
8. Hypothesis testing

The process of induction is the process of assuming the simplest law that can be made to
harmonize with our experience. This process, however, has no logical foundation but only
a psychological one. It is clear that there are no grounds for believing that the simplest
course of events will really happen. It is an hypothesis that the sun will rise tomorrow:
and this means that we do not know whether it will rise.

– Ludwig Wittgenstein1

In the last chapter I discussed the ideas behind estimation, which is one of the two “big ideas” in
inferential statistics. It’s now time to turn our attention to the other big idea, which is hypothesis
testing. In its most abstract form, hypothesis testing is really a very simple idea. The researcher has
some theory about the world and wants to determine whether or not the data actually support that
theory. However, the details are messy and most people find the theory of hypothesis testing to be
the most frustrating part of statistics. The structure of the chapter is as follows. First, I’ll describe
how hypothesis testing works in a fair amount of detail, using a simple running example to show you
how a hypothesis test is “built”. I’ll try to avoid being too dogmatic while doing so, and focus instead
on the underlying logic of the testing procedure.2 Afterwards, I’ll spend a bit of time talking about
the various dogmas, rules and heresies that surround the theory of hypothesis testing.

1The quote comes from Wittgenstein’s (1922) text, Tractatus Logico-Philosphicus.
2A technical note. The description below di!ers subtly from the standard description given in a lot of introductory

texts. The orthodox theory of null hypothesis testing emerged from the work of Sir Ronald Fisher and Jerzy Neyman in
the early 20th century; but Fisher and Neyman actually had very di!erent views about how it should work. The standard
treatment of hypothesis testing that most texts use is a hybrid of the two approaches. The treatment here is a little
more Neyman-style than the orthodox view, especially as regards the meaning of the p value.
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8.1

A menagerie of hypotheses

Eventually we all succumb to madness. For me, that day will arrive once I’m finally promoted to
full professor. Safely ensconced in my ivory tower, happily protected by tenure, I will finally be able
to take leave of my senses (so to speak) and indulge in that most thoroughly unproductive line of
psychological research, the search for extrasensory perception (ESP).3

Let’s suppose that this glorious day has come. My first study is a simple one in which I seek to
test whether clairvoyance exists. Each participant sits down at a table and is shown a card by an
experimenter. The card is black on one side and white on the other. The experimenter takes the card
away and places it on a table in an adjacent room. The card is placed black side up or white side up
completely at random, with the randomisation occurring only after the experimenter has left the room
with the participant. A second experimenter comes in and asks the participant which side of the card
is now facing upwards. It’s purely a one-shot experiment. Each person sees only one card and gives
only one answer, and at no stage is the participant actually in contact with someone who knows the
right answer. My data set, therefore, is very simple. I have asked the question of N people and some
number X of these people have given the correct response. To make things concrete, let’s suppose
that I have tested N “ 100 people and X “ 62 of these got the answer right. A surprisingly large
number, sure, but is it large enough for me to feel safe in claiming I’ve found evidence for ESP? This
is the situation where hypothesis testing comes in useful. However, before we talk about how to test
hypotheses, we need to be clear about what we mean by hypotheses.

8.1.1 Research hypotheses versus statistical hypotheses

The first distinction that you need to keep clear in your mind is between research hypotheses and
statistical hypotheses. In my ESP study my overall scientific goal is to demonstrate that clairvoyance
exists. In this situation I have a clear research goal: I am hoping to discover evidence for ESP. In
other situations I might actually be a lot more neutral than that, so I might say that my research goal
is to determine whether or not clairvoyance exists. Regardless of how I want to portray myself, the
basic point that I’m trying to convey here is that a research hypothesis involves making a substantive,
testable scientific claim. If you are a psychologist then your research hypotheses are fundamentally
about psychological constructs. Any of the following would count as research hypotheses:

• Listening to music reduces your ability to pay attention to other things. This is a claim about
the causal relationship between two psychologically meaningful concepts (listening to music and
paying attention to things), so it’s a perfectly reasonable research hypothesis.

3My apologies to anyone who actually believes in this stu!, but on my reading of the literature on ESP it’s just
not reasonable to think this is real. To be fair, though, some of the studies are rigorously designed, so it’s actually an
interesting area for thinking about psychological research design. And of course it’s a free country so you can spend your
own time and e!ort proving me wrong if you like, but I wouldn’t think that’s a terribly practical use of your intellect.
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• Intelligence is related to personality. Like the last one, this is a relational claim about two
psychological constructs (intelligence and personality), but the claim is weaker: correlational
not causal.

• Intelligence is speed of information processing. This hypothesis has a quite di!erent character.
It’s not actually a relational claim at all. It’s an ontological claim about the fundamental character
of intelligence (and I’m pretty sure it’s wrong). It’s worth expanding on this one actually. It’s
usually easier to think about how to construct experiments to test research hypotheses of the
form “does X a!ect Y?” than it is to address claims like “what is X?” And in practice what usually
happens is that you find ways of testing relational claims that follow from your ontological ones.
For instance, if I believe that intelligence is speed of information processing in the brain, my
experiments will often involve looking for relationships between measures of intelligence and
measures of speed. As a consequence most everyday research questions do tend to be relational
in nature, but they’re almost always motivated by deeper ontological questions about the state
of nature.

Notice that in practice, my research hypotheses could overlap a lot. My ultimate goal in the ESP
experiment might be to test an ontological claim like “ESP exists”, but I might operationally restrict
myself to a narrower hypothesis like “Some people can ‘see’ objects in a clairvoyant fashion”. That
said, there are some things that really don’t count as proper research hypotheses in any meaningful
sense:

• Love is a battlefield. This is too vague to be testable. Whilst it’s okay for a research hypothesis
to have a degree of vagueness to it, it has to be possible to operationalise your theoretical ideas.
Maybe I’m just not creative enough to see it, but I can’t see how this can be converted into
any concrete research design. If that’s true then this isn’t a scientific research hypothesis, it’s
a pop song. That doesn’t mean it’s not interesting. A lot of deep questions that humans have
fall into this category. Maybe one day science will be able to construct testable theories of love,
or to test to see if God exists, and so on. But right now we can’t, and I wouldn’t bet on ever
seeing a satisfying scientific approach to either.

• The first rule of tautology club is the first rule of tautology club. This is not a substantive claim
of any kind. It’s true by definition. No conceivable state of nature could possibly be inconsistent
with this claim. We say that this is an unfalsifiable hypothesis, and as such it is outside the
domain of science. Whatever else you do in science your claims must have the possibility of
being wrong.

• More people in my experiment will say “yes” than “no” . This one fails as a research hypothesis
because it’s a claim about the data set, not about the psychology (unless of course your actual
research question is whether people have some kind of “yes” bias!). Actually, this hypothesis is
starting to sound more like a statistical hypothesis than a research hypothesis.

As you can see, research hypotheses can be somewhat messy at times and ultimately they are
scientific claims. Statistical hypotheses are neither of these two things. Statistical hypotheses must
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be mathematically precise and they must correspond to specific claims about the characteristics of the
data generating mechanism (i.e., the “population”). Even so, the intent is that statistical hypotheses
bear a clear relationship to the substantive research hypotheses that you care about! For instance, in
my ESP study my research hypothesis is that some people are able to see through walls or whatever.
What I want to do is to “map” this onto a statement about how the data were generated. So let’s
think about what that statement would be. The quantity that I’m interested in within the experiment
is P p“correct”q, the true-but-unknown probability with which the participants in my experiment answer
the question correctly. Let’s use the Greek letter ω (theta) to refer to this probability. Here are four
di!erent statistical hypotheses:

• If ESP doesn’t exist and if my experiment is well designed then my participants are just guessing.
So I should expect them to get it right half of the time and so my statistical hypothesis is that
the true probability of choosing correctly is ω “ 0.5.

• Alternatively, suppose ESP does exist and participants can see the card. If that’s true people
will perform better than chance and the statistical hypothesis is that ω ! 0.5.

• A third possibility is that ESP does exist, but the colours are all reversed and people don’t realise
it (okay, that’s wacky, but you never know). If that’s how it works then you’d expect people’s
performance to be below chance. This would correspond to a statistical hypothesis that ω " 0.5.

• Finally, suppose ESP exists but I have no idea whether people are seeing the right colour or the
wrong one. In that case the only claim I could make about the data would be that the probability
of making the correct answer is not equal to 0.5. This corresponds to the statistical hypothesis
that ω ‰ 0.5.

All of these are legitimate examples of a statistical hypothesis because they are statements about a
population parameter and are meaningfully related to my experiment.

What this discussion makes clear, I hope, is that when attempting to construct a statistical hy-
pothesis test the researcher actually has two quite distinct hypotheses to consider. First, he or she has
a research hypothesis (a claim about psychology), and this then corresponds to a statistical hypothesis
(a claim about the data generating population). In my ESP example these might be:

Dani’s research hypothesis: “ESP exists”
Dani’s statistical hypothesis: ω ‰ 0.5

And a key thing to recognise is this. A statistical hypothesis test is a test of the statistical hypothesis,
not the research hypothesis. If your study is badly designed then the link between your research
hypothesis and your statistical hypothesis is broken. To give a silly example, suppose that my ESP
study was conducted in a situation where the participant can actually see the card reflected in a
window. If that happens I would be able to find very strong evidence that ω ‰ 0.5, but this would tell
us nothing about whether “ESP exists”.
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8.1.2 Null hypotheses and alternative hypotheses

So far, so good. I have a research hypothesis that corresponds to what I want to believe about the
world, and I can map it onto a statistical hypothesis that corresponds to what I want to believe about
how the data were generated. It’s at this point that things get somewhat counter-intuitive for a lot
of people. Because what I’m about to do is invent a new statistical hypothesis (the “null” hypothesis,
H0) that corresponds to the exact opposite of what I want to believe, and then focus exclusively on
that almost to the neglect of the thing I’m actually interested in (which is now called the “alternative”
hypothesis, H1). In our ESP example, the null hypothesis is that ω “ 0.5, since that’s what we’d
expect if ESP didn’t exist. My hope, of course, is that ESP is totally real and so the alternative to this
null hypothesis is ω ‰ 0.5. In essence, what we’re doing here is dividing up the possible values of ω into
two groups: those values that I really hope aren’t true (the null), and those values that I’d be happy
with if they turn out to be right (the alternative). Having done so, the important thing to recognise
is that the goal of a hypothesis test is not to show that the alternative hypothesis is (probably) true.
The goal is to show that the null hypothesis is (probably) false. Most people find this pretty weird.

The best way to think about it, in my experience, is to imagine that a hypothesis test is a criminal
trial4, the trial of the null hypothesis. The null hypothesis is the defendant, the researcher is the
prosecutor, and the statistical test itself is the judge. Just like a criminal trial, there is a presumption
of innocence. The null hypothesis is deemed to be true unless you, the researcher, can prove beyond
a reasonable doubt that it is false. You are free to design your experiment however you like (within
reason, obviously!) and your goal when doing so is to maximise the chance that the data will yield
a conviction for the crime of being false. The catch is that the statistical test sets the rules of the
trial and those rules are designed to protect the null hypothesis, specifically to ensure that if the null
hypothesis is actually true the chances of a false conviction are guaranteed to be low. This is pretty
important. After all, the null hypothesis doesn’t get a lawyer, and given that the researcher is trying
desperately to prove it to be false someone has to protect it.

8.2

Two types of errors

Before going into details about how a statistical test is constructed it’s useful to understand the
philosophy behind it. I hinted at it when pointing out the similarity between a null hypothesis test
and a criminal trial, but I should now be explicit. Ideally, we would like to construct our test so that
we never make any errors. Unfortunately, since the world is messy, this is never possible. Sometimes
you’re just really unlucky. For instance, suppose you flip a coin 10 times in a row and it comes up
heads all 10 times. That feels like very strong evidence for a conclusion that the coin is biased, but
of course there’s a 1 in 1024 chance that this would happen even if the coin was totally fair. In other
words, in real life we always have to accept that there’s a chance that we made a mistake. As a

4This analogy only works if you’re from an adversarial legal system like UK/US/Australia. As I understand these
things, the French inquisitorial system is quite di!erent.
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consequence the goal behind statistical hypothesis testing is not to eliminate errors, but to minimise
them.

At this point, we need to be a bit more precise about what we mean by “errors”. First, let’s state
the obvious. It is either the case that the null hypothesis is true or that it is false, and our test will
either retain the null hypothesis or reject it.5 So, as the table below illustrates, after we run the test
and make our choice one of four things might have happened:

retain H0 reject H0
H0 is true correct decision error (type I)
H0 is false error (type II) correct decision

As a consequence there are actually two di!erent types of error here. If we reject a null hypothesis
that is actually true then we have made a type I error. On the other hand, if we retain the null
hypothesis when it is in fact false then we have made a type II error.

Remember how I said that statistical testing was kind of like a criminal trial? Well, I meant it. A
criminal trial requires that you establish “beyond a reasonable doubt” that the defendant did it. All
of the evidential rules are (in theory, at least) designed to ensure that there’s (almost) no chance of
wrongfully convicting an innocent defendant. The trial is designed to protect the rights of a defendant,
as the English jurist William Blackstone famously said, it is “better that ten guilty persons escape than
that one innocent su!er.” In other words, a criminal trial doesn’t treat the two types of error in the
same way. Punishing the innocent is deemed to be much worse than letting the guilty go free. A
statistical test is pretty much the same. The single most important design principle of the test is to
control the probability of a type I error, to keep it below some fixed probability. This probability, which
is denoted ε, is called the significance level of the test. And I’ll say it again, because it is so central
to the whole set-up, a hypothesis test is said to have significance level ε if the type I error rate is no
larger than ε.

So, what about the type II error rate? Well, we’d also like to keep those under control too, and
we denote this probability by ϑ. However, it’s much more common to refer to the power of the test,
that is the probability with which we reject a null hypothesis when it really is false, which is 1´ ϑ. To
help keep this straight, here’s the same table again but with the relevant numbers added:

5An aside regarding the language you use to talk about hypothesis testing. First, one thing you really want to avoid
is the word “prove”. A statistical test really doesn’t prove that a hypothesis is true or false. Proof implies certainty and,
as the saying goes, statistics means never having to say you’re certain. On that point almost everyone would agree.
However, beyond that there’s a fair amount of confusion. Some people argue that you’re only allowed to make statements
like “rejected the null”, “failed to reject the null”, or possibly “retained the null”. According to this line of thinking you
can’t say things like “accept the alternative” or “accept the null”. Personally I think this is too strong. In my opinion,
this conflates null hypothesis testing with Karl Popper’s falsificationist view of the scientific process. Whilst there are
similarities between falsificationism and null hypothesis testing, they aren’t equivalent. However, whilst I personally think
it’s fine to talk about accepting a hypothesis (on the proviso that “acceptance” doesn’t actually mean that it’s necessarily
true, especially in the case of the null hypothesis), many people will disagree. And more to the point, you should be
aware that this particular weirdness exists so that you’re not caught unawares by it when writing up your own results.
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retain H0 reject H0
H0 is true 1´ ε (probability of correct retention) ε (type I error rate)
H0 is false ϑ (type II error rate) 1´ ϑ (power of the test)

A “powerful” hypothesis test is one that has a small value of ϑ, while still keeping ε fixed at some
(small) desired level. By convention, scientists make use of three di!erent ε levels: .05, .01 and .001.
Notice the asymmetry here; the tests are designed to ensure that the ε level is kept small but there’s
no corresponding guarantee regarding ϑ. We’d certainly like the type II error rate to be small and
we try to design tests that keep it small, but this is typically secondary to the overwhelming need to
control the type I error rate. As Blackstone might have said if he were a statistician, it is “better to
retain 10 false null hypotheses than to reject a single true one”. To be honest, I don’t know that I
agree with this philosophy. There are situations where I think it makes sense, and situations where I
think it doesn’t, but that’s neither here nor there. It’s how the tests are built.

8.3

Test statistics and sampling distributions

At this point we need to start talking specifics about how a hypothesis test is constructed. To that
end, let’s return to the ESP example. Let’s ignore the actual data that we obtained, for the moment,
and think about the structure of the experiment. Regardless of what the actual numbers are, the form
of the data is that X out of N people correctly identified the colour of the hidden card. Moreover,
let’s suppose for the moment that the null hypothesis really is true, that ESP doesn’t exist and the
true probability that anyone picks the correct colour is exactly ω “ 0.5. What would we expect the
data to look like? Well, obviously we’d expect the proportion of people who make the correct response
to be pretty close to 50%. Or, to phrase this in more mathematical terms, we’d say that X{N is
approximately 0.5. Of course, we wouldn’t expect this fraction to be exactly 0.5. If, for example,
we tested N “ 100 people and X “ 53 of them got the question right, we’d probably be forced to
concede that the data are quite consistent with the null hypothesis. On the other hand, if X “ 99
of our participants got the question right then we’d feel pretty confident that the null hypothesis is
wrong. Similarly, if only X “ 3 people got the answer right we’d be similarly confident that the null
was wrong. Let’s be a little more technical about this. We have a quantity X that we can calculate
by looking at our data. After looking at the value of X we make a decision about whether to believe
that the null hypothesis is correct, or to reject the null hypothesis in favour of the alternative. The
name for this thing that we calculate to guide our choices is a test statistic.

Having chosen a test statistic, the next step is to state precisely which values of the test statistic
would cause is to reject the null hypothesis, and which values would cause us to keep it. In order to
do so we need to determine what the sampling distribution of the test statistic would be if the null
hypothesis were actually true (we talked about sampling distributions earlier in Section 7.3.1). Why
do we need this? Because this distribution tells us exactly what values of X our null hypothesis would
lead us to expect. And, therefore, we can use this distribution as a tool for assessing how closely the
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Figure 8.1: The sampling distribution for our test statistic X when the null hypothesis is true. For our
ESP scenario this is a binomial distribution. Not surprisingly, since the null hypothesis says that the
probability of a correct response is ω “ .5, the sampling distribution says that the most likely value is
50 (out of 100) correct responses. Most of the probability mass lies between 40 and 60.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

null hypothesis agrees with our data.

How do we actually determine the sampling distribution of the test statistic? For a lot of hypothesis
tests this step is actually quite complicated, and later on in the book you’ll see me being slightly evasive
about it for some of the tests (some of them I don’t even understand myself). However, sometimes
it’s very easy. And, fortunately for us, our ESP example provides us with one of the easiest cases. Our
population parameter ω is just the overall probability that people respond correctly when asked the
question, and our test statistic X is the count of the number of people who did so out of a sample size
of N. We’ve seen a distribution like this before, in Section 6.4, and that’s exactly what the binomial
distribution describes! So, to use the notation and terminology that I introduced in that section, we
would say that the null hypothesis predicts that X is binomially distributed, which is written

X „ Binomialpω, Nq

Since the null hypothesis states that ω “ 0.5 and our experiment has N “ 100 people, we have the
sampling distribution we need. This sampling distribution is plotted in Figure 8.1. No surprises really,
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the null hypothesis says that X “ 50 is the most likely outcome, and it says that we’re almost certain
to see somewhere between 40 and 60 correct responses.

8.4

Making decisions

Okay, we’re very close to being finished. We’ve constructed a test statistic (X) and we chose this test
statistic in such a way that we’re pretty confident that if X is close to N{2 then we should retain the
null, and if not we should reject it. The question that remains is this. Exactly which values of the test
statistic should we associate with the null hypothesis, and exactly which values go with the alternative
hypothesis? In my ESP study, for example, I’ve observed a value of X “ 62. What decision should I
make? Should I choose to believe the null hypothesis or the alternative hypothesis?

8.4.1 Critical regions and critical values

To answer this question we need to introduce the concept of a critical region for the test statistic
X. The critical region of the test corresponds to those values of X that would lead us to reject null
hypothesis (which is why the critical region is also sometimes called the rejection region). How do we
find this critical region? Well, let’s consider what we know:

• X should be very big or very small in order to reject the null hypothesis.
• If the null hypothesis is true, the sampling distribution of X is Binomialp0.5, Nq.
• If ε “ .05, the critical region must cover 5% of this sampling distribution.

It’s important to make sure you understand this last point. The critical region corresponds to those
values of X for which we would reject the null hypothesis, and the sampling distribution in question
describes the probability that we would obtain a particular value of X if the null hypothesis were
actually true. Now, let’s suppose that we chose a critical region that covers 20% of the sampling
distribution, and suppose that the null hypothesis is actually true. What would be the probability of
incorrectly rejecting the null? The answer is of course 20%. And, therefore, we would have built a
test that had an ε level of 0.2. If we want ε “ .05, the critical region is only allowed to cover 5% of
the sampling distribution of our test statistic.

As it turns out those three things uniquely solve the problem. Our critical region consists of the
most extreme values, known as the tails of the distribution. This is illustrated in Figure 8.2. If we
want ε “ .05 then our critical regions correspond to X # 40 and X $ 60.6 That is, if the number of

6Strictly speaking, the test I just constructed has ω “ .057, which is a bit too generous. However, if I’d chosen 39
and 61 to be the boundaries for the critical region then the critical region only covers 3.5% of the distribution. I figured
that it makes more sense to use 40 and 60 as my critical values, and be willing to tolerate a 5.7% type I error rate, since
that’s as close as I can get to a value of ω “ .05.
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Figure 8.2: The critical region associated with the hypothesis test for the ESP study, for a hypothesis
test with a significance level of ε “ .05. The plot shows the sampling distribution of X under the
null hypothesis (i.e., same as Figure 8.1). The grey bars correspond to those values of X for which
we would retain the null hypothesis. The blue (darker shaded) bars show the critical region, those
values of X for which we would reject the null. Because the alternative hypothesis is two sided (i.e.,
allows both ω " .5 and ω ! .5), the critical region covers both tails of the distribution. To ensure an
ε level of .05, we need to ensure that each of the two regions encompasses 2.5% of the sampling
distribution.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

people saying “true” is between 41 and 59, then we should retain the null hypothesis. If the number is
between 0 to 40, or between 60 to 100, then we should reject the null hypothesis. The numbers 40
and 60 are often referred to as the critical values since they define the edges of the critical region.
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At this point, our hypothesis test is essentially complete:

1. we choose an ε level (e.g., ε “ .05);
2. come up with some test statistic (e.g., X) that does a good job (in some meaningful sense) of

comparing H0 to H1;
3. figure out the sampling distribution of the test statistic on the assumption that the null hypothesis

is true (in this case, binomial); and then
4. calculate the critical region that produces an appropriate ε level (0-40 and 60-100).

All that we have to do now is calculate the value of the test statistic for the real data (e.g., X “ 62)
and then compare it to the critical values to make our decision. Since 62 is greater than the critical
value of 60 we would reject the null hypothesis. Or, to phrase it slightly di!erently, we say that the
test has produced a statistically significant result.

8.4.2 A note on statistical “significance”

Like other occult techniques of divination, the statistical method has a private jargon
deliberately contrived to obscure its methods from non-practitioners.

– Attributed to G. O. Ashley7

A very brief digression is in order at this point, regarding the word “significant”. The concept of
statistical significance is actually a very simple one, but has a very unfortunate name. If the data
allow us to reject the null hypothesis, we say that “the result is statistically significant”, which is often
shortened to “the result is significant”. This terminology is rather old and dates back to a time when
“significant” just meant something like “indicated”, rather than its modern meaning which is much
closer to “important”. As a result, a lot of modern readers get very confused when they start learning
statistics because they think that a “significant result” must be an important one. It doesn’t mean that
at all. All that “statistically significant” means is that the data allowed us to reject a null hypothesis.
Whether or not the result is actually important in the real world is a very di!erent question, and
depends on all sorts of other things.

8.4.3 The di!erence between one sided and two sided tests

There’s one more thing I want to point out about the hypothesis test that I’ve just constructed. If
we take a moment to think about the statistical hypotheses I’ve been using,

H0 : ω “ .5
H1 : ω ‰ .5

7The internet seems fairly convinced that Ashley said this, though I can’t for the life of me find anyone willing to give
a source for the claim.
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we notice that the alternative hypothesis covers both the possibility that ω " .5 and the possibility
that ω ! .5. This makes sense if I really think that ESP could produce either better-than-chance
performance or worse-than-chance performance (and there are some people who think that). In
statistical language this is an example of a two-sided test. It’s called this because the alternative
hypothesis covers the area on both “sides” of the null hypothesis, and as a consequence the critical
region of the test covers both tails of the sampling distribution (2.5% on either side if ε “ .05), as
illustrated earlier in Figure 8.2.

However, that’s not the only possibility. I might only be willing to believe in ESP if it produces
better than chance performance. If so, then my alternative hypothesis would only covers the possibility
that ω ! .5, and as a consequence the null hypothesis now becomes ω # .5

H0 : ω # .5
H1 : ω ! .5

When this happens, we have what’s called a one-sided test and the critical region only covers one
tail of the sampling distribution. This is illustrated in Figure 8.3.

8.5

The p value of a test

In one sense, our hypothesis test is complete. We’ve constructed a test statistic, figured out its
sampling distribution if the null hypothesis is true, and then constructed the critical region for the
test. Nevertheless, I’ve actually omitted the most important number of all, the p value. It is to
this topic that we now turn. There are two somewhat di!erent ways of interpreting a p value, one
proposed by Sir Ronald Fisher and the other by Jerzy Neyman. Both versions are legitimate, though
they reflect very di!erent ways of thinking about hypothesis tests. Most introductory textbooks tend
to give Fisher’s version only, but I think that’s a bit of a shame. To my mind, Neyman’s version is
cleaner and actually better reflects the logic of the null hypothesis test. You might disagree though,
so I’ve included both. I’ll start with Neyman’s version.

8.5.1 A softer view of decision making

One problem with the hypothesis testing procedure that I’ve described is that it makes no distinction
at all between a result that is “barely significant” and those that are “highly significant”. For instance,
in my ESP study the data I obtained only just fell inside the critical region, so I did get a significant
e!ect but it was a pretty near thing. In contrast, suppose that I’d run a study in which X “ 97 out
of my N “ 100 participants got the answer right. This would obviously be significant too but my
a much larger margin, such that there’s really no ambiguity about this at all. The procedure that I
have already described makes no distinction between the two. If I adopt the standard convention of
allowing ε “ .05 as my acceptable Type I error rate, then both of these are significant results.
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Figure 8.3: The critical region for a one sided test. In this case, the alternative hypothesis is that
ω ! .5 so we would only reject the null hypothesis for large values of X. As a consequence, the
critical region only covers the upper tail of the sampling distribution, specifically the upper 5% of the
distribution. Contrast this to the two-sided version in Figure 8.2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is where the p value comes in handy. To understand how it works, let’s suppose that we ran
lots of hypothesis tests on the same data set, but with a di!erent value of ε in each case. When we
do that for my original ESP data what we’d get is something like this

Value of ε 0.05 0.04 0.03 0.02 0.01
Reject the null? Yes Yes Yes No No

When we test the ESP data (X “ 62 successes out of N “ 100 observations), using ε levels of .03
and above, we’d always find ourselves rejecting the null hypothesis. For ε levels of .02 and below we
always end up retaining the null hypothesis. Therefore, somewhere between .02 and .03 there must
be a smallest value of ε that would allow us to reject the null hypothesis for this data. This is the p
value. As it turns out the ESP data has p “ .021. In short,

p is defined to be the smallest Type I error rate (ε) that you have to be willing to tolerate
if you want to reject the null hypothesis.

If it turns out that p describes an error rate that you find intolerable, then you must retain the null. If
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you’re comfortable with an error rate equal to p, then it’s okay to reject the null hypothesis in favour
of your preferred alternative.

In e!ect, p is a summary of all the possible hypothesis tests that you could have run, taken across
all possible ε values. And as a consequence it has the e!ect of “softening” our decision process.
For those tests in which p # ε you would have rejected the null hypothesis, whereas for those tests
in which p ! ε you would have retained the null. In my ESP study I obtained X “ 62 and as a
consequence I’ve ended up with p “ .021. So the error rate I have to tolerate is 2.1%. In contrast,
suppose my experiment had yielded X “ 97. What happens to my p value now? This time it’s shrunk
to p “ 1.36ˆ 10´25, which is a tiny, tiny8 Type I error rate. For this second case I would be able to
reject the null hypothesis with a lot more confidence, because I only have to be “willing” to tolerate a
type I error rate of about 1 in 10 trillion trillion in order to justify my decision to reject.

8.5.2 The probability of extreme data

The second definition of the p-value comes from Sir Ronald Fisher, and it’s actually this one that
you tend to see in most introductory statistics textbooks. Notice how, when I constructed the critical
region, it corresponded to the tails (i.e., extreme values) of the sampling distribution? That’s not a
coincidence, almost all “good” tests have this characteristic (good in the sense of minimising our type
II error rate, ϑ). The reason for that is that a good critical region almost always corresponds to those
values of the test statistic that are least likely to be observed if the null hypothesis is true. If this rule
is true, then we can define the p-value as the probability that we would have observed a test statistic
that is at least as extreme as the one we actually did get. In other words, if the data are extremely
implausible according to the null hypothesis, then the null hypothesis is probably wrong.

8.5.3 A common mistake

Okay, so you can see that there are two rather di!erent but legitimate ways to interpret the
p value, one based on Neyman’s approach to hypothesis testing and the other based on Fisher’s.
Unfortunately, there is a third explanation that people sometimes give, especially when they’re first
learning statistics, and it is absolutely and completely wrong. This mistaken approach is to refer to
the p value as “the probability that the null hypothesis is true”. It’s an intuitively appealing way to
think, but it’s wrong in two key respects. First, null hypothesis testing is a frequentist tool and the
frequentist approach to probability does not allow you to assign probabilities to the null hypothesis.
According to this view of probability, the null hypothesis is either true or it is not, it cannot have a
“5% chance” of being true. Second, even within the Bayesian approach, which does let you assign
probabilities to hypotheses, the p value would not correspond to the probability that the null is true.
This interpretation is entirely inconsistent with the mathematics of how the p value is calculated. Put
bluntly, despite the intuitive appeal of thinking this way, there is no justification for interpreting a p
value this way. Never do it.

8That’s p “ .000000000000000000000000136 for folks that don’t like scientific notation!
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8.6

Reporting the results of a hypothesis test

When writing up the results of a hypothesis test there’s usually several pieces of information that you
need to report, but it varies a fair bit from test to test. Throughout the rest of the book I’ll spend a
little time talking about how to report the results of di!erent tests (see Section 9.1.9 for a particularly
detailed example), so that you can get a feel for how it’s usually done. However, regardless of what
test you’re doing, the one thing that you always have to do is say something about the p value and
whether or not the outcome was significant.

The fact that you have to do this is unsurprising, it’s the whole point of doing the test. What
might be surprising is the fact that there is some contention over exactly how you’re supposed to do
it. Leaving aside those people who completely disagree with the entire framework underpinning null
hypothesis testing, there’s a certain amount of tension that exists regarding whether or not to report
the exact p value that you obtained, or if you should state only that p " ε for a significance level that
you chose in advance (e.g., p " .05).

8.6.1 The issue

To see why this is an issue, the key thing to recognise is that p values are terribly convenient. In
practice, the fact that we can compute a p value means that we don’t actually have to specify any ε
level at all in order to run the test. Instead, what you can do is calculate your p value and interpret
it directly. If you get p “ .062, then it means that you’d have to be willing to tolerate a Type I error
rate of 6.2% to justify rejecting the null. If you personally find 6.2% intolerable then you retain the
null. Therefore, the argument goes, why don’t we just report the actual p value and let the reader
make up their own minds about what an acceptable Type I error rate is? This approach has the big
advantage of “softening” the decision making process. In fact, if you accept the Neyman definition
of the p value, that’s the whole point of the p value. We no longer have a fixed significance level
of ε “ .05 as a bright line separating “accept” from “reject” decisions, and this removes the rather
pathological problem of being forced to treat p “ .051 in a fundamentally di!erent way to p “ .049.

This flexibility is both the advantage and the disadvantage to the p value. The reason why a lot of
people don’t like the idea of reporting an exact p value is that it gives the researcher a bit too much
freedom. In particular, it lets you change your mind about what error tolerance you’re willing to put up
with after you look at the data. For instance, consider my ESP experiment. Suppose I ran my test and
ended up with a p value of .09. Should I accept or reject? Now, to be honest, I haven’t yet bothered
to think about what level of Type I error I’m “really” willing to accept. I don’t have an opinion on that
topic. But I do have an opinion about whether or not ESP exists, and I definitely have an opinion
about whether my research should be published in a reputable scientific journal. And amazingly, now
that I’ve looked at the data I’m starting to think that a 9% error rate isn’t so bad, especially when
compared to how annoying it would be to have to admit to the world that my experiment has failed.
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So, to avoid looking like I just made it up after the fact, I now say that my ε is .1, with the argument
that a 10% type I error rate isn’t too bad and at that level my test is significant! I win.

In other words, the worry here is that I might have the best of intentions, and be the most honest
of people, but the temptation to just “shade” things a little bit here and there is really, really strong.
As anyone who has ever run an experiment can attest, it’s a long and di"cult process and you often
get very attached to your hypotheses. It’s hard to let go and admit the experiment didn’t find what
you wanted it to find. And that’s the danger here. If we use the “raw” p-value, people will start
interpreting the data in terms of what they want to believe, not what the data are actually saying
and, if we allow that, why are we even bothering to do science at all? Why not let everyone believe
whatever they like about anything, regardless of what the facts are? Okay, that’s a bit extreme, but
that’s where the worry comes from. According to this view, you really must specify your ε value
in advance and then only report whether the test was significant or not. It’s the only way to keep
ourselves honest.

8.6.2 Two proposed solutions

In practice, it’s pretty rare for a researcher to specify a single ε level ahead of time. Instead,
the convention is that scientists rely on three standard significance levels: .05, .01 and .001. When
reporting your results, you indicate which (if any) of these significance levels allow you to reject the
null hypothesis. This is summarised in Table 8.1. This allows us to soften the decision rule a little
bit, since p " .01 implies that the data meet a stronger evidential standard than p " .05 would.
Nevertheless, since these levels are fixed in advance by convention, it does prevent people choosing
their ε level after looking at the data.

Nevertheless, quite a lot of people still prefer to report exact p values. To many people, the
advantage of allowing the reader to make up their own mind about how to interpret p “ .06 outweighs
any disadvantages. In practice, however, even among those researchers who prefer exact p values it
is quite common to just write p " .001 instead of reporting an exact value for small p. This is in
part because a lot of software doesn’t actually print out the p value when it’s that small (e.g., SPSS
just writes p “ .000 whenever p " .001), and in part because a very small p value can be kind of
misleading. The human mind sees a number like .0000000001 and it’s hard to suppress the gut feeling
that the evidence in favour of the alternative hypothesis is a near certainty. In practice however, this is
usually wrong. Life is a big, messy, complicated thing, and every statistical test ever invented relies on
simplifications, approximations and assumptions. As a consequence, it’s probably not reasonable to
walk away from any statistical analysis with a feeling of confidence stronger than p " .001 implies. In
other words, p " .001 is really code for “as far as this test is concerned, the evidence is overwhelming.”

In light of all this, you might be wondering exactly what you should do. There’s a fair bit of
contradictory advice on the topic, with some people arguing that you should report the exact p value,
and other people arguing that you should use the tiered approach illustrated in Table 8.1. As a result,
the best advice I can give is to suggest that you look at papers/reports written in your field and
see what the convention seems to be. If there doesn’t seem to be any consistent pattern, then use
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Table 8.1: A commonly adopted convention for reporting p values: in many places it is conventional
to report one of four di!erent things (e.g., p " .05) as shown below. I’ve included the “significance
stars” notation (i.e., a * indicates p " .05) because you sometimes see this notation produced by
statistical software. It’s also worth noting that some people will write n.s. (not significant) rather
than p ! .05.

Usual notation Signif. stars English translation The null is...

p ! .05 The test wasn’t significant Retained

p " .05 * The test was significant at ε “ .05 Rejected
but not at ε “ .01 or ε “ .001.

p " .01 ** The test was significant at ε “ .05 Rejected
and ε “ .01 but not at ε “ .001.

p " .001 *** The test was significant at all levels Rejected
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

whichever method you prefer.

8.7

Running the hypothesis test in practice

At this point some of you might be wondering if this is a “real” hypothesis test, or just a toy example
that I made up. It’s real. In the previous discussion I built the test from first principles, thinking that
it was the simplest possible problem that you might ever encounter in real life. However, this test
already exists. It’s called the binomial test, and it’s implemented by JASP as one of the statistical
analyses available when you hit the ‘Frequencies’ button. To test the null hypothesis that the response
probability is one-half p = .5,9 and using data in which x = 62 of n = 100 people made the correct
response, available in the binomialtest.jasp data file, we get the results shown in Figure 8.4.

Right now, this output looks pretty unfamiliar to you, but you can see that it’s telling you more
or less the right things. Specifically, the p-value of 0.02 is less than the usual choice of ε “ .05, so
you can reject the null. We’ll talk a lot more about how to read this sort of output as we go along,
and after a while you’ll hopefully find it quite easy to read and understand.

9Note that the p here has nothing to do with a p value. The p argument in the JASP binomial test corresponds to
the probability of making a correct response, according to the null hypothesis. In other words, it’s the ε value.

- 167 -



Figure 8.4: Binomial test analysis and results in JASP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.8

E!ect size, sample size and power

In previous sections I’ve emphasised the fact that the major design principle behind statistical hypothesis
testing is that we try to control our Type I error rate. When we fix ε “ .05 we are attempting to
ensure that only 5% of true null hypotheses are incorrectly rejected. However, this doesn’t mean that
we don’t care about Type II errors. In fact, from the researcher’s perspective, the error of failing to
reject the null when it is actually false is an extremely annoying one. With that in mind, a secondary
goal of hypothesis testing is to try to minimise ϑ, the Type II error rate, although we don’t usually
talk in terms of minimising Type II errors. Instead, we talk about maximising the power of the test.
Since power is defined as 1´ ϑ, this is the same thing.

8.8.1 The power function

Let’s take a moment to think about what a Type II error actually is. A Type II error occurs when
the alternative hypothesis is true, but we are nevertheless unable to reject the null hypothesis. Ideally,
we’d be able to calculate a single number ϑ that tells us the Type II error rate, in the same way that
we can set ε “ .05 for the Type I error rate. Unfortunately, this is a lot trickier to do. To see this,
notice that in my ESP study the alternative hypothesis actually corresponds to lots of possible values
of ω. In fact, the alternative hypothesis corresponds to every value of ω except 0.5. Let’s suppose
that the true probability of someone choosing the correct response is 55% (i.e., ω “ .55). If so,
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Figure 8.5: Sampling distribution under the alternative hypothesis for a population parameter value of
ω “ 0.55. A reasonable proportion of the distribution lies in the rejection region.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then the true sampling distribution for X is not the same one that the null hypothesis predicts, as
the most likely value for X is now 55 out of 100. Not only that, the whole sampling distribution has
now shifted, as shown in Figure 8.5. The critical regions, of course, do not change. By definition
the critical regions are based on what the null hypothesis predicts. What we’re seeing in this figure is
the fact that when the null hypothesis is wrong, a much larger proportion of the sampling distribution
distribution falls in the critical region. And of course that’s what should happen. The probability of
rejecting the null hypothesis is larger when the null hypothesis is actually false! However ω “ .55 is
not the only possibility consistent with the alternative hypothesis. Let’s instead suppose that the true
value of ω is actually 0.7. What happens to the sampling distribution when this occurs? The answer,
shown in Figure 8.6, is that almost the entirety of the sampling distribution has now moved into the
critical region. Therefore, if ω “ 0.7, the probability of us correctly rejecting the null hypothesis (i.e.,
the power of the test) is much larger than if ω “ 0.55. In short, while ω “ .55 and ω “ .70 are both
part of the alternative hypothesis, the Type II error rate is di!erent.

What all this means is that the power of a test (i.e., 1 ´ ϑ) depends on the true value of ω. To
illustrate this, I’ve calculated the expected probability of rejecting the null hypothesis for all values of
ω, and plotted it in Figure 8.7. This plot describes what is usually called the power function of the
test. It’s a nice summary of how good the test is, because it actually tells you the power (1´ ϑ) for
all possible values of ω. As you can see, when the true value of ω is very close to 0.5, the power of
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Figure 8.6: Sampling distribution under the alternative hypothesis for a population parameter value of
ω “ 0.70. Almost all of the distribution lies in the rejection region.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the test drops very sharply, but when it is further away, the power is large.

8.8.2 E!ect size

Since all models are wrong the scientist must be alert to what is importantly wrong. It is
inappropriate to be concerned with mice when there are tigers abroad

– George Box (Box 1976, p. 792)

The plot shown in Figure 8.7 captures a fairly basic point about hypothesis testing. If the true
state of the world is very di!erent from what the null hypothesis predicts then your power will be very
high, but if the true state of the world is similar to the null (but not identical) then the power of
the test is going to be very low. Therefore, it’s useful to be able to have some way of quantifying
how “similar” the true state of the world is to the null hypothesis. A statistic that does this is called
a measure of e!ect size (e.g., Cohen 1988; Ellis 2010). E!ect size is defined slightly di!erently in
di!erent contexts (and so this section just talks in general terms) but the qualitative idea that it tries
to capture is always the same. How big is the di!erence between the true population parameters and
the parameter values that are assumed by the null hypothesis? In our ESP example, if we let ω0 “ 0.5
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Figure 8.7: The probability that we will reject the null hypothesis, plotted as a function of the true
value of ω. Obviously, the test is more powerful (greater chance of correct rejection) if the true value
of ω is very di!erent from the value that the null hypothesis specifies (i.e., ω “ .5). Notice that when
ω actually is equal to .5 (plotted as a black dot), the null hypothesis is in fact true and rejecting the
null hypothesis in this instance would be a Type I error.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

denote the value assumed by the null hypothesis and let ω denote the true value, then a simple measure
of e!ect size could be something like the di!erence between the true value and null (i.e., ω ´ ω0), or
possibly just the magnitude of this di!erence, abspω ´ ω0q.

Why calculate e!ect size? Let’s assume that you’ve run your experiment, collected the data, and
gotten a significant e!ect when you ran your hypothesis test. Isn’t it enough just to say that you’ve
gotten a significant e!ect? Surely that’s the point of hypothesis testing? Well, sort of. Yes, the point
of doing a hypothesis test is to try to demonstrate that the null hypothesis is wrong, but that’s hardly
the only thing we’re interested in. If the null hypothesis claimed that ω “ .5 and we show that it’s
wrong, we’ve only really told half of the story. Rejecting the null hypothesis implies that we believe
that ω ‰ .5, but there’s a big di!erence between ω “ .51 and ω “ .8. If we find that ω “ .8, then not
only have we found that the null hypothesis is wrong, it appears to be very wrong. On the other hand,
suppose we’ve successfully rejected the null hypothesis, but it looks like the true value of ω is only .51
(this would only be possible with a very large study). Sure, the null hypothesis is wrong but it’s not
at all clear that we actually care because the e!ect size is so small. In the context of my ESP study
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Table 8.2: A crude guide to understanding the relationship between statistical significance and e!ect
sizes. Basically, if you don’t have a significant result then the e!ect size is pretty meaningless because
you don’t have any evidence that it’s even real. On the other hand, if you do have a significant e!ect
but your e!ect size is small then there’s a pretty good chance that your result (although real) isn’t all
that interesting. However, this guide is very crude. It depends a lot on what exactly you’re studying.
Small e!ects can be of massive practical importance in some situations. So don’t take this table too
seriously. It’s a rough guide at best.

big e!ect size small e!ect size
significant result di!erence is real, and di!erence is real, but

of practical importance might not be interesting

non-significant result no e!ect observed no e!ect observed
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

we might still care since any demonstration of real psychic powers would actually be pretty cool10,
but in other contexts a 1% di!erence usually isn’t very interesting, even if it is a real di!erence. For
instance, suppose we’re looking at di!erences in high school exam scores between males and females
and it turns out that the female scores are 1% higher on average than the males. If I’ve got data
from thousands of students then this di!erence will almost certainly be statistically significant, but
regardless of how small the p value is it’s just not very interesting. You’d hardly want to go around
proclaiming a crisis in boys’ education on the basis of such a tiny di!erence would you? It’s for this
reason that it is becoming more standard (slowly, but surely) to report some kind of standard measure
of e!ect size along with the the results of the hypothesis test. The hypothesis test itself tells you
whether you should believe that the e!ect you have observed is real (i.e., not just due to chance),
whereas the e!ect size tells you whether or not you should care.

8.8.3 Increasing the power of your study

Not surprisingly, scientists are fairly obsessed with maximising the power of their experiments. We
want our experiments to work and so we want to maximise the chance of rejecting the null hypothesis
if it is false (and of course we usually want to believe that it is false!). As we’ve seen, one factor
that influences power is the e!ect size. So the first thing you can do to increase your power is to
increase the e!ect size. In practice, what this means is that you want to design your study in such a
way that the e!ect size gets magnified. For instance, in my ESP study I might believe that psychic
powers work best in a quiet, darkened room with fewer distractions to cloud the mind. Therefore I

10Although in practice a very small e!ect size is worrying because even very minor methodological flaws might be
responsible for the e!ect, and in practice no experiment is perfect so there are always methodological issues to worry
about.
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would try to conduct my experiments in just such an environment. If I can strengthen people’s ESP
abilities somehow then the true value of ω will go up11 and therefore my e!ect size will be larger. In
short, clever experimental design is one way to boost power, because it can alter the e!ect size.

Unfortunately, it’s often the case that even with the best of experimental designs you may have
only a small e!ect. Perhaps, for example, ESP really does exist but even under the best of conditions
it’s very very weak. Under those circumstances your best bet for increasing power is to increase the
sample size. In general, the more observations that you have available, the more likely it is that you
can discriminate between two hypotheses. If I ran my ESP experiment with 10 participants and 7 of
them correctly guessed the colour of the hidden card you wouldn’t be terribly impressed. But if I ran
it with 10,000 participants, and 7,000 of them got the answer right, you would be much more likely
to think I had discovered something. In other words, power increases with the sample size. This is
illustrated in Figure 8.8, which shows the power of the test for a true parameter of ω “ 0.7 for all
sample sizes N from 1 to 100, where I’m assuming that the null hypothesis predicts that ω0 “ 0.5.

Because power is important, whenever you’re contemplating running an experiment it would be
pretty useful to know how much power you’re likely to have. It’s never possible to know for sure since
you can’t possibly know what your real e!ect size is. However, it’s often (well, sometimes) possible to
guess how big it should be. If so, you can guess what sample size you need! This idea is called power
analysis, and if it’s feasible to do it then it’s very helpful. It can tell you something about whether you
have enough time or money to be able to run the experiment successfully. It’s increasingly common to
see people arguing that power analysis should be a required part of experimental design, so it’s worth
knowing about. I don’t discuss power analysis in this book, however. This is partly for a boring reason
and partly for a substantive one. The boring reason is that I haven’t had time to write about power
analysis yet. The substantive one is that I’m still a little suspicious of power analysis. Speaking as a
researcher, I have very rarely found myself in a position to be able to do one. It’s either the case that
(a) my experiment is a bit non-standard and I don’t know how to define e!ect size properly, or (b) I
literally have so little idea about what the e!ect size will be that I wouldn’t know how to interpret the
answers. Not only that, after extensive conversations with someone who does stats consulting for a
living (my wife, as it happens), I can’t help but notice that in practice the only time anyone ever asks
her for a power analysis is when she’s helping someone write a grant application. In other words, the
only time any scientist ever seems to want a power analysis in real life is when they’re being forced
to do it by bureaucratic process. It’s not part of anyone’s day to day work. In short, I’ve always been
of the view that whilst power is an important concept, power analysis is not as useful as people make
it sound, except in the rare cases where (a) someone has figured out how to calculate power for your
actual experimental design and (b) you have a pretty good idea what the e!ect size is likely to be.12

Maybe other people have had better experiences than me, but I’ve personally never been in a situation
11Notice that the true population parameter ε doesn’t necessarily correspond to an immutable fact of nature. In this

context ε is just the true probability that people would correctly guess the colour of the card in the other room. As
such the population parameter can be influenced by all sorts of things. Of course, this is all on the assumption that ESP
actually exists!

12One possible exception to this is when researchers study the e!ectiveness of a new medical treatment and they
specify in advance what an important e!ect size would be to detect, for example over and above any existing treatment.
In this way some information about the potential value of a new treatment can be obtained.
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Figure 8.8: The power of our test plotted as a function of the sample size N. In this case, the true
value of ω is 0.7 but the null hypothesis is that ω “ 0.5. Overall, larger N means greater power. (The
small zig-zags in this function occur because of some odd interactions between ω, ε and the fact that
the binomial distribution is discrete, it doesn’t matter for any serious purpose).
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where both (a) and (b) were true. Maybe I’ll be convinced otherwise in the future, and probably a
future version of this book would include a more detailed discussion of power analysis, but for now
this is about as much as I’m comfortable saying about the topic.

8.9

Some issues to consider

What I’ve described to you in this chapter is the orthodox framework for null hypothesis significance
testing (NHST). Understanding how NHST works is an absolute necessity because it has been the
dominant approach to inferential statistics ever since it came to prominence in the early 20th century.
It’s what the vast majority of working scientists rely on for their data analysis, so even if you hate it
you need to know it. However, the approach is not without problems. There are a number of quirks
in the framework, historical oddities in how it came to be, theoretical disputes over whether or not
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the framework is right, and a lot of practical traps for the unwary. I’m not going to go into a lot of
detail on this topic, but I think it’s worth briefly discussing a few of these issues.

8.9.1 Neyman versus Fisher

The first thing you should be aware of is that orthodox NHST is actually a mash-up of two rather
di!erent approaches to hypothesis testing, one proposed by Sir Ronald Fisher and the other proposed
by Jerzy Neyman (see Lehmann 2011, for a historical summary). The history is messy because Fisher
and Neyman were real people whose opinions changed over time, and at no point did either of them
o!er “the definitive statement” of how we should interpret their work many decades later. That said,
here’s a quick summary of what I take these two approaches to be.

First, let’s talk about Fisher’s approach. As far as I can tell, Fisher assumed that you only had the
one hypothesis (the null) and that what you want to do is find out if the null hypothesis is inconsistent
with the data. From his perspective, what you should do is check to see if the data are “su"ciently
unlikely” according to the null. In fact, if you remember back to our earlier discussion, that’s how
Fisher defines the p-value. According to Fisher, if the null hypothesis provided a very poor account of
the data then you could safely reject it. But, since you don’t have any other hypotheses to compare
it to, there’s no way of “accepting the alternative” because you don’t necessarily have an explicitly
stated alternative. That’s more or less all there is to it.

In contrast, Neyman thought that the point of hypothesis testing was as a guide to action and
his approach was somewhat more formal than Fisher’s. His view was that there are multiple things
that you could do (accept the null or accept the alternative) and the point of the test was to tell you
which one the data support. From this perspective, it is critical to specify your alternative hypothesis
properly. If you don’t know what the alternative hypothesis is, then you don’t know how powerful the
test is, or even which action makes sense. His framework genuinely requires a competition between
di!erent hypotheses. For Neyman, the p value didn’t directly measure the probability of the data
(or data more extreme) under the null, it was more of an abstract description about which “possible
tests” were telling you to accept the null, and which “possible tests” were telling you to accept the
alternative.

As you can see, what we have today is an odd mishmash of the two. We talk about having both a
null hypothesis and an alternative (Neyman), but usually13 define the p value in terms of exreme data
(Fisher), but we still have ε values (Neyman). Some of the statistical tests have explicitly specified
alternatives (Neyman) but others are quite vague about it (Fisher). And, according to some people
at least, we’re not allowed to talk about accepting the alternative (Fisher). It’s a mess, but I hope
this at least explains why it’s a mess.

13Although this book describes both Neyman’s and Fisher’s definition of the p value, most don’t. Most introductory
textbooks will only give you the Fisher version.
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8.9.2 Bayesians versus frequentists

Earlier on in this chapter I was quite emphatic about the fact that you cannot interpret the p
value as the probability that the null hypothesis is true. NHST is fundamentally a frequentist tool (see
Chapter 6) and as such it does not allow you to assign probabilities to hypotheses. The null hypothesis
is either true or it is not. The Bayesian approach to statistics interprets probability as a degree of
belief, so it’s totally okay to say that there is a 10% chance that the null hypothesis is true. That’s
just a reflection of the degree of confidence that you have in this hypothesis. You aren’t allowed to
do this within the frequentist approach. Remember, if you’re a frequentist, a probability can only be
defined in terms of what happens after a large number of independent replications (i.e., a long run
frequency). If this is your interpretation of probability, talking about the “probability” that the null
hypothesis is true is complete gibberish: a null hypothesis is either true or it is false. There’s no way
you can talk about a long run frequency for this statement. To talk about “the probability of the null
hypothesis” is as meaningless as “the colour of freedom”. It doesn’t have one!

Most importantly, this isn’t a purely ideological matter. If you decide that you are a Bayesian
and that you’re okay with making probability statements about hypotheses, you have to follow the
Bayesian rules for calculating those probabilities. I’ll talk more about this in Chapter 14, but for now
what I want to point out to you is the p value is a terrible approximation to the probability that H0
is true. If what you want to know is the probability of the null, then the p value is not what you’re
looking for!

8.9.3 Traps

As you can see, the theory behind hypothesis testing is a mess, and even now there are arguments
in statistics about how it “should” work. However, disagreements among statisticians are not our real
concern here. Our real concern is practical data analysis. And while the “orthodox” approach to null
hypothesis significance testing has many drawbacks, even an unrepentant Bayesian like myself would
agree that they can be useful if used responsibly. Most of the time they give sensible answers and you
can use them to learn interesting things. Setting aside the various ideologies and historical confusions
that we’ve discussed, the fact remains that the biggest danger in all of statistics is thoughtlessness. I
don’t mean stupidity, I literally mean thoughtlessness. The rush to interpret a result without spending
time thinking through what each test actually says about the data, and checking whether that’s
consistent with how you’ve interpreted it. That’s where the biggest trap lies.

To give an example of this, consider the following example (see Gelman and Stern 2006). Suppose
I’m running my ESP study and I’ve decided to analyse the data separately for the male participants
and the female participants. Of the male participants, 33 out of 50 guessed the colour of the card
correctly. This is a significant e!ect (p “ .03). Of the female participants, 29 out of 50 guessed
correctly. This is not a significant e!ect (p “ .32). Upon observing this, it is extremely tempting
for people to start wondering why there is a di!erence between males and females in terms of their
psychic abilities. However, this is wrong. If you think about it, we haven’t actually run a test that
explicitly compares males to females. All we have done is compare males to chance (binomial test
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was significant) and compared females to chance (binomial test was non significant). If we want to
argue that there is a real di!erence between the males and the females, we should probably run a test
of the null hypothesis that there is no di!erence! We can do that using a di!erent hypothesis test,14

but when we do that it turns out that we have no evidence that males and females are significantly
di!erent (p “ .54). Now do you think that there’s anything fundamentally di!erent between the
two groups? Of course not. What’s happened here is that the data from both groups (male and
female) are pretty borderline. By pure chance one of them happened to end up on the magic side of
the p “ .05 line, and the other one didn’t. That doesn’t actually imply that males and females are
di!erent. This mistake is so common that you should always be wary of it. The di!erence between
significant and not-significant is not evidence of a real di!erence. If you want to say that there’s a
di!erence between two groups, then you have to test for that di!erence!

The example above is just that, an example. I’ve singled it out because it’s such a common one,
but the bigger picture is that data analysis can be tricky to get right. Think about what it is you want
to test, why you want to test it, and whether or not the answers that your test gives could possibly
make any sense in the real world.

8.10

Summary

Null hypothesis testing is one of the most ubiquitous elements to statistical theory. The vast majority
of scientific papers report the results of some hypothesis test or another. As a consequence it is
almost impossible to get by in science without having at least a cursory understanding of what a
p-value means, making this one of the most important chapters in the book. As usual, I’ll end the
chapter with a quick recap of the key ideas that we’ve talked about:

• Research hypotheses and statistical hypotheses. Null and alternative hypotheses. (Section 8.1).
• Type 1 and Type 2 errors (Section 8.2)
• Test statistics and sampling distributions (Section 8.3)
• Hypothesis testing as a decision making process (Section 8.4)
• p-values as “soft” decisions (Section 8.5)
• Writing up the results of a hypothesis test (Section 8.6)
• Running the hypothesis test in practice (Section 8.7)
• E!ect size and power (Section 8.8)
• A few issues to consider regarding hypothesis testing (Section 8.9)

Later in the book, in Chapter 14, I’ll revisit the theory of null hypothesis tests from a Bayesian
perspective and introduce a number of new tools that you can use if you aren’t particularly fond of
the orthodox approach. But for now, though, we’re done with the abstract statistical theory, and we
can start discussing specific data analysis tools.

14In this case, the Pearson chi-square test of independence (Chapter 9)
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