console application.
However, each individual page should be addressable by means of an URL.

There is an apparent incompatibility between the state transition machine model,
enforced by the web architecture, and the sequential description proposed above.
However, the request handlers triggered by each request can be considered as a
continuation in the flow, with the state generated by all the previous events. It
is possible to invert back the inversion of control [3] so that the program can ex-
press the flow directly in the form of a sequence which contains inputs and outputs
from/to the Web browser, just like a console application.

This transformation does not change the way the web server and the program
interact: the server invokes request handlers, but the handlers are sequenced inside
a procedure, so that they share variable scopes. Since the state is in the form
of ordinary language variables, the maintainer can observe the sequence of state
changes, and a statically typed compiler can verify the consistency of the state

vvyyVvyyvyy

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

transitions. Each request goes to the handler that has the appropriate state to
handle the request. This is the basic design of continuation-based frameworks
such are ocsigen (OCaml) [4] or Seaside (Smalltalk) [5].

However, serialization and sharing of continuation state across computer nodes
is necessary if we want state persistence and horizontal scalability.

The input-output load involved in state sharing is the reason why REST recom-
mends to use as little state as possible. This is hard to do: even if the language
has serializable closures, a continuation includes program code which is linked
with many libraries which may render the serialization huge; additionally, it may
be linked to non serializable objects of the operating system [6].

The problem of the size and portability of serialized continuations is still un-
solved, although there have been some advances on this area in the Scala lan-
guage [7]. Another option is to store the portable state in the client [8]. This
solution constrains the state to a single browser session.

Another way to deal with these problems is to redirect every user to an unique
server. In long living flows, especially when it exceeds the mean time between fail-
ures, this can end up in loss of state. each page in a flow supposes the serialization
of the closure that handles the request of the page, so that the problem of state
management multiplies by the number of steps. Maintaining only the most recent
states impairs the navigability with the back button. These problems have main-
tained the continuation-based frameworks out of mainstream use, despite their
huge advantages.

MFlow state management

In the Haskell language, it is not possible, to date, to serialize a dynamic closure.
Cloud Haskell [?] communicate pointers to closures whose addresses are know at
compilation time. That method is not feasible for the dynamic closures generated
by continuations, that include the state of the computation.

However, it is possible to create an execution log and recover the execution state
by running the program taking as inputs the logged events when the procedure
is re-started. The log will contain the intermediate results of each step in the
computation, though not the computation itself. The machinery for log creation
and recovery can be hidden in a monad.

This is the purpose of the Workflow monad, defined in the workflow package [10].
The effect of logging and recovery are managed by the step call. The monad
is essentially a state transformer which stores intermediate values in persistent
storage.

The pseudocode of the lift operation (step) that would do logging and recovery
would be:

The Monad.Reader

import Control.Monad.State
type Workflow = StateT

step:: m a -> Workflow m a
step mx = do
st <- get
if thereRemainResultsInlLog st
then getResultfromLog st
else do
r <- mx
storelnlog r st
return r

Since the state must be written to (read from) permanent storage, results must
be serializable, so step is not defined for all types, but for types with Serialize
instances. The real signature is:

step:: (MonadIO m, Serialize a, Typeable a) => m a -> Workflow m a

To make the logging and recovery more efficient, the workflow monad caches the
read and write operations. Serialize, from the RefSerialize [11] package, allows
incremental serializations of the modifications of a data structure in the log, rather
than logging the entire structure in each step. This is very useful when the flow
manages containers or large user-defined structures.

Let’s see how to use the workflow monad. A computation in the IO monad, for
example:

main = do
n <- ask "give me the first number"
n’ <- ask "give me the second number"
print $ n + n’

ask s = do
putStrlln s
r <- getline
return $ read r

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

Can be lifted to the workflow monad:

include Control.Workflow
include Control.Monad.I0.Class(1iftI0)

main = execl "wfname" $ do
n <- step $ ask "give me the first number"
n’ <- step $ ask "give me the second number"
1iftI0 . print $ n + n’

The lifted computation includes effects of logging and recovery. If we interrupt
the program before answering the second question, upon restart the computation
will not ask the first question. Instead, it will retrieve the answer from the log
and immediately ask the second question. The variables and the execution state
then will be the same than when the program was interrupted: the state has been
recovered from the log.

If we define ask to handle HTTP requests and responses instead of console
input/output, a procedure of this kind can express a web flow. In particular, the
log can be stored in the browser by means of hidden form variables. If the process is
finished after each response, that would make the server applications stateless and,
hence, very scalable and fullly REST compliant, since each page keeps its own log
state. That is the solution adopted by Peter Thiemann in WASH [12], an excellent
Web framework mistreated by its syntax. But client stored state is not appropriate
in many cases, for the functional and security reasons above mentioned. Moreover,
a re-spawn of the process and a replay of the log are necessary on every request.

MFlow takes a different approach. In this case the server stay running waiting
for the next request until a timeout is reached, instead of being stopped after each
request. The non-blocking nature of the Haskell threads make the context switch
for each request as efficient as event handlers.

After the timeout the process dies. When a new request arrive, the process
restart using the log to recover his state. Unfortunately, there is an added problem
on this new approach: the server process must synchronize in some way when the
process is running and receives out of order requests instead of the next request in
the flow sequence, e.g., when the user has pressed the back button.

Synchronization problem

To solve the back button problem, a form of backtracking is necessary, so that
when the browser send a request from of a previous page in the navigation, the

The Monad.Reader

procedure can go back until a previous page handler in the flow match with the
data sent. From this moment on, the flow proceed normally. This is the purpose
of the fail-back monad:

data FailBack a = BackPoint a | NoBack a | GoBack

newtype BackT m a = BackT { runBackT :: m (FailBack a) }

instance Monad m => Monad (BackT m) where
fail _ = BackT $ return GoBack
return x = BackT . return $ NoBack x
x >>= f = BackT $ loop
where
loop = do
v <- runBackT x
case v of
NoBack y -> runBackT (f y)
BackPoint y -> do
z <- runBackT (f y)
case z of
GoBack -> loop
other —-> return other
GoBack -> return GoBack

instance MonadTrans BackT where
lift f = BackT $ f >>= \x -> return $ NoBack x

breturn = flowM . BackT . return . BackPoint

This monad executes as an Identity monad as long as it is handling NoBack
results. But if GoBack is returned by some statement, then, if the previous one
returned a BackPoint, it will be re-executed again.

If the previous statement was not a BackPoint, then this previous statement will
return GoBack as well, so the computation will proceed further back until another
previous BackPoint is found.

Each BackPoint in the backtrack is re-evaluated. If it returns NoBack or BackPoint,
the process will resume forward execution. If it returns GoBack, it continues back-
tracking.

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

This console application is the same above program lifted to the fail-back monad:

main = runBackT $ do
1lift (print "will return here at most") >> breturn ()
n <- 1lift $ ask "give me the first number"
n’ <- lift § ask "give me the second number"
1ift $ print $ n + n’

where
ask s = do
putStrln s
s <- getlLine
if s == "back" then fail "" else breturn $ read s

Here, ask is designed to return to the previous line when the string “back” is
entered. In the last line, ask either fails and initiates a backtracking to the previous
ask or returns with breturn and becomes a back point that will be called again
in case of backtracking.

If ask is redefined to accept formlets [13] descriptions instead of text, to send/receive
HTTP requests and responses, then the fail-back monad can handle gracefully the
back button: it is only necessary to verify the match of the parameters with what
the formlet expects. If there is no match, it triggers backtracking until some pre-
vious ask match. This solves the problem of the back button.

All that concerning the back button, but that does not solve the general problem
of tracking from a branch in the navigation tree to another. I will show below how
backtracking together with a careful design of link syntax make it possible to
address any page in the flow forward by means of a REST URL.

The FlowM monad is essentially the same failback transformer stacked above a
State transformer that carries out the formlet state. It may be stacked on top of the
(Workflow I0) monad or the I0 monad, depending on whether or not persistent
state is desired:

newtype FlowM v m a = FlowM {runFlowM :: FlowMM v m a}
deriving (Monad, MonadIO, MonadState (MFlowState v))

StateT (MFlowState view) m
BackT (WState view m)

type WState view m
type FlowMM view m

The Monad.Reader

User Interface

The rendering and validation in MFlow are inspired by the formlets [13] concept
The View data carries out a rendering format v for an underlying monad m, which
is I0 always, except in the case of cached widgets.

As in the case of the FlowM monad, the View data carries the formlet state
information.

The formlet information is stored in a FormElm data structure, which has the
generated rendering as well as the result of the match of the request parameters
with the formlet in a Maybe value:

newtype View v m a = View { runView :: WState v m (FormElm v a) }
data FormElm v a = FormElm [v] (Maybe a)

The v in these definitions is the particular rendering. A widget must have a
rendering format that must be an instance of the FormInput class.

class (Monoid view,Typeable view) => FormInput view where

toByteString :: view —-> B.ByteString

toHttpData :: view -> HttpData

fromStr :: String -> view

fromStrNoEncode :: String -> view

ftag :: String -> view -> view

inred :: view -> view

flink :: String -> view -> view

flinkl:: String -> view

flinkl verb = flink verb (fromStr verb)

finput :: Name -> Type -> Value -> Checked -> OnClick -> view
ftextarea :: String -> T.Text —> view

fselect :: String -> view -> view

foption :: String -> view -> Bool -> view

foptionl :: String -> Bool -> view

foptionl val msel = foption val (fromStr val) msel
formAction :: String -> view -> view

attrs :: view -> Attribs -> view

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

This class describes how to create form elements, links and error messages in that
particular format. Using the class methods, the widgets are not tied to a particular
rendering. In most cases, blaze-html rendering is used, but there are also bindings
for xhtml and HSP. It is possible to create widgets that can use any render-
ing, thanks to the FormInput abstraction. The widgets in MFlow.Forms.Widgets
module are defined in this way.

The pseudocode of an Int input box would be:

getInt :: (FormInput view, MonadI0 m) => Maybe Int -> View view m Int
getInt = View $ do

parm <- genNewId

mr <- lookupParam parm

return \$ FormElm [finput "text" parm "" False Nothing] $ mr

ask gets a widget, displays it, gets the response from the user and returns it
under the FlowM monad:

ask :: (FormInput view) => View view I0 a -> FlowM view IO a

page = ask

page is a synonym of ask
The formlets can be combined with applicative operators to create more complex
widgets. A page is a widget. For this purpose, View has an applicative instance:

instance (Functor m, Monad m) => Applicative (View view m) where
pure a = View $ return (FormElm [] $ Just a)
View f <*> View g = View $
f >>= \(FormElm forml k) ->
g >>= \(FormElm form2 x) ->
return $§ FormElm (forml ++ form2) (k <*> x)

This is a complete program that uses the FlowM monad and widgets combined
with applicative operators:

{-# LANGUAGE OverloadedStrings #-}
import MFlow.Wai.Blaze.Html.All
import Control.Applicative

The Monad.Reader

main = runNavigation "sum" . step $ do
setHeader html . body
(n1,n2) <- page $ (,) <$> getInt Nothing <++ br
<*¥> getInt Nothing <++ br
<** submitButton "send"

page $ p << (n1+n2) ++> wlink () "click to repeat"
runNavigation executes the FlowM computation in a endless loop.
runNavigation :: String -> FlowM Html (Workflow I0) () -> I0 ()

It expects persistent navigation, but the example is transient, so we apply a
single step to the transient computation. The first page rendering is an applicative
combination of getInt formlets to create a 2-tuple.

There are line breaks (br) added using blaze-html formatting. They are added
with the operator:

(++>) 0 v > View vma -> View v m a

...that add formatting to a widget.
This operator:

(k) i (v > v) >v —>v

...encloses formatting within a tag (in this case the blaze-html tag “b”). Since
m has less precedence that ++>, the composition does not need parentheses.

The second page presents an HTML paragraph with the sum of the numbers.
The wlink widget renders an HTML link, with a URL that invokes the flow again;
the page will return wlink value.

wlink :: (Typeable a, Show a, MonadIO m, FormInput view)
=> a -> view -> View view m a

Because wlink is in the last FlowM statement, runNavigation will restart the
computation again.

10

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

Routing

Note that wlink can also consume inmediately an element of a RESTful path,
if it is available, without displaying anything. When a widget returns a match,
page does not send a page response. Instead, it returns the result to the flow
immediately. This is key for addressing any page in the flow in a REST URL:

data Option = Optionl | Option2

main = runNavigation "verb" . step $ do
r <- page $ h3 << "Alternative operator used here"
++> wlink Optionl << b << "Choose Optionl" <++ br
<|> wlink Option2 << b << "Choose Option2"

case r of
Optionl -> procl
Option2 -> proc2

In this example, URLs which start with http://host/verb/optionl/... will
go straight to proc1: the menu will not be presented. As you would expect, URLs
which start with http://host/verb/option2/.. will go straight to proc2. The
URL http://host/verb will go to the initial menu.

Thus, it is possible to express REST routes as flows using wlink. The code
above has three implicit routes.

This is combined with the backtracking mechanism to make any GET page in
the flow addressable. For example, if in the above example the flow is running the
procl branch, when the user enters the URL of the second option, the backtracking
mechanism will backtrack to /verb, after which the second wlink will match the
/option2 segment of the URL, so proc2 will be executed.

Single page applications

As seen above, the applicative instance permits the combination of widgets using
applicative operators. But View also has an Monad instance:

instance (Monad m) => Monad (View view m) where
View x >>= f = View $ do
FormElm forml mk <- x
case mk of
Just k -> do
FormElm form2 mk <- runView $ f k

11

The Monad.Reader

return $§ FormElm (forml ++ form2) mk
Nothing ->
return $ FormElm forml Nothing

return = View . return . FormElm [] . Just

This monad instance is somewhat remarkable. In this monadic instance, the
second widget consumes the output of the previous statement, provided that the
latter validates. But if the previous widget return Nothing, then the computation
is interrupted and the rendering becomes what was produced until that moment.

page in this case will present the rendering again and again until the monadic
computation finish with a valid output that will be returned to the flow. Since
each iteration read the input of the previous one and each widget can modify its
presentation depending on the previous widget output, sophisticated input forms
and presentations are possible:

data Client = Person{pname, paddress :: String, age :: Int}
| Company{cname,caddress :: String, numWorkers :: Int}
main = runNavigation "input" . step $ do

page $ do
type <- getRadio[\n -> n ++> setRadioActive v n
| v <-["person","company"]
case type of
"person" -> Person

<$> "name: " ++> getString Nothing

<*> "address " ++> getString Nothing

<k> "age " ++> getInt Nothing
"company" -> Company

<$>"name: " ++> getString Nothing

<*> "address " ++> getString Nothing
<*> "yorkers " ++> getInt Nothing

Here, two options in a radio button are presented. Because it is a monad, the
second statement can use the type to present the appropriate applicative form.

In the first iteration, only the radio buttons are presented. When the user
chooses one of the options, the appropriate formulary appears below the radio
buttons. When the user completes the formulary, page will return the Client
data to the flow. If the user changes the option in the radio button, the form will
change accordingly.

12

Alberto Gomez Corona: MFlow, a continuation-based web framework without

continuations

To avoid sending the whole page at each iteration, there are some page modifiers
that refresh only the elements that change using AJAX. Push is also possible using
long polling. The execution of the server code is the same but only the rendering
of the widget activated by the request is refreshed in the page.

Note that the single page example above can be transformed into a two pages
example by translating the View monad to the FlowM monad with only a few
changes.

If in the bind operation of the View monad we discard the rendering of the first
formlet, the effect is that the rendering of the second formlet is substituted for the
first when the former is validated. That is how MFlow implements the callback
mechanism of the Seaside framework [?]

Using these and other combinators it is possible to create different kind of ap-
plications using basically the same above elements in a pure Haskell EDSL [15].

Web services

A widget in MFlow is essentially a request parser and a writer of responses. A
page is the composition of this kind of elements.

That parser-writer combination of the View monad can be used as a general
request-response mechanism. Adding a simple set of combinators it is possible to
create web services in an idiomatic way without the need of special constructions.

The three services implement a sum and a product of two integers.

First, a REST web service, where the parameters are in a REST path.

main = runNavigation "apirest" . step $ ask $ do
op <- getRestParam
terml <- getRestParam
term2 <- getRestParam
case (op, terml,term2) of
(Just "sum", Just x, Just y) -> wrender (x + y :: Int) **> stop
(Just "prod", Just x, Just y) -> wrender (x * y) **> stop
->do -- blaze Html
hl << "ERROR. API usage:"
h3 << "http://server/api/sum/[Int]/[Int]"
h3 << "http://server/api/prod/[Int]/[Int]"
++> stop

stop = empty

getRestParam read the next REST segment in the path if there is any.

13

The Monad.Reader

stop is a synomym of of the Applicative class empty method. By definition,
the computation will stop, ask will fail and the Flow will not navigate forward.
The content of the writer (the one generated by wrender) is sent as response. If
the parameters are not the expected ones, the a HTML message is sent.

Some example of invocations:

> curl "http://mflowdemo.herokuapp.com/apirest/prod/4/3"
12

> curl "http://mflowdemo.herokuapp.com/apirest/sum/5/7"
12

The second example read key-value parameters for the numbers instead of REST
parameters:

main = runNavigation "apikw" . step . ask $ do
op <- getRestParam
terml <- getKeyValueParam "t1"
term2 <- getKeyValueParam "t2"
case (op, terml, term2) of
(Just "sum", Just x, Just y) -> wrender (x + y :: Int) **> stop
(Just "prod", Just x, Just y) -> wrender (x * y) **> stop
_ —> do -- blaze-html
h1l << "ERROR. API usage:"
h3 << "http://server/api/sum?t1=[Int]&t2=[Int]"
h3 << "http://server/api/prod?tl=[Int]&t2=[Int]"
++> stop

Some example invocation:

> curl "http://mflowdemo.herokuapp.com/apikv/prod?7t1=4&t2=3"
12

> curl "http://mflowdemo.herokuapp.com/apikv/sum?t1=4&t2=3"
7

The third service uses key-value parameters as well, but there are defined parsec-
like combinators that are Widgets as well:

main = runNavigation "apiparser" . step . asks §
do rest "sum" ; disp $§ (+) <$> wint "t1" <*> wint "t2"

14

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

<|> do rest "prod"; disp $ (%) <$> wint "t1" <*> wint "t2"
<?> do -- blaze Html
hl << "ERROR. API usage:"
h3 << "http://server/api/sum?tl=[Int]&t2=[Int]"
h3 << "http://server/api/prod?ti=[Int]&t2=[Int]"
where
asks w = ask $§ w >> stop

Some example invocation:

> curl "http://mflowdemo.herokuapp.com/apiparser/prod?t1=4&t2=3"
12

> curl "http://mflowdemo.herokuapp.com/apiparser/sum?t1=4&t2=3"
7

The combinators rest and wint are defined below, from getRestParam and
getKeyValueParam. They are part of the MFlow.Forms.WebApi module

rest verify that the next rest parameter is an expected value. wint read a
parameter of type Int which has a given key.

The operator <?> present a blaze-html message when the parser does not match,
like in a parser combinator.

disp writes the result of a computation.

It uses the same applicative, alternative and monadic combinators defined for
any other widget in MFlow.

stop = empty

restp = View $ do
mr <- getRestParam
return $ FormElm [] mr

rest v = do
r <- restp
if r ==
then return v
—-— restore the rest index and fail
else modify (\s -> s{mfPIndex = mfPIndex s-1}) >> stop

wparam par = View $ do
mr <- getKeyValueParam par

15

The Monad.Reader

return $ FormElm [] mr

disp :: Show a => View Html I0 a -> View Html IO ()
disp w = View $ do
elm@(FormElm f mx) <- runView w
case mx of
Nothing -> return $ FormElm f Nothing
justx@(Just x) -> return $ FormElm (f++[fromStr $ show x])
$ return ()

infixl 3 <7>
(<?>) w v = View $ do
r@(FormElm f mx) <- runView w
case mx of
Nothing -> runView $ v ++> stop
Just _ -> return r

wint p = wparam p :: View Html IO Int

Scalability

Because the logs grow by small update events, it is easy for two or more servers to
synchronize state by interchanging step events instead of entire states. The small
size of the step events makes MFlow state easier to synchronize and architecture
independent, without the problems of continuation-based frameworks.

Execution traces

Trace logging by means of hand-made statements, although tedious and cumber-
some, is a traditional way of tracking errors in web applications in production
environments

MFlow produces automatic execution traces under the FlowM v I0 monad.
These logs are produced at failure time. This log is created by the same back-
tracking mechanism of the fail-back monad.

Other exception-treatment monads like Error, Maybe or the Exception monad
fail back to the calling method. The failback monad instead returns to the previous
statement, so a trace rather than a call stack will be produced. This is a great
improvement, especially for web applications where it is necessary to extract the

16

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

maximum amount of information from each failure in the exploitation environment.

The trace mechanism uses the monadloc[16] package. withLoc is a method of
the MonadLoc class, so it can be redefined for the particular needs of each monad.
In this case, the instance inserts an exception handler that adds the line of error
to the trace and initiates a backtracking. The backtracking proceeds back to the
beginning, following the execution history in reverse order. This is the pseudocode
of the instance:

instance MonadLoc (FlowM v I0) where
withLoc loc f = do
r <- compute f ‘catch‘ (\e ->do
insert (show e) in the list
return GoBack) -- backtrack
if trace going
prepend location (loc) info to the list

return GoBack -- continue backtracking
else
return r -- normal return

The monadloc-pp preprocessor inserts a withLoc call behind each line of code
with information about the module and line number within the first parameter.

When the backtracking is complete, the scheduler detects the trace at the root
of the execution and prints it in the console.

To see an example of trace log, see [17]. In the case of persistent flows, the
FlowM v (Workflow I0) monad generates its own log at execution time, which is
readable and can be inspected in case of error.

Conclusions

MFlow demonstrates the power of monadic computations for creating web flows
and web navigation in a concise, intuitive and maintainable way, while reducing
drastically the plumbing and the error ratio in web programming. The navigation
is verifiable at compile time, and this facilitates the testing and maintenance, while
the scalability and navigability is not compromised.

Future work

One important task in the future is to develop a synchronization mechanism for
MFlow servers to realize the theoretical scalability and failover of the architecture,

17

The Monad.Reader

using Cloud Haskel [18].

The routing example shows how the FlowM machinery can work as an event
scheduler without inversion of control. As such, it can be used in very different
scenarios.

The supervisor package [19] contains a enhanced version of the fail-back monad
applicable to any context. It and can perform specific actions when the computa-
tion goes forward and backward thanks to a programmer-defined instance. It will
be used by MFlow in the future to substitute the less general fail-back monad.

Event scheduling without inversion of control is ideal for process interaction in
cloud environments [20]. Optional backtracking and persistence can make it more
expressive and convenient.

Persistent flows can be used in enterprise integration scenarios [21] with long-
running transactions where backtracking can be used to perform rollbacks.

References

[1] http://www.haskell.org/package/MFlow.
[2] Spring web flow. http://projects.spring.io/spring-webflow.

[3] Christian Queinnec. Inverting back the inversion of control or, continuations versus
page-centric programming. SIGPLAN Not, 38:page 2003 (2001).

[4] http://ocsigen.org.
[5] http://en.wikipedia.org/wiki/Seaside_(software).

[6] Continuation Fest 2008 Tokyo, Japan April 13, 2008. Clicking on Delimited Con-
tinuations (2008). http://okmij.org/ftp/Computation/Fest2008-talk-notes.

pdf.
[7] Tan Clarke. Swarm, a new approach to distributed computa-
tion. video. http://tech.slashdot.org/story/09/10/11/1738234/

Swarm—-mdash-a-New-Approach-To-Distributed-Computation?from=rss.

[8] Jay A. McCarthy. Automatically restful web applications: marking modular se-
rializable continuations. SIGPLAN Not., 44(9):pages 299-310 (August 2009).
http://doi.acm.org/10.1145/1631687.1596594.

[9] The distributed-static package. http://hackage.haskell.org/package/
distributed-static/docs/Control-Distributed-Static.html.

[10] http://www.haskell.org/package/Workflow.

[11] The refserialize package. http://www.haskell.org/package/RefSerialize.

18

http://www.haskell.org/package/MFlow
http://projects.spring.io/spring-webflow
http://ocsigen.org
http://en.wikipedia.org/wiki/Seaside_(software)
http://okmij.org/ftp/Computation/Fest2008-talk-notes.pdf
http://okmij.org/ftp/Computation/Fest2008-talk-notes.pdf
http://tech.slashdot.org/story/09/10/11/1738234/Swarm-mdash-a-New-Approach-To-Distributed-Computation?from=rss
http://tech.slashdot.org/story/09/10/11/1738234/Swarm-mdash-a-New-Approach-To-Distributed-Computation?from=rss
http://doi.acm.org/10.1145/1631687.1596594
http://hackage.haskell.org/package/distributed-static/docs/Control-Distributed-Static.html
http://hackage.haskell.org/package/distributed-static/docs/Control-Distributed-Static.html
http://www.haskell.org/package/Workflow
http://www.haskell.org/package/RefSerialize

Alberto Gomez Corona: MFlow, a continuation-based web framework without
continuations

http://www.informatik.uni-freiburg.de/ thiemann/WASH.
http://www.haskell.org/package/formlets.

L Renggli S Ducasse, A Lienhard. Seaside: A flexible environment for building
dynamic web applications. Technical report. http://citeseer.uark.edu:8080/
citeseerx/showciting; jsessionid=00305F8E94C1AA992461768584AA0B7E?
cid=9279754.

Mflow as a dsl for web applications. https://www.fpcomplete.com/user/
agocorona/MFlowDSL.

http://hackage.haskell.org/package/monadloc.

Demo of error traces in mflow. http://mflowdemo.herokuapp.com/noscript/
errortraces/trace.

Cloud haskell. http://www.haskell.org/haskellwiki/Cloud_Haskell.
The supervisor package. https://hackage.haskell.org/package/supervisor.

Martin Odersky Philipp Haller. Event-based programming without inversion of
control. http://lampwww.epfl.ch/ odersky/papers/jmlc06.pdf.

Alberto G. Corona. How haskell can solve the integration problem. https://wuw.
fpcomplete.com/business/blog/guest-post-solve-integration-problem.

19

http://www.informatik.uni-freiburg.de/~thiemann/WASH
http://www.haskell.org/package/formlets
http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=00305F8E94C1AA992461768584AA0B7E?cid=9279754
http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=00305F8E94C1AA992461768584AA0B7E?cid=9279754
http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=00305F8E94C1AA992461768584AA0B7E?cid=9279754
https://www.fpcomplete.com/user/agocorona/MFlowDSL
https://www.fpcomplete.com/user/agocorona/MFlowDSL
http://hackage.haskell.org/package/monadloc
http://mflowdemo.herokuapp.com/noscript/errortraces/trace
http://mflowdemo.herokuapp.com/noscript/errortraces/trace
http://www.haskell.org/haskellwiki/Cloud_Haskell
https://hackage.haskell.org/package/supervisor
http://lampwww.epfl.ch/~odersky/papers/jmlc06.pdf
https://www.fpcomplete.com/business/blog/guest-post-solve-integration-problem
https://www.fpcomplete.com/business/blog/guest-post-solve-integration-problem

