
The Monad.Reader Mini Issue 24:
Predicates, Trees and GADTs

by Benjamin Hodgson 〈benhodgson91@gmail.com〉

August 14, 2015

Edward Z. Yang, editor.

Predicates, Trees and GADTs

by Benjamin Hodgson 〈benjamin.hodgson@huddle.com〉

Haskell’s crazy type system marches boldly past polymorphism and into the no-
man’s land between us and dependent types. But GHC’s advanced features are not
just a hobby-horse for researchers. In this article, we describe an application of
constraints, higher-ranked types, GADTs, and type-level data to a problem which
we encountered in a real-world setting, namely the definition of a predicate lan-
guage for security checks.

Introducing Predicates

Where I work [1], we’ve built a datatype of composable Boolean predicates to
help us implement security checks. It works by combining small functions a →
Bool into a tree which admits many interpretations: you can evaluate trees back
into a function, pretty-print them, compare them for equality, and so on. My
colleagues and I are stuck using C], but the idea translates into Haskell concisely
and beautifully:

type Name = String
data Pred a = Leaf Name (a → Bool)
| And (Pred a) (Pred a)
| Or (Pred a) (Pred a)
| Not (Pred a)

A Pred a denotes a predicate on some type a; soon we will write a function
eval with a type of Pred a → (a → Bool) which pulls out the function which a
Pred is meant to represent. At the leaves of the tree are small functions which
test a single fact about a, along with a name for the leaf. The other constructors
provide ways to compose predicates together: And denotes the conjunction of two
predicates, Or denotes a disjunction, and Not denotes the negation of a predi-
cate. (There is some overlap between these denotations; Or p q is equivalent to

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

Not (And (Not p) (Not q)). I chose to keep the redundant constructors to make
the code clearer.)

Why go to the effort of developing a whole data type for predicates? We could
represent predicates as functions a → Bool and provide combinators which com-
pose them. But a function is a black box; all you can do with a function is apply it
to something. Reifying the And , Or and Not combinations as a data type allows
you to manipulate and analyse the structure of a predicate – for example, you can
compare two Preds for equality – whereas functions admit no such manipulation.

Here’s how you might use Pred for permissions checks in a simple blogging
system. First, the players on our stage:

data User = U {
username :: String ,
isRegistered :: Bool
} deriving (Eq)
data Post = P {

isPublic :: Bool ,
canCommentAnonymously :: Bool ,
author :: User
}

How might we write a Pred to check whether a user is allowed to edit a given
post? We’ll need to query information about both the user and the post, but Pred
has only one type parameter. So we simply wrap up our two entities into a new
type representing the context of an action within the blogging system: the user
performing the action and the post they are acting upon.

data World = W {
user :: User ,
post :: Post
}

Here are a bunch of permissions checks, all with a type of Pred World . The
And , Or and Not constructors naturally form a simple domain-specific language,
thanks to Haskell’s support for infix notation.

userIsRegistered = Leaf "userIsRegistered" (isRegistered ◦ user)
postIsPublic = Leaf "postIsPublic" (isPublic ◦ post)
userIsAuthor = Leaf "userIsAuthor" (λx → author (post x) ≡ user x)
postAllowsAnonComments =

Leaf "postAllowsAnonComments" (canCommentAnonymously ◦ post)

userCanComment = (userIsRegistered ‘Or ‘ postAllowsAnonComments)

4

Benjamin Hodgson: Predicates, Trees and GADTs

‘And ‘ postIsPublic
userCanEditPost = userIsAuthor ‘And ‘ userIsRegistered

Higher-order functions

How should we implement eval :: Pred a → a → Bool? We could use recursion...

eval (Leaf name f) x = f x
eval (And l r) x = eval l x ∧ eval r x
eval (Or l r) x = eval l x ∨ eval r x
eval (Not p) x = ¬ (eval p x)

...but as every functional programmer knows, it’s usually better to provide
higher-order functions to process your data structures. So here’s a useful, gen-
eral function for reducing a Pred to a value.

fold :: (Name → (a → Bool)→ b)→ -- map the leaves
(b → b → b)→ -- combine And nodes
(b → b → b)→ -- combine Or nodes
(b → b)→ -- transform Not nodes
Pred a → b

fold leaf and or not (Leaf name f) = leaf name f
fold leaf and or not (And l r) =

(fold leaf and or not l) ‘and ‘ (fold leaf and or not r)
fold leaf and or not (Or l r) =

(fold leaf and or not l) ‘or ‘ (fold leaf and or not r)
fold leaf and or not (Not p) = not (fold leaf and or not p)

Look how beautiful eval is when we implement it in terms of fold !

eval :: Pred a → a → Bool
eval p x = fold (λname f → f x) (∧) (∨) (¬) p

We can also do other things using fold , such as printing out a human-readable
representation of a Pred .

prettyPrint :: Pred a → String
prettyPrint = fold ppLeaf ppAnd ppOr ppNot

where ppLeaf name f = name
ppAnd l r = "(" ++ l ++ " AND " ++ r ++ ")"

ppOr l r = "(" ++ l ++ " OR " ++ r ++ ")"

ppNot x = "(NOT " ++ x ++ ")"

5

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

It’s always fun to implement the identity function in terms of a fold:

predId :: Pred a → Pred a
predId = fold Leaf And Or Not

Composability

Go back and look at the blogging example again. That World type is a bit of a
pain. It arose because we wanted to write predicates which operate on more than
one entity, but you can’t directly compose a Pred Post with a Pred User . World
doesn’t really have a semantic meaning; it’s simply a place to put “data you might
want to query for a permission check”. The problem is, if we wanted to check
permissions on a new entity, we’d have to change World and break backwards
compatibility.

data Comment = C {
commentAuthor :: User ,
commentText :: String
}
userCanDeleteComment = Leaf "userCanDeleteComment" (λx →

commentAuthor (comment x) ≡ user x)

data World = W {
user :: User ,
post :: Post ,
comment :: Comment -- we had to add this
}

There’ll now be places where the W constructor is being used but a Comment
is not available, forcing people who want to use our predicates to set that field to
⊥ and risk crashing their program! This might make sense in a dynamically typed
language, but it seems like the wrong approach in Haskell. The problem gets worse
as we add more entities to our system: the bigger the World becomes, the harder
it is to use. World does a poor job of solving the problem of composing predicates
of different types.

The root cause of the pain is that predicates are too restrictive about the type
of data that they test. userIsActive only needs a User , but its type (Pred World)
insists on dragging a whole World along with it. This results in an implicit coupling
between the particular predicate we use and the contents of the World you use it
with.

6

Benjamin Hodgson: Predicates, Trees and GADTs

Type classes allow us to make that implicit coupling explicit in the type. I’m
going to rewrite our atomic predicates so that they don’t specify a particular type;
they just say what they need from a candidate. The goal is to defer the choice of
type a to the use site of eval .

class HasUser a where
user :: a → User

class HasPost a where
post :: a → Post

class HasComment a where
comment :: a → Comment

The type class methods user , post and comment can be used as drop-in re-
placements for the extractors that were previously defined as fields in World . Our
original predicates compile without modification with more general types:

ghci> :t userIsRegistered

userIsRegistered :: HasUser a => Pred a

ghci> :t userCanComment

userCanComment :: (HasUser a, HasPost a) => Pred a

userCanComment was a composed predicate. Consequently, GHC has pushed
the HasUser and HasPost requirements up the tree for us: you have to satisfy all
the leaf nodes’ constraints in order to use a predicate tree.

As I mentioned, this design has the effect of deferring the choice of type a to
the place where the predicate is used. When you want to eval one of our new
type class-based predicates, you make up a record type containing the required
data and write instances of HasUser , HasPost and HasComment as appropriate.
If your predicate doesn’t need a Comment you aren’t forced to provide one.

instance HasUser User where
user = id

test1 = eval userIsRegistered (U "lambda" True) -- True

data UserAndPost = UP User Post
instance HasUser UserAndPost where

user (UP u p) = u
instance HasPost UserAndPost where

post (UP u p) = p

test2 = eval userCanComment (UP u p) -- False
where

u = U "forall" False

7

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

p = P {
isPublic = True,
canCommentAnonymously = False,
author = U "lambda" True
}

Strengthening the API

What’s problematic about this type class-based solution? It requires everyone
to agree on the idea of using type classes instead of concrete types. Predicates
have to be universally quantified, otherwise they don’t compose any more. If
I hastily write a Pred MyCoolType and compose it with some of your carefully
designed predicates, the whole tree becomes a Pred MyCoolType, with all the
same problems as the original version. The situation we wanted to avoid hasn’t
been ruled out, merely swept under the carpet; one uncooperative party can spoil
the fun for everyone. Can Pred be re-engineered so that it may never be used with
a specific type?

We want to keep the compositional properties of the type class-based design,
while “baking in” the requirement of universally quantifying a. The plan is to
parameterise Pred not by any exact type but by the type class constraint the
predicate places on the type that it tests. Pred User will no longer be valid;
instead we’ll be writing types like Pred HasUser .

data Pred ′ c where -- Pred ′ :: (∗ → Constraint)→ ∗
Leaf ′ :: Name → (∀ a. c a ⇒ a → Bool)→ Pred ′ c
And ′ :: Pred ′ c1 → Pred ′ c2 → Pred ′ (c1 ∧ c2)
Or ′ :: Pred ′ c1 → Pred ′ c2 → Pred ′ (c1 ∧ c2)
Not ′ :: Pred ′ c → Pred ′ c

Look carefully at the types of these constructors. Leaf ′ has a rank-two type:
the ∀ a means that the function in parentheses must be polymorphic in a. The
author of a predicate is not free to choose a type a because we have hidden it from
the Pred type – all you can say is that the concrete type with which the predicate
is eventually used must satisfy a certain constraint c.

And ′ and Or ′ have special types too: they join the constraints of their subtrees
together into a single, stronger constraint. (∧, which we will define below, denotes
the conjunction of two constraints.) The Pred ′ that you get back from an And ′

or Or ′ constructor has a stronger constraint than its two inputs because you have
to be able to satisfy the constraints of both subtrees. In other words, We are

8

Benjamin Hodgson: Predicates, Trees and GADTs

manually propagating constraints from the leaves to the root of the tree, which
GHC previously did implicitly.

I had to turn on some language extensions to write this data type. The RankNTypes
extension enables higher-rank types, allowing us to ensure that the functions at
the leaves of our tree are polymorphic; ConstraintKinds lets type class constraints
such as HasUser roam free across types like any other type variable; and GADTs
– generalised algebraic data types – mean the constructors of a type can have
non-uniform return types.

We can explain how to push constraints together using type class Prolog. The
joint constraint (c1 ∧ c2) a can be discharged if and only if c1 a and c2 a hold
separately.

class (c1 a, c2 a)⇒ (∧) c1 c2 a
instance (c1 a, c2 a)⇒ (∧) c1 c2 a

I’m going to unify the Has . . . classes from earlier into a single generic class.

-- HasUser is equivalent to Get User and so on
class Get r a where

get :: a → r

The blogging permission checks themselves look the same as they did before –
I just adjusted them to use Get . Unfortunately, Leaf ′’s second-rank type means
that we lose type inference for the atomic predicates at the leaves of the tree.

userIsRegistered ′ :: Pred ′ (Get User)
userIsRegistered ′ = Leaf ′ "userIsRegistered’" (isRegistered ◦ get)
userIsAuthor ′ :: Pred ′ (Get Post ∧Get User)
userIsAuthor ′ = Leaf ′ "userIsAuthor’" (λx → author (get x) ≡ get x)

userCanEditPost ′ = userIsAuthor ′ ‘And ′‘ userIsRegistered ′

Folding up a GADT

As before, we want to avoid resorting to primitive recursion when processing a
Pred ′, so let’s think about the type of fold for this new version.

There are two requirements – which in fact apply whenever you need to fold
up a GADT – that the type of fold ′ has to fulfil. The first is that we don’t want
folding up a predicate to erase our knowledge about the constraint c. (If c were
not present in the return type of a fold, it’d be impossible to write eval ′ ::Pred ′ c →
(c a ⇒ a → Bool) as a fold.) This suggests that the return type of fold ′ should be
some type f which is parameterised over a constraint: fold ′ :: ...→ Pred ′ c → f c.

9

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

The second requirement arises due to the fact that Pred ′ is a GADT; the type
parameter c changes as you walk around the tree. The functions you plug into fold ′

must therefore work over all constraints c – in other words, the folding functions
will feature a ∀ c forcing them to be polymorphic.

type f ; g = ∀ a. f a → g a

fold ′ ::
(∀ c. String → (∀ a. c a ⇒ a → Bool)→ f c)→ -- map the leaves
(∀ c1 c2 . f c1 → f c2 → f (c1 ∧ c2))→ -- combine And nodes
(∀ c1 c2 . f c1 → f c2 → f (c1 ∧ c2))→ -- combine Or nodes
(∀ c. f c → f c)→ -- transform Not nodes
Pred ′ ; f

fold ′ leaf and or not (Leaf ′ name f) = leaf name f
fold ′ leaf and or not (And ′ l r) =

(fold ′ leaf and or not l) ‘and ‘ (fold ′ leaf and or not r)
fold ′ leaf and or not (Or ′ l r) =

(fold ′ leaf and or not l) ‘or ‘ (fold ′ leaf and or not r)
fold ′ leaf and or not (Not ′ p) = not (fold ′ leaf and or not r)

That’s a rank-three type up there! fold ′ is parameterised by a function poly-
morphic in c which is parameterised by a function polymorphic in a... my head
is spinning. Higher-rank types can get confusing if they’re over-used; they also
break type inference, which means that users of fold ′ will have to give explicit type
signatures for all the functions they want to plug in.

It turns out that type classes let us design a simpler API which satisfies the same
requirements. Essentially, the higher-rank function parameters are translated into
(overloaded) top-level functions. (Alternatively, you could put the folding functions
in a record type and pass it around explicitly, effectively writing by hand the code
that GHC will generate from a class.)

class PredFold f where
foldLeaf :: Name → (∀ a. c a ⇒ a → Bool)→ f c
foldAnd :: f c1 → f c2 → f (c1 ∧ c2)
foldOr :: f c1 → f c2 → f (c1 ∧ c2)
foldNot :: f c → f c

fold ′ :: PredFold f ⇒ Pred ′ ; f
fold ′ (Leaf ′ name f) = foldLeaf name f
fold ′ (And ′ l r) = foldAnd (fold ′ l) (fold ′ r)
fold ′ (Or ′ l r) = foldOr (fold ′ l) (fold ′ r)
fold ′ (Not ′ x) = foldNot (fold ′ x)

Using fold ′ now consists of picking a type f :: (∗ → Constraint) → ∗ to fold

10

Benjamin Hodgson: Predicates, Trees and GADTs

the Pred ′ up into, and declaring an instance of PredFold containing the folding
functions.

newtype Eval c = Eval {getEval :: c a ⇒ a → Bool }
instance PredFold Eval where

foldLeaf name f = Eval f
foldAnd (Eval l) (Eval r) = Eval $ λx → l x ∧ r x
foldOr (Eval l) (Eval r) = Eval $ λx → l x ∨ r x
foldNot (Eval p) = Eval $ λx → ¬ (p x)

eval ′ :: c a ⇒ Pred ′ c → a → Bool
eval ′ = getEval ◦ fold ′

newtype Const a b = Const {getConst :: a }
instance PredFold (Const String) where

foldLeaf name f = Const name
foldAnd (Const l) (Const r) = Const $ "(" ++ l ++ " AND " ++ r ++ ")"

foldOr (Const l) (Const r) = Const $ "(" ++ l ++ " OR " ++ r ++ ")"

foldNot (Const x) = Const $ "(NOT " ++ x ++ ")"

prettyPrint ′ :: Pred ′ c → String
prettyPrint ′ = getConst ◦ fold ′

instance PredFold Pred ′ where
foldLeaf = Leaf ′

foldAnd = And ′

foldOr = Or ′

foldNot = Not ′

predId ′ :: Pred ′ c → Pred ′ c
predId ′ = fold ′

(There’s nothing stopping you from providing the higher-order-function version
of fold ′ as well as the type class version. The difference is akin to minimum versus
minimumBy in the Prelude.)

Generic tuples

Deferring the choice of type for the predicate to the use-site has real engineering
advantages, but it also increases the boilerplate required to use a predicate. It’s
pretty tedious for users to write a boring record containing boring entities and a
boring set of instances of Get every time they use a predicate. You could write
some Template Haskell helpers to generate instances automatically, but it’d be
more satisfying to define a general datatype which has an appropriate instance of
Get by default. Let’s develop a heterogeneous tuple whose Get instance picks out
the first element of the appropriate type.

11

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

DataKinds has the effect of introducing type-level data: types can feature num-
bers, booleans, lists of other types, and so on. It works by duplicating all data
declarations at the type level – data Bool = True | False now also introduces a
kind called Bool and two types called True and False.

Type-level data gets useful when you use a GADT to glue values and types
together. We’re going to parameterise our tuple type by a list containing the types
of the elements inside it.

infixr 5 :>
data Tuple as where

E :: Tuple ’[]
(:>) :: a → Tuple as → Tuple (a ’: as)

Tuples work rather like a (heterogeneous) linked list, with some extra type-level
information about the things inside it. A tuple can be empty (E), in which case
its associated list of types is also empty, or it can be a cons cell (:>) containing
an element and the rest of the tuple. When you add something to the front of the
tuple, you add its type to the front of the list of types, too. The tuple and its type
grow together, like a vine creeping up a bamboo plant.

Let’s query the type of a few tuples, to get a feel for how they work.

ghci> :t ’x’ :> E

’x’ :> E :: Tuple ’[Char]

ghci> :t [] :> ’x’ :> E

[] :> ’x’ :> E :: Tuple ’[[t], Char]

ghci> :t "pi" :> ’c’ :> True :> E

"pi" :> ’c’ :> True :> E :: Tuple ’[[Char], Char, Bool]

Now all that remains is to write an instance of Get for tuples. We want to pick
out the first element which matches the type you’re trying to get. We’d like to
write this:

instance Get a (Tuple (a ’: as))
where get (x :> xs) = x

instance Get a (Tuple as)⇒ Get a (Tuple (b ’: as))
where get (x :> xs) = get xs

but unfortunately it falls foul of GHC’s overlapping instances rule when you use
it.

ghci> get ("hello" :> E) :: String

12

Benjamin Hodgson: Predicates, Trees and GADTs

Overlapping instances for Get String (Tuple ’[[Char]])

arising from a use of ’get’

Matching instances:

instance Get a (Tuple (a : as))

instance Get a (Tuple as) => Get a (Tuple (b : as))

In the expression: get ("hello" :> E) :: String

In an equation for ’it’: it = get ("hello" :> E) :: String

Here, we wanted get to dispatch to the first instance, because the first element
of the tuple is a String . It failed because GHC only inspects the shape of your
type – not any equality constraints – when resolving an instance, so it can’t tell
the two instances apart.

It can be done, but there’s a knack to it. The TypeFamilies extension en-
ables closed type families – type-level functions from types to types – which do
understand type equalities. We can write a type-level function which determines
whether an element is at the head of a list.

data Look = Here | There
type family Where x xs where

Where x (x ’: xs) = Here
Where x (y ’: xs) = There

Where can now be put to work in choosing an instance of Get for a given tuple.
The idea is to delegate to a second class GetT , which has an extra parameter for
the result of Where. GHC can use the value of this extra parameter (which will
be either Here or There) to distinguish the two instances of GetT . It’s a bit of a
hack, but at least it’s a well-understood and safe hack.

data Proxy a = Proxy

class GetT look r a where -- T for Tuple
getT :: proxy look → a → r

instance GetT Here a (Tuple (a ’: as))
where getT (x :> xs) = x

instance Get a (Tuple as)⇒ GetT There a (Tuple (b ’: as))
where getT (x :> xs) = get xs

instance (GetT (Where a as) a (Tuple as))⇒ Get a (Tuple as) where
get = getT (Proxy :: Proxy (Where a as))

Note the use of Proxy – a type whose parameter is irrelevant at runtime – to
tell getT whether to dispatch to the Here or There instance. [4]

It works:

13

The Monad.Reader Mini Issue 24: Predicates, Trees and GADTs

ghci> get ("hello" :> E) :: String

"hello"

ghci> get (’a’ :> "hello" :> E) :: String

"hello"

Now, at long last, we can do away with boilerplate records and boilerplate
instances of Get for every predicate. Using a predicate is delightfully simple.

test3 = eval ′ userIsRegistered ′ (U "lambda" True :> E) -- True
test4 = eval ′ userCanEditPost ′ (u :> p :> E) -- False

where
u = U "forall" False
p = P {

isPublic = True,
canCommentAnonymously = False,
author = U "lambda" True
}

You get a type error when you forget to provide all the data a predicate needs,
albeit with a rather unhelpful error message.

test5 = eval ′ userIsAuthor ′ (U "pi" False :> E)

No instance for (GetT (Where Post ’[]) Post (Tuple ’[]))

arising from a use of eval’

In the expression: eval’ userIsAuthor’ (U "pi" False :> E)

In an equation for ‘test5’:

test5 = eval’ userIsAuthor’ (U "pi" False :> E)

To me, using Tuple to satisfy Get constraints feels a bit like using anonymous
subclasses in an object-oriented language. In Scala, you might use an anonymous
implementation of multiple traits for the same effect:

def runPermissionCheck(u : User, p : Post) =

eval(userCanEditPost, new HasUser with HasPost {

val user = u

val post = p

})

Of course, anonymous subclasses rely on subtyping to work. Haskell doesn’t
feature subtyping, but as you can see it’s possible to flex the type system to
accommodate programs that make central use of subtyping in other languages.

14

Benjamin Hodgson: Predicates, Trees and GADTs

Code review

We’ve travelled to the far reaches of the galaxy in our quest to provide a flexible,
safe and simple API for predicates.

We began by exploring what you can do with a tree of predicates, folding it up
using a higher-order function. Then I showed you how to use type classes in the
atomic operations at the leaves of the tree to make predicates of different types
composable, letting GHC propagate type class constraints to the root of the tree.
This had the effect of deferring the choice of the type a to the use-site of the Pred .

Next, we saw how to enforce usage of our new type class-based API, making
it impossible to write predicates that refer to a specific type rather than a class.
This version made essential use of GADTs, ConstraintKinds, and RankNTypes.
I showed you the general trick to fold up a GADT using polymorphic folding
functions and a parameterised return type; then we discovered a technique which
uses type classes to simplify the API of such a fold.

Finally, we noted that deferring the choice of a to the use-site of a predicate was
inflicting boilerplate code on users. This prompted us to develop an extensible
heterogeneous tuple type making use of the DataKinds extension, using GADTs
to glue together the tuple’s type and value. Along the way I showed you a trick
using type families to resolve certain kinds of overlapping-instance errors.

In other words, we’ve used almost all of GHC’s modern type system features in
this module. I spared you the list of LANGUAGE directives at the top of the file, but
here it is for completeness:

{-# LANGUAGE ConstraintKinds #-}

{-# LANGUAGE DataKinds #-}

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE GADTs #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE NoMonomorphismRestriction #-}

{-# LANGUAGE PolyKinds #-}

{-# LANGUAGE RankNTypes #-}

{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE TypeFamilies #-}

{-# LANGUAGE TypeOperators #-}

{-# LANGUAGE UndecidableInstances #-}

I encourage you to read up on the documentation for these extensions!
Would I write code like this in production? Well, maybe. The code is undeniably

quite involved and could prove difficult to maintain in the long run. On the other
hand, I feel that Haskell has been deliberately designed to support this high level

15

of precision and flexibility. GHC’s type system has allowed us to write a program
which other languages would reject, and we didn’t have to resort to casts, code
generation, or reflection. I counted precisely one ugly hack in this article – the
instance of Get for Tuple – and a good proportion of what we wrote was reusable
outside of Pred and could go in a library.

For a more introductory presentation of predicates (in C]), you can read my
series of blog posts on the topic [2]. More on folding GADTs can be found in a
blog post by Williams [3]. My presentation of Tuple is based on Kiselyov et al’s
paper on heterogeneous lists [5]. If you’re excited to learn more about programming
with types like this, I can recommend as a starting point Lindley and McBride’s
“Hasochism” paper [6], the introduction to the Agda programming language [7], or
the Idris tutorial [8].

References

[1] Huddle, http://www.huddle.com/

[2] Hodgson, All About Security,
http://tldr.huddle.com/blog/All-about-security/

[3] Williams, Fixing GADTs,
http://www.timphilipwilliams.com/posts/2013-01-16-fixing-gadts.html

[4] Yorgey, Giving Haskell a Promotion,
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/

coercible.pdf

[5] Kiselyov, Lämmel and Schupke, Strongly Typed Heterogeneous Collections,
http://okmij.org/ftp/Haskell/HList-ext.pdf

[6] Lindley and McBride, Hasochism,
https://personal.cis.strath.ac.uk/conor.mcbride/pub/hasochism.pdf

[7] Norell and Chapman, Dependently Typed Programming in Agda,
http://www.cse.chalmers.se/~ulfn/darcs/AFP08/LectureNotes/AgdaIntro.

pdf

[8] The Idris Community, Programming in Idris: A Tutorial,
http://eb.host.cs.st-andrews.ac.uk/writings/idris-tutorial.pdf

http://www.huddle.com/
http://tldr.huddle.com/blog/All-about-security/
http://www.timphilipwilliams.com/posts/2013-01-16-fixing-gadts.html
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/coercible.pdf
http://okmij.org/ftp/Haskell/HList-ext.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/hasochism.pdf
http://www.cse.chalmers.se/~ulfn/darcs/AFP08/LectureNotes/AgdaIntro.pdf
http://www.cse.chalmers.se/~ulfn/darcs/AFP08/LectureNotes/AgdaIntro.pdf
http://eb.host.cs.st-andrews.ac.uk/writings/idris-tutorial.pdf

	Benjamin Hodgson: Predicates, Trees and GADTs

