
><
Phing User Guide

Michiel Rook <mrook@php.net>
Ken Guest <ken@linux.ie>

Siad Ardroumli <siad.ardroumli@gmail.com>

Phing User Guide
by Michiel Rook, Ken Guest, and Siad Ardroumli

Phing 3.x

Publication date 2025-07-07 10:55:45
Copyright © 2002-2022 The Phing Project

Preface .. xv
1. About this book ... 1

1.1. Contributors (present and past) ... 1
1.2. Copyright .. 1
1.3. License ... 1
1.4. DocBook ... 1

1.4.1. Building the documentation ... 2
1.4.2. Template for new tasks .. 4
1.4.3. Customization of the look & feel of the rendered outputs 4
1.4.4. DocBook v5 elements used in the manual and their meaning 5

2. Introduction .. 11
2.1. What Phing Is ... 11
2.2. Phing & Binarycloud: History ... 11
2.3. How Phing Works ... 12
2.4. Cool, so how can I help? .. 12

2.4.1. Participating in the development ... 12
3. Setting-up Phing .. 15

3.1. System Requirements ... 15
3.1.1. Operating Systems ... 15
3.1.2. Software Dependencies .. 15

3.2. Obtaining Phing .. 15
3.2.1. Distribution Files ... 15
3.2.2. Composer Install .. 15
3.2.3. Phar package ... 16
3.2.4. Getting the latest source from Phing's Github repository 16

3.3. Running Phing .. 16
3.3.1. Command Line ... 16
3.3.2. Supported command line arguments ... 16

4. Getting started ... 19
4.1. XML And Phing .. 19
4.2. Writing A Simple Buildfile .. 19

4.2.1. Project Element .. 20
4.2.2. Target Element .. 21
4.2.3. Task Elements ... 21
4.2.4. Property Element ... 22

4.3. More Complex Buildfile ... 22
4.3.1. Handling source dependencies ... 23

4.4. Relax NG Grammar .. 24
5. Project components ... 25

5.1. Projects .. 25
5.2. Version ... 25
5.3. Project Components in General ... 25
5.4. Targets ... 26
5.5. Tasks ... 26
5.6. Types ... 27

5.6.1. Basics .. 27
5.6.2. Referencing Types ... 27

5.7. Basic Types .. 28
5.7.1. FileSet ... 28
5.7.2. FileList ... 28
5.7.3. FilterChains and Filters ... 28
5.7.4. File Mappers .. 29

5.8. Conditions ... 30
5.8.1. not ... 30
5.8.2. and ... 30
5.8.3. or ... 30
5.8.4. xor ... 30
5.8.5. os ... 31

iii

Phing User Guide

5.8.6. equals ... 31
5.8.7. versioncompare .. 31
5.8.8. http ... 32
5.8.9. PDOSQLExec .. 32
5.8.10. socket .. 33
5.8.11. hasfreespace .. 33
5.8.12. isset .. 34
5.8.13. contains .. 34
5.8.14. istrue .. 34
5.8.15. isfalse .. 35
5.8.16. ispropertytrue .. 35
5.8.17. ispropertyfalse .. 35
5.8.18. referenceexists .. 35
5.8.19. available .. 36
5.8.20. filesmatch .. 36
5.8.21. isfileselected .. 36
5.8.22. isfailure .. 36
5.8.23. matches .. 37

6. Extending Phing .. 39
6.1. Extension Possibilities ... 39

6.1.1. Tasks ... 39
6.1.2. Types .. 39
6.1.3. Mappers ... 39

6.2. Source Layout .. 39
6.2.1. Files And Directories .. 39
6.2.2. File Naming Conventions .. 40
6.2.3. Coding Standards ... 41

6.3. System Initialization ... 41
6.3.1. Wrapper Scripts ... 41
6.3.2. The Main Application (phing.php) .. 41
6.3.3. The Phing Class .. 42

6.4. System Services ... 42
6.4.1. The Exception system .. 42

6.5. Build Lifecycle ... 42
6.5.1. How Phing Parses Buildfiles ... 42

6.6. Writing Tasks .. 43
6.6.1. Creating A Task ... 43
6.6.2. Using the Task ... 44
6.6.3. Source Discussion .. 44
6.6.4. Task Structure ... 44
6.6.5. Includes ... 45
6.6.6. Class Declaration ... 45
6.6.7. Class Properties ... 45
6.6.8. The Constructor ... 45
6.6.9. Setter Methods ... 46
6.6.10. Creator Methods ... 46
6.6.11. init() Method ... 47
6.6.12. main() Method ... 47
6.6.13. Arbitrary Methods ... 47

6.7. Writing Types .. 47
6.7.1. Creating a DataType .. 48
6.7.2. Using the DataType ... 49
6.7.3. Source Discussion .. 50

6.8. Writing Mappers .. 50
6.8.1. Creating a Mapper ... 51
6.8.2. Using the Mapper ... 51

6.9. Writing Selectors ... 52
6.10. Writing Conditions ... 52

iv

Phing User Guide

A. Fact Sheet .. 55
A.1. Built-In Properties ... 55
A.2. Command Line Arguments .. 55
A.3. Distribution File Layout ... 56
A.4. Program Exit Codes ... 57
A.5. The LGPL License .. 57
A.6. The GFDL License ... 65

B. Core tasks .. 73
B.1. AdhocTaskdefTask ... 73

B.1.1. Examples .. 73
B.2. AdhocTypedefTask ... 73

B.2.1. Example .. 74
B.3. AppendTask ... 74

B.3.1. Examples .. 75
B.3.2. Supported Nested Tags ... 75

B.4. ApplyTask .. 76
B.4.1. Examples .. 77
B.4.2. Supported Nested Tags ... 78

B.5. AttribTask ... 78
B.5.1. Example .. 79
B.5.2. Supported Nested Tags ... 79

B.6. Augment ... 79
B.6.1. Examples .. 80

B.7. AutoloaderTask ... 80
B.7.1. Example .. 80

B.8. AvailableTask ... 80
B.8.1. Examples .. 81

B.9. Basename .. 81
B.9.1. Examples .. 81

B.10. Bindtargets ... 82
B.10.1. Examples ... 82

B.11. ChmodTask .. 82
B.11.1. Examples ... 82
B.11.2. Supported Nested Tags .. 83

B.12. ChownTask .. 83
B.12.1. Examples ... 83
B.12.2. Supported Nested Tags .. 83

B.13. ConditionTask ... 83
B.13.1. Examples ... 84
B.13.2. Supported Nested Tags .. 84

B.14. CopyTask ... 84
B.14.1. Examples ... 85
B.14.2. Supported Nested Tags .. 86

B.15. DefaultExcludes .. 86
B.15.1. Examples ... 86

B.16. DeleteTask ... 87
B.16.1. Examples ... 87
B.16.2. Supported Nested Tags .. 88

B.17. DependSet ... 88
B.17.1. Examples ... 88
B.17.2. Supported Nested Tags .. 88

B.18. Diagnostics ... 89
B.18.1. Example .. 89

B.19. Dirname ... 89
B.19.1. Example .. 89

B.20. EchoPropertiesTask .. 89
B.20.1. Example .. 90

B.21. EchoTask ... 90

v

Phing User Guide

B.21.1. Examples ... 91
B.21.2. Supported Nested Tags .. 91

B.22. EchoXML .. 91
B.22.1. Parameters specified as nested elements .. 92
B.22.2. Examples ... 92

B.23. ExecTask ... 92
B.23.1. Examples ... 93
B.23.2. Supported Nested Tags .. 94

B.24. FailTask ... 95
B.24.1. Examples ... 95
B.24.2. Parameters specified as nested elements. ... 95

B.25. FileHashTask .. 96
B.25.1. Example .. 96

B.26. FileSizeTask ... 96
B.26.1. Examples ... 97

B.27. ForeachTask ... 97
B.27.1. Examples ... 98
B.27.2. Supported Nested Tags .. 98

B.28. IfTask ... 98
B.28.1. Examples ... 99

B.29. ImportTask ... 99
B.29.1. Target Overriding ... 99
B.29.2. Special Properties .. 100
B.29.3. Resolving Files Against the Imported File .. 100
B.29.4. Examples ... 100

B.30. IncludePathTask ... 101
B.30.1. Examples ... 101

B.31. InputTask .. 101
B.31.1. Examples ... 102

B.32. JsonValidateTask .. 102
B.32.1. Example .. 102

B.33. LoadFileTask .. 102
B.33.1. Examples ... 103
B.33.2. Supported Nested Tags: ... 103

B.34. ManifestTask .. 103
B.34.1. Supported Nested Tags .. 103

B.35. MkdirTask ... 103
B.35.1. Examples ... 104

B.36. MoveTask ... 104
B.36.1. Examples ... 104
B.36.2. Attributes and Nested Elements .. 104

B.37. PathConvert .. 104
B.38. PathToFileSetTask .. 105

B.38.1. Examples ... 106
B.39. PhingCallTask ... 106

B.39.1. Examples ... 106
B.39.2. Supported Nested Tags .. 107

B.40. PhingTask .. 107
B.40.1. Examples ... 108
B.40.2. Supported Nested Tags .. 108
B.40.3. Base directory of the new project .. 108

B.41. Phingversion ... 108
B.41.1. Example .. 109

B.42. PhpEvalTask ... 109
B.42.1. Examples ... 109
B.42.2. Supported Nested Tags .. 110

B.43. PhpLintTask .. 110
B.43.1. Example .. 111

vi

Phing User Guide

B.43.2. Supported Nested Tags .. 111
B.44. PropertyCopy .. 111

B.44.1. Example .. 111
B.45. PropertyRegexTask ... 111

B.45.1. Match expressions ... 112
B.45.2. Replace ... 112
B.45.3. Example .. 113

B.46. PropertySelector ... 113
B.46.1. Select expressions ... 114
B.46.2. Example .. 114

B.47. PropertyTask .. 114
B.47.1. Examples ... 115
B.47.2. Supported Nested Tags: ... 115

B.48. Record ... 115
B.48.1. Example .. 116

B.49. ReflexiveTask ... 116
B.49.1. Examples ... 117
B.49.2. Supported Nested Tags: ... 117

B.50. Relentless ... 117
B.50.1. Example .. 118

B.51. ReplaceRegexpTask ... 119
B.51.1. Supported Nested Tags .. 119

B.52. ResolvePathTask .. 119
B.52.1. Examples ... 120

B.53. Retry .. 120
B.53.1. Example .. 120

B.54. RunTargetTask ... 120
B.54.1. Example .. 121

B.55. SleepTask .. 121
B.55.1. Example .. 121

B.56. SortList ... 121
B.56.1. Example .. 122

B.57. Subphing Task .. 122
B.57.1. Supported Nested Tags .. 123

B.58. SwitchTask ... 123
B.58.1. Supported Nested Tags .. 123
B.58.2. Examples ... 123

B.59. SymlinkTask ... 124
B.59.1. Example .. 124
B.59.2. Supported Nested Tags .. 124

B.60. TaskdefTask ... 125
B.60.1. Examples ... 125
B.60.2. Supported Nested Tags .. 125

B.61. Tempfile Task ... 125
B.61.1. Example .. 126

B.62. ThrowTask .. 126
B.62.1. Example .. 126

B.63. TouchTask .. 127
B.63.1. Examples ... 127
B.63.2. Supported Nested Tags .. 128

B.64. TruncateTask .. 128
B.64.1. Examples ... 129

B.65. TryCatchTask ... 129
B.65.1. Examples ... 129

B.66. TstampTask .. 130
B.66.1. Examples ... 130
B.66.2. Supported Nested Tags .. 130
B.66.3. ICU syntax ... 131

vii

Phing User Guide

B.67. TypedefTask ... 132
B.67.1. Examples ... 132
B.67.2. Supported Nested Tags .. 132

B.68. URLEncodeTask ... 132
B.68.1. Example .. 133

B.69. UpToDateTask .. 133
B.69.1. Examples ... 133
B.69.2. Supported Nested Tags .. 134

B.70. Variable .. 134
B.70.1. Example .. 134

B.71. VersionTask .. 135
B.71.1. Example .. 135

B.72. WaitForTask ... 136
B.72.1. Examples ... 136
B.72.2. Supported Nested Tags .. 136

B.73. XsltTask ... 136
B.73.1. Examples ... 137
B.73.2. Supported Nested Tags .. 137

C. Optional tasks ... 139
C.1. ApiGenTask .. 139

C.1.1. Example .. 140
C.2. ComposerTask ... 140

C.2.1. Supported Nested Tags ... 141
C.2.2. Example .. 141

C.3. CoverageMergerTask .. 141
C.3.1. Example .. 142
C.3.2. Supported Nested Tags ... 142

C.4. CoverageReportTask .. 142
C.4.1. Example .. 142
C.4.2. Supported Nested Tags ... 142

C.5. CoverageSetupTask .. 143
C.5.1. Example .. 143
C.5.2. Supported Nested Tags ... 143

C.6. CoverageThresholdTask ... 144
C.6.1. Example .. 144
C.6.2. Supported Nested Tags ... 144

C.7. DbDeployTask .. 145
C.7.1. Example .. 145

C.8. FileSyncTask .. 146
C.8.1. Examples .. 147

C.9. FtpDeployTask ... 147
C.9.1. Example .. 148
C.9.2. Supported Nested Tags ... 148

C.10. GitArchiveTask ... 148
C.10.1. Example .. 149

C.11. GitBranchTask .. 149
C.11.1. Example .. 150

C.12. GitCheckoutTask .. 151
C.12.1. Example .. 152

C.13. GitCloneTask .. 152
C.13.1. Example .. 153

C.14. GitCommitTask ... 153
C.14.1. Example .. 153
C.14.2. Supported Nested Tags .. 154

C.15. GitDescribeTask ... 154
C.15.1. Example .. 155

C.16. GitFetchTask .. 155
C.16.1. Example .. 156

viii

Phing User Guide

C.17. GitGcTask .. 156
C.17.1. Example .. 157

C.18. GitInitTask .. 157
C.18.1. Example .. 158

C.19. GitLogTask ... 158
C.19.1. Example .. 158

C.20. GitMergeTask ... 159
C.20.1. Example .. 160

C.21. GitPullTask ... 160
C.21.1. Example .. 161

C.22. GitPushTask ... 162
C.22.1. Example .. 162

C.23. GitTagTask ... 163
C.23.1. Example .. 164

C.24. GrowlNotifyTask .. 164
C.24.1. Examples ... 166

C.25. HgAddTask ... 167
C.25.1. Example .. 167
C.25.2. Supported Nested Tags .. 167

C.26. HgArchiveTask ... 167
C.26.1. Example .. 168

C.27. HgCloneTask .. 168
C.27.1. Example .. 168

C.28. HgCommitTask ... 168
C.28.1. Example .. 169

C.29. HgInitTask .. 169
C.29.1. Example .. 169

C.30. HgLogTask ... 169
C.30.1. Example .. 170

C.31. HgPullTask ... 170
C.31.1. Example .. 170

C.32. HgPushTask ... 170
C.32.1. Example .. 170

C.33. HgRevertTask ... 171
C.33.1. Example .. 171

C.34. HgTagTask ... 171
C.34.1. Example .. 171

C.35. HgUpdateTask .. 171
C.35.1. Example .. 172

C.36. HttpGetTask ... 172
C.36.1. Example .. 172
C.36.2. Supported Nested Tags .. 172
C.36.3. Global configuration ... 173

C.37. HttpRequestTask .. 173
C.37.1. Example .. 174
C.37.2. Supported Nested Tags .. 174
C.37.3. Global configuration ... 175

C.38. IniFileTask .. 175
C.38.1. Supported Nested Tags .. 176
C.38.2. Example .. 176

C.39. IoncubeEncoderTask ... 177
C.39.1. Example .. 178
C.39.2. Supported Nested Tags .. 179

C.40. IoncubeLicenseTask .. 179
C.40.1. Example .. 179
C.40.2. Supported Nested Tags .. 180

C.41. JsHintTask .. 180
C.41.1. Example .. 180

ix

Phing User Guide

C.41.2. Supported Nested Tags .. 180
C.42. JsMinTask .. 181

C.42.1. Example .. 181
C.42.2. Supported Nested Tags .. 181

C.43. JslLintTask ... 181
C.43.1. Example .. 182
C.43.2. Supported Nested Tags .. 182

C.44. LiquibaseChangeLogTask ... 182
C.44.1. Example .. 183
C.44.2. Supported Nested Tags .. 183

C.45. LiquibaseDbDocTask .. 183
C.45.1. Example .. 184
C.45.2. Supported Nested Tags .. 184

C.46. LiquibaseDiffTask .. 184
C.46.1. Example .. 185
C.46.2. Supported Nested Tags .. 185

C.47. LiquibaseRollbackTask .. 186
C.47.1. Example .. 186
C.47.2. Supported Nested Tags .. 187

C.48. LiquibaseTagTask ... 187
C.48.1. Example .. 188
C.48.2. Supported Nested Tags .. 188

C.49. LiquibaseTask ... 188
C.49.1. Example .. 189
C.49.2. Supported Nested Tags .. 189

C.50. LiquibaseUpdateTask .. 190
C.50.1. Example .. 190
C.50.2. Supported Nested Tags .. 191

C.51. MailTask ... 191
C.51.1. Example .. 191
C.51.2. Supported Nested Tags .. 191

C.52. NotifySendTask ... 192
C.53. OpenTask ... 192

C.53.1. Examples ... 192
C.54. PDOSQLExecTask .. 192

C.54.1. Example .. 193
C.54.2. Supported Nested Tags .. 194

C.55. PHPMDTask ... 195
C.55.1. Example .. 196
C.55.2. Supported Nested Tags .. 196

C.56. PHPStanTask ... 197
C.56.1. Supported Nested Tags .. 198
C.56.2. Example .. 198

C.57. PHPUnitReport ... 198
C.57.1. Example .. 199

C.58. PHPUnitTask .. 199
C.58.1. Supported Nested Tags .. 200
C.58.2. Example .. 201
C.58.3. Supported Nested Tags .. 202

C.59. ParallelTask .. 202
C.59.1. Example .. 203

C.60. PatchTask .. 203
C.60.1. Example .. 204

C.61. PharDataTask ... 204
C.61.1. Example .. 204
C.61.2. Supported Nested Tags .. 205

C.62. PharPackageTask ... 205
C.62.1. Example .. 205

x

Phing User Guide

C.62.2. Supported Nested Tags .. 206
C.63. PhkPackageTask .. 206

C.63.1. Example .. 206
C.63.2. Supported Nested Tags .. 207

C.64. PhpCSTask .. 207
C.64.1. Supported Nested Tags .. 207
C.64.2. Examples ... 208

C.65. PhpDependTask ... 208
C.65.1. Example .. 209
C.65.2. Supported Nested Tags .. 209

C.66. PhpDocumentor2Task ... 209
C.66.1. Example .. 210
C.66.2. Supported Nested Tags .. 210

C.67. rSTTask ... 210
C.67.1. Features .. 211
C.67.2. Examples ... 211
C.67.3. Supported Nested Tags .. 213

C.68. S3GetTask ... 213
C.68.1. Example .. 214

C.69. S3PutTask .. 214
C.69.1. Example .. 215
C.69.2. Supported Nested Tags .. 215

C.70. SassTask ... 216
C.70.1. Example .. 217
C.70.2. Supported Nested Tags .. 217

C.71. ScpTask ... 217
C.71.1. Example .. 218
C.71.2. Supported Nested Tags .. 218

C.72. SmartyTask .. 219
C.73. SonarTask .. 219

C.73.1. Examples ... 220
C.73.2. Supported Nested Tags .. 221

C.74. SshTask ... 221
C.74.1. Example .. 222
C.74.2. Supported Nested Tags .. 222

C.75. StopwatchTask ... 222
C.75.1. Example .. 222

C.76. SvnCheckoutTask ... 223
C.76.1. Example .. 223

C.77. SvnCommitTask .. 224
C.77.1. Example .. 224

C.78. SvnCopyTask ... 225
C.78.1. Example .. 225

C.79. SvnExportTask ... 225
C.79.1. Example .. 226

C.80. SvnInfoTask .. 226
C.80.1. Example .. 227

C.81. SvnLastRevisionTask .. 227
C.81.1. Example .. 228

C.82. SvnListTask .. 228
C.82.1. Example .. 228

C.83. SvnLogTask .. 229
C.83.1. Example .. 229

C.84. SvnPropgetTask ... 229
C.84.1. Example .. 230

C.85. SvnProplistTask .. 230
C.85.1. Example .. 231

C.86. SvnPropsetTask .. 231

xi

Phing User Guide

C.86.1. Example .. 231
C.87. SvnRevertTask ... 231
C.88. SvnSwitchTask ... 232

C.88.1. Example .. 232
C.89. SvnUpdateTask .. 233

C.89.1. Example .. 233
C.90. SymfonyConsoleTask .. 233

C.90.1. Examples ... 234
C.90.2. Supported Nested Tags .. 234

C.91. TarTask .. 234
C.91.1. Example .. 235
C.91.2. Supported Nested Tags .. 235

C.92. UntarTask ... 235
C.92.1. Example .. 236
C.92.2. Supported Nested Tags .. 236

C.93. UnzipTask .. 236
C.93.1. Example .. 236
C.93.2. Supported Nested Tags .. 236

C.94. VisualizerTask .. 237
C.94.1. Examples ... 237
C.94.2. Limitations ... 238
C.94.3. Requirements ... 238
C.94.4. Advanced HTTP configuration .. 238

C.95. WikiPublishTask .. 239
C.95.1. Example .. 240

C.96. XmlLintTask .. 240
C.96.1. Examples ... 240
C.96.2. Supported Nested Tags .. 241

C.97. XmlPropertyTask .. 241
C.97.1. Example .. 241

C.98. ZSDTPackTask ... 242
C.98.1. Example .. 243

C.99. ZSDTValidateTask .. 243
C.99.1. Example .. 243

C.100. ZendCodeAnalyzerTask .. 243
C.100.1. Example .. 244
C.100.2. Supported Nested Tags .. 244

C.101. ZipTask .. 244
C.101.1. Example .. 245
C.101.2. Supported Nested Tags .. 245

D. Core Types ... 247
D.1. Description ... 247

D.1.1. Usage Examples .. 247
D.2. Excludes .. 247

D.2.1. Nested tags ... 247
D.2.2. Usage Examples .. 247

D.3. FileList ... 248
D.3.1. Usage Examples .. 248

D.4. FileSet ... 248
D.4.1. Using wildcards ... 249
D.4.2. Usage Examples .. 249
D.4.3. Nested tags ... 249

D.5. DirSet ... 250
D.5.1. Using wildcards ... 250
D.5.2. Usage Examples .. 251
D.5.3. Nested tags ... 251

D.6. PatternSet .. 251
D.6.1. Usage Example ... 252

xii

Phing User Guide

D.6.2. Nested tags ... 252
D.7. Path / Classpath ... 252

D.7.1. Nested tags ... 252
D.8. Regexp .. 252

D.8.1. Examples .. 253
E. Core filters .. 255

E.1. PhingFilterReader ... 255
E.1.1. Nested tags ... 256
E.1.2. Advanced .. 256

E.2. ExpandProperties .. 256
E.3. ConcatFilter .. 256
E.4. HeadFilter ... 257
E.5. IconvFilter ... 257
E.6. Line Contains ... 257

E.6.1. Nested tags ... 258
E.7. LineContainsRegexp ... 258

E.7.1. Nested tags ... 258
E.8. PrefixLines .. 258
E.9. ReplaceTokens ... 259

E.9.1. Nested tags ... 259
E.10. ReplaceTokensWithFile ... 259

E.10.1. Nested tags ... 260
E.11. ReplaceRegexp ... 260

E.11.1. Nested tags ... 260
E.12. SortFilter ... 261
E.13. StripLineBreaks ... 261
E.14. StripLineComments ... 262

E.14.1. Nested tags ... 262
E.15. StripPhpComments ... 262
E.16. StripWhitespace .. 262
E.17. TabToSpaces ... 262
E.18. TailFilter ... 263
E.19. TidyFilter .. 263

E.19.1. Nested tags ... 263
E.20. XincludeFilter .. 263
E.21. XsltFilter ... 264

E.21.1. Nested tags ... 264
E.22. ClassConstants ... 265

F. Core mappers .. 267
F.1. Common Attributes ... 267
F.2. ChainedMapper ... 267

F.2.1. Examples ... 267
F.3. CompositeMapper ... 268

F.3.1. Examples ... 268
F.4. FirstMatchMapper ... 268

F.4.1. Examples ... 268
F.5. CutDirsMapper .. 269

F.5.1. Examples ... 269
F.6. FlattenMapper ... 269

F.6.1. Examples ... 269
F.7. GlobMapper .. 269

F.7.1. Examples ... 270
F.8. IdentityMapper .. 270
F.9. MergeMapper .. 270

F.9.1. Examples ... 270
F.10. RegexpMapper .. 271

F.10.1. Examples ... 271
G. Core selectors ... 273

xiii

Phing User Guide

G.1. Contains ... 273
G.2. Date ... 274
G.3. Depend .. 275
G.4. Depth ... 275
G.5. Different ... 275
G.6. Filename .. 276
G.7. Present .. 277
G.8. Containsregexp .. 277
G.9. Size ... 278
G.10. Type .. 279
G.11. And .. 279
G.12. Majority .. 279
G.13. Modified ... 279

G.13.1. Parameters specified as nested elements ... 280
G.13.2. Examples .. 281

G.14. None .. 281
G.15. Not ... 281
G.16. Or .. 282
G.17. Readable .. 282
G.18. Writable .. 282
G.19. Executable ... 282
G.20. Selector .. 283
G.21. Symlink Selector ... 283
G.22. PosixPermissions Selector .. 283

H. Project Components .. 285
H.1. Phing Projects .. 285

H.1.1. Example .. 285
H.1.2. .. 285
H.1.3. Attributes ... 285

H.2. Targets and Extension-Points .. 286
H.2.1. Example .. 286
H.2.2. Attributes ... 286
H.2.3. Extension-Points .. 286

I. Loggers and Listeners .. 289
I.1. Listeners .. 289
I.2. Loggers ... 289
I.3. DefaultLogger .. 289
I.4. AnsiColorLogger ... 289
I.5. MailLogger ... 290
I.6. NoBannerLogger .. 291
I.7. ProfileLogger .. 291
I.8. StatisticsListener .. 291
I.9. TimestampedLogger ... 292
I.10. SilentLogger ... 292
I.11. MonologListener ... 292
I.12. DisguiseLogger .. 292

J. File Formats .. 293
J.1. Build File Format ... 293
J.2. Property File Format .. 294

Bibliography ... 297

xiv

Preface
PHing Is Not GNU make; it's a PHP project build system or build tool based on Apache Ant. You can
do anything with it that you could do with a traditional build system like GNU make, and its use of
simple XML build files and extensible PHP "task" classes make it an easy-to-use and highly flexible
build framework. Features include running PHPUnit and SimpleTest unit tests (including test result and
coverage reports), file transformations (e.g. token replacement, XSLT transformation, Smarty template
transformations), file system operations, interactive build support, SQL execution, CVS/SVN opera-
tions, documentation generation (PhpDocumentor) and much more.

If you find yourself writing custom scripts to handle the packaging, deploying, or testing of your applica-
tions, then we suggest looking at the Phing framework. Phing comes packaged with numerous out-of-
the-box operation modules (tasks), and an easy-to-use OO model for adding your own custom tasks.

xv

xvi

Chapter 1. About this book

1.1. Contributors (present and past)
• Michiel Rook, mrook@php.net

• Ken Guest, kguest@php.net

• Siad Ardroumli, siad.ardroumli@gmail.com

• Andreas Aderhold, andi@binarycloud.com

• Alex Black, enigma@turingstudio.com

• Manuel Holtgrewe, grin@gmx.net

• Hans Lellelid, hans@xmpl.org

• Johan Persson, johan162@gmail.com

1.2. Copyright
Copyright 2002-2022, The Phing Project.

1.3. License
This documentation is made available under the GNU Free Document License (see Section A.6, “The
GFDL License”)

Copyright (c) 2002 - 2022, The Phing Project

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation;

1.4. DocBook
All Phing reference documentation is written using the DocBook5 XML markup (see DocBook Project
[http://docbook.sourceforge.net/]). The main advantage with DocBook is that it is a single source but

1

http://docbook.sourceforge.net/
http://docbook.sourceforge.net/

Building the documentation

multiple outputs. These document sources can be rendered into many possible output formats such
as (X)HTML, PDF, EPub, Webhelp, RTF, Text and many more. Another advantage, inherit with the
text based XML format, is that the document sources are all completely text based written using UTF-8
encoding. Only a plain text editor is required to extend or edit this documentation.

However, XML tends to be quite verbose and even if a plain text editor technically is all that is needed
the actual entering of text will be made much easier with custom XML editor. These editors can be
used to hide the XML tags and do auto-completion and on-the-fly validation to make sure that what is
written is a valid DocBook5 document.

To work with the documentation we recommend to use one of the free XML/DocBook aware editors
available. For example

• Emacs with the nXML mode (see nXML mode [http://www.thaiopensource.com/nxml-mode/])

• Serna Free, (Free of charge) A Java based XML editor with extended support for DocBook5 (see
Serna Free - Open Source XML Editor [http://www.syntext.com/products/serna-free/])

• XMLMind XML Editor, Personal Edition (Free of charge), A java based XML editor with extended
support for DocBook5 (see XMLMind Personal Edition [http://www.xmlmind.com/xmleditor/persoedi-
tion.html])

The sources for the documentation are included under the docs/ directory. The DocBook sources are
split into several files in order to make it more maintainable using the XML standard XInclude (see
XML Inclusions (XInclude) Version 1.0 [http://www.w3.org/TR/xinclude/]).

For the writing of the book only a subset of all available DocBook elements are used as shown in
Section 1.4.4, “DocBook v5 elements used in the manual and their meaning”

As of this writing the build process has been validated using version 1.78.1 of the DocBook5 stylesheets.

Important

Make sure all documentation is written using UTF-8 text encoding.

1.4.1. Building the documentation

In order to build the documentation it is necessary to have the DocBook5 XSL stylesheets installed
together with "xsltproc" which is used to transform the source into various output formats. In addition,
to build the versions (either HTML or PDF) that supports highlighting of included source (within the
<programlisting> element) the Saxon 6.5.5 XSL processor must be used. This is necessary
since the syntax highlighting in DocBook is based on a Java extension (xslthl-2.x.x) which requires
a Java based processor (such as Saxon).

Tip

The easiest way to setup a complete build environment for DocBook5 for people new to DocBook is
to install a clean version of Debian 7.x and then run the "deb-setup.sh" shell script. This will create
a fully tested and working build environment for DocBook5 as it is used with Phing. This could easily
be done using a virtual setup (for example using VirtualBox).

All DocBook is structured in a tree:

2

http://www.thaiopensource.com/nxml-mode/
http://www.thaiopensource.com/nxml-mode/
http://www.syntext.com/products/serna-free/
http://www.syntext.com/products/serna-free/
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.xmlmind.com/xmleditor/persoedition.html
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xinclude/

Building the documentation

.
source
appendixes
optionaltasks
chapters
stylesheets
 ### css
 # ### img
 ### xsl
 ### images

All document sources are stored under the subdirectory "source" and the master document is aptly
named "master.xml". This document pulls in all chapters and appendixes in the right order. For ex-
ample, new tasks added must be documented in a new file inside "source/appendixes/option-
altasks/", then a reference should be added in "source/appendix/optionaltasks.xml". Look
at the existing tasks and follow the same structure.

Important

In order to get highlighting to work both the "xslthl-2.x.x.jar" package must be installed as
well as Saxon 6.5.x. The jar file must be installed somewhere in the CLASSPATH , for example "/
usr/share/java" if you run this on Linux. The xslthl package is available on SourceForge, please
see XSLT syntax highlighting [http://sourceforge.net/projects/xslthl/]. By using the automated setup
for Debian 7.x all these dependencies will be taken care of!

The customized stylesheets used are stored under "stylesheets" which uses one sub-folder for the
customized XSL stylesheets (responsible for the transformation from DocBook to the chosen output
format) and one sub-folder for the CSS stylesheets used to give the generated HTML documents there
"look & feel".

Finally the "scripts" directory stores utility scripts. This currently contains two scripts, deb-setup.sh
and "hlsaxon". The first scripts helps to create a full build environment for DocBook5 starting with
a clean Debian 7 installation. This is meant to help people new to DocBook5 to get a working build
environment as easy as possible. This script takes care of all detailed setup and will make a fulloy
working DocBook5 build environment out-of-the-box.

The second script (hlsaxon) is wrapper file used from the buildfiles to call the Saxon translator (a Java
based XSL procesor) with highlighting enabled and suitable paths to supporting libraries In this script
the path to the DocBook installed stylesheets must be adjusted depending on your system (unless
the automated setup have been used - with the deb-setup.sh file which takes care of that setup
automatically). Mutatis mutandis.

In order to drive the transformation a Phing build script is available in the docbook root, build.xml.
The build script supports the following public targets

 all* Builds all available targets (default)
 chunk Builds the chunked HTML
 clean Removes all output files
 epub Builds the EPUB version
 hlhtml Builds the HTML version with syntax highlight
 hlpdf Builds the PDF version with syntax highlight
 html Builds the HTML version
 htmlfancy Builds the HTML version with an alternative styling for screen output
 pdf Builds the PDF version
 webhelp Builds the webhelp version (Note: This requires Java and Ant
 to be installed!)
 validate Validates all sources against the DocBook5 grammar

3

http://sourceforge.net/projects/xslthl/
http://sourceforge.net/projects/xslthl/

Template for new tasks

All generated output is stored under the directory "output" (which is created if it doesn't exist) with a
subdirectory corresponding to the name of the chosen output format.

1.4.2. Template for new tasks

For creating documentation for new tasks the easistes thing is to use the included template tem-
plate_for_tasks.xml which is a skeleton tasks with all commonly used elements. This will ensure
a correct setting of all attributes. The skeleton can then be added to a suitable appendix as needed.

Note

All new task description should go into one of the Appendices.

1.4.3. Customization of the look & feel of the rendered outputs

Note

The following section is only meant for the maintainers that work on the core layout of the offi-
cial Phing manual and is not necessary for developers adding documentation for new tasks of
improving documentation for existing tasks.

Furthermore, by necessity this assumes a rudimentary knowledge of Docbook5 bubild process and
what XSL and CSS stylesheets are. It is not possible in this short space to give a full description of
that setup.

XSL Customization layer

All DocBook5 renderings are started from one of the customized XSL stylesheet under
"stylesheets/xsl" . All commonly adjusted properties should go into the appropriate stylesheet for
that rendering. No properties should be passed on via the command line. To keep the customization
layer as future proof as possible only in very rare circumstances should any cores XSL templates be
copied and modified. As usual the recommended way is to use the provided hooks.

CSS styelsheets

The CSS stylesheets are used to create the look & feel for the HTML based renderings. These are
entirely standard CSS files which by design are kept very simple. It should be noted that a few styling
option depends in turn of the modified XSL transformations in the XSL customization layer. This had
to be done in order to gain some more detialed control not provided by DocBook5 out-of-the-box.

Webhelp

The webhelp output rendering is a bit of a special case. This rendering depends not only on DocBook5
but also on Java as well as Ant build processor. These dependencies are inherited from the official
DocBook5 webhelp process and will remain. Unfortunately adjusting the look & fell for this rendering is
not as simple as for the other outputs since a fair amount of the layout (as well as look & feel) are hard-
coded in the Webhelp build system. While it is perfectly possible to adjust the hard coded values and
design choises it is not future proof. Since the Webhelp rendering is the newest and fastest improving
output from DocBook the intention for the Phing documentation is to track these improvements and not
spend time ourself to duplicate this effor with a parallell development.

4

DocBook v5 elements used in
the manual and their meaning

1.4.4. DocBook v5 elements used in the manual and their meaning

To keep things simple the manual uses only a small subset of all available elements in the DocBook
schema. This makes it fairly easy to quickly get up to speed with adding and editing the manual. It
also helps to keep the look&feel consistent and makes the writing of the CSS and XSL stylesheets a
little bit easer.

The following list shows the supported elements and how they should be used in the manual

<chapter>, <appendix> This is the top element for each chapter and appendix in the manual.
Each <chapter> or <appendix> must also have a title.

Table 1.1: Required attributes

Attribute Value Description

xmlns http://
docbook.org/ns/
docbook

Name space for DocBook. Always
needed.

xmlns:xi http://
www.w3.org/2001/
XInclude

Name space for XInclude. Need-
ed since we use XInclude to split
the manual into different files.

xmlns:xlinkhttp://
www.w3.org/1999/
xlink

Name space for xlink. Needed
sine we make use of link and xref
elements to link to other sites and
cross references within the manu-
al.

version 5.0 Versions of DocBook. Always
needed.

xml:id app.XXX , ch.XXX The id for the chapter or the appen-
dix. Used in other part of the manu-
al to refer to this chapter/appendix
with an <xref> element.

Table 1.2: Required nested elements

Element Value

<title> The title of the chapter/appendix.

Example:

<appendix xmlns="http://docbook.org/ns/docbook"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 version="5.0"
 xml:id="app.coretasks">
 <title>Core tasks</title>
...
</appendix>

<sectN> The section tags divides each chapter and appendix into logical parts.
Each task description must be contained in a <sect1> element and
each example section for the task must be contained within a <sect2>
element. Depending on the description needed for each task addi-
tional <sect2> may be added as needed to make the text logically
structured. If needed, a further nesting level may be used by using

5

DocBook v5 elements used in
the manual and their meaning

<sect3> elements within each <sect2> element. No deeper nest-
ings than <sect3> should ever be used.

Each top level section must have the xml:id attribute which is used to
reference the section from other parts of the document. Each section
must have a nested title element.

Table 1.3: Required attributes

Attribute Value Description

role taskdef This is only used and required for <sect1> el-
ements for task description. This role is not cur-
rently used in the any of the XSL sheets. This
is for future use.

xml:id Name of
section

The id for task definition should be the same
as the task name for task description. For other
sections the id should be a logical name that
descrobes the content.

Table 1.4: Required nested elements

Element Value

<title> The title of the section

Example:

<sect1 role="taskdef" xml:id="AdhocTaskdefTask">
 <title>AdhocTaskdefTask</title>
...
</sect1>

<para> Division between paragraphs in flowing text.

<screen> Used to mark command lines and multi-line computer output. For inline
screen output use the <literal> element

<programlisting> Used for all PHP and XML program listings in the manual. Please note
that this tag should not be used for command lines as entered in a
terminal. Use the <screen> element for this.

Note: Remember to write all opening '<' as <

Table 1.5: Required attributes

Attribute Value Description

lan-
guage

php, xml The language attribute should indicate what pro-
gramming language the programlisting contains.
This is used to control what syntax highlighting
should be used.

Example:

<programlisting language="xml">
 <append
 destFile="${process.outputfile}">
 <filterchain>
 <xsltfilter style="${process.stylesheet}">
 <param name="mode"
 expression="${process.xslt.mode}"/>
 </xsltfilter>

6

DocBook v5 elements used in
the manual and their meaning

 </filterchain>
 <filelist dir="book/"
 listfile="book/PhingGuide.book"/>
</append></programlisting>

<acronym> Used to indicate acronym in running text

<literal> Used to indicate literal names in running text such as program vari-
ables, name of attributes, XML-elements etc.

<filename> Used to indicate a file- or directory name in running text.

Table 1.6: Required attributes

Attribute Value Description

role dir Used when the file-
name is a directory.

Example:

<filename role="dir">/etc/php5</filename>

<link> Used to include a URL link to other sites or documents outside the
manual.

Table 1.7: Required attributes

Attribute Value Description

xlink:href URL Link The link to an external
reference.

Example:

<link xlink:href="http://qbnz.com/highlighter/"
>GeSHi Homepage</link>

<xref> A link to another part of the document. When the link is generated in
the rendered document the name of the section, chapter or appendix
that the link refers to is included literal.

Table 1.8: Required attributes

Attribute Value Description

xlink:href Internal reference to an
ID element

Internal links must be
prefixed with a '#' char-
acter.

Example:

<xref xlink:href="#ch.projcomponents"/>

<table> The CALS model for table should be used. The generated rendered
version will be styled by the CSS stylesheet automatically. For this
to work as expected for the required attribute for a task the columns
needs to have the following names (they are used in the CSS sheets).
The column width specified is not important since that will be overrid-
den by the CSS stylesheets.

...

7

DocBook v5 elements used in
the manual and their meaning

<colspec colname="name" colnum="1" colwidth="1.5*"/>
<colspec colname="type" colnum="2" colwidth="0.8*"/>
<colspec colname="description" colnum="3" colwidth="3.5*"/>
<colspec colname="default" colnum="4" colwidth="0.8*"/>
<colspec colname="required" colnum="5" colwidth="1.2*"/>
...

A CALS model table should have the following required nested el-
emenets. For more information on more advanced CALS formatting
such as joining rows or columns please see Chapter 30. Tables [http://
www.sagehill.net/docbookxsl/CellSpans.html] in Bob Stayton's book
"DocBook XSL: The Complete Guide - 4th Edition" [http://www.sage-
hill.net/docbookxsl/]

Table 1.9: Required nested elements

Attribute Description

title The descriptive title for the table.

tgroup Groups a set of columns together.

colspec Defines the sizing of the table.

thead Header row for table.

tbody Body of table.

Example:

<table>
 <title>Required attributes</title>
 <tgroup cols="3">
 <colspec colname="attribute" colnum="1"
 colwidth="1.0*"/>
 <colspec colname="value" colnum="2"
 colwidth="1.0*"/>
 <colspec colname="description" colnum="3"
 colwidth="1.0*"/>
 <thead>
 <row>
 <entry>Attribute</entry>
 <entry>Value</entry>
 <entry>Description</entry>
 </row>
 </thead>
 <tbody>
 <row>
 <entry>...</entry>
 <entry>...</entry>
 <entry>...</entry>
 </row>
 <row>
 <entry>...</entry>
 <entry>...</entry>
 <entry>...</entry>
 </row>
 </tbody>
 </tgroup>
</table>

<emphasis role="bold"> Should only be used when certain effects in flowing text are wanted
that warrents the text to be rendered in a bold style to be shown as
emphasised.

Example:

8

http://www.sagehill.net/docbookxsl/CellSpans.html
http://www.sagehill.net/docbookxsl/CellSpans.html
http://www.sagehill.net/docbookxsl/CellSpans.html
http://www.sagehill.net/docbookxsl/
http://www.sagehill.net/docbookxsl/
http://www.sagehill.net/docbookxsl/

DocBook v5 elements used in
the manual and their meaning

<emphasis role="bold">PH</emphasis>ing <emphasis
role="bold">I</emphasis>s <emphasis
role="bold">N</emphasis>ot <emphasis
role="bold">GN</emphasis>U make;

The above example will then be rendered as: "PHing Is Not GNU
make;"

<application> This tag is used to indicate the name of a application. The line between
a command (marked with <literal>) and an application is not cut in
stone but an application is usually a complex computer program with its
own user interface. Examples of what we would mark as applications
are "Emacs", "OpenOffice", "MatLab" etc.

This element is rarely used.

9

10

Chapter 2. Introduction

2.1. What Phing Is
Phing is a project build system based on Apache ant (See ant). You can do anything with Phing that you
could do with a traditional build system like Gnu make (See gnumake), and Phing's use of simple XML
build files and extensible PHP task classes make it an easy-to-use and highly flexible build framework.

Because Phing is based on Ant, parts of this manual are also adapted from the ant manual (see ant).
We are extremely grateful to the folks in the Ant project for creating (and continuing to create) such an
inspiring build system model, and for the open-source licensing that makes it possible for us to learn
from each other and build increasingly better tools.

2.2. Phing & Binarycloud: History
Phing was originally a subproject of Binarycloud. Binarycloud is a highly engineered application frame-
work, designed for use in enterprise environments. Binarycloud uses XML extensively for storing meta-
data about a project (configuration, nodes, widgets, site structure, etc.). Because Binarycloud is built
for PHP, performing extensive XML processing and transformations on each page request is an unre-
alistic proposition. Phing is used to "compile" the XML metadata into PHP arrays that can be processed
without overhead by PHP scripts.

Of course, XML compilation is only one of many ways that Binarycloud uses the Phing build system.
The Phing build system makes it possible for you to:

• Build multi language pages from one source tree,

• Centralize metadata (e.g. your data model) in one XML file and generate several files from that XML
with different XSLT.

In the beginning, Binarycloud used the GNU make system; however, this approach had some draw-
backs: The space-before-tab-problem in makefiles, the fact that it is only natively available for Unix
systems etc. So, the need for a better build system arose. Due to its XML build files and modular design,
Apache Ant was a logical choice. The problem was that Ant is written in Java, so you need to install
a JVM on your computer to use it. Besides the need for yet another interpreter (i.e. besides PHP),
there was also legal/ideological conflict in requiring a commercial JVM (there were problems with Ant
on JVMs other than Sun's) for an LGPL'd Binarycloud.

So, the development of Phing began. Phing is a build system written in PHP and uses the ideas of
Ant. The first release was designed & developed simultaneously, and thus not very sophisticated. This
original system was quickly pushed to its limits and the need for a better Phing became a priority.
Andreas Aderhold, who was responsible for Phing/r1, designed and wrote much of the Phing/r2 that
followed. Phing/r2 became the Phing-1.0 that run under PHP4.

Next came Phing 2.x, which required PHP5 (at least 5.2.x) and made use of many of the available
features in PHP5.2 to achieve a high degree of modularization, code efficiency as well as stability and
testability. Phing became supported as a build tool in a number of various IDEs such as phpStorm,
Netbeans 8.1 and the like. From versions 2.3.3, released on 7th December 2008, through to version
2.16 Phing has been available to install via PEAR.

In 2018 active work started on producing Phing 3.0 which requires PHP7.1 at a minimum. Phing 3.0
is only available through Composer or as a .phar archive and is no longer installable via the PEAR
installer.

11

How Phing Works

2.3. How Phing Works
Phing uses XML buildfiles that contain a description of the things to do. The buildfile is structured into
targets that contain the actual commands to perform (e.g. commands to copy a file, delete a directory,
perform a DB query, etc.). So, to use Phing, you would first write your buildfile and then you would run
phing, specifying the target in your buildfile that you want to execute.

% phing -f mybuildfile.xml mytarget

By default Phing will look for a buildfile named build.xml (so you don't have to specify the buildfile
name unless it is not build.xml) and if no target is specified Phing will try to execute the default
target, as specified in the <project> tag.

In the same way as traditional make files (but without most of the traditional drawbacks) targets can
have dependencies. They can depend on both other targets as well as other files.

2.4. Cool, so how can I help?
Phing is under active development and there are many things to be done. The project will also welcome
non-coders to help keep the documentation up to date. If you don't already know about DocBook par-
ticipating in the documentation is a great opportunity to get experience!

To get involved start by doing the following:

• Read this manual to understand Phing ;-)

• Visit the Phing website (https://www.phing.info/) [https://www.phing.info/]

• ...and of course, start to actively participate in the development by forking the repository (see below)

2.4.1. Participating in the development

As of 1 January 2012 all Phing development is based on Git and the project is hosted at GitHub (https://
github.com/)

In order to participate in the development you will only need to follow three basic steps

1. Register a free account at GitHub [https://github.com/]

2. Clone the Official Git repository [https://github.com/phingofficial/phing]

3. Read up on the (very well written) documentation at GitHub on how to setup your own repository
and do things like cloning an existing repository and creating pull requests asking the official Phing
maintainers to take in your proposed additions/changes.

The chances to have a change set accepted greatly increases if you adhere to the following recom-
mendations

• Follow the naming and coding principle used by Phing

• Make sure you have added documentation for all your additions, including examples.

• Make sure you have added unit-test code as needed

• Be polite in all communication!

12

https://www.phing.info/
https://www.phing.info/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/phingofficial/phing
https://github.com/phingofficial/phing

Participating in the development

Note

If you have not worked with Git before and are coming from subversion there is a bit of re-adjust-
ment needed. Fortunately there are several SVN-To-Git re-learning guides available (for example
http://git.or.cz/course/svn.html which might make the initial transition easier.

However, it is probably best to forget about your mental picture on Subversion and realize that
Git is a different animal. So trying to think of everything in terms of Subversion is not really helpful
in the long run. You should therefore take the time to read the (free!) book "Pro Git", by Scott
Chacon available from http://progit.org/.

13

http://git.or.cz/course/svn.html
http://progit.org/

14

Chapter 3. Setting-up Phing
The goal of this chapter is to help you obtain and correctly setup and execute Phing on your operating
system. Once you setup Phing properly you shouldn't need to revisit this chapter, unless you're re-
installing or moving your installation to another platform.

3.1. System Requirements
To use Phing you must have installed PHP version 5.6 or above compiled --with-libxml2, as well
as --with-xsl if you want to make use of advanced functionality.

For more information on PHP and the required modules see the PHP [php] [Bibliography.html#php]
website. For a brief list of software dependencies see below.

3.1.1. Operating Systems

Designed for portability from the get go, Phing runs on all platforms that run PHP. However some
advanced functionality may not work properly or is simply ignored on some platforms (i.e. chmod on
the Windows platform).

To get the most out of Phing, a Unix style platform is recommended. Namely: Linux, FreeBSD, Open-
BSD, etc.

3.1.2. Software Dependencies

For a detailed and up-to-date list of required and/or optional software and libraries, refer to the ph-
ing/phing [https://packagist.org/packages/phing/phing] package on Packagist.

3.2. Obtaining Phing
Phing is free software distributed under the terms of the LGPL.

3.2.1. Distribution Files

There are several ways to get a Phing distribution package. If you do not want to participate in develop-
ing Phing itself it is recommended that you get the latest snapshot or stable packaged distribution. If you
are interested in helping with Phing development, register an account at GitHub as described below.

The easiest way to obtain the distribution package is to visit the Phing website [phing] [Bibliogra-
phy.html#phing]and download the current distribution package in the format you desire.

3.2.2. Composer Install

The preferred method to install Phing is through Composer [https://getcomposer.org/]. Add phing/phing
[https://packagist.org/packages/phing/phing] to the require-dev or require of your project's `com-
poser.json` configuration file, and run composer install:

15

Bibliography.html#php
Bibliography.html#php
https://packagist.org/packages/phing/phing
https://packagist.org/packages/phing/phing
https://packagist.org/packages/phing/phing
Bibliography.html#phing
Bibliography.html#phing
Bibliography.html#phing
https://getcomposer.org/
https://getcomposer.org/
https://packagist.org/packages/phing/phing
https://packagist.org/packages/phing/phing

Phar package

{
 "require-dev": {
 "phing/phing": "3.*"
 }
}

3.2.3. Phar package

Download the Phar archive [https://www.phing.info/get/phing-latest.phar]. You do not need to execute
any additional commands to install Phing, downloading the archive is enough. Phing can simply be
started by running:

$ php phing-latest.phar [parameters ...]

3.2.4. Getting the latest source from Phing's Github repository

The latest snapshot can always be downloaded directly the official Phing Git repository. However, be
warned that there is not guarantee that the momentous state of the repository represents a completely
stable application without any problems.

You can download a snapshot as a zip-tarball from:

• https://github.com/phingofficial/phing

3.3. Running Phing
Now you are prepared to execute Phing on the command line or via script files. The following section
briefly describe how to properly execute phing.

3.3.1. Command Line

Phing execution on the command line is simple. Just change to the directory where your buildfile resides
and type

$ phing [target [target2 [target3] ...]]

at the command line (where [target...] are the target(s) you want to be executed). If no target is speci-
fied Phing will try to execute the default target, as specified in the project tag. When calling multipe
targets, Phing will invoke each target independently of the other targets. Optionally, you may specify
command line arguments as listed in Appendix A [appendixes/AppendixA-FactSheet.html#Command-
LineArguments].

For example, the following command line calls the default buildscript build.xml using the default
target with the property ftp.upload set to true.

$ phing -Dftp.upload=true

3.3.2. Supported command line arguments

The following command line arguments are supported

16

https://www.phing.info/get/phing-latest.phar
https://www.phing.info/get/phing-latest.phar
https://github.com/phingofficial/phing
appendixes/AppendixA-FactSheet.html#CommandLineArguments
appendixes/AppendixA-FactSheet.html#CommandLineArguments
appendixes/AppendixA-FactSheet.html#CommandLineArguments

Supported command line arguments

 -h -help print this message
 -l -list list available targets in this project
 -i -init [file] generates an initial buildfile
 -v -version print the version information and exit
 -q -quiet be extra quiet
 -S -silent print nothing but task outputs and build failures
 -verbose be extra verbose
 -debug print debugging information
 -emacs, -e produce logging information without adornments
 -diagnostics print diagnostics information
 -strict runs build in strict mode, considering a warning as error
 -no-strict runs build normally (overrides buildfile attribute)
 -longtargets show target descriptions during build
 -logfile <file> use given file for log
 -logger <classname> the class which is to perform logging
 -listener <classname> add an instance of class as a project listener
 -f -buildfile <file> use given buildfile
 -D<property>=<value> use value for given property
 -keep-going, -k execute all targets that do not depend
 on failed target(s)
 -propertyfile <file> load all properties from file
 -propertyfileoverride values in property file override existing values
 -find <file> search for buildfile towards the root of the
 filesystem and use it
 -inputhandler <file> the class to use to handle user input

17

18

Chapter 4. Getting started
Phing buildfiles are written in XML, and so you will need to know at least some basic things about XML
to understand the following chapter. There is a lot of information available on the web:

• The Standard Recommendation of XML by the W3C http://www.w3.org/TR/2000/REC-xml: very tech-
nical but exhaustive.

• XML In 10 Points http://www.w3.org/XML/1999/XML-in-10-points: Quick introduction into XML.

• A technical introduction to XML http://www.xml.com/pub/a/98/10/guide0.html: Interesting article by
the creator of DocBook.

4.1. XML And Phing
A valid Phing buildfile has the following basic structure:

• The document prolog

• Exactly one root element called <project> .

• Several Phing type elements (i.e. <property> , <fileset> , <patternset> etc.)

• One or more <target> elements containing built-in or user defined Phing task elements (i.e. <in-
stall> , <bcc> , etc).

4.2. Writing A Simple Buildfile
The Foobar project installs some PHP files from a source location to a target location, creates an
archive of this files and provides an optional clean-up of the build tree:

<?xml version="1.0" encoding="UTF-8"?>

<project name = "FooBar" default = "dist">

 <!-- == -->
 <!-- Target: prepare -->
 <!-- == -->
 <target name = "prepare">
 <echo msg = "Making directory ./build" />
 <mkdir dir = "./build" />
 </target>

 <!-- == -->
 <!-- Target: build -->
 <!-- == -->
 <target name = "build" depends = "prepare">
 <echo msg = "Copying files to build directory..." />

 <echo msg = "Copying ./about.php to ./build directory..." />
 <copy file = "./about.php" tofile = "./build/about.php" />

 <echo msg = "Copying ./browsers.php to ./build directory..." />
 <copy file = "./browsers.php" tofile = "./build/browsers.php" />

19

http://www.w3.org/TR/2000/REC-xml
http://www.w3.org/XML/1999/XML-in-10-points
http://www.xml.com/pub/a/98/10/guide0.html

Project Element

 <echo msg = "Copying ./contact.php to ./build directory..." />
 <copy file = "./contact.php" tofile = "./build/contact.php" />
 </target>

 <!-- == -->
 <!-- (DEFAULT) Target: dist -->
 <!-- == -->
 <target name = "dist" depends = "build">
 <echo msg = "Creating archive..." />

 <tar destfile = "./build/build.tar.gz" compression = "gzip">
 <fileset dir = "./build">
 <include name = "*" />
 </fileset>
 </tar>

 <echo msg = "Files copied and compressed in build directory OK!" />
 </target>
</project>

A phing build file is normally given the name build.xml which is the default file name that the Phing
executable will look for if no other file name is specified.

To run the above build file and execute the default target (assuming it is stored in the current directory
with the default name) is only a matter of calling: $ phing

This will then execute the dist target. While executing the build file each task performed will print
some information on what actions and what files have been affected.

To run any of the other target is only a matter of providing the name of the target on the command line.
So for example to run the build target one would have to execute $ phing build

It is also possible to specify a number of additional command line arguments as described in Appen-
dix A, Fact Sheet

4.2.1. Project Element

The first element after the document prolog is the root element named <project> on line 3. This
element is a container for all other elements and can/must have the following attributes:

Table 4.1: <project> Attributes

Attribute Description Required

name The name of the project No

basedir The base directory of the project. This attribute con-
trols the value of the ${project.basedir} prop-
erty which can be used to reference files with paths
relative to the project root folder. Can be a path rela-
tive to the position of the buildfile itself. If omitted, "."
will be used, which means that the build file should
be located in the project's root folder.

No

default The default target that is to be executed if no tar-
get(s) are specified when calling this build file.

Yes

description The description of the project. No

strict Enables the strict-mode for the project build
process.

No

See Section H.1, “Phing Projects” for a complete reference.

20

Target Element

4.2.2. Target Element

A target can depend on other targets. You might have a target for installing the files in the build tree, for
example, and a target for creating a distributable tar.gz archive. You can only build a distributable when
you have installed the files first, so the distribute target depends on the install target. Phing resolves
these dependencies.

It should be noted, however, that Phing's depends attribute only specifies the order in which targets
should be executed - it does not affect whether the target that specifies the dependency(s) gets exe-
cuted if the dependent target(s) did not (need to) run.

Phing tries to execute the targets in the depends attribute in the order they appear (from left to right).
Keep in mind that it is possible that a target can get executed earlier when an earlier target depends
on it, in this case the dependent is only executed once:

<target name="A" />
<target name="B" depends="A" />
<target name="C" depends="B" />
<target name="D" depends="C,B,A" />

Suppose we want to execute target D. Looking at its depends attribute, you might think that first target
C, then B and then A is executed. Wrong! C depends on B, and B depends on A, so first A is executed,
then B, then C, and finally D.

A target gets executed only once, even when more than one target depends on it (see the previous
example).

The optional description attribute can be used to provide a one-line description of this target, which is
printed by the -projecthelp command-line option.

Target attributes

You can specify one or more of the following attributes within the target element.

Table 4.2: <target> Attributes

Attribute Description Required

name The name of the target Yes

depends A comma-separated list of targets this target de-
pends on.

No

if The name of the Property that has to be set in
order for this target to be executed

No

unless The name of the Property that must not be set
in order for this target to be executed.

See Section H.2, “Targets and Extension-Points” for a complete reference.

4.2.3. Task Elements

A task is a piece of PHP code that can be executed. This code implements a particular action to
perform (i.e. install a file). Therefore it must be defined in the buildfile so that it is actually invoked by
Phing.

These references will be resolved before the task is executed.

Tasks have a common structure:

21

Property Element

<name attribute1="value1" attribute2="value2" ... />

where name is the name of the task, attributeN is the attribute name, and valueN is the value for
this attribute.

There is a set of core tasks (see Appendix B, Core tasks) along with a number of optional tasks. It is
also very easy to write your own tasks (see Chapter 6, Extending Phing).

Tasks can be assigned an id attribute:

<taskname id="taskID" ... />

By doing this you can refer to specific tasks later on in the code of other tasks.

4.2.4. Property Element

Properties are essentially variables that can be used in the buildfile. These might be set in the
buildfile by calling the property task, or might be set outside Phing on the command line (properties
set on the command line always override the ones in the buildfile). A property has a name and a value
only. Properties may be used in the value of task attributes. This is done by placing the property name
between " ${ " and " } " in the attribute value. For example, if there is a BC_BUILD_DIR property
with the value 'build', then this could be used in an attribute like this: ${BC_BUILD_DIR}/en . This
is resolved to build/en.

Getting the value of a Reference with ${toString:} Any Phing type item which has been declared
with a reference can also its string value extracted by using the ${toString:} operation, with the name
of the reference listed after the toString: text. The __toString() method of the php class instance that is
referenced is invoked all built in types strive to produce useful and relevant output in such an instance.

For example, here is how to get a listing of the files in a fileset:

<fileset id = "sourcefiles" dir = "src" includes = "**/*.php"/>
<echo> sourcefiles = ${toString:sourcefiles} </echo>

There is no guarantee that external types provide meaningful information in such a situation

Built-in Properties

Phing provides access to system properties as if they had been defined using a <property> task. For
example, ${os.name} expands to the name of the operating system. See Appendix A, Fact Sheet
for a complete list

4.3. More Complex Buildfile
<?xml version="1.0" encoding="UTF-8" ?>

<project name = "testsite" basedir = "." default = "main">
 <property file = "./build.properties" />

 <property name = "package" value = "${phing.project.name}" override = "true" />
 <property name = "builddir" value = "./build/testsite" override = "true" />
 <property name = "srcdir" value = "${project.basedir}" override = "true" />

 <!-- Fileset for all files -->
 <fileset dir = "." id = "allfiles">
 <include name = "**" />

22

Handling source dependencies

 </fileset>

 <!-- == -->
 <!-- (DEFAULT) Target: main -->
 <!-- == -->
 <target name = "main" description = "main target">
 <copy todir = "${builddir}">
 <fileset refid = "allfiles" />
 </copy>
 </target>

 <!-- == -->
 <!-- Target: Rebuild -->
 <!-- == -->
 <target name = "rebuild" description = "rebuilds this package">
 <delete dir = "${builddir}" />
 <phingcall target = "main" />
 </target>
</project>

This build file first defines some properties with the <property> task call to PropertyTask. Then, it
defines a fileset and two targets. Let us have a quick rundown of this build file.

The first four tags within the project tag define properties. They appear in two possible variants:

• The first property tag contains only the file attribute. The value has to be a relative or absolute
path to a property file (for the format, see Appendix J, File Formats).

• The other times, the tag has a name and a value attribute. After the call, the value defined in the
attribute value is available through the key enclosed in "${" and "}".

The next noticeable thing in the build file is the <fileset> tag. It defines a fileset, i.e. a set of
multiple files. You can include and exclude files with the include and exclude tags within the file-
set tag. For more information concerning Filesets (i.e. Patterns) see Appendix D, Core Types. The
fileset is given an id attribute, so it can be referenced later on.

One thing is worth noting here though and that is the use of double star expression, i.e. "**". This
special regexp refers to all files in all subdirectories as well. Compare this with a single "*" which would
only refer to all files in the current subdirectory. So for example the expression "**/*.phps" would
refer to all files with suffix "'.phps" in all subdirectories below the current directory.

The first task only contains a call to CopyTask via <copy>. The interesting thing is within the copy tag.
Here, a fileset task is not written out with nested include or exclude elements, but via the refid,
the Fileset created earlier is referenced. This way, you can use a once defined fileset multiple times
in your build files.

The only noticeable thing in the second target is the call to PhingTask with the <phingcall> tag
(see Appendix B, Core tasks for more information). The task executes a specified target within the
same build file. So, the second target removes the build directory and calls main again, thus rebuilding
the project.

A variant is to override properties defined in the build file with properties specified on the command
line using the -D switch. For example to override the builddir in the build file above one could call
Phing as

$ phing -Dbuilddir=/tmp/system-test

4.3.1. Handling source dependencies

A common task required in many build files is to keep some target which has a number of dependencies
up to date. In traditional make files this could for example be an executable that needs to be recompiled

23

Relax NG Grammar

if any of the source files have been updated. In Phing such a condition is handled by the UpToDateTask
, see Section B.69, “UpToDateTask” for examples on how this task us used.

4.4. Relax NG Grammar
With a little bit of experience it is not that difficult to write and understand Phing build files since the
XML format in itself tends to be quite verbose. However, it can become a bit tedious and the large
(and growing) amount of built-in tasks and filters can sometimes make it difficult to remember the exact
syntax of all the available features.

To help with this the Phing distribution contains a Relax NG Grammar (REgular LAnguage for XML
Next Generation, http://www.relaxng.org/) file that describes the (formal) syntax of the build files. This
grammar can be used to validate build files. However, the most beneficial use of the grammar is together
with a schema aware XML editor. Such an editor can make auto-completion based on the grammar.
This feature makes writing complex build files significantly easier since it is usually enough to enter the
first letter of an element to have the rest of the element written automatically as well as any compulsory
attributes.

Most XML editors can be told to what schema (or model) to use for validation and auto-completion
by adding a specification in the beginning of the XML file. For example, the following two lines in the
beginning of an XML file would do (of course the exact path to the grammar will depend on your system
setup)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model xlink:href="/usr/share/php5/PEAR/data/phing/etc/phing-grammar.rng"
 type="application/xml"
 schematypens="http://relaxng.org/ns/structure/1.0" ?>

Using auto-completion will make it substantially easier to edit large build files. Please note that since
the phing-grammar does not have an official designation we must use the absolute filename to specify
the grammar (instead of a canonical URI that is resolved by the systems XML-catalogue).

This grammar is available (as a plain text file) in the distribution at: /etc/phing-grammar.rng

Since we do not want to neither endorse nor forget any particular XML editor with this capability we do
not make available such a list of editors. Instead, spending a few minutes with Google searching for
XML-editors is bound to find a number of editors with this capability.

If you wish to validate your Phing build file, there are numerous options. Links to various validation tools
and XML editors are available at the RELAX NG home page, http://www.relaxng.org/. The command
line tool xmllint that comes with libxml2 is also able to validate a given XML file against the supplied
grammar.

For example, to use xmllint to validate a Phing build file the following command line could be used:

$ xmllint -noout -relaxng phing-grammar.rng build.xml
build.xml validates

24

http://www.relaxng.org/
http://www.relaxng.org/

Chapter 5. Project components
This goal of this chapter is to make you familiar with the basic components of a buildfile. After reading
this chapter, you should be able to read and understand the basic structure of any buildfile even if you
don't know exactly what the individual pieces do.

For supplemental reference information, you should see Appendix B, Core tasks, Appendix D, Core
Types and Appendix H, Project Components.

5.1. Projects
In the structure of a Phing buildfile, there must be exactly one Project defined; the <project> tag
is the root element of the buildfile, meaning that everything else in the buildfile is contained within the
<project > element.

<?xml version="1.0"?>

<project name = "test" description = "Simple test build file" default = "main" >
 <!-- Everything else here -->
<project>

The listing above shows a sample <project> tag that has all attributes available for Projects. The
name and description attributes are fairly self-explanatory; the default attribute specifies the de-
fault Target to execute if no target is specified (Section H.2, “Targets and Extension-Points” are de-
scribed below). For a complete reference, see Appendix H, Project Components.

5.2. Version
Since Phing 2.4.2 it is possible to include a phingVersion attribute in the <project> tag. This
attribute allows you to define the minimum Phing version required to execute a build file, in order to
prevent compatibility issues.

<?xml version="1.0"?>

<project name = "test" phingVersion = "2.4.2" >
 <!-- Everything else here -->
<project>

5.3. Project Components in General
Project Components are all the elements found inside a project, i.e. targets, tasks, types, etc. Project
components may have attributes and nested tags. Attributes only contain simple values, i.e. strings,
integers etc. Nested elements may be complex Phing types (like FileSets) or simple wrapper classes
for values with custom keys (see Appendix D, Core Types for example).

Any nested elements must be supported by the class that implements the project component, and
because the nested tags are handled by the project component class the same nested tag may have
different meanings (and different attributes) depending on the context. So, for example, the nested tag
<param.../> within the <phingcall> tag is handled very differently from the<param.../> tag within

25

Targets

the <xsltfilter> tag -- in the first case setting project properties, in the second case setting XSLT
parameters.

5.4. Targets
Targets are collections of project components (but not other targets) that are assigned a unique name
within their project. A target generally performs a specific task -- or calls other targets that perform
specific tasks -- and therefore a target is a bit like a function (but a target has no return value).

Targets may depend on other targets. For example, if target A depends on a target B, then when
target A is called to be executed, target B will be executed first. Phing automatically resolves these
dependencies. You cannot have circular references like: "target A depends on target B that depends
on target A".

The following code snippet shows an example of the use of targets.

<target name = "othertask" depends = "buildpage" description = "Whatever">
 <!-- Task calls here -->
<target>

<target name = "buildpage" description = "Some description">
 <!-- Task calls here -->
<target>

When Phing is asked to execute the othertask target, it will see the dependency and execute build-
page first. Notice that the dependency task can be defined after the dependent task.

5.5. Tasks
Tasks are responsible for doing the work in Phing. Basically, tasks are the individual actions that your
buildfile can perform. For example, tasks exist to copy a file, create a directory, TAR files in a directory.
Tasks may also be more complex such as XsltTask which copies a file and transforms the file using
XSLT, SmartyTask which does something similar using Smarty templates, or CreoleTask which exe-
cutes SQL statements against a specified DB. See Appendix B, Core tasks for descriptions of Phing
tasks.

Tasks support parameters in the form of:

• Simple parameters (i.e. strings) passed as XML attributes, or

• More complex parameters that are passed by nested tags

Simple parameters are basically strings. For example, if you pass a value "A simple string." as
a parameter, it is evaluated as a string and accessible as one. You can also reference properties as
described in Chapter 4, Getting started.

Note: There are special values that are not mapped to strings, but to boolean values instead. The
values true, false, yes, no, on and off are translated to true/false boolean values.

<property name = "myprop" value = "value" override = "true"/>

However, some tasks support more complex data types as parameters. These are passed to the task
with nested tags. Consider the following example:

<copy>

26

Types

 <fileset dir = ".">
 <include name = "**" />
 </fileset>
</copy>

Here, CopyTask is passed a complex parameter, a Fileset. Tasks may support multiple complex types
in addition to simple parameters. Note that the names of the nested tags used to create the complex
types depend on the task implementation. Tasks may support default Phing types (see Section 5.6, “
Types ”) or may introduce other types, for example to wrap key/value pairs.

Refer to Appendix B, Core tasks for a list of system tasks and their parameters.

5.6. Types

5.6.1. Basics

Besides the simple types (strings, integer, booleans) you can use in the parameters of tasks, there are
more complex Phing Types. As mentioned above, they are passed to a task by using nesting tags:

<task>
 <type />
</task>

<!-- or: -->

<task>
 <type1>
 <subtype1>
 <!-- etc. -->
 </subtype1>
 </type1>
</task>

Note that types may consist of multiple nested tags -- and multiple levels of nested tags, as you can
see in the second task call above.

5.6.2. Referencing Types

An additional fact about types you should notice is the possibility of referencing type instances, i.e.
you define your type somewhere in your build file and assign an id to it. Later, you can refer to that
type by the id you assigned. Example:

<project>
 <fileset id = "foo">
 <include name = "*.php" />
 </fileset>

 <!-- Target that uses the type -->
 <target name = "foo" >
 <copy todir = "/tmp">
 <fileset refid = "foo" />
 </copy>
 </target>
</project>

As you can see, the type instance is assigned an id with the id attribute and later on called by passing
a plain fileset tag to CopyTask that only contains the refid attribute.

27

Basic Types

5.7. Basic Types
The following section gives you a quick introduction into the basic Phing types. For a complete reference
see Appendix D, Core Types.

5.7.1. FileSet

FileSets are groups of files. You can include or exclude specific files and patterns to/from a FileSet.
The use of patterns is explained below. For a start, look at the following example:

<fileset dir = "/tmp" id = "fileset1">
 <include name = "sometemp/file.txt" />
 <include name = "othertemp/**" />
 <exclude name = "othertemp/file.txt" />
</fileset>

<fileset dir = "/home" id = "fileset2">
 <include name = "foo/**" />
 <include name = "bar/**/*.php" />
 <exclude name = "foo/tmp/**" />
</fileset>

The use of patterns is quite straightforward: If you simply want to match a part of a filename or dirname,
you use *. If you want to include multiple directories and/or files, you use **. This way, filesets provide
an easy but powerful way to include files.

5.7.2. FileList

FileLists, like FileSets, are collections of files; however, a FileList is an explicitly defined list of files --
and the files don't necessarily have to exist on the filesystem.

Besides being able to refer to nonexistent files, another thing that FileLists allow you to do is specify
files in a certain order. Files in FileSets are ordered based on the OS-level directory listing
functions, in some cases you may want to specify a list of files to be processed in a certain order -- e.g.
when concatenating files using the <append> task.

<filelist dir = "base/" files = "file1.txt,file2.txt,file3.txt"/>

<!-- OR: -->
<filelist dir = "basedir/" listfile = "files_to_process.txt"/>

5.7.3. FilterChains and Filters

FilterChains can be compared to Unix pipes. Unix pipes add a great deal of flexibility to command
line operations; for example, if you wanted to copy just those lines that contained the string blee from
the first 10 lines of a file called foo to a file called bar, you could do:

cat foo | head -n10 | grep blee > bar

Something like this is not possible with the tasks and types that we have learned about thus far, and
this is where the incredible usefulness of FilterChains becomes apparent. They emulate Unix pipes
and provide a powerful dimension of file/stream manipulation for the tasks that support them.

FilterChain usage is quite straightforward: you pass the complex Phing type filterchain to a
task that supports FilterChains and add individual filters to the FilterChain. In the course of executing

28

File Mappers

the task, the filters are applied (in the order in which they appear in the XML) to the contents of the
files that are being manipulated by your task.

<filterchain>
 <replacetokens>
 <token key = "BC_PATH" value = "${top.builddir}/"/>
 <token key = "BC_PATH_USER" value = "${top.builddir}/testsite/user/${lang}/"/>
 </replacetokens>

 <filterreader classname = "Phing\Filter\TailFilter">
 <param name = "lines" value = "10"/>
 </filterreader>
</filterchain>

The code listing above shows you some example of how to use filter chains. For a complete refer-
ence see Appendix D, Core Types. This filter chain would replace all occurrences of BC_PATH and
BC_PATH_USER with the values assigned to them in lines 4 and 5. Additionally, it will only return the
last 10 lines of the files.

Notice above that FilterChain filters have a "shorthand" notation and a long, generic notation. Most
filters can be described using both of these forms:

<replacetokens>
 <token key = "BC_PATH" value = "${top.builddir}/"/>
 <token key = "BC_PATH_USER" value = "${top.builddir}/testsite/user/${lang}/"/>
</replacetokens>

<!-- OR: -->

<filterreader classname = "Phing\Filter\ReplaceTokens">
 <param type = "token" name = "BC_PATH" value = "${top.builddir}/"/>
 <param type = "token" name = "BC_PATH"
 value = "${top.builddir}/testsite/user/${lang}/"/>
</filterreader>

As the pipe concept in Unix, the filter concept is quite complex but powerful. To get a better understand-
ing of different filters and how they can be used, take a look at any of the many uses of FilterChains
in the build files for the binarycloud Bibliography project.

5.7.4. File Mappers

With FilterChains and filters provide a powerful tool for changing contents of files, mappers provide
a powerful tool for changing the names of files.

To use a Mapper, you must specify a pattern to match on and a replacement pattern that describes
how the matched pattern should be transformed. The simplest form is basically no different from the
DOS copy command:

copy *.bat *.txt

In Phing this is the glob Mapper:

<mapper type = "glob" from = "*.bat" to = "*.txt"/>

Phing also provides support for more complex mapping using regular expressions:

<mapper type = "regexp" from = "^(.*)\.conf\.xml$$" to = "\1.php"/>

Consider the example below to see how Mappers can be used in a build file. This example includes
some of the other concepts introduced in this chapter, such as FilterChains and FileSets. If you

29

Conditions

don't understand everything, don't worry. The important point is that Mappers are types too, which can
be used in tasks that support them.

<copy>
 <fileset dir = ".">
 <include name = "*.ent.xml"/>
 </fileset>

 <mapper type = "regexp" from = "^(.*)\.ent\.xml$" to = "\1.php"/>

 <filterchain>
 <filterreader classname = "Phing\Filter\XsltFilter">
 <param name = "style" value = "ent2php.xsl"/>
 </filterreader>
 </filterchain>
</copy>

For a complete reference, see Appendix D, Core Types

5.8. Conditions
Conditions are nested elements of the condition, if and waitfor tasks.

5.8.1. not

The <not> element expects exactly one other condition to be nested into this element, negating the
result of the condition. It doesn't have any attributes and accepts all nested elements of the condition
task as nested elements as well.

5.8.2. and

The <and> element doesn't have any attributes and accepts an arbitrary number of conditions as
nested elements. This condition is true if all of its contained conditions are, conditions will be evaluated
in the order they have been specified in the build file.

The <and> condition has the same shortcut semantics as the && operator in some programming lan-
guages, as soon as one of the nested conditions is false, no other condition will be evaluated.

5.8.3. or

The <or> element doesn't have any attributes and accepts an arbitrary number of conditions as nested
elements. This condition is true if at least one of its contained conditions is, conditions will be evaluated
in the order they have been specified in the build file.

The <or> condition has the same shortcut semantics as the || operator in some programming lan-
guages, as soon as one of the nested conditions is true, no other condition will be evaluated.

5.8.4. xor

The <xor> element performs an exclusive or on all nested elements, similar to the ̂ operator in PHP. It
only evaluates to true if an odd number of nested conditions are true. There is no shortcutting of eval-

30

os

uation, unlike the <and> and <or> tests. It doesn't have any attributes and accepts all nested elements
of the condition task as nested elements as well.

5.8.5. os

Test whether the current operating system is of a given type.

Table 5.1: OS Attributes

Attribute Description Required

family The name of the operating system family to expect.Yes

Supported values for the family attribute are:

• windows (for all versions of Microsoft Windows)

• mac (for all Apple Macintosh systems)

• unix (for all Unix and Unix-like operating systems)

Note: machines running OSX match on the mac and unix families! To test for Macs that don't run a
Unix-like OS, use the following code:

<condition property = "isMacOsButNotMacOsX">
 <and>
 <os family = "mac"/>
 <not>
 <os family = "unix"/>
 </not>
 </and>
</condition>

5.8.6. equals

Tests whether the two given Strings are identical

Table 5.2: equals Attributes

Attribute Description Required

arg1 First string to test. Yes

arg2 Second string to test. Yes

casesensitive Perform a case sensitive comparison. Default is
true.

No

trim Trim whitespace from arguments before comparing
them. Default is false.

No

5.8.7. versioncompare

Compares two given versions

Table 5.3: versioncompare Attributes

Attribute Description Required

version The version you want to compare Yes

31

http

Attribute Description Required

desiredVersion The version you want to compare against Yes

operator The operator to use for version comparison. Default
is >=.

No

debug Turns on debug mode, that echoes the comparion
message. Default is false.

No

<versioncompare version = "${aProperty}" desiredVersion = "1.3" operator = "gt" />

This condition internally uses PHP version_compare(). Operators and behavior are the same.

5.8.8. http

Condition to wait for a HTTP request to succeed.

Attributes are:

• url - the URL of the request.

• errorsBeginAt - number at which errors begin at.

• quiet - Set quiet mode, which suppresses warnings and errors.

Table 5.4: http Attributes

Attribute Description Required

url The URL of the request. Yes

errorsBeginAt Number at which errors begin at. - Default: 400 No

requestMethod Sets the method to be used when issuing the HTTP
request. - Default: GET

No

followRedirects Whether redirects sent by the server should be fol-
lowed. - Default: true

No

quiet Set quiet mode, which suppresses warnings and er-
rors. Default is false

No

<http url = "http://url.to.test" errorsBeginAt = "404" />

5.8.9. PDOSQLExec

PDOSQLExecTask can also be used as condition. Returns true when the connection to a database
succeeds, and false otherwise. This condition requires the PDO extension [https://www.php.net/man-
ual/en/book.pdo.php] to work properly.

Table 5.5: PDOSQLExec condition attributes

Attribute Description Required

url The PDO Data Source Name (DSN). Yes

userid The username for current DSN. No

password The password for current DSN. No

32

https://www.php.net/manual/en/book.pdo.php
https://www.php.net/manual/en/book.pdo.php
https://www.php.net/manual/en/book.pdo.php

socket

This is a typical use case for PDOSQLExec condition:

<target name = "wait-for-mysql">
 <waitfor timeoutproperty = "mysql.timeout" maxwait = "60" maxwaitunit = "second">
 <pdosqlexec url = "mysql:host=localhost;port=3306"
 userid = "${db.username}"
 password = "${db.password}"/>
 </waitfor>
 <fail if = "mysql.timeout">Cannot reach database</fail>
</target>

If you also want to check if a specific schema exists, you can include the schema's name in your url:

<pdosqlexec url = "mysql:host=127.0.0.1;port=3306;dbname=foo"
 userid = "${db.username}"
 password = "${db.password}"/>

This condition uses PDO behind the scenes. Therefore, if you have installed the appropriate driver you
should also be able to reach many other DBMS [https://www.php.net/manual/en/pdo.drivers.php]. For
example, for a PostgreSQL database:

<pdosqlexec url = "pgsql:host=localhost;port=5432;dbname=bar"
 userid = "${db.username}"
 password = "${db.password}"/>

You should never hard-code sensitive data in your buildfile, you could use an unversioned property
file instead. Also, be careful when using verbose or debug mode since you can expose sensitive data.

5.8.10. socket

Condition to test for a (tcp) listener on a specified host and port.

Table 5.6: socket Attributes

Attribute Description Required

server The hostname or ip address of the server. Yes

port The port number of the server. Yes

<socket server = "localhost" port = "80" />

5.8.11. hasfreespace

Condition returns true if selected partition has the requested space, false otherwise.

Table 5.7: hasfreespace Attributes

Attribute Description Required

partition Absolute path to the partition/device to check. Yes

needed The amount of free space required. Examples:
250M, 10G, 1T.

Yes

Note

File size can be written using IEC and SI suffixes, bytes are assumed when suffix is not specified.
The following suffixes (case-insensitive) are supported:

33

https://www.php.net/manual/en/pdo.drivers.php
https://www.php.net/manual/en/pdo.drivers.php

isset

Table 5.8: Supported file size suffixes

Standard Suffixes Equivalence

B. 1 byte

K, Ki, KiB, kibi, kibibyte. 1024 bytes

M, Mi, MiB, mebi, mebibyte. 1024 kibibytes

G, Gi, GiB, gibi, gibibyte. 1024 mebibytes

IEC

T, Ti, TiB, tebi, tebibyte. 1024 gibibytes

kB, kilo, kilobyte. 1000 bytes

MB, mega, megabyte. 1000 kilobytes

GB, giga, gigabyte. 1000 megabytes
SI

TB, tera, terabyte. 1000 gigabytes

On Unix-like platforms:

<hasfreespace partition = "/" needed = "250M" />

On Windows:

<hasfreespace partition = "c:" needed = "10M" />

This condition internally uses PHP disk_free_space().

5.8.12. isset

Test whether a given property has been set in this project.

Table 5.9: isset Attributes

Attribute Description Required

property The name of the property to test. Yes

5.8.13. contains

Tests whether a string contains another one.

Table 5.10: contains Attributes

Attribute Description Required

string The string to search in. Yes

substring The string to search for. Yes

casesensitive Perform a case sensitive comparison. Default is
true.

No

5.8.14. istrue

Tests whether a string evaluates to true.

34

isfalse

Table 5.11: istrue Attributes

Attribute Description Required

value value to test Yes

<istrue value = "${someproperty}"/>
<istrue value = "false"/>

5.8.15. isfalse

Tests whether a string evaluates to not true, the negation of <istrue>

Table 5.12: isfalse Attributes

Attribute Description Required

value value to test Yes

<isfalse value = "${someproperty}"/>
<isfalse value = "false"/>

5.8.16. ispropertytrue

Tests whether a property evaluates to true.

Table 5.13: ispropertytrue Attributes

Attribute Description Required

property property to test Yes

<ispropertytrue property = "someproperty"/>

5.8.17. ispropertyfalse

Tests whether a property evaluates to not true, the negation of <ispropertytrue>

Table 5.14: ispropertyfalse Attributes

Attribute Description Required

property property name to test Yes

<ispropertyfalse property = "someproperty"/>

5.8.18. referenceexists

Tests whether a specified reference exists.

Table 5.15: referenceexists Attributes

Attribute Description Required

ref reference to test for Yes

<referenceexists ref = "${someid}"/>

35

available

5.8.19. available

This condition is identical to the Available task, all attributes and nested elements of that task are
supported, the property and value attributes are redundant and will be ignored.

<if>
 <available file = "README.md"/>
 <then>
 <echo message = "Please read README.md"/>
 </then>
</if>

5.8.20. filesmatch

Test two files for matching. Nonexistence of one file results in "false", although if neither exists they are
considered equal in terms of content. This test does a byte for byte comparison, so test time scales
with byte size. NB: if the files are different sizes, one of them is missing or the filenames match the
answer is so obvious the detailed test is omitted.

Table 5.16: filesmatch Attributes

Attribute Description Required

file1 First file to test. Yes

file2 Second file to test. Yes

<filesmatch file1 = "${file1}" file2 = "${file2}"/>

5.8.21. isfileselected

Test whether a file passes an embedded selector.

Table 5.17: isfileselected Attributes

Attribute Description Required

file The file to check if is passes the embedded selector.Yes

basedir The base directory to use for name based selectors.
It this is not set, the project's basedirectory will be
used.

No

<isfileselected file = "a.xml">
 <date datetime = "06/28/2000 2:02 pm" when = "equal"/>
</isfileselected>

5.8.22. isfailure

Test the return code of an executable for failure.

Table 5.18: isfailure Attributes

Attribute Description Required

code The return code to test. Yes

<exec command = "test" returnProperty = "return.code"/>

36

matches

<if>
 <isfailure code = "${return.code}"/>
 <then><echo msg = "${return.code}"/></then>
</if>

5.8.23. matches

Test if the specified string matches the specified regular expression pattern.

Table 5.19: matches Attributes

Attribute Description Required

string The string to test. Yes

pattern The regular expression pattern used to test. Yes

casesensitive Perform a case sensitive match. Default is true. No

multiline Perform a multi line match. Default is false. No

modifiers The regular expression modifiers used to test. No

37

38

Chapter 6. Extending Phing
Phing was designed to be flexible and easily extensible. Phing's existing core and optional tasks do
provide a great deal of flexibility in processing files, performing database actions, and even getting
user feedback during a build process. In some cases, however, the existing tasks just won't suffice
and because of Phing's open, modular architecture adding exactly the functionality you need is often
quite trivial.

In this chapter we'll look primarily at how to create your own tasks, since that is probably the most useful
way to extend Phing. We'll also give some more information about Phing's design and inner workings.

6.1. Extension Possibilities
There are three main areas where Phing can be extended: Tasks, Types, Mappers. The following
sections discuss these options.

6.1.1. Tasks

Tasks are pieces of codes that perform an atomic action like installing a file. Therefore a special worker
class hast to be created and stored in a specific location, that actually implements the job. The worker
is just the interface to Phing that must fulfill some requirements discussed later in this chapter, however
it can - but not necessarily must - use other classes, workers and libraries that aid performing the
operations needed.

6.1.2. Types

Extending types is a rare need; nevertheless, you can do it. A possible type you might implement is
urlset, for example.

You may end up needing a new type for a task you write; for example, if you were writing the XSLTTask
you might discover that you needed a special type for XSLTParams (even though in that case you
could probably use the generic name/value Parameter type). In cases where the type is really only for
a single task, you may want to just define the type class in the same file as the Task class, rather than
creating an official stand-alone Type.

6.1.3. Mappers

Creating new mappers is also a rare need, since most everything can be handled by the Appendix F,
Core mappers. The Mapper framework does provide a simple way for defining your own mappers to
use instead, however, and mappers implement a very simple interface.

6.2. Source Layout

6.2.1. Files And Directories

Before you are going to start to extend Phing let's have a look at the source layout. You should be
comfortable with the organization of files in the source tree of Phing before starting to code. After

39

File Naming Conventions

you extracted the source distribution or checked it out from git you should see the following directory
structure:

$PHING_HOME
 |-- bin
 |-- classes
 | `-- phing
 | |-- filters
 | | `-- util
 | |-- mappers
 | |-- parser
 | |-- tasks
 | | |-- ext
 | | |-- system
 | | | `-- condition
 | | `-- user
 | `-- types
 |-- docs
 | `-- phing_guide
 `-- test
 |-- classes
 `-- etc

The following table briefly describes the contents of the major directories:

Table 6.1: Phing source tree directories

Directory Contents

bin The basic applications (phing, configure) as well as the wrapper
scripts for different platforms (currently Unix and Windows).

classes Repository of all the classes used by Phing. This is the base directory
that should be on the PHP include_path. In this directory you will find
the subdirectory phing/ with all the Phing relevant classes.

docs Documentation files. Generated books, online manuals as well as
the PHPDoc generated API documentation.

test A set of testcases for different tasks, mappers and types. If you are
developing in git you should add a testcase for each implementation
you check in.

Currently there is no distinction between the source layout and the build layout of Phing. The direc-
tory layout [#phing.dirlayout] shows the file tree that carries some additional files like the Phing website.
Later on there may be a buildfile to create a clean distribution tree of Phing itself.

6.2.2. File Naming Conventions

There are some file naming conventions used by Phing. Here's a quick rundown on the most basic
conventions. A more detailed list can be found in [See Naming And Coding Standards]:

• Filenames consist of no more or less than two elements: name and extension .

• Choose short descriptive filenames, which must be less than 31 chars.

• Names must not contain dots.

• Files containing PHP code must end with the extension .php .

• There must be only one class per file (no procedural methods allowed, use a separate file for them),
with the exception of "inner"-type / helper classes that can be declared in the same file as the "outer" /
main class.

40

#phing.dirlayout
#phing.dirlayout
#phing.dirlayout

Coding Standards

• The name portion of the file must be named exactly like the class it contains.

• Buildfiles and configure rulesets must end with the extension .xml .

6.2.3. Coding Standards

We are using PEAR coding standards. We are using a less strict version of these standards, but we do
insist that new contributions have phpdoc comments and make explicitly declarations about public/pro-
tected/private variables and methods. If you have suggestions about improvements to Phing codebase,
don't hesitate to let us know.

6.3. System Initialization
PHP installations are typically quite customized -- e.g. different memory_limit, execution timeout val-
ues, etc. The first thing that Phing does is modify PHP INI variables to create a standard PHP environ-
ment. This is performed by the init layer of Phing that uses a three-level initialization procedure.
It basically consists of three different files:

• Platform specific wrapper scripts in bin/

• Main application in bin/

• Phing class in classes/phing/

At the first look this may seem to be unnecessary overhead. Why three levels of initialization? The main
reason why there are several entry points is that Phing is build so that other frontends (e.g. PHP-GTK)
could be used in place of the command line.

6.3.1. Wrapper Scripts

This scripts are technical not required but provided for the ease of use. Imagine you have to type every
time you want to build your project:

php -qC /path/to/phing/bin/phing.php -verbose all distro snapshot

Indeed that is not very elegant. Furthermore if you are lax in setting your environment variables these
script can guess the proper variables for you. However you should always set them.

The scripts are platform dependent, so you will find shell scripts for Unix like platforms (sh) as well as
the batch scripts for Windows platforms. If you set-up your path properly you can call Phing everywhere
in your system with this command-line (referring to the above example):

phing -v2 all distro

6.3.2. The Main Application (phing.php)

This is basically a wrapper for the Phing class that actually does all the logic for you. If you look at the
source code for phing.php you will see that all real initialization is handled in the Phing class. phing.php
is simply the command line entry point for Phing.

41

The Phing Class

6.3.3. The Phing Class

Given that all the prior initialization steps passed successfully the Phing is included and Phing::s-
tartup() is invoked by the main application script. It sets-up the system components, system con-
stants ini-settings, PEAR and some other stuff. The detailed start-up process is as follows:

• Start Timer

• Set System Constants

• Set Ini-Settings

• Set Include Paths

After the main application completed all operations (successfully or unsuccessfully) it calls Ph-
ing::shutdown(EXIT_CODE) that takes care of a proper destruction of all objects and a gracefully
termination of the program by returning an exit code for shell usage (see [See Program Exit Codes]
for a list of exit codes).

6.4. System Services

6.4.1. The Exception system

Phing uses the PHP5 try/catch/throw Exception system. Phing defines a number of Exception sub-
classes for more fine-grained handling of Exceptions. Low level Exceptions that cannot be handled will
be wrapped in a BuildException and caught by the outer-most catch() {} block.

6.5. Build Lifecycle
This section exists to explain -- or try -- how Phing "works". Particularly, how Phing proceeds through
a build file and invokes tasks and types based on the tags that it encounters.

6.5.1. How Phing Parses Buildfiles

Phing uses an ExpatParser class and PHP's native expat XML functions to handle the parsing of build
files. The handler classes all extend the Phing\Parser\AbstractHandler class. These handler
classes "handle" the tags that are found in the buildfile.

Core tasks and datatypes are mapped to XML tag names in the defaults.properties files -- specifically
phing/tasks/defaults.properties and phing/types/defaults.properties.

It works roughly like this:

1. Phing\Parser\RootHandler is registered to handle the buildfile XML document

2. RootHandler expects to find exactly one element: <project>. RootHandler invokes the Projec-
tHandler with the attributes from the <project> tag or throws an exception if no <project> is found,
or if something else is found instead.

42

Writing Tasks

3. ProjectHandler expects to find <target> tags; for these ProjectHandler invokes the Tar-
getHandler. ProjectHandler also has exceptions for handling certain tasks that can be performed
at the top-level: <resolve>, <taskdef>, <typedef>, and <property>; for these Projec-
tHandler invokes the TaskHandler class. If a tag is presented that doesn't match any expected
tags, then ProjectHandler assumes it is a datatype and invokes the DataTypeHandler.

4. TargetHandler expects all tags to be either tasks or datatypes and invokes the appropriate handler
(based on the mappings provided in the defaults.properties files).

5. Tasks and datatypes can have nested elements, but only if they correspond to a create*() method
in the task or datatype class. E.g. a nested <param> tag must correspond to a createParam()
method of the task or datatype.

... More to come ...

6.6. Writing Tasks

6.6.1. Creating A Task

We will start creating a rather simple task which basically does nothing more than echo a message
to the screen. See [below] for the source code and the following [below] for the XML definition that is
used for this task.

<?php

use Phing\Task;

class MyEchoTask extends Task {

 /**
 * The message passed in the buildfile.
 */
 private $message = null;
 /**
 * Whether to reverse the message, for fun?
 */
 private $reverse = false;

 /**
 * The setter for the attribute "message"
 */
 public function setMessage($str) {
 $this->message = $str;
 }

 public function setReverse($str) {
 $this->reverse = StringHelper::booleanValue($str);
 }

 /**
 * The init method: Do init steps.
 */
 public function init() {
 // nothing to do here
 }

 /**
 * The main entry point method.
 */

43

Using the Task

 public function main() {
 if ($this->reverse) {
 print(strrev($this->message));
 } else {
 print($this->message);
 }
 }
}

?>

This code contains a rather simple, but complete Phing task. It is assumed that the file is named MyE-
choTask.php. For this example, we're assuming that the file is placed in /home/example/classes.
We'll explain the source code in detail shortly. But first we'd like to discuss how we should register the
task to Phing so that it can be executed during the build process.

6.6.2. Using the Task

The task shown [above] must somehow get loaded and called by Phing. Therefore it must be made
available to Phing so that the buildfile parser is aware a correlating XML element and it's parameters.
Have a look at the minimalistic buildfile example given in [the buildfile below] that does exactly this.

<?xml version="1.0" ?>

<project name = "test" basedir = "." default = "test.myecho">
 <includepath classpath = "/home/example/classes" />
 <taskdef name = "myecho" classname = "MyEchoTask" />

 <target name = "test.myecho">
 <myecho message = "Hello World" reverse = "yes"/>
 </target>
</project>

To register the custom task with Phing, the taskdef element (line 5) is used. See Section B.60,
“TaskdefTask” for a more detailed explanation. Optionally, before the taskdef element, the include-
path element adds a path to PHP's include path. This is of course only required if the mentioned path
isn't already on the include path. See Section B.30, “IncludePathTask” for a more detailed explanation.

Now, as we have registered the task by assigning a name and the worker class ([see source code
above]) it is ready for usage within the <target> context (line 8). You see that we pass the message
that our task should echo to the screen via an XML attribute called "message".

And for fun, if the "reverse" attribute is set to a "truth-like" value, the message will be reversed when
displayed. So we get "dlroW olleH" displayed instead!

6.6.3. Source Discussion

Now that you've got the knowledge to execute the task in a buildfile it's time to discuss how everything
works.

6.6.4. Task Structure

All files containing the definition of a task class follow a common well formed structure:

• Include/require statements to import all required classes

• The class declaration and definition

44

Includes

• The class's properties

• The class's constructor

• Setter methods for each XML attribute

• The init() method

• The main() method

• Arbitrary private (or protected) class methods

6.6.5. Includes

Always include/require all the classes needed for this task in full written notation. Furthermore you
should always include phing/Task.php at the very top of your include block. Then include all other
required system or proprietary classes.

6.6.6. Class Declaration

If you look at line 5 in [the source code of the task] you will find the class declaration. This will be
familiar to you if you are experienced with OOP in PHP (we assume here that you are). Furthermore
there are some fine-grained rules you must obey when creating the classes (see also,[naming and
coding standards]):

• Your classname must be exactly like the taskname you are going to implement plus the suffix "Task".
In our example case the classname is MyEchoTask (constructed by the taskname "myecho" plus
the suffix "task"). The upper/lower case casing is currently only for better reading. However, it is
encouraged that you use it this way.

• The task class you are creating must at least extend "Task" to inherit all task specific methods.

6.6.7. Class Properties

The next lines you are coding are class properties. Most of them are inherited from the Task superclass,
so there's not need to redeclare them. Nevertheless you should declare the following ones yourself:

• Taskname. Always hard code the taskname property that equals the name of the XML element that
your task claims. Currently this information is not used - but it will be in the future.

• Your arbitrary properties that reflect the XML attributes/elements which your task accepts.

In the MyEchoTask example the coded properties can be found in lines 7 to 11. Give you properties
meaningful descriptive names that clearly state their function within the context. A couple of properties
are inherited from the superclass that must not be declared in the properties part of the code.

For a list of inherited properties (most of them are reserved, so be sure not to overwrite them with your
own) can be found in the "Phing API Reference" in the docs/api/ directory.

6.6.8. The Constructor

The next block that follows is the class's constructor. It must be present and call at least the constructor
or the parent class. Of course, you can add some initialization data here. It is recommended that you
define your prior declared properties here.

45

Setter Methods

6.6.9. Setter Methods

As you can see in the XML definition of our task ([see buildfile above] , line 9) there is an attribute
defined with the task itself, namely "message" with a value of the text string that our task should echo.
The task must somehow become aware of the attribute name and the value. Therefore the setter
methods exist.

For each attribute you want to import to the task's namespace you have to define a method named
exactly after the very attribute plus the string "set" prepended. This method accepts exactly one para-
meter that holds the value of the attribute. Now you can set the a class internal property to the value
that is passed via the setter method.

In the setter method you should also perform any casting operations and/or check if the attribute value
is a valid value. If this is not the case, throw a BuildException. In some cases, such as when you
have three attributes and at least one of them should be set, you may want to check the attribute values
inside the init() or main() method.

In our example the setter is named setMessage , because the XML attribute the echo task accepts is
"message". setMessage now takes the string "Hello World" provided by the parser and sets the value
of the internal class property $strMessage to "Hello World". It is now available to the task for further
disposal.

There is also another setter named setReverse.This uses the StringHelper::toBoolean static function
to convert truthy values to a true/false value. This helps keep our own code nice and simple.

6.6.10. Creator Methods

Creator methods allow you to manage nested XML tags in your new Phing Task.

For example, you might be developing a task that would contain a nested "color" XML tag. In this
instance a creator method named createcolor would be required.

<tag>
 <color red = "..." green = "..." blue = "...">
</tag>

If the XML for the task and the subtag look like the above, the PHP code for it could look something
like the following:

class TagTask extends Task
{
 protected $colors = array();

 public function createColor()
 {
 $colorObj = new TagColor();
 $this->colors[] = $colorObj;
 return $colorObj;
 }
}

class TagColor
{
 public function setRed($value)
 {
 }

 public function setGreen($value)

46

init() Method

 {
 }

 public function setBlue($value)
 {
 }
}

6.6.11. init() Method

The init method gets called when the <taskname> xml element closes. It must be implemented
even if it does nothing like in the example above. You can do init steps here required to setup your
task object properly. After calling the Init-Method the task object remains untouched by the parser.
Init should not perform operations related somehow to the action the task performs. An example of
using init may be cleaning up the $strMessage variable in our example (i.e. trim($strMessage)) or
importing additional workers needed for this task.

The init method should return true or an error object evaluated by the governing logic. If you don't
implement init method, phing will shout down with a fatal error.

6.6.12. main() Method

There is exactly one entry point to execute the task. It is called after the complete buildfile has been
parsed and all targets and tasks have been scheduled for execution. From this point forward the very
implementation of the tasks action starts. In case of our example a message (imported by the proper
setter method) is Logged to the screen through the system's "Logger" service (the very action this task
is written for). The Log() method-call in this case accepts two parameters: a event constant and the
message to log.

6.6.13. Arbitrary Methods

For the more or less simple cases (as our example) all the logic of the task is coded in the Main()
method. However for more complex tasks common sense dictates that particular action should be
swapped to smaller, logically contained units of code. The most common way to do this is separating
logic into private class methods - and in even more complex tasks in separate libraries.

private function myPrivateMethod() {
 // definition
}

6.7. Writing Types
You should only create a standalone Type if the Type needs to be shared by more than one Task. If
the Type is only needed for a specific Task -- for example to handle a special parameter or other tag
needed for that Task -- then the Type class should just be defined within the same file as the Task. (For
example, phing/filters/XSLTFilter.php also includes an XSLTParam class that is not used
anywhere else.)

For cases where you do need a more generic Type defined, you can create your own Type class --
similar to the way a Task is created.

47

Creating a DataType

6.7.1. Creating a DataType

Type classes need to extend the abstract DataType class. Besides providing a means of categorizing
types, the DataType class provides the methods necessary to support the "refid" attribute. (All types
can be given an id, and can be referred to later using that id.)

In this example we are creating a DSN type because we have written a number of DB-related Tasks,
each of which need to know how to connect to the database; instead of having database parameters
for each task, we've created a DSN type so that we can identify the connection parameters once and
then use it in all our db Tasks.

require_once "phing/types/DataType.php";

/**
 * This Type represents a DB Connection.
 */
class DSN extends DataType {

 private $url;
 private $username;
 private $password;
 private $persistent = false;

 /**
 * Sets the URL part: mysql://localhost/mydatabase
 */
 public function setUrl($url) {
 $this->url = $url;
 }

 /**
 * Sets username to use in connection.
 */
 public function setUsername($username) {
 $this->username = $username;
 }

 /**
 * Sets password to use in connection.
 */
 public function setPassword($password) {
 $this->password = $password;
 }

 /**
 * Set whether to use persistent connection.
 * @param boolean $persist
 */
 public function setPersistent($persist) {
 $this->persistent = (boolean) $persist;
 }

 public function getUrl(Project $p) {
 if ($this->isReference()) {
 return $this->getRef($p)->getUrl($p);
 }
 return $this->url;
 }

 public function getUsername(Project $p) {
 if ($this->isReference()) {
 return $this->getRef($p)->getUsername($p);
 }
 return $this->username;
 }

 public function getPassword(Project $p) {

48

Using the DataType

 if ($this->isReference()) {
 return $this->getRef($p)->getPassword($p);
 }
 return $this->password;
 }

 public function getPersistent(Project $p) {
 if ($this->isReference()) {
 return $this->getRef($p)->getPersistent($p);
 }
 return $this->persistent;
 }

 /**
 * Gets a combined hash/array for DSN as used by PEAR.
 * @return array
 */
 public function getPEARDSN(Project $p) {
 if ($this->isReference()) {
 return $this->getRef($p)->getPEARDSN($p);
 }

 include_once 'DB.php';
 $dsninfo = DB::parseDSN($this->url);
 $dsninfo['username'] = $this->username;
 $dsninfo['password'] = $this->password;
 $dsninfo['persistent'] = $this->persistent;

 return $dsninfo;
 }

 /**
 * Your datatype must implement this function, which ensures that there
 * are no circular references and that the reference is of the correct
 * type (DSN in this example).
 *
 * @return DSN
 */
 public function getRef(Project $p) {
 if (!$this->checked) {
 $stk = array();
 array_push($stk, $this);
 $this->dieOnCircularReference($stk, $p);
 }
 $o = $this->ref->getReferencedObject($p);
 if (!($o instanceof DSN)) {
 throw new BuildException($this->ref->getRefId()." doesn't denote a DSN");
 } else {
 return $o;
 }
 }

}

6.7.2. Using the DataType

The TypedefTask provides a way to "declare" your type so that you can use it in your build file. Here
is how you would use this type in order to define a single DSN and use it for multiple tasks. (Of course
you could specify the DSN connection parameters each time, but the premise behind needing a DSN
datatype was to avoid specifying the connection parameters for each task.)

<?xml version="1.0" ?>

<project name = "test" basedir = ".">

49

Source Discussion

 <typedef name = "dsn" classname = "myapp.types.DSN" />

 <dsn
 id = "maindsn"
 url = "mysql://localhost/mydatabase"
 username = "root"
 password = ""
 persistent = "false" />

 <target name = "main">

 <my-special-db-task>
 <dsn refid = "maindsn"/>
 </my-special-db-task>

 <my-other-db-task>
 <dsn refid = "maindsn"/>
 </my-other-db-task>

 </target>

</project>

6.7.3. Source Discussion

Getters & Setters

You must provide a setter method for every attribute you want to set from the XML build file. It is good
practice to also provide a getter method, but in practice you can decide how your tasks will use your
task. In the example above, we've provided a getter method for each attribute and we've also provided
an additional method:DSN::getPEARDSN() which returns the DSN hash array used by PEAR::DB,
PEAR::MDB, and Creole. Depending on the needs of the Tasks using this DataType, we may only wish
to provide the getPEARDSN() method rather than a getter for each attribute.

Also important to note is that the getter method needs to check to see whether the current DataType
is a reference to a previously defined DataType -- the DataType::isReference() exists for this
purpose. For this reason, the getter methods need to be called with the current project, because Ref-
erences are stored relative to a project.

The getRef() Method

The getRef() task needs to be implemented in your Type. This method is responsible for returning a
referenced object; it needs to check to make sure the referenced object is of the correct type (i.e. you
can't try to refer to a RegularExpresson from a DSN DataType) and that the reference is not circular.

You can probably just copy this method from an existing Type and make the few changes that customize
it to your Type.

6.8. Writing Mappers
Writing your own filename mapper classes will allow you to control how names are transformed in tasks
like CopyTask, MoveTask, XSLTTask, etc. In some cases you may want to extend existing mappers
(e.g. creating a GlobMapper that also transforms to uppercase); in other cases, you may simply want
to create a very specific name transformation that isn't easily accomplished with other mappers like
GlobMapper or RegexpMapper.

50

Creating a Mapper

6.8.1. Creating a Mapper

Writing filename mappers is simplified by interface support in PHP5. Essentially, your custom filename
mapper must implement Phing\Mapper\FileNameMapper. Here's an example of a filename map-
per that creates DOS-style file names. For this example, the "to" and "from" attributes are not needed
because all files will be transformed. To see the "to" and "from" attributes in action, look at Phing\Map-
per\GlobMapper or Phing\Mapper\RegexpMapper.

use Phing\Mapper\FileNameMapper;

/**
 * A mapper that makes those ugly DOS filenames.
 */
class DOSMapper implements FileNameMapper {

 /**
 * The main() method actually performs the mapping.
 *
 * In this case we transform the $sourceFilename into
 * a DOS-compatible name. E.g.
 * ExtendingPhing.html -> EXTENDI~.DOC
 *
 * @param string $sourceFilename The name to be converted.
 * @return array The matched filenames.
 */
 public function main($sourceFilename) {

 $info = pathinfo($sourceFilename);
 $ext = $info['extension'];
 // get basename w/o extension
 $bname = preg_replace('/\.\w+\$/', '', $info['basename']);

 if (strlen($bname) > 8) {
 $bname = substr($bname,0,7) . '~';
 }

 if (strlen($ext) > 3) {
 $ext = substr($bname,0,3);
 }

 if (!empty($ext)) {
 $res = $bname . '.' . $ext;
 } else {
 $res = $bname;
 }

 return (array) strtoupper($res);
 }

 /**
 * The "from" attribute is not needed here, but method must exist.
 */
 public function setFrom($from) {}

 /**
 * The "from" attribute is not needed here, but method must exist.
 */
 public function setTo($to) {}

}

6.8.2. Using the Mapper

Assuming that this mapper is saved to myapp/mappers/DOSMapper.php (relative to a path on
PHP's include_path, then you would refer to it like this in your build file:

51

Writing Selectors

<mapper classname = "myapp.mappers.DOSMapper"/>

6.9. Writing Selectors
Custom selectors are datatypes that implement Phing\Type\Selector\FileSelector.

There is only one method required, public function isSelected(PhingFile $basedir,
string $filename, PhingFile $file): bool. It returns true or false depending on whether
the given file should be selected or not.

An example of a custom selection that selects filenames ending in .php would be:

class PhpSelector implements FileSelector
{
 public function isSelected(PhingFile $b, string $filename, PhingFile $f)
 {
 return StringHelper::endsWith('.php', strtolower($filename));
 }
}

Adding the selector to the system is achieved as follows:

<typedef
 name = "phpselector"
 classname = "PhpSelector"/>

This selector can now be used wherever a Core Phing selector is used, for example:

<copy todir = "to">
 <fileset dir = "src">
 <phpselector/>
 </fileset>
</copy>

6.10. Writing Conditions
Custom conditions are datatypes that implement Phing\Task\System\Condition\Condition.
For example a custom condition that returns true if a string is all upper case could be written as:

class AllUpperCaseCondition implements Condition
{
 private $value;

 // The setter for the "value" attribute
 public function setValue(string $value)
 {
 $this->value = $value;
 }

 // This method evaluates the condition
 public function evaluate()
 {
 if ($this->value === null) {
 throw new BuildException("value attribute is not set");
 }

52

Writing Conditions

 return strtoupper($this->value) === $this->value;
 }
}

Adding the condition to the system is achieved as follows:

<typedef
 name = "alluppercase"
 classname = "AllUpperCaseCondition"/>

This condition can now be used wherever a Core Phing condition is used.

<condition property = "allupper">
 <alluppercase value = "THIS IS ALL UPPER CASE"/>
</condition>

53

54

Appendix A. Fact Sheet

A.1. Built-In Properties
Table A.1: Phing Built-In Properties

Property Contents

application.start-
dir

Current work directory

env.* Environment variables, extracted from $_SERVER.

host.arch System architecture, i.e. i586. Not available on Windows machines.

host.domain DNS domain name, i.e. php.net. Not available on Windows machines.

host.fstype The type of the files ystem. Possible values are UNIX and WINDOWS.

host.name Operating System hostname as returned by posix_uname(). Not available
on Windows machines.

host.os Operating System description as set in PHP_OS variable (see PHP Manual
[http://www.php.net/manual/en/reserved.constants.core.php]).

host.os.release Operating version release, i.e. 2.2.10. Not available on Windows machines.

host.os.version Operating system version, i.e. #4 Tue Jul 20 17:01:36 MEST 1999. Not avail-
able on Windows machines.

line.separator Character(s) that signal the end of a line, "\n" for Linux, "\r\n" for Windows
system, "\r" for Macintosh.

os.name Operating System description as set in PHP_OS variable.

phing.file Full path to current buildfile.

phing.dir Path that contains the current buildfile.

phing.home Phing installation directory, not set in PEAR installations.

phing.startTime The time that Phing started to run.

phing.version Current Phing version.

phing.project.name Name of the currently processed project.

php.classpath The value of the PHP_CLASSPATH. Same as the include path returned by
get_include_path().

php.version Version of the PHP interpreter. Same as PHP constant PHP_VERSION (see
PHP Manual [http://www.php.net/manual/en/reserved.constants.core.php]).

project.basedir The current project basedir.

user.home Value of the environment variable HOME.

A.2. Command Line Arguments
The following table lists the command line arguments currently available.

55

http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php
http://www.php.net/manual/en/reserved.constants.core.php

Distribution File Layout

Table A.2: Phing Command Line Arguments

Parameter Meaning

-h -help Display the help screen

-l -list List all available targets in buildfile (excluding targets that have their hidden
attribute set to true)

-i -init [file] Generates an initial buildfile at Phing's start directory. Optionally you can
specify buildfile's location and name.

-v -version Print version information and exit

-q -quiet Quiet operation, no output at all

-S -silent Print nothing but task outputs and build failures

-verbose Verbose, give some more output

-debug Output debug information

-emacs -e Produce logging information without adornments

-diagnostics Print diagnostics information

-longtargets Show target descriptions during build

-logfile <file> Use given file for log

-logger
path.to.Logger

Specify an alternate logger. Default is Phing\Listener\AnsiColorLogger. Other
options include Phing\Listener\NoBannerLogger, Phing\Listener\DefaultLog-
ger, Phing\Listener\XmlLogger, Phing\Listener\TargetLogger and Phing\Lis-
tener\HtmlColorLogger.

-f -buildfile
<file>

Specify an alternate buildfile name. Default is build.xml

-
D<property>=<val-
ue>

Set the property to the specified value to be used in the buildfile

-keep-going -k Execute all targets that to not depend on failed target(s)

-propertyfile
<file>

Load properties from the specified file

-find <file> Search for a buildfile towards the root of the filesystem and use that

-inputhandler
<file>

The class to use to handle user input. Default is \Phing\Input\ConsoleIn-
putHandler. Other options are \Phing\Input\NoInteractionInputHandler or an
own implementation of InputHandler.

A.3. Distribution File Layout
$PHING_HOME
 |-- bin
 |-- classes
 | `-- phing
 | |-- filters
 | | `-- util
 | |-- mappers
 | |-- parser
 | |-- tasks
 | | |-- ext

56

Program Exit Codes

 | | |-- system
 | | | `-- condition
 | | `-- user
 | `-- types
 |-- docs
 | `-- phing_guide
 `-- test
 |-- classes
 `-- etc

A.4. Program Exit Codes
Phing is script-safe - means that you can execute Phing and Configure within a automated script con-
text. To check back the success of a Phing call it returns an exit code that can be captured by your
calling script. The following list gives you details on the used exit codes and their meaning.

Table A.3: Program Exit Codes

Exitcode Description

-2 Environment not properly defined

-1 Parameter or configuration error occurred

0 Successful execution (build succeeded), no errors (there may be warnings)

1 Unsuccessful execution (build failed), errors occurred

A.5. The LGPL License
Source http://www.gnu.org/licenses/lgpl.txt

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge

57

http://www.gnu.org/licenses/lgpl.txt

The LGPL License

for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free

58

The LGPL License

programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

59

The LGPL License

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

60

The LGPL License

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)

61

The LGPL License

 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further

62

The LGPL License

restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

63

The LGPL License

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

That's all there is to it!

64

The GFDL License

A.6. The GFDL License
Source http://www.gnu.org/licenses/fdl-1.3.txt

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice

65

http://www.gnu.org/licenses/fdl-1.3.txt

The GFDL License

that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further

66

The GFDL License

copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.

67

The GFDL License

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified

68

The GFDL License

versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions

69

The GFDL License

of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

70

The GFDL License

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

71

72

Appendix B. Core tasks
This appendix contains a reference of all core tasks, i.e. all tasks that are needed to build a basic project.

This reference lists the tasks alphabetically by the name of the classes that implement the tasks. So if
you are searching for the reference to the<copy>tag, for example, you will want to look at the reference
ofCopyTask.

B.1. AdhocTaskdefTask
The AdhocTaskdefTask allows you to define a task within your build file.

Note that you should use <![CDATA[...]]> so that you don't have to quote entities within your <ad-
hoc-task></adhoc-task> tags.

Table B.1: Attributes

Name Type Description Default Required

name String Name of XML tag that will represent this task.n/a Yes

B.1.1. Examples

<target name="main"
 description="==>test AdhocTask ">

 <adhoc-task name="foo"><![CDATA[
 class FooTest extends Task {
 private $bar;

 function setBar($bar) {
 $this->bar = $bar;
 }

 function main() {
 $this->log("In FooTest: " . $this->bar);
 }
 }
]]></adhoc-task>

 <foo bar="B.L.I.N.G"/>
</target>

B.2. AdhocTypedefTask
The AdhocTypedefTask allows you to define a datatype within your build file.

Note that you should use <![CDATA[...]]> so that you don't have to quote entities within your <ad-
hoc-type></adhoc-type> tags.

Table B.2: Attributes

Name Type Description Default Required

name String Name of XML tag that will represent this
datatype..

n/a Yes

73

Example

B.2.1. Example

<target name="main"
 description="==>test AdhocType">

 <adhoc-type name="dsn"><![CDATA[
 class CreoleDSN extends DataType {
 private $url;

 function setUrl($url) {
 $this->url = $url;
 }

 function getUrl() {
 return $this->url;
 }
 }
]]></adhoc-type>

 <!-- creole-sql task doesn't exist; just an example -->
 <creole-sql file="test.sql">
 <dsn url="mysql://root@localhost/test"/>
 </creole-sql>

 </target>

B.3. AppendTask
The Append Task appends text or contents of files to a specified file.

In the example above, AppendTask is reading a filename from book/PhingGuide.book, processing
the file contents with XSLT, and then appending the result to the file located at ${process.output-
file}. This is a real example from the build file used to generate this book!

Note

By default, whitespace is stripped from text that is appended to a file (matching the way the
Concat task works in Ant). This is because adding a nested text element may introduce additional
(ignorable) whitespace. If you want to override this behavior, set the skipsanitize attribute
to true.

Table B.3: Attributes

Name Type Description Default Required

destFile File Path of file to which text should be append-
ed. If not specified the console will be used in-
stead.

n/a No

append String Specifies whether or not the file specified
by 'destfile' should be appended. Defaults to
"yes".

yes No

overwrite Boolean Specifies whether or not the file specified by
'destfile' should be written to even if it is newer
than all source files.

yes No

74

Examples

Name Type Description Default Required

fixlastline Boolean Specifies whether or not to check if each file
concatenated is terminated by a new line. If
this attribute is "yes" a new line will be append-
ed to the stream if the file did not end in a new
line. This attribute does not apply to embed-
ded text.

no No

eol String Specifies what the end of line character are for
use by the fixlastline attribute. Valid values for
this property are:

• cr: a single CR

• lf: a single LF

• crlf: the pair CRLF

• mac: a single CR

• unix: a single LF

• dos: the pair CRLF

The default is platform dependent. For Unix
platforms, the default is "lf". For DOS based
systems (including Windows), the default is
"crlf". For Mac OS, the default is "cr".

n/a No

skipsanitize Boolean Specifies whether to skip sanitizing text (i.e.,
stripping spaces and newlines).

n/a No

file File Path to file that should be appended to dest-
File.

n/a No

text String Some literal text to append to file. n/a No

B.3.1. Examples

<append destFile = "${process.outputfile}">
 <filterchain>
 <xsltfilter style = "${process.stylesheet}">
 <param name = "mode" expression = "${process.xslt.mode}"/>
 </xsltfilter>
 </filterchain>
 <filelist dir = "book/" listfile = "book/PhingGuide.book"/>
</append>

B.3.2. Supported Nested Tags

• filelist

• fileset

• filterchain

• path

75

ApplyTask

• header, footer Used to prepend or postpend text into the concatenated stream. The text may
be in-line or be in a file.

Table B.4: Attributes

Name Type Description Default Required

filtering Boolean Whether to filter the text provided by this sub
element.

yes No

file String A file to place at the head or tail of the con-
catenated text.

n/a No

trim Boolean Whether to trim the value. no No

trimleading Boolean Whether to trim leading white space on each
line.

no No

B.4. ApplyTask
Applies a system command on each resource of the specified resource collection.

When the os attribute is specified, then the command is only executed when run on one of the specified
operating systems.

The files of a number of Resource Collections – including but not restricted to FileSets, FileLists or
DirSets – are passed as arguments to the system command.

Table B.5: Attributes

Name Type Description Default Required Alias

executable String The command to execute without any
command line arguments.

n/a Yes

dir String The directory the command is to be ex-
ecuted in.

n/a No

output String Where to direct stdout. n/a No

error String Where to direct stderr. n/a No

os String Only execute if the Appendix A, Fact
Sheet property contains specified text.

n/a No

escape BooleanEscape shell metacharacters before ex-
ecution. Setting this to true will enable
the escape precaution.

false No

passthru BooleanWhether to use PHP's passthru() func-
tion instead of exec().

false No

spawn BooleanWhether to spawn unix programs to the
background, redirecting stdout (output
will not be logged by Phing).

false No

returnProp-
erty

String Property name to set return value to
from the execution.

n/a No

outputProp-
erty

String Property name to set output value to
from the execution.

n/a No

76

Examples

Name Type Description Default Required Alias

checkreturn BooleanWhether to check the return code of
the execution, throws a BuildException
when returncode != 0.

false No failonerror

append BooleanWhether output (and error) should be
appended to or overwrite an existing file.
If you set parallel to false, you will prob-
ably want to set this one to true.

false No

parallel BooleanRun the command only once, append-
ing all files as arguments. If false, com-
mand will be executed once for every
file.

false No

addsource-
file

BooleanWhether source file name(s) should be
added to the end of command-line auto-
matically. If you need to place it some-
where different, use a nested <srcfile>
element between your <arg> elements
to mark the insertion point.

true No

relative BooleanWhether the filenames should be
passed on the command line as relative
pathnames (relative to the base direc-
tory of the corresponding fileset/list for
source files).

false No

forwardslash BooleanWhether the file names should be
passed with forward slashes even if the
operating system requires other file sep-
arator.

false No

maxparallel Inte-
ger

Limit the amount of parallelism by pass-
ing at most this many sourcefiles at
once. Set it to <= 0 for unlimited.

0 No

skipempty-
filesets

BooleanDon't run the command, if no source
files have been found or are newer than
their corresponding target files. Despite
its name, this attribute applies to filelists
as well.

false No

type String One of file, dir or both. If set to file, only
the names of plain files will be sent to the
command. If set to dir, only the names
of directories are considered. Note: The
type attribute does not apply to nest-
ed dirsets - dirsets always implicitly as-
sume type to be dir.

file No

force BooleanWhether to bypass timestamp compar-
isons for target files.

false No

B.4.1. Examples

<!-- Invokes somecommand arg1 SOURCEFILENAME arg2 for each file in /tmp -->
<apply executable = "somecommand" parallel = "false">
 <arg value = "arg1"/>
 <srcfile/>

77

Supported Nested Tags

 <arg value = "arg2"/>
 <fileset dir = "/tmp"/>
</apply>

<!-- List all the .conf files of "/etc" to the "out.log" file. -->
<apply executable = "ls" output = "/tmp/out.log" append = "true" >
 <arg value = "-alh" />
 <fileset dir = "/etc" >
 <include name = "*.conf" />
 </fileset>
</apply>

B.4.2. Supported Nested Tags

• arg

Table B.6: Attributes

Name Type Description Default Required

value String A single command-line argument; can con-
tain space characters.

n/a

file String The name of a file as a single command-line
argument; will be replaced with the absolute
filename of the file.

n/a

path String A string that will be treated as a path-like
string as a single command-line argument;
you can use ; or : as path separators and Ph-
ing will convert it to the platform's local con-
ventions.

n/a

line String A space-delimited list of command-line argu-
ments.

n/a

One of these

• fileset

• filelist

• dirset

• mapper

• srcfile

• targetfile

B.5. AttribTask
Changes the attributes of a file or all files inside specified directories. Right now it has effect only under
Windows. Each of the 4 possible permissions has its own attribute, matching the arguments for the
attrib command.

FileSets or FileLists can be specified using nested fileset and filelist elements.

By default this task won't do anything unless it detects it is running on a Windows system. If you know
for sure that you have a "attrib" executable on your PATH that is command line compatible with the
Windows command, you can use the task's os attribute and set its value to your current os.

78

Example

Table B.7: Attributes

Name Type Description Default Required

file String The file or directory of which the permissions
must be changed.

n/a Yes

readonly Boolean The readonly permission. n/a

archive Boolean The archive permission. n/a

system Boolean The system permission. n/a

hidden Boolean The hidden permission. n/a

at least one of
the four.

verbose Boolean Whether to print a summary after execution or
not. Defaults to false.

false No

os String List of Operating Systems on which the com-
mand may be executed.

n/a No

B.5.1. Example

<attrib file = "${dist}/run.bat" readonly = "true" hidden = "true"/>

makes the "run.bat" file read-only and hidden.

<attrib readonly = "false">
 <fileset dir = "${meta.inf}" includes = "**/*.xml"/>
</attrib>

makes all ".xml" files below ${meta.inf} readable.

B.5.2. Supported Nested Tags

• filelist

• fileset

B.6. Augment
Modify an existing reference by adding nested elements or (re-)assigning properties mapped as XML
attributes. This is an unusual task that makes use of Phing's internal processing mechanisms to reload
a previously declared reference by means of the id attribute, then treats the declared augment element
as though it were the original element.

Table B.8: Attributes

Name Type Description Default Required

id String The id of the reference to augment. If no such
reference has been declared a BuildException
is thrown.

n/a Yes

79

Examples

B.6.1. Examples

Given

<fileset id = "input-fs" dir = "${project.basedir}"/>

invocation

<augment id = "input-fs" excludes = "foo"/>

modifies the excludes attribute of input-fs, whereas

<augment id = "input-fs">
 <filename name = "bar"/>
</augment>

adds a filename selector to input-fs.

B.7. AutoloaderTask
The AutoloaderTask includes autoload file to bootstrap all necessary components in Phing execution
context. It could be useful if build tools (e.g. phpunit, phploc etc.) are installed as Composer depen-
dencies.

Table B.9: Attributes

Name Type Description Default Required

autoloaderpath String Path to autoloader file ven-
dor/au-
toload.php

Yes

B.7.1. Example

<autoloader autoloaderpath = "foo/autoload.php"/>

B.8. AvailableTask
Available Task tests if a resource/file is set and sets a certain property to a certain value if it exists.

Here, AvailableTask first checks for the existence of either file or directory named test.txt in /
tmp. Then, it checks for the directory foo in /home and then for the file or directory bar in /home/
foo. If /tmp/test.txt is found, the property test_txt_exists is set to "Yes", if /home/foo
is found and a directory, properties.yetanother is set to "true" (default). If /home/foo/bar
exists, AvailableTask will set foo.bar to "Well, yes". And last it checks if extension foo is
loaded, so the property foo.ext.loaded is set to "true" (default).

NB: the Available task can also be used as a condition, see conditions.

Table B.10: Attributes

Name Type Description Default Required

property String Name of the property that is to be set. n/a Yes

80

Examples

Name Type Description Default Required

value String The value the property is to be set to. "true" No

file String File/directory to check existence. n/a Yes (or re-
source or ex-
tension)

resource String Path of the resource to look for. n/a Yes (or file or
extension)

extension String Name of the extension to look for. n/a Yes (or file or
resource)

type String
(file|dir)

Determines if AvailableTask should look
for a file or a directory at the position set by
file. If empty, it checks for either file or di-
rectory.

n/a No

filepath String The path to use when looking up file. n/a No

followSymlinks Boolean Whether to dereference symbolic links when
looking up file.

false No

B.8.1. Examples

<available file = "/tmp/test.txt" property = "test_txt_exists" value = "Yes"/>

<available file = "/home/foo" type = "dir" property = "properties.yetanother" />

<available file = "/home/foo/bar" property = "foo.bar" value = "Well, yes" />

B.9. Basename
Task to determine the basename of a specified file, optionally minus a specified suffix.

When this task executes, it will set the specified property to the value of the last path element of the
specified file. If file is a directory, the basename will be the last directory element. If file is a full-path,
relative-path, or simple filename, the basename will be the simple file name, without any directory
elements.

Table B.11: Attributes

Name Type Description Default Required

property String Name of the property that is to be set. n/a Yes

file String The path to take the basename of. n/a Yes

suffix String The suffix to remove from the resulting base-
name (specified either with or without the ".").

n/a No

B.9.1. Examples

<basename property = "cmdname" file = "./foo.exe" suffix = ".exe"/>

81

Bindtargets

B.10. Bindtargets
Make some target the extension of some defined extension point. It will make the list of targets depen-
dencies of the extension point.

This target is useful when you want to have a target to participate in another build workflow which
explicitly exposes an extension point for that kind of insertion. Thus the target to bind and the extension
point to bind to are both declared in some imported build files. But directly modifying the target depen-
dency graph of these external build files may have a side effect on some other project which imports
them. This task helps to modify the target dependencies but only in your context.

Table B.12: Attributes

Name Type Description Default Required

targets String a comma separated list of target names to
bind.

n/a Yes

extensionPoint String the name of the extension point to bind the tar-
gets to.

n/a Yes

onMissingEx-
tensionPoint

String What to do if this target tries to extend a miss-
ing extension-point: "fail", "warn", "ignore".

fail No

B.10.1. Examples

<bindtargets targets = "build-phar,build-src-phar" extensionPoint = "dist"/>

B.11. ChmodTask
Sets the mode of a file or directory.

For more informations, see chmod [http://php.net/chmod] in the PHP Manual.

Table B.13: Attributes

Name Type Description Default Required

file String The name of the file or directory. You either
have to specify this attribute, or use a fileset.

n/a Yes

mode String The new mode (octal) for the file. Specified in
octal, even if the first digit is not a '0'.

n/a Yes

quiet Boolean Set quiet mode, which suppresses warnings if
chmod() fails

false No

failonerror Boolean This flag means 'note errors to the output, but
keep going'

true No

verbose Boolean Give more information in error message in
case of a failure

true No

B.11.1. Examples

<chmod file = "test.txt" mode = "0755" />

82

http://php.net/chmod
http://php.net/chmod

Supported Nested Tags

<chmod file = "/home/test" mode = "0775" />
<chmod file = "/home/test/mine.txt" mode = "0500" verbose = "true" />

B.11.2. Supported Nested Tags

• fileset

• dirset

B.12. ChownTask
Changes the owner of a file or directory.

Table B.14: Attributes

Name Type Description Default Required

file String The name of the file or directory. You either
have to specify this attribute, or use a fileset.

n/a Yes

user String The new owner of the file. Can contain a user-
name and a groupname, separated by a dot.

n/a No

group String The new group owner of the file. n/a No

quiet Boolean Set quiet mode, which suppresses warnings if
chmod() fails

false No

failonerror Boolean This flag means 'note errors to the output, but
keep going'

true No

verbose Boolean Give more information in error message in
case of a failure

true No

B.12.1. Examples

<chown file = "my-file.txt" user = "foo" />
<chown file = "my-file.txt" user = "username.groupname" />
<chown file = "/home/test/my-directory" user = "bar" />
<chown file = "/home/test/my-file.txt" user = "foo"
 verbose = "true" failonerror = "false" />

B.12.2. Supported Nested Tags

• fileset

• dirset

B.13. ConditionTask
Sets a property if a certain condition holds true - this is a generalization of Section B.8, “AvailableTask
” andSection B.69, “UpToDateTask”.

83

Examples

If the condition holds true, the property value is set to true by default; otherwise, the property is not set.
You can set the value to something other than the default by specifying the value attribute.

Conditions are specified as nested elements, you must specify exactly one condition - see conditions
for a complete list of nested elements.

Table B.15: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

value String The value to set the property to. Defaults to
"true".

true No

else String The value to set the property to if the condition
evaluates to false. By default the property will
remain unset.

n/a No

B.13.1. Examples

<condition property = "isMacOrWindows">
 <or>
 <os family = "mac"/>
 <os family = "windows"/>
 </or>
</condition>

B.13.2. Supported Nested Tags

• or

• and

B.14. CopyTask
Copies files or directories. Files are only copied if the source file is newer than the destination file, or
when the destination file does not exist. It is possible to explicitly overwrite existing files.

CopyTask does not allow self copying, i.e. copying a file to the same name for security reasons.

Table B.16: Attributes

Name Type Description Default Required

file String The source file. Yes

tofile String The destination the file is to be written to.
tofile specifies a full filename. If you on-
ly want to specify a directory to copy to, use
todir.

Either this or the todir attribute is required.

n/a Yes (or todir)

todir String The directory the file is to be copied to. The
file will have the same name of the source file.
If you want to specify a different name, use
tofile. The directory must exist.

n/a Yes (or
tofile)

84

Examples

Name Type Description Default Required

overwrite Boolean Overwrite existing files even if the destination
files are newer.

false No

tstamp or preserve-
lastmodified

Boolean If set to true, the new file will have the same
mtime as the old one.

false No

preservemode or
preservepermis-
sions

Boolean If set to true, the new file (and directory) will
have the same permissions as the old one.
The mode specified for directory creation will
be ignored.

true No

includeempty-
dirs

Boolean If set to true, also empty directories are
copied.

true No

mode Integer Mode (octal) to create directories with. From
umask

No

haltonerror Boolean If set to true, halts the build when errors are
encountered.

true No

flatten Boolean Ignore the directory structure of the source
files, and copy all files into the directory spec-
ified by the todir attribute. Note that you can
achieve the same effect by using a flatten
mapper.

false No

verbose Boolean Whether to print the list of the copied file. De-
faults to false.

false No

granularity Integer The number of seconds leeway to give before
deciding a file is out of date. This can also be
useful if source and target files live on sepa-
rate machines with clocks being out of sync.

0 No

Note

No automatic expansion of symbolic links

By default, CopyTask does not expand / dereference symbolic links, and will simply copy the link
itself. To enable dereferencing, set expandsymboliclinks to true in the <fileset> tag.

B.14.1. Examples

On the one hand, CopyTask can be used to copy file by file:

<copy file = "somefile.txt" tofile = "/tmp/anotherfile.bak"
overwrite = "true"/>

Additionally, CopyTask supports Filesets, i.e. you can easily include/exclude one or more files. For
more information, see Appendix D, Core Types -- pay particular attention to the defaultexcludes
attribute. Appendix F, Core mappers and Appendix E, Core filters are also supported by CopyTask,
so you can do almost everything that needs processing the content of the files or the filename.

<copy todir = "/tmp/backup" >
 <fileset dir = ".">
 <include name = "**/*.txt" />
 <include name = "**/*.doc" />

85

Supported Nested Tags

 <include name = "**/*.swx" />
 </fileset>
<filelist dir = "." files = "test.html"/>
</copy>

<copy todir = "build" >
 <fileset defaultexcludes = "false" expandsymboliclinks = "true" dir = ".">
 <include name = "**/*.php" />
 </fileset>
</copy>

B.14.2. Supported Nested Tags

• fileset

• filelist

• dirset

• filterchain

• mapper

B.15. DefaultExcludes
Alters the default excludes for all subsequent processing in the build, and prints out the current default
excludes if desired.

Table B.17: Attributes

Name Type Description Default Required

echo Boolean whether or not to print out the default excludes.false attribute "true"
required if no
other attribute
specified

default Boolean go back to hard wired default excludes n/a attribute "true"
required if no
other attribute
specified

add String the pattern to add to the default excludes n/a if no other at-
tribute is speci-
fied

remove String remove the specified pattern from the default
excludes

n/a if no other at-
tribute is speci-
fied

B.15.1. Examples

Print out the default excludes

<defaultexcludes echo = "true"/>

86

DeleteTask

Print out the default excludes and exclude all *.bak files in all further processing

<defaultexcludes echo = "true" add = "**/*.bak"/>

Silently allow several fileset based tasks to operate on emacs backup files and then restore normal
behavior

<defaultexcludes remove = "**/*~"/>

(do several fileset based tasks here)

<defaultexcludes default = "true"/>

B.16. DeleteTask
Deletes a file or directory, or set of files defined by a fileset. See Appendix D, Core Types for information
on Filesets.

Table B.18: Attributes

Name Type Description Default Required

file String The file that is to be deleted. You either have
to specify this attribute, dir, or use a fileset.

n/a Yes (or dir)

dir String The directory that is to be deleted. You either
have to specify this attribute, file, or use a
fileset.

n/a Yes (or file)

verbose Boolean Used to force listing of all names of deleted
files.

n/a No

quiet Boolean If the file does not exist, do not display a di-
agnostic message or modify the exit status to
reflect an error. This means that if a file or di-
rectory cannot be deleted, then no error is re-
ported.

This setting emulates the -f option to the
Unixrmcommand. Default is false meaning
things are verbose

n/a No

failonerror Boolean If this attribute is set to true, DeleteTask will
verbose on errors but the build process will not
be stopped.

false No

includeempty-
dirs

Boolean Determines if empty directories are also to be
deleted.

false No

B.16.1. Examples

<!-- Delete a specific file -->
<delete file = "/tmp/foo.bar" />

<!-- Delete a directory -->
<delete dir = "/tmp/darl" includeemptydirs = "true" verbose = "true" failonerror = "true" />

<!-- Delete using a fileset -->

87

Supported Nested Tags

<delete>
 <fileset dir = "/tmp">
 <include name = "*.bar" />
 </fileset>
</delete>

B.16.2. Supported Nested Tags

• fileset

• filelist

• dirset

B.17. DependSet
The dependset task compares a set of sources with a set of target files. If any of the sources has been
modified more recently than any of the target files, all of the target files are removed.

B.17.1. Examples

<dependset>
 <srcfilelist
 dir = "${dtd.dir}"
 files = "paper.dtd,common.dtd"/>
 <srcfilelist
 dir = "${xsl.dir}"
 files = "common.xsl"/>
 <srcfilelist
 dir = "${basedir}"
 files = "build.xml"/>
 <targetfileset
 dir = "${output.dir}"
 includes = "**/*.html"/>
</dependset>

In this example derived HTML files in the ${output.dir} directory will be removed if any are out-of-date
with respect to:

• the DTD of their source XML files

• a common DTD (imported by the main DTD)

• a subordinate XSLT stylesheet (imported by the main stylesheet), or

• the buildfile

If any of the sources in the above example does not exist, all target files will also be removed. To ignore
missing sources instead, use filesets instead of filelists for the sources.

B.17.2. Supported Nested Tags

• srcfileset

• srcfilelist

• targetfileset

88

Diagnostics

• targetfilelist

B.18. Diagnostics
Runs phing's -diagnostics code inside phing itself. This is good for debugging phing's configuration
under an IDE.

B.18.1. Example

<target name = "diagnostics" description = "diagnostics">
 <diagnostics/>
</target>

B.19. Dirname
Task to determine the directory path of a specified file.

When this task executes, it will set the specified property to the value of the specified file (or directory)
up to, but not including, the last path element. If the specified file is a path that ends in a filename, the
filename will be dropped. If the specified file is just a filename, the directory will be the current directory.

Note: This is not the same as the UNIX dirname command, which is defined as "strip non-directory
suffix from filename". <dirname> determines the full directory path of the specified file.

Table B.19: Attributes

Name Type Description Default Required

file String The path to take the dirname of. n/a yes

property String The name of the property to set. n/a yes

B.19.1. Example

<dirname property = "foo.dirname" file = "foo.txt"/>

will set foo.dirname to the project's basedir.

B.20. EchoPropertiesTask
Displays all the current properties in the project. The output can be sent to a file if desired. This task
can be used as a somewhat contrived means of returning data from an <phing> invocation, but is
really for debugging build files.

Table B.20: Attributes

Name Type Description Default Required

destfile String If specified, the value indicates the name of
the file to send the output of the statement to.

n/a no

89

Example

Name Type Description Default Required

If not specified, then the output will go to the
Phing log.

srcfile String If specified, the value indicates the name of
the property file to read from. If not specified,
then the system properties will be taken.

n/a no

prefix String a prefix which is used to filter the properties
only those properties starting with this prefix
will be echoed.

n/a no

regex String a regular expression which is used to filter the
properties only those properties whose names
match it will be echoed.

n/a no

failonerror Boolean By default, the "failonerror" attribute is en-
abled. If an error occurs while writing the prop-
erties to a file, and this attribute is enabled,
then a BuildException will be thrown, causing
the build to fail. If disabled, then IO errors will
be reported as a log statement, and the build
will continue without failure from this task.

n/a no

format String One of text or xml. Determines the output for-
mat. Defaults to text.

n/a no

B.20.1. Example

<echoproperties />

Report the current properties to the log.

<echoproperties destfile = "my.properties"/>

Report the current properties to the file "my.properties", and will fail the build if the file could not be
created or written to.

<echoproperties destfile = "my.properties" failonerror = "false"/>

Report the current properties to the file "my.properties", and will log a message if the file could not be
created or written to, but will still allow the build to continue.

<echoproperties prefix = "phing."/>

List all properties beginning with "phing."

<echoproperties regex = "/.*phing.*/"/>

Lists all properties that contain "phing" in their names.

B.21. EchoTask
Echoes a message to the current loggers and listeners which means standard out unless overridden.
A level can be specified, which controls at what logging level the message is filtered at.

90

Examples

The task can also echo to a file, in which case the option to append rather than overwrite the file is
available, and the level option is ignored

Additionally, the task can echo the contents of a nested fileset element.

Table B.21: Attributes

Name Type Description Default Required

msg String The string that is to be send to the output. n/a Yes

message String Alias for msg. n/a Yes

file String The file to write the message to. n/a No

append Boolean Append to an existing file? false No

level String Control the level at which this message is re-
ported. One of error, warning, info, ver-
bose, debug.

info No

B.21.1. Examples

<echo msg = "Phing rocks!" />

<echo message = "Binarycloud, too." />

<echo>And don't forget Propel.</echo>

<echo file = "test.txt" append = "false">This is a test message</echo>

Echo a previously defined fileset element.

<fileset dir = "./tests" id = "test.files">
 <include name = "**/*Test.php"/>
</fileset>

<echo>
 <fileset refid = "test.files"/>
</echo>

B.21.2. Supported Nested Tags

• fileset

B.22. EchoXML
Echo nested XML to the console or a file.

Table B.22: Attributes

Name Type Description Default Required

file String The file to receive the XML. by de-
fault nest-
ed XML is
echoed to
the log

No

91

Parameters specified
as nested elements

Name Type Description Default Required

append Boolean Whether to append file, if specified. false No

B.22.1. Parameters specified as nested elements

Nested XML content is required.

B.22.2. Examples

<echoxml file = "subbuild.xml">
 <project default = "foo">
 <target name = "foo">
 <echo>foo</echo>
 </target>
 </project>
</echoxml>

Create a Phing buildfile, subbuild.xml.

B.23. ExecTask
Executes a shell command. You can use this to quickly add a new command to Phing. However, if you
want to use this regularly, you should think about writing a Task for it.

The command attribute is no longer supported. You should now use a combination of the executable
attribute and arg nested elements:

<exec command = "echo foo"/>
<!-- should become -->
<exec executable = "/bin/echo">
 <arg value = "foo"/>
</exec>

Where it was once possible to pipe the output of one program to be the input of another using the com-
mand attribute: <exec command="echo FLUSHALL | redis-cli"> This must now be done using a com-
bination of the executable and line attributes, thus: <exec executable="bash" line="echo FLUSHALL
| redis-cli">

Table B.23: Attributes

Name Type Description Default Required

executable String The command to execute without any com-
mand line arguments.

n/a

dir String The directory the command is to be executed
in.

n/a No

output String Where to direct stdout. n/a No

error String Where to direct stderr. Redirect-
ed to std-
out, un-
less
passthru

No

92

Examples

Name Type Description Default Required

is set to
true.

os String Only execute if the Appendix A, Fact Sheet
property contains specified text.

n/a No

osfamily String OS family as used in the <os> condition. n/a No

escape Boolean By default, we escape shell metacharacters
before executing. Setting this to false will dis-
able this precaution.

false No

passthru Boolean Whether to use PHP's passthru() function in-
stead of exec().

false No

logoutput Boolean Whether to log returned output as MSG_INFO
instead of MSG_VERBOSE.

false No

spawn Boolean Whether to spawn unix programs to the back-
ground, redirecting stdout.

false No

returnProperty String Property name to set return value to from ex-
ec() call.

n/a No

outputProperty String Property name to set output value to from ex-
ec() call.

n/a No

checkreturn Boolean Whether to check the return code of the pro-
gram, throws a BuildException when return-
code != 0.

false No

level String Control the level at which status messages
are reported. One of error, warning, info,
verbose, debug.

verbose No

resolveexe-
cutable

Boolean When this attribute is true, the name of the ex-
ecutable is resolved firstly against the project
basedir and if that does not exist, against the
execution directory if specified. On Unix sys-
tems, if you only want to allow execution of
commands in the user's path, set this to false.

false No

searchpath Boolean When this attribute is true, then system path
environment variables will be searched when
resolving the location of the executable.

false No

B.23.1. Examples

<!-- List the contents of "/home" using the executable attribute -->
<exec executable = "ls" passthru = "yes">
 <arg value = "-l"/>
 <arg path = "/home"/>
</>

<!-- List the contents of "/home", but only if on Linux -->
<exec executable = "ls" passthru = "yes" os = "Linux">
 <arg value = "-l"/>
 <arg path = "/home"/>
</>

<!-- Demonstrate executable attribute and environment variables. -->
<exec executable = "php" outputProperty = "outputProperty">

93

Supported Nested Tags

 <env key = "HELLO" value = "hello"/>
 <env key = "WORLD" value = "world"/>
 <arg value = "-r"/>
 <arg value = "print getEnv('HELLO') . ' ' . getEnv('WORLD');"/>
</exec>

<!-- Demonstrate piping outputs from one command to another using the executable attribute. -->
<exec executable = "bash">
 <arg value = "-c"/>
 <arg line = '"java -jar test.jar page.xml | mysql -u user -p base"'/>
</exec>

<!-- Restart some docker service -->
<exec executable = "docker">
 <arg line = "--debug restart ${service.name}"/>
</exec>

<!-- List the contents of "/tmp" out to a file. -->
<exec executable = "ls" escape = "false">
 <arg line = "-l /tmp > foo.out"/>
</exec>

B.23.2. Supported Nested Tags

• arg

Table B.24: Attributes

Name Type Description Default Required

value String A single command-line argument; can con-
tain space characters. To pass an empty ar-
gument, enclose two double quotes in single
quotes ('""').

n/a

file String The name of a file as a single command-line
argument; will be replaced with the absolute
filename of the file.

n/a

path String A string that will be treated as a path-like
string as a single command-line argument;
you can use ; or : as path separators and Ph-
ing will convert it to the platform's local con-
ventions.

n/a

line String A space-delimited list of command-line argu-
ments.

n/a

One of these

env

It is possible to specify environment variables to pass to the system command via nested <env>
elements.

Table B.25: Attributes

Name Type Description Default Required

key String The name of the environment variable. n/a Yes

value String The literal value for the environment variable.n/a

file String The value for the environment variable. Will
be replaced by the absolute filename of the
file by Phing.

n/a

One of these

94

FailTask

Name Type Description Default Required

path String The value for a PATH like environment vari-
able. You can use ; or : as path separators
and Phing will convert it to the platform's local
conventions.

n/a

B.24. FailTask
Causes the current build script execution to fail and the script to exit with an (optional) error message.

Table B.26: Attributes

Name Type Description Default Required

message String The message to display (reason for script
abort).

"No Mes-
sage"

No

msg String Alias for message "No Mes-
sage"

No

if String Name of property that must be set for script to
exit.

n/a No

unless String Name of property that must not be set in order
for script to exit.

n/a No

status Integer Exit using the specified status code; assuming
the generated Exception is not caught, PHP
will exit with this status.

n/a No

B.24.1. Examples

<!-- Exit w/ message -->
<fail message = "Failed for some reason!" />

<!-- Exit if ${errorprop} is defined -->
<fail if = "errorprop" message = "Detected error!" />

<!-- Exit unless ${dontfail} prop is defined. -->
<fail unless = "dontfail" message = "Detected error!" />

<!-- Using a condition to achieve the same effect:
<fail message="Detected error!">
 <condition>
 <not>
 <isset property="dontfail"/>
 </not>
 </condition>
</fail>

B.24.2. Parameters specified as nested elements.

As an alternative to the if/unless attributes, conditional failure can be achieved using a single nested
<condition> element, which should contain exactly one core or custom condition.

95

FileHashTask

B.25. FileHashTask
Calculates either MD5 or SHA1 hash value of a file and stores the value as a hex string in a property
and generates a checksum file.

Other popular algorithms [http://php.net/manual/en/function.hash-algos.php] like "crc32" or "sha512"
may be used with help of the algorithm attribute.

Table B.27: Attributes

Name Type Description Default Required

file String Filename n/a Yes

hashtype Integer Specifies what hash algorithm to use. 0=MD5,
1=SHA1

0 No

algorithm String Specifies what hash algorithm to use. Sup-
ported algorithms [http://php.net/manual/en/
function.hash-algos.php].

n/a No

propertyname String Name of property where the hash value is
stored.

filehash-
value

No

B.25.1. Example

<filehash file = "${builddir}/${tarball}.tar.${compression}" />
<echo msg = "Hashvalue is; ${filehashvalue}" />

B.26. FileSizeTask
Stores the size of a specified file in a property. The file size can be returned in different units.

Table B.28: Attributes

Name Type Description Default Required

file String Filename. n/a Yes

propertyname String Name of property where the file size is stored.filesize No

unit String File size unit. Examples: M, G, T. B No

Note

File size can be written using IEC and SI suffixes, bytes are assumed when suffix is not specified.
The following suffixes (case-insensitive) are supported:

Table B.29: Supported file size suffixes

Standard Suffixes Equivalence

B. 1 byte

K, Ki, KiB, kibi, kibibyte. 1024 bytesIEC

M, Mi, MiB, mebi, mebibyte. 1024 kibibytes

96

http://php.net/manual/en/function.hash-algos.php
http://php.net/manual/en/function.hash-algos.php
http://php.net/manual/en/function.hash-algos.php
http://php.net/manual/en/function.hash-algos.php
http://php.net/manual/en/function.hash-algos.php

Examples

Standard Suffixes Equivalence

G, Gi, GiB, gibi, gibibyte. 1024 mebibytes

T, Ti, TiB, tebi, tebibyte. 1024 gibibytes

kB, kilo, kilobyte. 1000 bytes

MB, mega, megabyte. 1000 kilobytes

GB, giga, gigabyte. 1000 megabytes
SI

TB, tera, terabyte. 1000 gigabytes

B.26.1. Examples

<filesize file = "./backup.zip"/>
<echo>Your backup size is ${filesize} Bytes</echo>

<filesize file = "./backup.zip" propertyname = "backup.size"/>
<echo>Your backup size is ${backup.size} Bytes</echo>

<filesize file = "./backup.zip" unit = "M"/>
<echo>Your backup size is ${filesize} Megabytes</echo>

B.27. ForeachTask
The foreach task iterates over a list, a list of filesets, or both. If both, list and filesets, are
specified, the list will be evaluated first. Nested filesets are evaluated in the order they appear in
the task.

Table B.30: Attributes

Name Type Description Default Required

inheritall Boolean If true, pass all properties to the called target.false No

inheritrefs Boolean If true, pass all references to the the called
target.

false No

trim Boolean If true, any leading or trailing whitespace
will be removed from the list item before it is
passed to the requested target.

false No

list String The list of values to process, with the delim-
iter character, indicated by the "delimiter" at-
tribute, separating each value.

n/a No

target String The target to call for each token, passing the
token as the parameter with the name indicat-
ed by the "param" attribute.

n/a Yes

param String The name of the parameter to pass the tokens
in as to the target.

n/a Yes

97

Examples

Name Type Description Default Required

absparam String The name of the absolute pathparameter to
pass the tokens in as to the target (used while
processing nested filesets).

n/a No

delimiter String The delimiter string that separates the values
in the "list" parameter. The default is ",".

, No

index String The name of the property containing the iter-
ation count.

index No

B.27.1. Examples

<!-- loop through languages, and call buildlang task with setted param -->
<property name = "languages" value = "en,fr,de" />
<foreach list = "${languages}" param = "lang" target = "buildlang" />

<!-- loop through files, and call subtask task with set param and absparam -->
<foreach param = "filename" absparam = "absfilename" target = "subtask">
 <fileset dir = ".">
 <include name = "*.php"/>
 </fileset>
</foreach>

B.27.2. Supported Nested Tags

• path

• dirset

• fileset

• filelist

• mapper

B.28. IfTask
Perform some tasks based on whether a given condition holds true or not.

This task doesn't have any attributes, the condition to test is specified by a nested element - see the
conditions for a complete list of nested elements.

Just like the <condition> task, only a single condition can be specified - you combine them using
<and> or <or> conditions.

In addition to the condition, you can specify three different child elements, <elseif> , <then> and
<else> . All three subelements are optional. Both <then> and <else> must not be used more than
once inside the if task. Both are containers for Phing tasks.

The <elseif> behaves exactly like an <if> except that it cannot contain the <else> element inside
of it. You may specify as may of these as you like, and the order they are specified is the order they are
evaluated in. If the condition on the <if> is false, then the first <elseif> who's conditional evaluates
to true will be executed. The <else> will be executed only if the <if> and all <elseif> conditions
are false.

98

Examples

B.28.1. Examples

<if>
 <equals arg1 = "${foo}" arg2 = "bar" />
 <then>
 <echo message = "The value of property foo is bar" />
 </then>
 <else>
 <echo message = "The value of property foo is not bar" />
 </else>
</if>

<if>
 <equals arg1 = "${foo}" arg2 = "bar" />
 <then>
 <echo message = "The value of property foo is 'bar'" />
 </then>

 <elseif>
 <equals arg1 = "${foo}" arg2 = "foo" />
 <then>
 <echo message = "The value of property foo is 'foo'" />
 </then>
 </elseif>

 <else>
 <echo message = "The value of property foo is not 'foo' or 'bar'" />
 </else>
</if>

B.29. ImportTask
Imports another build file into the current project.

On execution it will read another Phing file into the same Project. Functionally it is nearly the same as
copy and pasting the imported file onto the end of the importing file.

The import task may only be used as a top-level task. This means that it may not be used in a target.

Table B.31: Attributes

Name Type Description Default Required

file String The file to import. n/a Yes

optional Boolean If true, do not stop the build if the file does not
exist.

false No

B.29.1. Target Overriding

If a target in the main file is also present in at least one of the imported files, the one from the main
file takes precedence.

So if I import for example a docs/build.xml file named builddocs, that contains a "docs" target,
I can redefine it in my main buildfile and that is the one that will be called. This makes it easy to keep
the same target name, so that the overriding target is still called by any other targets--in either the
main or imported buildfile(s)--for which it is a dependency, with a different implementation. The target
from docs/build.xml is made available by the name "builddocs.docs". This enables the new
implementation to call the old target, thus enhancing it with tasks called before or after it.

99

Special Properties

B.29.2. Special Properties

Imported files are treated as they are present in the main buildfile. This makes it easy to understand, but
it makes it impossible for them to reference files and resources relative to their path. Because of this,
for every imported file, Phing adds a property that contains the path to the imported buildfile. With this
path, the imported buildfile can keep resources and be able to reference them relative to its position.

So if I import for example a docs/build.xml file named builddocs, I can get its path as ph-
ing.file.builddocs, similarly to the phing.file property of the main buildfile. Additionally, the
directory will be stored in phing.dir.builddocs.

Note that "builddocs" is not the filename, but the name attribute present in the imported project tag.

If import file does not have a name attribute, the phing.file.projectname and phing.dir.pro-
jectname properties will not be set.

B.29.3. Resolving Files Against the Imported File

Suppose your main build file called importing.xml imports a build file imported.xml , located any-
where on the file system, and imported.xml reads a set of properties from imported.properties:

<!-- importing.xml -->
<project name = "importing" basedir = "." default = "...">
<import file = "${path_to_imported}/imported.xml"/>
</project>

<!-- imported.xml -->
<project name = "imported" basedir = "." default = "...">
<property file = "imported.properties"/>
</project>

This snippet however will resolve imported.properties against the basedir of importing.xml
, because the basedir of imported.xmlis ignored by Phing. The right way to use imported.prop-
erties is:

<!-- imported.xml -->
<project name = "imported" basedir = "." default = "...">
<dirname property = "imported.basedir" file = "${phing.file.imported}"/>
<property file = "${imported.basedir}/imported.properties"/>
</project>

or even shorter:

<!-- imported.xml -->
<project name = "imported" basedir = "." default = "...">
<property file = "${phing.dir.imported}/imported.properties"/>
</project>

As explained above ${phing.file.imported} stores the full path of the build script, that defines the
project called imported, (in short it stores the path to imported.xml) and ${phing.dir.imported}
stores its directory. This technique also allows imported.xml to be used as a standalone file (without
being imported in other project).

B.29.4. Examples

<import file = "path/to/build.xml"/>
<import file = "path/to/build.xml" optional = "true"/>

100

IncludePathTask

Additionally, ImportTask supports Filesets, i.e. you can easily include/exclude one or more files. For
more information, seeAppendix D, Core Types.

<import">
 <fileset dir = ".">
 <include name = "path/to/build.xml" />
 </fileset>
 <filelist dir = "." files = "path/to/build.xml"/>
</import>

B.30. IncludePathTask
Modifies the PHP include_path [http://php.net/include_path] configuration option for the
duration of this phing run.

The given path can be prepended (default) or appended to the current include path, or it can replace
the include path.

Table B.32: Attributes

Name Type Description Default Required

classpath String the new include path[s] n/a Yes

classPathRef String Reference to a previously defined Path type n/a No

mode String Whether to prepend, append or replace
the include path with the given path.

prepend No

B.30.1. Examples

<includepath classpath = "new/path/here" />
<includepath classpath = "path1:path2" />

<path id = "project.class.path">
 <pathelement dir = "lib/"/>
 <pathelement dir = "ext/"/>
</path>
<includepath classpathref = "project.class.path"/>

B.31. InputTask
The InputTask can be used to interactively set property values based on input from the console (or
other Reader).

Table B.33: Attributes

Name Type Description Default Required

propertyName String The name of the property to set. n/a No

101

http://php.net/include_path
http://php.net/include_path

Examples

Name Type Description Default Required

defaultValue String The default value to be set if no new value is
provided.

n/a Yes

message String Prompt text (same as CDATA). n/a Yes

promptChar String The prompt character to follow prompt text. n/a No

validArgs String Comma-separated list of valid choices the
user must supply. If used, one of these options
must be chosen.

n/a No

hidden Boolean Whether to hide user input. n/a No

B.31.1. Examples

<!-- Getting string input -->
<echo>HTML pages installing to: ${documentRoot}</echo>
<echo>PHP classes installing to: ${servletDirectory}</echo>

<input propertyname = "documentRoot">Web application document root</input>
<input propertyname = "servletDirectory"
 defaultValue = "/usr/servlets" promptChar = "?">PHP classes install dir</input>

<echo>HTML pages installed to ${documentRoot}</echo>
<echo>PHP classes installed to ${servletDirectory}</echo>

<!-- Having the user choose from a set of valid choices -->
<echo>Choose a valid option:</echo>

<input propertyname = "optionsChoice" validargs = "foo,bar,bob">
 Which item would you like to use
</input>

B.32. JsonValidateTask
The JsonValidateTask checks if a given file contains valid JSON data and fails if not.

Table B.34: Attributes

Name Type Description Default Required

file String Location of the file to be checked. none Yes

B.32.1. Example

<jsonvalidate file = "config/default.json"/>

B.33. LoadFileTask
The LoadFileTask loads the contents of a (text) file into a single property.

102

Examples

Table B.35: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

file (or srcFile) String The file to load. n/a Yes

failonerror Boolean Whether to halt the build on failure. true No

quiet Boolean Do not display a diagnostic message (unless
Phing has been invoked with the -verbose or
-debug switches) or modify the exit status to
reflect an error. Setting this to true implies
setting failonerror to false.

false No

B.33.1. Examples

<loadfile property = "version" file = "version.txt"/>

B.33.2. Supported Nested Tags:

• filterchain

B.34. ManifestTask
This task generates a simple manifest file with optional checksums.

Table B.36: Attributes

Name Type Description Default Required

salt String Salt to use when generating checksums. n/a No

checksum String Comma separated list of checksums (hashing
algorithms) to run, or false to disable check-
sum generation. Possible values are md5,
crc32 or any of the algorithms returned by
hash_algos() [http://www.php.net/manual/en/
function.hash-algos.php].

false No

file String The path to the manifest file. n/a Yes.

B.34.1. Supported Nested Tags

• fileset

B.35. MkdirTask
Creates a directory, including any necessary but non-existent parent directories. Does nothing if the
directory already exists.

103

http://www.php.net/manual/en/function.hash-algos.php
http://www.php.net/manual/en/function.hash-algos.php
http://www.php.net/manual/en/function.hash-algos.php

Examples

Table B.37: Attributes

Name Type Description Default Required

dir String The directory that is to be created. n/a Yes

mode Integer The mode to create the directory with. From
umask

No

B.35.1. Examples

<!-- Create a temp directory -->
<mkdir dir = "/tmp/foo" />

<!-- Using mkdir with a property -->
<mkdir dir = "${dirs.install}/tmp" />

B.36. MoveTask
Moves a file or directory to a new file or directory. By default, the destination file is overwritten if it
already exists. When overwrite is turned off, then files are only moved if the source file is newer than
the destination file, or when the destination file does not exist.

Source files and directories are only deleted if the file or directory has been copied to the destination
successfully.

B.36.1. Examples

<!-- The following will move the file "somefile.txt" to "/tmp" and
change its filename to "anotherfile.bak". It will overwrite
an existing file. -->
<move file = "somefile.txt" tofile = "/tmp/anotherfile.bak" overwrite = "true"/>

<!-- This will move the "/tmp" directory to "/home/default/tmp",
preserving the directory name. So the final name is
"/home/default/tmp/tmp". Empty directories are also copied -->
<move file = "/tmp" todir = "/home/default/tmp" includeemptydirs = "true"/>

B.36.2. Attributes and Nested Elements

For further documentation, seeSection B.14, “CopyTask”, since MoveTask only is a child of CopyTask
and inherits all attributes.

B.37. PathConvert
Converts a path form for a particular platform, optionally storing the result into a given property. It
can also be used when you need to convert FileList, FileSet, DirSet into a list, separated by a given
character, such as a comma or space, or, conversely, e.g. to convert a list of files in a FileList into a path.

104

PathToFileSetTask

Nested map elements can be specified to map Windows drive letters to Unix paths, and vice-versa.

A single nested mapper element can be specified to perform any of various filename transformations.

Table B.38: Attributes

Name Type Description Default Required

targetos String The target architecture. This is a shorthand
mechanism for specifying both pathsep and
dirsep according to the specified target archi-
tecture.

N/A No

dirsep String The character(s) to use as the directory sepa-
rator in the generated paths.

Phing-
File::$sep-
arator

No

pathsep String The character(s) to use as the path-element
separator in the generated paths.

Phing-
File::$pathSepara-
tor

No

property String The name of the property in which to place the
converted path.

result will
be logged
if unset

No

refid String What to convert, given as a reference to a
path, fileset or dirset defined elsewhere

if omitted,
a nested
path ele-
ment must
be sup-
plied.

No

setonempty Boolean Should the property be set, even if the result
is the empty string?

true No

preservedupli-
cates

Boolean Whether to preserve duplicate resources. false No

B.38. PathToFileSetTask
Coverts a path to a fileset. This is useful if you have a path but need to use a fileset as input in a
phing task.

Table B.39: Attributes

Name Type Description Default Required

dir String The root of the directory tree of this FileSet. n/a Yes

pathrefid String The reference to the path to convert from. n/a Yes

ignorenonrela-
tive

Boolean This boolean controls what will happen if any
of the files in the path are not in the directo-
ry for the fileset. If this is "true" the files are
ignored, if this is "false" a build exception is
thrown. (Note: if files are not present no check
is made).

false No

name String This is the identifier of the fileset to create. This
fileset will contain the files that are relative to

n/a Yes

105

Examples

Name Type Description Default Required

the directory root. Any files that are not present
will not be placed in the set.

B.38.1. Examples

<path id = "modified.sources.path" dir = "C:\Path\to\phing\classes\phing\" />
<pathtofileset name = "modified.sources.fileset"
pathrefid = "modified.sources.path"
dir = "." />

<copy todir = "C:\Path\to\phing\docs\api">
 <mapper type = "glob" from = "*.php" to = "*.php.bak" />
 <fileset refid = "modified.sources.fileset" />
</copy>

B.39. PhingCallTask
The PhingCallTask calls a target within the same Phing project.

A <phingcall> tag may contain <property> tags that define new properties. These properties are
only set if properties of the same name have not been set outside the "phingcall" tag.

When a target is invoked by phingcall, all of its dependent targets will also be called within the
context of any new parameters. For example. if the target "doSomethingElse" depended on the target
"init", then using phingcall to execute "doSomethingElse" will also execute "init". Note: the top level
tasks of a project will always be executed!

Table B.40: Attributes

Name Type/
Values

Description Default Required

target String The name of the target in the same project that
is to be called.

n/a Yes

inheritAll Boolean If true, all true No

inheritRefs Boolean false No

Note

Local scope.

Every <phingcall> tag creates a new local scope. Thus, any properties or other variables set
inside that scope will cease to exist (or revert to their previous value) once the <phingcall>
tag completes.

B.39.1. Examples

<target name = "foo">
 <phingcall target = "bar">
 <property name = "property1" value = "aaaaa" />
 <property name = "foo" value = "baz" />

106

Supported Nested Tags

 </phingcall>
</target>

In the example above, the properties property1 and foo are defined and only accessible inside the
called target.

<target name = "bar" depends = "init">
 <echo message = "prop is ${property1} ${foo}" />
</target>

B.39.2. Supported Nested Tags

• property

• param (alias for property)

B.40. PhingTask
This task calls another build file. You may specify the target that is to be called within the build file.
Additionally, the <phing> Tag may contain <property> Tags (see Section B.47, “PropertyTask”),
<fileset> Tags (seeSection D.4, “FileSet”) or <reference> Tags.

Table B.41: Attributes

Name Type Description Default Required

inheritAll Boolean If true, pass all properties to the new phing
project.

true No

inheritRefs Boolean If true, pass all references to the new phing
project.

false No

dir String The directory to use as a base directory for
the new phing project. Default is the current
project's basedir, unless inheritall has been
set to false, in which case it doesn't have
a default value. This will override the basedir
setting of the called project.

n/a No

phingFile String The build file to use. Defaults to "build.xml".
This file is expected to be a filename relative
to the dir attribute given.

n/a Yes

target String The target of the new Phing project to execute.
Default is the new project's default target.

n/a No

haltonfailure Boolean If true, fail the build process when the called
build fails

false No

output String Filename to write the Phing output to. This is
relative to the value of the dir attribute if it has
been set or to the basedir of the current project
otherwise.

n/a No

usenative-
basedir

Boolean If set to "true", the child build will use the same
basedir as it would have used when run from
the command line (i.e. the basedir one would

false No

107

Examples

Name Type Description Default Required

expect when looking at the child build's build-
file).

B.40.1. Examples

<!-- Call target "xslttest" from buildfile "alternativebuildfile.xml" -->
<phing phingfile = "alternativebuild.xml" inheritRefs = "true" target = "xslttest" />

<!-- Do a more complex call -->
<phing phingfile = "somebuild.xml" target = "sometarget">
 <property name = "foo" value = "bar" />
 <property name = "anotherone" value = "32" />
</phing>

B.40.2. Supported Nested Tags

• fileset

• property

• reference

B.40.3. Base directory of the new project

The base directory of the new project is set dependent on the dir and the inheritAll attribute. This
is important to keep in mind or else you might run into bugs in your build.xml's. The following table
shows when which value is used:

Table B.42: How attributes are used

dir inheritAll new project's basedir

value provided true value of dir attribute

value provided false value of dir attribute

omitted true basedir of calling task (the build file containing the
<phing> call.

omitted false basedir attribute of the <project> element of the
new project.

B.41. Phingversion
Stores the Phing version (when used as task) or checks for a specific Phing version (when used as
condition).

Table B.43: Attributes

Name Type Description Required
(Task)

Required
(Condition)

atleast String The version that this at least. The format is
major.minor.point.

No One of
these.

108

Example

Name Type Description Required
(Task)

Required
(Condition)

exactly String The version that this phing is exactly. The for-
mat is major.minor.point.

No

property String The name of the property to set. Yes No (ignored)

B.41.1. Example

<phingversion property = "phingversion"/>

Stores the current Phing version in the property phingversion.

<phingversion property = "phingversion" atleast = "2.9"/>

Stores the Phing version in the property phingversion if the current Phing version is 2.9.0 or higher.
Otherwise the property remains unset.

<phingversion property = "phing-is-exact-292" exactly = "2.9.2"/>

Sets the property phing-is-exact-292 if Phing 2.9.2 is running. Neither 2.8.2 nor 2.9.1 would match.

B.42. PhpEvalTask
With the PhpEvalTask, you can set a property to the results of evaluating a PHP expression or the
result returned by a function/method call.

Table B.44: Attributes

Name Type Description Default Required

function String The name of the Property. n/a

expression String The expression to evaluate. n/a

One of these is
required.

class String The static class which contains function. n/a No

returnProperty String The name of the property to set with result
of expression or function call. Note: if this at-
tribute is set, the expression must return a val-
ue.

n/a No

level String Control the level at which php reports status
messages. One of error, warning, info,
verbose, debug.

info No

B.42.1. Examples

<php function = "crypt" returnProperty = "enc_passwd">
 <param value = "${auth.root_passwd}"/>
</php>

109

Supported Nested Tags

<php expression = "3 + 4" returnProperty = "sum"/>

<php expression = "echo 'test';">

<php class = "phing.Phing" function = "start">
 <param value = "-projecthelp"/>
 <param value = "-buildfile"/>
 <param value = "${phing.file}"/>
</php>

B.42.2. Supported Nested Tags

• param

B.43. PhpLintTask
The PhpLintTask checks syntax (lint) on one or more PHP source code files.

Table B.45: Attributes

Name Type Description Default Required

file String Path to source file n/a No

haltonfailure Boolean Stop the build process if the linting process en-
counters an error.

false No

errorproperty String The name of a property that will be set to con-
tain the error string (if any).

n/a No

interpreter String Path to alternative PHP interpreter Defaults
to the
${ph-
p.in-
ter-
preter}
property
which is
the inter-
preter
used to
execute
phing it-
self.

No

cachefile String If set, enables writing of last-modified times to
cachefile, to speed up processing of files
that rarely change

none No

level String Control the level at which phplint reports sta-
tus messages. One of error, warning, in-
fo, verbose, debug.

debug No

tofile String File to write list of 'bad files' to. n/a No

depre-
catedAsError

Boolean Whether to treat deprecated warnings (intro-
duced in PHP 5.3) as errors.

false No

110

Example

B.43.1. Example

<phplint file = "path/to/source.php"/>

Checking syntax of one particular source file.

<phplint>
 <fileset dir = "src">
 <include name = "**/*.php"/>
 </fileset>
</phplint>

Check syntax of a fileset of source files.

B.43.2. Supported Nested Tags

• fileset

B.44. PropertyCopy
Copies the value of a named property to another property. This is useful when you need to plug in
the value of another property in order to get a property name and then want to get the value of that
property name.

Table B.46: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

override Boolean If the property is already set, should we
change it's value.

false No

from String The name of the property you wish to copy the
value from.

n/a Yes

silent Boolean Do you want to suppress the error if the "from"
property does not exist, and just not set the
property "name".

false No

B.44.1. Example

<property name = "org" value = "MyOrg" />
<property name = "org.MyOrg.DisplayName" value = "My Organiziation" />
<propertycopy property = "displayName" from = "org.${org}.DisplayName" />

Sets displayName to "My Organiziation".

B.45. PropertyRegexTask
Performs regular expression operations on an subject string, and sets the results to a property. There
are two different operations that can be performed:

111

Match expressions

• Replace - The matched regular expression is replaced with a substitution pattern

• Match - Groupings within the regular expression are matched via a selection expression.

Table B.47: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

override Boolean If the property is already set, should we
change it's value. Can be true or false

false No

subject String The subject to be processed n/a Yes

pattern String The regular expression pattern which is
matched in the subject.

n/a Yes

match String A pattern which indicates what match pattern
you want in the returned value. This uses the
substitution pattern syntax to indicate where
to insert groupings created as a result of the
regular expression match.

n/a Yes (unless a
replace is spec-
ified)

replace String A regular expression substitition pattern,
which will be used to replace the given regular
expression in the subject.

n/a Yes (unless a
match is speci-
fied)

casesensitive Boolean Should the match be case sensitive true No

limit Integer The maximum possible replacements for each
pattern in each subject string. Defaults to -1
(no limit).

-1 No

defaultValue Integer The value to set the output property to, if the
subject string does not match the specific reg-
ular expression.

n/a No

B.45.1. Match expressions

Expressions are matched in a the same syntax as a regular expression substitution pattern.

• $0 indicates the entire property name (default).

• $1 indicates the first grouping

• $2 indicates the second grouping

• etc...

B.45.2. Replace

It is important to note that when doing a "replace" operation, if the subject string does not match the
regular expression, then the property is not set. You can change this behavior by supplying the "de-
faultValue" attribute. This attribute should contain the value to set the property to in this case.

• $0 indicates the entire property name (default).

• $1 indicates the first grouping

• $2 indicates the second grouping

112

Example

• etc...

B.45.3. Example

<propertyregex property = "pack.name"
 subject = "package.ABC.name"
 pattern = "package\.([^.]*)\.name"
 match = "$1"
 casesensitive = "false"
 defaultvalue = "test1"/>

<echo message = "${pack.name}"/>

<propertyregex property = "pack.name"
 override = "true"
 subject = "package.ABC.name"
 pattern = "(package)\.[^.]*\.(name)"
 replace = "$1.DEF.$2"
 casesensitive = "false"
 defaultvalue = "test2"/>

<echo message = "${pack.name}"/>

B.46. PropertySelector
Selects property names that match a given regular expression and returns them in a delimited list.

Table B.48: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

override Boolean If the property is already set, should we
change it's value. Can be true or false

false No

match String The regular expression which is used to select
property names for inclusion in the list. This
follows the standard regular expression syntax
accepted by phing's regular expression tasks.

n/a Yes

select String A pattern which indicates what selection pat-
tern you want in the returned list. This used the
substitution pattern syntax to indicate where to
insert groupings created as a result of the reg-
ular expression match.

\0 No

casesensitive String Should the match be case sensitive. true No

replace String A regular expression substitition pattern,
which will be used to replace the given regular
expression in the subject.

n/a Yes (unless a
match is speci-
fied)

casesensitive Boolean Should the match be case sensitive true No

delimiter String The delimiter used to separate entries in the
resulting property

, No

distinct Boolean Should the returned entries be a distinct set
(no duplicate entries).

false No

113

Select expressions

B.46.1. Select expressions

Expressions are matched in a the same syntax as a regular expression substitution pattern.

• $0 indicates the entire property name (default).

• $1 indicates the first grouping

• $2 indicates the second grouping

• etc...

B.46.2. Example

<property name = "package.ABC.name" value = "abc pack name" />
<property name = "package.DEF.name" value = "def pack name" />
<property name = "package.GHI.name" value = "ghi pack name" />
<property name = "package.JKL.name" value = "jkl pack name" />

<propertyselector property = "pack.list"
 delimiter = ","
 match = "package\.([^\.]*)\.name"
 select = "$1"
 casesensitive = "false" />

B.47. PropertyTask
With PropertyTask, you can define user properties in your build file.

Table B.49: Attributes

Name Type Description Default Required

name String The name of the Property. n/a Yes (unless
using file
or environ-
ment)

value String The value of the Property. n/a Yes (unless
using file
or environ-
ment)

environment String Loads properties from the environment with
the specified value as prefix. Thus if you
specify environment="myenv" you will be able
to access OS-specific environment variables
via property names "myenv.PATH" or "myen-
v.TERM".

n/a No

file String Path to properties file. n/a No

override Boolean Whether to force override of existing value. false No

prefix String Used when properites are loaded from file.
Prefix is applied to properties loaded from
specified file. A "." is appended to the prefix if
not specified.

n/a No

114

Examples

Name Type Description Default Required

refid String A reference to a previously defined property n/a No

logoutput Boolean Whether to log returned output as MSG_INFO
instead of MSG_VERBOSE.

true No

quiet Boolean Whether to display a warning if the property
file does not exist.

true No

required Boolean Whether to halt with an error if the property file
does not exist.

false No

Note

Important note about scope: when the <property> tag is called inside a <phingcall> tag,
any properties are set in a new local scope. Thus, any properties or other variables set inside
that scope will cease to exist (or revert to their previous value) once the parent <phingcall>
tag completes.

B.47.1. Examples

<property name = "strings.test" value = "Harr harr, more power!" />
<echo message = "${strings.test}" />

<property name = "foo.bar" value = "Yet another property..." />
<echo message = "${foo.bar}" />

<property file = "build.properties" />

<property environment = "env" />

<property name = "newproperty" value = "Hello">
 <filterchain>
 <replaceregexp>
 <regexp pattern = "Hello" replace = "World" ignoreCase = "true"/>
 </replaceregexp>
 </filterchain>
</property>

B.47.2. Supported Nested Tags:

• filterchain

B.48. Record
A recorder is a listener to the current build process that records the output to a file.

Several recorders can exist at the same time. Each recorder is associated with a file. The filename is
used as a unique identifier for the recorders. The first call to the recorder task with an unused filename
will create a recorder (using the parameters provided) and add it to the listeners of the build. All sub-
sequent calls to the recorder task using this filename will modify that recorders state (recording or not)
or other properties (like logging level).

115

Example

Some technical issues: the file's output stream is flushed for "finished" events (buildFinished, targetFin-
ished and taskFinished), and is closed on a buildFinished event.

Table B.50: Attributes

Name Type Description Default Required

name String The name of the file this logger is associated
with.

n/a yes

action String This tells the logger what to do: should it
start recording or stop? The first time that the
recorder task is called for this logfile, and if
this attribute is not provided, then the default
for this attribute is "start". If this attribute is not
provided on subsequent calls, then the state
remains as previous. [Values = {start|stop},
Default = no state change]

n/a no

append Boolean Should the recorder append to a file, or cre-
ate a new one? This is only applicable the first
time this task is called for this file. [Values =
{yes|no}, Default=no]

no no

emacsmode Boolean Removes [task] banners like Phings's -emacs
command line switch if set to true.

false no

loglevel String At what logging level should this recorder
instance record to? This is not a once on-
ly parameter (like append is) -- you can in-
crease or decrease the logging level as the
build process continues. [Values= {error|warn|
info|verbose|debug}, Default = no change]

false no

B.48.1. Example

The following build.xml snippet is an example of how to use the recorder to record just the <echo> task:

...
<record name = "log.txt" action = "start"/>
<echo ...
<record name = "log.txt" action = "stop"/>
...

The following two calls to <record> set up two recorders: one to file "records-simple.log" at logging
level info (the default) and one to file "ISO.log" using logging level of verbose.

...
<record name = "records-simple.log"/>
<record name = "ISO.log" loglevel = "verbose"/>
...

B.49. ReflexiveTask
The ReflexiveTask performs operations on files. It is essentially a convenient way to transform
(using filter chains) files without copying them.

116

Examples

Table B.51: Attributes

Name Type Description Default Required

file String A single file to be processed. n/a Yes (unless
<fileset> pro-
vided)

B.49.1. Examples

<reflexive>
 <fileset dir = ".">
 <include pattern = "*.html">
 </fileset>
 <filterchain>
 <replaceregexp>
 <regexp pattern = "\r(\n)" replace = "\1"/>
 </replaceregexp>
 </filterchain>
</reflexive>

B.49.2. Supported Nested Tags:

• fileset

• filterchain

B.50. Relentless
The <relentless> task will execute all of the nested tasks, regardless of whether one or more of the
nested tasks fails.

When <relentless> has completed executing the nested tasks, it will either

• fail, if any one or more of the nested tasks failed; or

• succeed, if all of the nested tasks succeeded.

An appropriate message will be written to the log.

Tasks are executed in the order that they appear within the <relentless> task. It is up to the user to
ensure that relentless execution of the nested tasks is safe.

Table B.52: Attributes

Name Type Description Default Required

description String A string that will be included in the log output.
This can be useful for helping to identify sec-
tions of large phing builds.

N/A No

terse Boolean Setting this to true will eliminate some of the
progress output generated by <relentless>.
This can reduce clutter in some cases.

false No

The only nested element supported by <relentless> is a list of tasks to be executed. At least one task
must be specified.

117

Example

It is important to note that <relentless> only proceeds relentlessly from one task to the next - it does
not apply recursively to any tasks that might be invoked by these nested tasks. If a nested task invokes
some other list of tasks (perhaps by <phingcall> for example), and one of those other tasks fails, then
the nested task will stop at that point.

B.50.1. Example

A relentless task to print out the first five canonical variable names:

<relentless description="The first five canonical variable names.">
 <echo>foo</echo>
 <echo>bar</echo>
 <echo>baz</echo>
 <echo>bat</echo>
 <echo>blah</echo>
</relentless>

which should produce output looking more or less like

[relentless] Relentlessly executing: The first five canonical variable names.
[relentless] Executing: task 1
[echo] foo
[relentless] Executing: task 2
[echo] bar
[relentless] Executing: task 3
[echo] baz
[relentless] Executing: task 4
[echo] bat
[relentless] Executing: task 5
[echo] blah
[relentless] All tasks completed successfully.

If you change the first line to set the terse parameter,

<relentless terse="true" description="The first five canonical variable names."/>

the output will look more like this:

[relentless] Relentlessly executing: The first five canonical variable names.
[echo] foo
[echo] bar
[echo] baz
[echo] bat
[echo] blah
[relentless] All tasks completed successfully.

If we change the third task to deliberately fail

<relentless terse = "true"
 description = "The first five canonical variable names.">
 <echo>foo</echo>
 <echo>bar</echo>
 <fail>baz</fail>
 <echo>bat</echo>
 <echo>blah</echo>
</relentless>

then the output should look something like this.

118

ReplaceRegexpTask

[relentless] Relentlessly executing: The first five canonical variable names.
[echo] foo
[echo] bar
[relentless] Task task 3 failed: baz
[echo] bat
[echo] blah

BUILD FAILED
/path/build.xml:1177: Relentless execution: 1 of 5 tasks failed.

B.51. ReplaceRegexpTask
Replaces the occurrences of a given regular expression with a substitution pattern in a selected file
or set of files.

Table B.53:

Name Type Description Default Required

file String File to apply regular expression on n/a Yes (or file-
set)

match String Regular expression match pattern n/a Yes (or pat-
tern)

pattern String Regular expression match pattern n/a Yes

replace String The replacement string n/a Yes

flags String Regular expression flags n/a no

failonerror Boolean If set to true, the task will fail on error false No

B.51.1. Supported Nested Tags

• fileset

B.52. ResolvePathTask
The ResolvePathTask turns a relative path into an absolute path, with respect to specified directory
or the project basedir (if no dir attribute specified).

This task is useful for turning a user-defined relative path into an absolute path in cases where buildfiles
will be called in different directories. Without this task, buildfiles lower in the directory tree would mis-
interpret the user-defined relative paths.

Table B.54: Attributes

Name Type Description Default Required

file String The file or directory path to resolve. n/a Yes

dir File The base directory to use when resolving
"file".

project.basedirNo

propertyName String The name of the property to set with resolved
(absolute) path.

n/a Yes

119

Examples

Name Type Description Default Required

level String Control the level at which status messages are
reported. One of error, warning, info,
verbose, debug.

verbose No

B.52.1. Examples

<property name = "relative_path" value = "./dirname"/>

<resolvepath propertyName = "absolute_path" file = "${relative_path}"/>

<echo>Resolved [absolute] path: ${absolute_path}</echo>

B.53. Retry
Retry is a container which executes a single nested task until either: there is no failure; or: its retrycount
has been exceeded. If this happens a BuildException is thrown..

Table B.55: Attributes

Name Type Description Default Required

retrycount Integer number of times to attempt to execute the
nested task

1 Yes

retrydelay Integer number of seconds to wait between retry at-
tempts task.

0 No, defaults to
no delay

Any valid Phing task may be embedded within the retry task.

B.53.1. Example

<retry retrycount = "3">
 <httpget url = "http://www.unreliable-server.com/unreliable.tar.gz" dir = "/home/retry"/>
</retry>

This example shows how to use <retry> to wrap a task which must interact with an unreliable network
resource.

B.54. RunTargetTask
Phing task that runs a target without creating a new project.

Difference to <phingcall>

The main difference of <runtarget> and <phingcall> is that <phingcall> will start the
phing target in a new project and will not affect the main project. <runtarget> calls a target in the

120

Example

same project, which could be have an effect on any existing properties. Dependency management
would only be given by <phingcall>.

Table B.56: Attributes

Name Type Description Default Required

target String The name of the target to run. n/a Yes

B.54.1. Example

<runtarget target = "test" />

B.55. SleepTask
A task for sleeping a short period of time, useful when a build or deployment process requires an interval
between tasks.

Table B.57: Attributes

Name Type Description Default Required

hours Integer hours to to add to the sleep time 0 no

minutes Integer minutes to add to the sleep time 0 no

seconds Integer seconds to add to the sleep time 0 no

milliseconds Integer milliseconds to add to the sleep time 0 no

failonerror Boolean flag controlling whether to break the build on
an error.

true No

B.55.1. Example

<sleep seconds = "2"/>

B.56. SortList
Sort a delimited list of items in their natural string order. Note that the value and refid attributes are
mutually exclusive, and the value attribute takes precedence if both are specified.

Table B.58: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

overwrite Boolean If the property is already set, should we
change it's value.

false No

value String The list of values to process, with the delim-
iter character, indicated by the "delimiter" at-
tribute, separating each value.

n/a Yes, unless "re-
fid" is specified.

121

Example

Name Type Description Default Required

refid String The id of where the list of values to sort is
stored.

n/a Yes, unless
"value" is spec-
ified.

delimiter String The delimiter string that separates the values
in the "list" attribute.

, No

flags String Sort flags depending on the php version and
one of: SORT_REGULAR, SORT_NUMERIC,
SORT_STRING, SORT_LOCALE_STRING,
SORT_NATURAL, SORT_FLAG_CASE

n/a No

B.56.1. Example

<property id = "test" name = "my.list" value = "z;y;X;w;v;U;t" />
<sortlist property = "my.sorted.list" refid = "test"
 delimiter = ";"
 flags = "SORT_NATURAL|SORT_FLAG_CASE" />

B.57. Subphing Task
Calls a given target for all defined sub-builds. This is an extension of Phing for bulk project execution.
This task must not be used outside of a target if it invokes the same build file it is part of.

subphing uses phing task internally so many things said in phing's manual page apply here as well.

Table B.59: Attributes

Name Type Description Default Required

genericphing-
file

Phing-
File

Build file path, to use in conjunction with direc-
tories. Use genericphingfile, in order to run the
same build file with different basedirs. If this
attribute is set, phingfile is ignored.

n/a No

inheritAll Boolean Corresponds to <phing>'s inheritall attribute
but defaults to "false" in this task.

false No

inheritRefs Boolean Corresponds to <phing>'s inheritrefs attribute.false No

buildpath Path Set the buildpath to be used to find sub-
projects.

n/a No

phingFile String Build file name, to use in conjunction with di-
rectories.

build.xml,
ignored if
gener-
icphingfile
is set.

No

target String The target to execute. Default is the new sub-
project's default target.

n/a No

failonerror Boolean Sets whether to fail with a build exception on
error, or go on.

true No

122

Supported Nested Tags

Name Type Description Default Required

verbose Boolean Enable/disable log messages showing when
each sub-build path is entered/exited.

false No

B.57.1. Supported Nested Tags

• buildpath

• buildpathelement

• fileset

• property

• reference

B.58. SwitchTask
Task definition for the phing task to switch on a particular value.

Table B.60: Attributes

Name Type Description Default Required

value String The value to switch on. n/a Yes

caseinsensi-
tive

Boolean Should we do case insensitive comparisons? false No

B.58.1. Supported Nested Tags

At least one <case> or <default> is required.

case

An individual case to consider, if the value that is being switched on matches to value attribute of the
case, then the nested tasks will be executed.

Table B.61: Attributes

Name Type Description Default Required

value String The value to match against the tasks value at-
tribute.

n/a Yes

default

The default case for when no match is found. Must not appear more than once per task.

B.58.2. Examples

<switch value = "${foo}">
 <case value = "bar">
 <echo message = "The value of property foo is bar" />
 </case>

123

SymlinkTask

 <case value = "baz">
 <echo message = "The value of property foo is baz" />
 </case>
 <default>
 <echo message = "The value of property foo is not sensible" />
 </default>
</switch>

B.59. SymlinkTask
Creates symlink(s) to a specified file / directory or a collection of files / directories.

Table B.62: Attributes

Name Type Description Default Required

target String What you're trying to symlink from n/a Yes (or nested
FileSet)

link String Where you'd like the symlink(s) n/a Yes

overwrite Boolean Whether to override the symlink if it exists but
points to a different location

false No

relative Boolean Whether to create relative symlinks false No

B.59.1. Example

Single symlink

<symlink target = "/path/to/original/file" link = "/where/to/symlink" />

Using filesets

<symlink link = "/where/to/symlink">
 <fileset dir = "/some/directory">
 <include name = "*" />
 </fileset>
</symlink>

In the fileset example, assuming the contents of "/some/directory" were:

• Somedir

• somefile

Then the contents of "/where/to/symlink" would be:

• Somedir -> /some/directory/Somedir

• somefile -> /some/directory/somefile

B.59.2. Supported Nested Tags

• fileset

124

TaskdefTask

B.60. TaskdefTask
With the TaskdefTask you can import a user task into your buildfile.

Table B.63: Attributes

Name Type Description Default Required

classname String The path to the class that defines the
TaskClass.

n/a Yes, unless the
file attribute
has been spec-
ified.

name String The name the task is available as after import-
ing. If you specify "validate", for example, you
can access the task imported here with <val-
idate>.

n/a Yes, unless the
file attribute
has been spec-
ified.

file String Name of the file to load definitions from. n/a No

classpath String The classpath to use when including classes.
This is added to PHP's include_path.

n/a No

classpathref String Reference to classpath to use when including
classes. This is added to PHP's include_path.

n/a No

B.60.1. Examples

<!-- Includes the Task named "ValidateHTMLTask" and makes it available by
 <validatehtml> -->
<taskdef classname = "user.tasks.ValidateHTMLTask" name = "validatehtml" />

<!-- Includes the Task "RebootTask" from "user/sometasks" somewhere inside
 the $PHP_CLASSPATH -->
<taskdef classname = "user.sometasks.RebootTask" name = "reboot" />

<!-- Includes all tasks from the property file. Each line in the property
 file defines a task in the format: name=path.to.Task -->
<taskdef file = "/path/to/mytasks.properties" />

NB: Taskdef now supports the PEAR-style naming convention to define and load tasks:

<taskdef name = "sampletask" classname = "Dir_Subdir_SampleTask"/>

will load class Dir_Subdir_SampleTask from file Dir/Subdir/SampleTask.php.

B.60.2. Supported Nested Tags

• classpath

B.61. Tempfile Task
This task sets a property to the name of a temporary file. Unlike PhingFile::createTempFile(), this task
does not actually create the temporary file, but it does guarantee that the file did not exist when the
task was executed.

125

Example

Table B.64: Attributes

Name Type Description Default Required

property String Sets the property you wish to assign the tem-
porary file to.

n/a yes

destdir String Sets the destination directory. If not set, the
basedir directory is used instead.

basedir no

prefix String Sets the optional prefix string for the temp file.n/a no

suffix String Sets the optional suffix string for the temp file.n/a no

deleteonexit Boolean Whether the temp file will be marked for dele-
tion on normal exit (even though the file may
never be created).

false no

createfile Boolean Whether the temp file should be created by
this task.

false no

B.61.1. Example

<tempfile property = "temp.file"/>

create a temporary file

<tempfile property = "temp.file" suffix = ".xml"/>

create a temporary file with the .xml suffix

<tempfile property = "temp.file" destDir = "build"/>

create a temporary file in the build subdirectory

B.62. ThrowTask
Extension of build in FailTask that can throw an exception that is given by a reference. This may be
useful if you want to rethrow the exception that has been caught by a TryCatchTask in the <catch>
block.

Table B.65: Attributes

Name Type Description Default Required

refid String Id of the referenced exception. n/a No

Note

In addition, all attributes of the FailTask are supported.

B.62.1. Example

<target name = "tryCatchThrow">

126

TouchTask

 <trycatch property = "foo" reference = "bar">
 <try>
 <fail>Tada!</fail>
 </try>

 <catch>
 <echo>In <catch>.</echo>
 </catch>

 <finally>
 <echo>In <finally>.</echo>
 </finally>
 </trycatch>

 <echo>As property: ${foo}</echo>
 <property name = "baz" refid = "bar" />
 <echo>From reference: ${baz}</echo>

 <echo>Throw ...</echo>
 <throw refid = "bar" />

</target>

B.63. TouchTask
The TouchTask works like the Unix touch command: It sets the modtime of a file to a specific time.
Default is the current time.

Table B.66: Attributes

Name Type Description Default Required

file String The file which time is to be changed. n/a Yes, or nest-
ed <fileset>
tag

datetime Date-
Time

The date and time the mtime of the file is to be
set to. The format is "MM/DD/YYYY HH:MM
AM or PM"

now No

seconds Integer The number of seconds since Midnight Jan 1
1970 (Unix epoch).

now No

millis Integer The number of milliseconds since Midnight
Jan 1 1970 (Unix epoch). Note: milliseconds
are converted to seconds internally. When us-
ing this option the value must be greater than
1000.

now No

seconds Integer The number of seconds since Midnight Jan 1
1970 (Unix epoch).

now No

mkdirs Boolean Whether to create nonexistent parent directo-
ries when touching new files.

false No

verbose Boolean Whether to log the creation of new files. true No

B.63.1. Examples

<touch file = "README.txt" millis = "102134111" />

127

Supported Nested Tags

<touch file = "COPYING.lib" datetime = "10/10/1999 09:31 AM" />

<target name = "map">
 <touch file = "${tmp.dir}/touchtest"/>
 <touch>
 <fileset file = "${tmp.dir}/touchtest" />
 <mapper type = "composite">
 <mapper type = "glob" from = "*" to = "*foo" />
 <mapper type = "glob" from = "*" to = "*bar" />
 </mapper>
 </touch>
</target>

B.63.2. Supported Nested Tags

• filelist

fileset

mapper

B.64. TruncateTask
Modify the length of a file, as the intermittently available truncate Unix utility/function.

When length and adjust are not set an empty file is created.

Table B.67: Attributes

Name Type Description Default Required

file String The name of the file. n/a Yes

length String Specifies the file size. Examples: 5000B,
250K, 1M.

n/a No

adjust String The value to increase or decrease (if you spec-
ify a negative value) the size of a file. Exam-
ples: -100, 250B, 4K.

n/a No

create Boolean Whether to create nonexistent files. true No

mkdirs Boolean Whether to create nonexistent parent directo-
ries when creating new files.

false No

Note

File size can be written using IEC and SI suffixes, bytes are assumed when suffix is not specified.
The following suffixes (case-insensitive) are supported:

Table B.68: Supported file size suffixes

Standard Suffixes Equivalence

IEC B. 1 byte

128

Examples

Standard Suffixes Equivalence

K, Ki, KiB, kibi, kibibyte. 1024 bytes

M, Mi, MiB, mebi, mebibyte. 1024 kibibytes

G, Gi, GiB, gibi, gibibyte. 1024 mebibytes

T, Ti, TiB, tebi, tebibyte. 1024 gibibytes

kB, kilo, kilobyte. 1000 bytes

MB, mega, megabyte. 1000 kilobytes

GB, giga, gigabyte. 1000 megabytes
SI

TB, tera, terabyte. 1000 gigabytes

B.64.1. Examples

<truncate file = "foo" />

B.65. TryCatchTask
This task is a wrapper task that lets you run tasks(s) when another set of tasks fails, mirroring PHP's
try/catch functionality (with the addition of finally block)

The tasks inside of the try block will always be run. If one of them throws a BuildException, the
following things can happen:

• If there is no catch block, the exception will be passed to Phing.

• If the property attribute has been set a property of that name will contain the message of the
exception.

• If there is a catch block, the nested tasks will be run.

If a finally block is present, the nested tasks will be run regardless of whether the tasks in the try
block have thrown an exception or not.

This task was inspired by http://ant-contrib.sourceforge.net/tasks/tasks/trycatch.html [http://ant-con-
trib.sourceforge.net/tasks/tasks/trycatch.html].

Table B.69: Attributes

Name Type Description Default Required

property String Name of a property that will receive the mes-
sage of the exception that has been caught (if
any)

n/a No

B.65.1. Examples

<trycatch property="foo">
 <try>
 <fail>Tada!</fail>
 </try>

129

http://ant-contrib.sourceforge.net/tasks/tasks/trycatch.html
http://ant-contrib.sourceforge.net/tasks/tasks/trycatch.html
http://ant-contrib.sourceforge.net/tasks/tasks/trycatch.html

TstampTask

 <catch>
 <echo>In catch.</echo>
 </catch>

 <finally>
 <echo>In finally.</echo>
 </finally>
</trycatch>

<echo>As property: ${foo}</echo>

B.66. TstampTask
Sets the DSTAMP, TSTAMP, and TODAY properties in the current project. By default, the DSTAMP property
is in the format "yyyyMMdd", TSTAMP is in the format "HHmm", finally TODAY contains locale-sensitive
date, for example "March 13, 2023". Use the nested <format> element to specify a different format.

These properties can be used in the build-file, for instance, to create time-stamped filenames, or used
to replace placeholder tags inside documents to indicate, for example, the release date. The best place
for this task is probably in an initialization target.

The magic property phing.tstamp.now can be used to specify a fixed date value in order to create
reproducible builds. Its value must be a number and is interpreted as seconds since the epoch (midnight
1970-01-01). With phing.tstamp.now.iso you could also specify that value in DateTime compatible
format. If you specify a value in an invalid format an INFO message will be logged and the value will
be ignored.

Table B.70: Attributes

Name Type Description Default Required

prefix String Prefix used for all properties set. n/a No

B.66.1. Examples

<tstamp/>

sets the standard DSTAMP, TSTAMP, and TODAY properties according to the default formats.

<tstamp>
 <format property = "DAY" pattern = "EEEE" locale = "nl_NL"/>
</tstamp>

sets the standard properties as well as the property DAY with the pattern "EEEE" (day of week) using
the Dutch locale.

<tstamp prefix = "start"/>

sets three properties with the standard formats, prefixed with "start.": start.DSTAMP, start.TSTAMP,
and start.TODAY.

B.66.2. Supported Nested Tags

• format

130

ICU syntax

The Tstamp task supports a <format> nested element that allows a property to be set to the current
date and time in a given format.

Table B.71: Attributes

Name Type Description Default Required

property String The property to receive the date/time string in
the given pattern.

n/a Yes

pattern String The date/time pattern to be used, pattern must
follow ICU syntax.

n/a Yes

locale String The locale used to create date/time string. n/a No

timezone String The timezone to use for displaying time. n/a No

B.66.3. ICU syntax

ICU syntax replaces string of characters with proper date and time data. Please refer to official ICU
documentation to see the complete Date/Time Format Syntax [https://unicode-org.github.io/icu/user-
guide/format_parse/datetime/#date-field-symbol-table] reference.

Table B.72: ICU syntax

Symbol Meaning Pattern Example Output

y year yy
y or yyyy

96
1996

M month in year M
MM
MMMM

9
09
September

d day in month d
dd

2
02

E day of week E, EE, or EEE
EEEE

Tue
Tuesday

a AM or PM a, aa, or aaa
aaaa

PM [abbrev]
PM [wide]

h hour in am/pm (1~12) h
hh

7
07

H hour in day (0~23) H
HH

0
00

m minute in hour m
mm

4
04

s seconds in minute s
ss

5
05

Z Time Zone: ISO8601 ba-
sic hms? / RFC 822
Time Zone: long localized
GMT (=OOOO)
Time Zone: ISO8601 ex-
tended hms? (=XXXXX)

Z, ZZ, or ZZZ
ZZZZ
ZZZZZ

-0800
GMT-08:00
-08:00, -07:52:58, Z

' escape for text ' (nothing)

131

https://unicode-org.github.io/icu/userguide/format_parse/datetime/#date-field-symbol-table
https://unicode-org.github.io/icu/userguide/format_parse/datetime/#date-field-symbol-table
https://unicode-org.github.io/icu/userguide/format_parse/datetime/#date-field-symbol-table

TypedefTask

Symbol Meaning Pattern Example Output

' ' two single quotes pro-
duce one

' ' '

Note

ICU syntax was introduced in Phing 3, if you are using an older version then you must use strftime
[https://www.php.net/manual/en/function.strftime.php] format syntax.

B.67. TypedefTask
With the TypedefTask you can import a user type into your buildfile.

Table B.73: Attributes

Name Type Description Default Required

classname String The path to the class that defines the type
class.

n/a Yes

name String The name the type is available as after im-
porting. If you specify "cproject", for example,
you can access the type imported here with
<cproject>.

n/a Yes

classpath String The classpath to use when including classes.
This is added to PHP's include_path.

n/a No

classpathref String Reference to classpath to use when including
classes. This is added to PHP's include_path.

n/a No

B.67.1. Examples

<!--
Includes the Type named "CustomProject" and makes it available by
<cproject>
-->
<typedef classname = "user.types.CustomProject" name = "cproject" />

B.67.2. Supported Nested Tags

• classpath

B.68. URLEncodeTask
The URLEncode task will encode a given property for use within a a URL string. This value which is
actually set will be encoded via the urlencode() function. Typically, you must do this for all parameter
values within a URL.

132

https://www.php.net/manual/en/function.strftime.php
https://www.php.net/manual/en/function.strftime.php

Example

Table B.74: Attributes

Name Type Description Default Required

property String The name of the property to set. n/a Yes

override Boolean If the property is already set, should we
change it's value. Can be true or false

false No

value String The value of the property. n/a No, if refid is
specified

refid String The id of a saved reference whose value will
be the value of the property.

n/a No, if value is
specified

B.68.1. Example

<urlencode name = "file.location" value = "C:\\wwwhome\\my reports\\report.xml" />

B.69. UpToDateTask
UpToDateTask tests if a file is newer than another file or files and sets a property if it is. This is a
common way to avoid, possibly time consuming, creation of a target if none of the files/resources it
depends on have changed.

Table B.75: Attributes

Name Type Description Default Required

property String Name of the property that is to be set n/a Yes

value String The value the property is to be set to true No

srcfile String The file to check against target file(s) n/a Yes (or nested
fileset)

targetfile String The file for which we want to determine the
status

n/a Yes (or nested
mapper)

B.69.1. Examples

<uptodate property = "propelBuild.notRequired"
 targetfile = "${deploy}/propelClasses.tgz">
 <fileset dir = "${src}/propel">
 <include="**/*.php"/>
 </fileset>
 </uptodate>

The above example sets the property propelBuild.notRequired to true if the ${deploy}/pro-
pelClasses.tgz file is more up-to-date than any of the PHP class files in the ${src}/propeldirec-
tory.

<target name = "CompileTarget">
 <uptodate property = "target.uptodate" targetfile = "main">
 <fileset refid = "sources"/>
 </uptodate>

133

Supported Nested Tags

 <if>
 <not><isset property = "target.uptodate"/></not>
 <then>
 <!-- Some commands to update the target ... -->
 </then>
 </if>
</target>

The above example shows a common use when doing a "compile" type target where a single target
depends on other source files. In this case the commands to update the target (whatever they are) are
only run if any of the source files are more up to date than the target.

B.69.2. Supported Nested Tags

• filelist

• fileset

• mapper

B.70. Variable
The Variable task provides a mutable property to Phing and works much like variable assignment in
PHP. This task is similar to the standard Phing Property task, except that THESE PROPERTIES ARE
MUTABLE. While this goes against the standard Phing use of properties, occasionally it is useful to be
able to change a property value within the build. In general, use of this task is DISCOURAGED, and
the standard Phing Property should be used if possible. Having said that, in real life I use this a lot.

Variables can be set individually or loaded from a standard properties file. A 'feature' of variables is
that they can override properties, but properties cannot override variables. So if an already established
property exists, its value can be reassigned by use of this task.

Table B.76: Attributes

Name Type Description Default Required

name String The name of the property to set. None Yes, unless
'file' is used.

value String The value of the property. "" No

unset Boolean Removes the property from the project as if it
had never been set.

false No

file String The name of a standard properties file to load
variables from.

None No

B.70.1. Example

<var name = "x" value = "6"/>
<echo>x = ${x}</echo> <!-- print: 6 -->

<var name = "x" value = "12"/>
<echo>x = ${x}</echo> <!-- print: 12 -->

<var name = "x" value = "6 + ${x}"/>

134

VersionTask

<echo>x = ${x}</echo> <!-- print: 6 + 12 -->

<var name = "str" value = "I "/>
<var name = "str" value = "${str} am "/>
<var name = "str" value = "${str} a "/>
<var name = "str" value = "${str} string."/>
<echo>${str}</echo> <!-- print: I am a string. -->

<var name = "x" value = "6"/>
<echo>x = ${x}</echo> <!-- print: 6 -->

<property name = "x" value = "12"/>
<echo>x = ${x}</echo> <!-- print: 6 (property can't override) -->

<var name = "x" value = "blue"/>
<tstamp>
 <format property = "x" pattern = "%A"/>
</tstamp>
<echo>Today is ${x}.</echo> <!-- print: Today is blue. -->

<var name = "x" value = "" unset = "true"/>
<tstamp>
 <format property = "x" pattern = "%A"/>
</tstamp>
<echo>Today is ${x}.</echo> <!-- print: Today is Friday. -->

B.71. VersionTask
The VersionTask increments a three-part version number from a given file and writes it back to the
file. The resulting version number is also published under supplied property.

The version number in the text file is expected in the format of Major.Minor.Bugfix (e.g. 1.3.2). Alterna-
tively you can use 'v' as prefix (e.g. v1.3.2).

Table B.77: Attributes

Name Type Description Default Required

releasetype String Specifies desired version release (Major, Mi-
nor or Bugfix)

n/a Yes

file String File containing three-part version number to
increment

build.ver-
sion

No

property String Property which contains the resulting version
number

build.ver-
sion

No

propFile Boolean If true, version will be saved using property
file format (i.e. key=value).

false No

startingVer-
sion

String Starting version string, if version file does not
exist.

0.0.0 No

B.71.1. Example

<version releasetype = "Major" file = "version.txt" property = "version.number"/>

<version releasetype = "Minor" startingVersion = "v5.7" propFile = "true"/>

135

WaitForTask

B.72. WaitForTask
Wait for a condition to become true or a timeout, whichever comes first.

Table B.78: Attributes

Name Type Description Default Required

MaxWait Integer Set the maximum length of time to wait in units3min Yes

MaxWaitUnit String Set the max wait time unit. Must be one of
"week", "day", "hour", "minute", "second",
"millisecond"

millisec-
ond

No

CheckEvery Integer Set the time between each check 500ms Yes

CheckEveryUnit String Set the check every time unit. Must be one of
"week", "day", "hour", "minute", "second",
"millisecond"

millisec-
onds

No

TimeoutProper-
ty

String Name of the property to set after a timeout. null No

B.72.1. Examples

Wait for a maximum of ten seconds for the file "ready" to appear.

<waitfor maxwaitunit = "second" maxwait = "10">
 <available file = "ready"/>
</waitfor>

B.72.2. Supported Nested Tags

All conditionals including and, or, not etc.

B.73. XsltTask
With XsltTask, you can run a XSLT transformation on an XML file. Actually, XsltTask extends
CopyTask, so you can use all the elements allowed there.

XsltTask is implemented by means of the XsltFlter and hence relies on PHP5 XSLT support via
(libxslt) which must be available in php5. The XsltTask is equivalent to running command line
xsltproc since that is a frontend for libxslt.

Table B.79: Attributes

Name Type Description Default Required

style String The path where the Xslt file is located n/a Yes

resolvedocu-
mentexternals

Boolean Whether to resolve entities
in the XML document. (see
this link [http://www.php.net/manual/en/
class.domdocument.php#domdocumen-
t.props.resolveexternals] for details)

false No

136

http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals

Examples

Name Type Description Default Required

re-
solvestyleshee-
texternals

Boolean Whether to resolve entities in the stylesheet. false No

html Boolean Whether to work on HTML or XML. false No

Note: You can also use all the attributes available forSection B.14, “CopyTask”.

B.73.1. Examples

<!-- Transform docbook with an imaginary XSLT file -->
<xslt todir = "/srv/docs/phing" style = "dbk2html.xslt" >
 <fileset dir = ".">
 <include name = "**/*.xml" />
 </fileset>
</xslt>

B.73.2. Supported Nested Tags

• mapper

• filterchain

• param

Note: You can use all the elements also available forSection B.14, “CopyTask”.

Additionally, you can use <param> tags with a name and a expression (or value alias) attribute.
These parameters are then available from within the xsl style sheet.

137

138

Appendix C. Optional tasks
This appendix contains a reference of all optional tasks, i.e. tasks that are not directly needed for
building projects, but can assist in various aspects of development and deployment.

This reference lists the tasks alphabetically by the name of the classes that implement the tasks. So
if you are searching for the reference to the <phplint> tag, for example, you will want to look at the
reference of PhpLintTask.

C.1. ApiGenTask
This task runs ApiGen [http://apigen.org/], a tool for creating professional API documentation from PHP
source code, similar to discontinued phpDocumentor/phpDoc.

Table C.1: Attributes

Name Type Description Default Required

executable String ApiGen executable name. apigen No

action String ApiGen action to be executed. generate No

config String Config file name. n/a

source String List of source files or directories. n/a

destination String Destination directory. n/a

Source and
destination are
required - ei-
ther set ex-
plicitly or us-
ing a config file.
Attribute val-
ues set explic-
itly have prece-
dence over val-
ues from a con-
fig file.

exclude String List of masks (case sensitive) to exclude files
or directories from processing.

n/a No

skipdocpath String List of masks (case sensitive) to exclude ele-
ments from documentation generating.

n/a No

charset String Character set of source files. UTF-8 No

main String Main project name prefix. n/a No

title String Title of generated documentation. n/a No

baseurl String Documentation base URL. n/a No

googlecseid String Google Custom Search ID. n/a No

googlecselabel String Google Custom Search label. n/a No

googleanalyt-
ics

String Google Analytics tracking code. n/a No

templateconfig String Template config file name. n/a If not set the de-
fault template is
used.

139

http://apigen.org/
http://apigen.org/

Example

Name Type Description Default Required

templatetheme String Template theme file name. n/a If not set the de-
fault template is
used.

accesslevels String Element access levels. Documentation only
for methods and properties with the given ac-
cess level will be generated.

public,
protected

No

internal Boolean Whether to generate documentation for ele-
ments marked as internal and internal docu-
mentation parts or not.

No No

php Boolean Whether to generate documentation for PHP
internal classes or not.

Yes No

tree Boolean Whether to generate tree view of classes, in-
terfaces, traits and exceptions or not.

Yes No

deprecated Boolean Whether to generate documentation for dep-
recated elements or not.

No No

todo Boolean Whether to generate documentation of tasks
or not.

No No

sourcecode Boolean Whether to generate highlighted source code
files or not.

Yes No

download Boolean Whether to generate a link to download docu-
mentation as a ZIP archive or not.

No No

debug Boolean Whether to enable the debug mode or not. No No

C.1.1. Example

<apigen
 source = "classes"
 destination = "api"
 exclude = "*/tests/*"
 title = "My Project API Documentation"
 deprecated = "true"
 todo = "true"/>

C.2. ComposerTask
The ComposerTask runs the Composer tool (http://getcomposer.org) directly from Phing.

Table C.2: Attributes

Name Type Description Default Required

command String The Composer command to execute. n/a Yes

composer String Path to Composer. compos-
er.phar,
if not
found it
tries to
use com-

No

140

http://getcomposer.org

Supported Nested Tags

Name Type Description Default Required

poser ex-
ecutable
from your
system.

php String Path to the PHP interpreter Defaults
to the
${ph-
p.in-
ter-
preter}
property
which is
the inter-
preter
used to
execute
phing it-
self.

No

C.2.1. Supported Nested Tags

• arg

Table C.3: Attributes

Name Type Description Default Required

value String A single command-line argument; can con-
tain space characters.

n/a

file String The name of a file as a single command-line
argument; will be replaced with the absolute
filename of the file.

n/a

path String A string that will be treated as a path-like
string as a single command-line argument;
you can use ; or : as path separators and Ph-
ing will convert it to the platform's local con-
ventions.

n/a

line String A space-delimited list of command-line argu-
ments.

n/a

One of these

C.2.2. Example

<composer command = "install">
 <arg value = "--no-dev"/>
 <arg value = "--no-interaction"/>
</composer>

C.3. CoverageMergerTask
The CoverageMergerTask merges code coverage information from external sources with an existing
code coverage database.

141

Example

The format of the code coverage files is expected to be identical to:

file_put_contents(
 '/www/live/testcases/coverage.data', serialize(xdebug_get_code_coverage)
);

C.3.1. Example

<coverage-merger>
 <fileset dir = "/www/live/testcases">
 <include name = "**/*.data"/>
 </fileset>
</coverage-merger>

C.3.2. Supported Nested Tags

• fileset

C.4. CoverageReportTask
The CoverageReportTask formats a coverage database into a framed HTML report using XSLT. The
report can optionally make use of the Generic Syntax Highlighting library, GeSHi (See GeSHi Home-
page [http://qbnz.com/highlighter/]) library to mark up source code. The path to the library (if not in the
default path) can be specified as an attribute.

Table C.4: Attributes

Name Type Description Default Required

outfile String The location for the intermediate XML file. cover-
age.db

Yes

classpath String Additional classpath to locate source refer-
enced in the report.

n/a No

geshipath String Path to GeSHi highlighting library. n/a No/Yes* If syn-
tax highlighting
is to be enabled

geshilan-
guagespath

String Language to use with GeSHi. n/a No

C.4.1. Example

<coverage-report outfile = "reports/coverage.xml">
 <report todir = "reports/coverage" styledir = "/home/phing/etc"/>
</coverage-report>

C.4.2. Supported Nested Tags

• report

142

http://qbnz.com/highlighter/
http://qbnz.com/highlighter/
http://qbnz.com/highlighter/

CoverageSetupTask

Table C.5: Attributes

Name Type Description Default Required

styledir String The directory where the stylesheets are lo-
cated.

The etc
directory
in the Ph-
ing instal-
lation.

No

todir String The directory where the files resulting from
the transformation should be written to.

Yes

title String Title of the project (used in the generated
document(s)).

No

usesorttable Boolean Whether to use the sorttable JavaScript
library (see http://www.kryogenix.org/code/
browser/sorttable/).

false No

C.5. CoverageSetupTask
The CoverageSetupTask prepares a database which can be used to gather code coverage information
for unit tests.

Table C.6: Attributes

Name Type Description Default Required

database String The location for the coverage database. cover-
age.db

Yes

C.5.1. Example

<coverage-setup database = "./reports/coverage.db">
 <fileset dir = "classes">
 <include name = "**/*.php"/>
 </fileset>
</coverage-setup>
<phpunit codecoverage = "true">
 <batchtest>
 <fileset dir = "src">
 <include name = "*Test.php"/>
 </fileset>
 </batchtest>
</phpunit>

C.5.2. Supported Nested Tags

• classpath

• fileset

143

http://www.kryogenix.org/code/browser/sorttable/
http://www.kryogenix.org/code/browser/sorttable/

CoverageThresholdTask

• filelist

C.6. CoverageThresholdTask
This task validates the code coverage database and will stop the build cycle if any class or method or
entire project's coverage is lower than the specified threshold.

Table C.7: Attributes

Name Type Description Default Required

database String The location of the coverage database. (This
is optional if CoverageSetupTask has run
before.)

n/a No

perProject Integer The minimum code coverage for the entire
project.

25 No

perClass Integer The minimum code coverage for any class. 25 No

perMethod Integer The minimum code coverage for any method.25 No

verbose Boolean Whether to enable detailed logging or not. false No

C.6.1. Example

<coverage-threshold database = "./reports/coverage.db"/>

C.6.2. Supported Nested Tags

• classpath

• excludes

Validates an optional code coverage database against the default thresholds.

<coverage-threshold
 perProject = "50"
 perClass = "60"
 perMethod = "70"/>

Validates the code coverage database (from CoverageSetupTask) against the specified thresholds.

<coverage-threshold
 perProject = "50"
 perClass = "60"
 perMethod = "70"/>
 <excludes>
 <file>**/*Processor.php</file>
 <class>Model_Filter_Windows</class>
 <method>Model_System::execute()</method>
 </excludes>

Validates the code coverage database (from CoverageSetupTask) against the specified thresholds
and excludes the given file, class and method from threshold validation. The filename is relative to

144

DbDeployTask

the project basedir. A Method can be named either "Model_System::execute()" or "Model_System::ex-
ecute". The method name is considered only for the given class "Model_System".

C.7. DbDeployTask
The DbDeployTask creates .sql files for making revisions to a database, based on dbdeploy conven-
tions centering around a changelog table in the database. See rules for using dbdeploy [http://dbde-
ploy.com/documentation/getting-started/rules-for-using-dbdeploy/] for more information. You will need
a changelog table like so:

Table C.8: Attributes

Name Type Description Default Required

url String PDO connection url n/a Yes

userid String DB userid to use for accessing the changelog
table.

none As required by
db

password String DB password to use for accessing the
changelog table.

none As required by
db

dir String Directory containing dbdeploy delta scripts. none Yes

outputfile String Filename in which deployment SQL will be
generated.

dbde-
ploy_de-
ploy.sql

No

undooutputfile String Filename in which undo SQL will be generat-
ed.

dbde-
ploy_un-
do.sql

No

deltaset String deltaset to check within db. Main No

lastchange-
toapply

Integer Highest-numbered delta script to apply to db. 999 No

appliedBy String Value of the 'applied_by' column for each entry
in the changelog table.

dbdeploy No

checkall Boolean False means dbdeploy will only apply patches
that have a higher number than the last patch-
number that was applied True means dbde-
ploy will apply all changes that aren't applied
already (in ascending order).

false No

C.7.1. Example

CREATE TABLE changelog (
 change_number BIGINT NOT NULL,
 delta_set VARCHAR(10) NOT NULL,
 start_dt TIMESTAMP NOT NULL,
 complete_dt TIMESTAMP NULL,
 applied_by VARCHAR(100) NOT NULL,
 description VARCHAR(500) NOT NULL
)

<dbdeploy
 url = "sqlite:${project.basedir}/data/db.sqlite"

145

http://dbdeploy.com/documentation/getting-started/rules-for-using-dbdeploy/
http://dbdeploy.com/documentation/getting-started/rules-for-using-dbdeploy/
http://dbdeploy.com/documentation/getting-started/rules-for-using-dbdeploy/

FileSyncTask

 userid = "dbdeploy"
 password = "dbdeploy"
 dir = "${project.basedir}/data/dbdeploy/deltas"
/>

The above example uses a sqlite database and delta scripts located in dbdeploy/deltas in the project
base dir.

C.8. FileSyncTask
Syncs files or directories using the rsync command. Syncing can be done on the same server or from/
to a remote server.

Table C.9: Attributes

Name Type Description Default Required

rsyncPath String Path to rsync command. /usr/bin/
rsync

Yes

sourceDir String Source directory (use [user@]host:path for re-
mote sources).

n/a Yes

destinationDir String Destination directory (use [user@]host:path
for remote destinations). Note: sub directories
are created by default if they do not exist in the
destination directory.

n/a Yes

exclude String Excluded file matching pattern. Use comma
separated values to exclude multiple files/di-
rectories, e.g.: a,b

n/a No

excludeFile String Excluded patterns file. n/a No

backupDir String Creates a backup so users can rollback to an
existing restore point.

n/a No

options String Any options that rsync supports, removes the
default options. Should you wish to change the
port ssh uses for remote transfers, set this at-
tribute to -e 'ssh -p XXXXX' -rpKzl

-rpKz No

verbose Boolean This option increases the amount of informa-
tion you are given during the transfer.

True No

dryRun Boolean This option makes rsync perform a trial run
that doesn't make any changes.

False No

itemizeChanges Boolean This option requests a simple itemized list of
the changes that are being made to each file,
including attribute changes.

False No

checksum Boolean This option will cause rsync to skip files based
on checksum, not mod-time & size.

False No

delete Boolean This option deletes files that don't exist on
sender after transfer including force and ig-
nore-errors.

False No

identityFile String Identity file for ssh authentication of a remote
transfer.

n/a No

146

Examples

Name Type Description Default Required

port Integer Port for ssh authentication used by identi-
tyFile.

22 No

C.8.1. Examples

<filesync sourcedir = "/var/www/development/project1"
 destinationdir = "/var/www/project1" />

<filesync sourcedir = "host::module" destinationdir = "/var/www/project1/" />

<filesync
 sourcedir = "/var/www/development/project1"
 destinationdir = "user@server:/var/www/project1"
 dryrun = "true"
 itemizechanges = "true"
 verbose = "true"
 checksum = "true" />

In the sourcedir and destinationdir properties user name for remote connections is optional.

C.9. FtpDeployTask
Deploys a set of files to a remote FTP server.

Table C.10: Attributes

Name Type Description Default Required

host String The hostname of the remote server. none Yes

port Integer The port of the remote server. 21 No

username String The username to use when logging in to the
remote server.

none Yes

password String The password to use when logging in to the
remote server.

none Yes

ssl boolean Whether to connect via SSL. This requires
Net/FTP to be installed.

false No

dir String Directory on the remote server. none No

mode String The transfer mode to use, either ascii or bi-
nary.

binary No

clearfirst Boolean Delete all files in the remote directory before
uploading.

false No

passive Boolean Open connection in passive mode false No

dirmode mixed Permissions of the uploaded files, can either
be 'inherit' or it can be a octal value without the
leading zero. Settings the dirmode to 'inherit'
will cause the uploaded files to have the same
permissions as on the filesystem.

false No

filemode mixed This option does the same as dirmode, except
it only affects regular files.

false No

147

Example

Name Type Description Default Required

depends boolean If depends is set to true, the task will only up-
date files with a local modification timestamp
that is newer than the corresponding time-
stamp on the server.

false No

level String Control the level at which the task reports sta-
tus messages. One of error, warning, in-
fo, verbose, debug.

verbose No

rawdatafall-
back

boolean If Net_FTP is not able to parse the raw ftp data,
the depends option does not work at all. Set-
ting rawdatafallback will cause phing trying to
parse the ftp data on its own, so the depends
option might work again. If depends is set to
false, rawdatafallback is ignored.

No

skiponsamesize Boolean Skip upload, if file of same size exists. false No

C.9.1. Example

<ftpdeploy
 host = "${ftp.host}"
 port = "${ftp.port}"
 username = "${ftp.username}"
 password = "${ftp.password}"
 dir = "${ftp.dir}"
 ssl = "true"
 passive = "false"
 mode = "${ftp.mode}">
 <fileset dir = ".">
 <include name = "**"/>
 <exclude name = "phing"/>
 <exclude name = "build.xml"/>
 <exclude name = "images/**.png"/>
 <exclude name = "images/**.gif"/>
 <exclude name = "images/**.jpg"/>
 </fileset>
</ftpdeploy>

C.9.2. Supported Nested Tags

• fileset

The files to deploy

C.10. GitArchiveTask
Create an archive of files from a named tree.

Table C.11: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

148

Example

Name Type Description Default Required

repository String The repository. n/a

remoterepo String The remote repository. n/a

One of these at-
tributes is re-
quired.

treeish String The tree or commit to produce an archive for.n/a Yes

output String Write the archive to file. n/a No

prefix String Prepend prefix to each filename in the archive.n/a No

format String Format of the resulting archive: tar or zip. If this
option is not given, and the output file is spec-
ified, the format is inferred from the filename
if possible (e.g. writing to "foo.zip" makes the
output to be in the zip format). Otherwise the
output format is tar

n/a No

C.10.1. Example

<gitclone gitPath = "${git-path}"
 singleBranch = "true"
 repository = "${repo.dir.resolved}"
 targetPath = "${tmp.dir.resolved}/test" />
<gitarchive
 gitPath = "${git-path}"
 repository = "${tmp.dir.resolved}/test"
 treeish = "HEAD"
 format = "zip"
 output = "${tmp.dir.resolved}/output.zip"
/>

C.11. GitBranchTask
Create, move or delete repository branches. See official documentation [http://www.kernel.org/pub/
software/scm/git/docs/git-branch.html] (branch listing functionality is omitted in current implementation).

Table C.12: Attributes

Name Type Description Default Required

gitPath String Path to Git binary. /usr/bin/
git

No

repository String Path to Git repository. n/a Yes

branchname String The name of the branch to create or delete. n/a Yes

newbranch String The new name for an existing branch. n/a Yes, if branch
move invoked

startpoint String The new branch head will point to this
commit. It may be given as a branch
name, a commit-id, or a tag. If this op-
tion is omitted, the current HEAD will be
used instead. See <start-point> argument
of git-branch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-branch.html].

No

149

http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html

Example

Name Type Description Default Required

setupstream String If specified branch does not exist yet or
if --force has been given, acts exactly
like --track. Otherwise sets up configura-
tion like --track would when creating the
branch, except that where branch points to
is not changed. See --set-upstream option
of git-branch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-branch.html].

No

track Boolean See --track option of git-branch [http://www.k-
ernel.org/pub/software/scm/git/docs/git-
branch.html].

false No

notrack Boolean See --no-track option of git-branch [http://
www.kernel.org/pub/software/scm/git/docs/
git-branch.html].

false No

force Boolean Reset <branchname> to <startpoint> if
<branchname> exists already. Without -f git
branch refuses to change an existing branch.

false No

move Boolean Move/rename a branch and the corresponding
reflog.

false No

forcemove Boolean Move/rename a branch even if the new branch
name already exists.

false No

delete Boolean Delete a branch. The branch must be fully
merged in its upstream branch, or in HEAD if
no upstream was set with --track or --set-up-
stream.

false No

forcedelete Boolean Delete a branch irrespective of its merged sta-
tus.

false No

C.11.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- Initialize normal repository -->
<gitinit repository = "${repo.dir.resolved}" />

<!-- Create branch "sample-branch" tracking current HEAD -->
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "sample-branch" />

<!--
Create branch "sample-branch" tracking origin/master
Note that you can omit both startpoint and track attributes in this case
-->
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "sample-branch"
 startpoint = "origin/master"
 track = "true" />

<!-- Delete fully merged branch "sample-branch" -->
<gitbranch
 repository = "${repo.dir.resolved}"

150

http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html
http://www.kernel.org/pub/software/scm/git/docs/git-branch.html

GitCheckoutTask

 branchname = "sample-branch"
 delete = "true" />

<!-- Force delete even unmerged branch "sample-branch" -->
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "sample-branch"
 forcedelete = "true" />

<!-- Renabe "branch1" to "branch2" -->
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "branch1"
 newbranch = "branch2"
 move = "true" />

C.12. GitCheckoutTask
Checkout a branch or paths to the working tree. See official documentation [http://www.kernel.org/pub/
software/scm/git/docs/git-checkout.html].

Table C.13: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

branchname String Branch to checkout. See <branch> in
git-checkout [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-checkout.html].

origin No

startpoint String The name of a commit at which to start the new
branch; Defaults to HEAD. See <start_point>
in git-checkout [http://www.kernel.org/pub/
software/scm/git/docs/git-checkout.html].

No

create Boolean Create a new branch named <branchname>
and start it at <startpoint>

false No

forcecreate Boolean Creates the branch <branchname> and start
it at <startpoint>; if it already exists, then reset
it to <startpoint>. This is equivalent to running
"git branch" with "-f".

false No

merge Boolean See --merge in git-checkout [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
checkout.html].

false No

track Boolean See --track in git-checkout [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
checkout.html].

false No

notrack Boolean See --no-track in git-check-
out [http://www.kernel.org/pub/software/scm/
git/docs/git-checkout.html].

false No

quiet Boolean Quiet, suppress feedback mes-
sages. See --quiet in git-check-

false No

151

http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html

Example

Name Type Description Default Required

out [http://www.kernel.org/pub/software/scm/
git/docs/git-checkout.html].

force Boolean When switching branches, proceed even
if the index or the working tree differs
from HEAD. This is used to throw away
local changes. See --force in git-check-
out [http://www.kernel.org/pub/software/scm/
git/docs/git-checkout.html].

false No

C.12.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
 <resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

 <!-- clone repository -->
 <gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

 <!-- create and switch to "mybranch" branch -->
 <gitcheckout
 repository = "${repo.dir.resolved}"
 branchname = "mybranch" quiet = "true" create = "true" />

 <!-- get back to "master" branch -->
 <gitcheckout
 repository = "${repo.dir.resolved}"
 branchname = "master" quiet = "true" />

 <!-- create (force) already created branch -->
 <gitcheckout
 repository = "${repo.dir.resolved}"
 branchname = "mybranch" quiet = "true"
 forceCreate = "true" />

C.13. GitCloneTask
Clone a repository into a new directory.

Table C.14: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String The (possibly remote) repository to clone
from.

n/a Yes

targetPath String The name of a new directory to clone into.
Cloning into an existing directory is only al-
lowed if the directory is empty.

n/a Yes

bare Boolean Create bare repository. See --bare option
of git-clone [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-clone.html].

false No

152

http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-checkout.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html

Example

Name Type Description Default Required

depth Integer Create a shallow clone with a his-
tory truncated to the specified num-
ber of revisions. See --depth option
of git-clone [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-clone.html].

0 No

singleBranch Boolean Clone only one branch. See --single-branch
option of git-clone [http://www.kernel.org/pub/
software/scm/git/docs/git-clone.html].

false No

branch String Checkout branch instead of the remote's
HEAD.

n/a Yes

C.13.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
 <resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

 <!-- Clone repository -->
 <gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

 <!-- Clone bare repository -->
 <gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}"
 bare = "true" />

C.14. GitCommitTask
Record changes to the repository. See official documentation [http://www.kernel.org/pub/software/scm/
git/docs/git-commit.html].

Table C.15: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

message String Commit message n/a No

allFiles Boolean Whether to automatically stage files that
have been modified and deleted (see --all
in git-commit [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-commit.html])

n/a No

C.14.1. Example

<!-- commit all modified / deleted files -->;

153

http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-clone.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html
http://www.kernel.org/pub/software/scm/git/docs/git-commit.html

Supported Nested Tags

 <gitcommit
 repository = "/path/to/repo"
 message = "Commit message" allFiles = "true" />;

C.14.2. Supported Nested Tags

• fileset

C.15. GitDescribeTask
This task finds the most recent tag that is reachable from a commit. If the tag points to the commit, then
only the tag is shown. Otherwise, it suffixes the tag name with the number of additional commits on top
of the tagged object and the abbreviated object name of the most recent commit.

Table C.16: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

outputProperty String Property name to set with output value from
git-describe.

n/a No

all Boolean Instead of using only the annotated tags, use
any ref found in refs/ namespace. This op-
tion enables matching any known branch, re-
mote-tracking branch, or lightweight tag.

false No

tags String Instead of using only the annotated tags, use
any tag found in refs/tags namespace. This
option enables matching a lightweight (non-
annotated) tag.

false No

contains Boolean Instead of finding the tag that predates the
commit, find the tag that comes after the com-
mit, and thus contains it. Automatically implies
--tags.

false No

long Boolean Always output the long format (the tag, the
number of commits and the abbreviated com-
mit name) even when it matches a tag.

false No

always Boolean Show uniquely abbreviated commit object as
fallback.

false No

abbrev Integer Instead of using the default 7 hexadecimal dig-
its as the abbreviated object name, use n dig-
its, or as many digits as needed to form a
unique object name. An n of 0 will suppress
long format, only showing the closest tag.

n/a No

match String Only consider tags matching the given glob(7)
pattern, excluding the "refs/tags/" prefix. This
can be used to avoid leaking private tags from
the repository.

n/a No

154

Example

Name Type Description Default Required

committish String Commit-ish object names to describe. De-
faults to HEAD if omitted.

HEAD No

canditates Integer Instead of considering only the 10 most recent
tags as candidates to describe the input com-
mit-ish consider up to n candidates. Increas-
ing n above 10 will take slightly longer but may
produce a more accurate result. An n of 0 will
cause only exact matches to be output.

n/a No

C.15.1. Example

<gitdescribe repository = "${repo.dir}"
 tags = "true"
 abbrev = "0"
 match = "*-*-*.*"
 outputProperty = "mostRecentTag" />

C.16. GitFetchTask
Download objects and refs from another repository. See official documentation [http://www.ker-
nel.org/pub/software/scm/git/docs/git-fetch.html].

Table C.17: Attributes

Name Type Description Default Required

gitPath String Path to Git binary. /usr/bin/
git

No

repository String Path to Git repository. n/a Yes

source String The "remote" repository that is the source
of a fetch or pull operation. See <reposi-
tory> in git-fetch [http://www.kernel.org/pub/
software/scm/git/docs/git-fetch.html].

origin No

refspec String See <refspec> in git-fetch [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
fetch.html].

No

group String A name referring to a list of reposi-
tories as the value of remotes.<group>
in the configuration file. See <group>
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

No

quiet Boolean Silence any internally used git com-
mands. Progress is not reported to
the standard error stream. See --quiet
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

false No

all Boolean Fetch all remotes. See --all
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

false No

155

http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html

Example

Name Type Description Default Required

keep Boolean Keep downloaded pack. See --keep
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

false No

prune Boolean After fetching, remove any remote track-
ing branches which no longer ex-
ist on the remote. See --prune
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

false No

tags Boolean See --tags in git-fetch [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
fetch.html].

false No

notags Boolean See --no-tags in git-fetch [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
fetch.html].

false No

force Boolean When git fetch is used with <rbranch>:<l-
branch> refspec, it refuses to update
the local branch <lbranch> unless the
remote branch <rbranch> it fetches is
a descendant of <lbranch>. This op-
tion overrides that check. See --force
in git-fetch [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-fetch.html].

false No

C.16.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- Initialize normal repository -->
<gitinit repository = "${repo.dir.resolved}" />

<!-- Fetch objects from all remotes -->
<gitfetch
 repository = "${repo.dir.resolved}" all = "true" />

<!-- Fetch from origin/master to "refspec-branch" local branch -->
<gitfetch
 repository = "${repo.dir.resolved}"
 source = "origin"
 refspec = "master:refspec-branch"
 quiet = "true" />

C.17. GitGcTask
Cleanup unnecessary files and optimize the local repository.

Table C.18: Attributes

Name Type Description Default Required

gitPath String Path to Git binary. /usr/bin/
git

No

156

http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html
http://www.kernel.org/pub/software/scm/git/docs/git-fetch.html

Example

Name Type Description Default Required

repository String The repository to cleanup. n/a Yes

aggressive Boolean This option will cause git gc to more aggres-
sively optimize the repository at the expense
of taking much more time. See --aggressive
option of git-gc [http://www.kernel.org/pub/
software/scm/git/docs/git-gc.html].

false No

auto Boolean With this option, git gc checks whether any
housekeeping is required; if not, it exits with-
out performing any work. See --auto op-
tion of git-gc [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-gc.html].

false No

noprune Boolean Do not prune any loose ob-
jects. See --no-prune option of git-
gc [http://www.kernel.org/pub/software/scm/
git/docs/git-gc.html].

false No

prune String Prune loose objects older than
date. See --prune option of git-
gc [http://www.kernel.org/pub/software/scm/
git/docs/git-gc.html].

2.week-
s.ago

No

C.17.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
 <resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

 <!-- Clone repository -->
 <gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

 <!-- Cleanup repository-->
 <gitgc
 repository = "${repo.dir.resolved}"
 aggressive = "true"
 prune = "1.week.ago" />

C.18. GitInitTask
Create an empty git repository or reinitialize an existing one.

Table C.19: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

bare Boolean Create bare repository. See --bare op-
tion of git-init [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-init.html].

false No

157

http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-gc.html
http://www.kernel.org/pub/software/scm/git/docs/git-init.html
http://www.kernel.org/pub/software/scm/git/docs/git-init.html
http://www.kernel.org/pub/software/scm/git/docs/git-init.html

Example

C.18.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
 <resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

 <!-- Initialize normal repository -->
 <gitinit repository = "${repo.dir.resolved}" />

 <!-- Initialize bare repository -->
 <gitinit bare = "true" repository = "${repo.dir.resolved}" />

C.19. GitLogTask
Show commit logs. See official documentation [http://www.kernel.org/pub/software/scm/git/docs/git-
log.html].

Table C.20: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

paths String <paentry> arguments to git-log. Accepts one
or more paths delimited by PATH_SEPARA-
TOR

n/a No

outputProperty String Property name to set with output value from
git-log

n/a No

format String Commit format. See --format of git-log.
Can be one of oneline, short, medi-
um, full, fuller, email, raw and for-
mat:<string>

medium No

date String Date format. See --date of git-log. n/a No

since String <since> argument to git-log. n/a No

until String <until> argument to git-log. n/a No

stat String Generate a diffstat. See --stat of git-log n/a No

nameStatus Boolean Names + status of changed files. See --name-
status of git-log.

false No

maxCount Integer Number of commits to show. See -<n>|-n|--
max-count of git-log.

n/a No

noMerges Boolean Don't show commits with more than one par-
ent. See --no-merges of git-log.

false No

C.19.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
 <resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

 <!-- clone repository -->
 <gitclone

158

http://www.kernel.org/pub/software/scm/git/docs/git-log.html
http://www.kernel.org/pub/software/scm/git/docs/git-log.html
http://www.kernel.org/pub/software/scm/git/docs/git-log.html

GitMergeTask

 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

 <gitlog
 paths = "${repo.dir.resolved}"
 format = "oneline"
 maxCount = "2"
 stat = "true"
 noMerges = "false"
 since = "Sun Jan 23 23:55:42 2011 +0300"
 until = "Mon Jan 24 09:59:33 2011 +0300"
 outputProperty = "logs"
 repository = "${repo.dir.resolved}" />

C.20. GitMergeTask
Join two or more development histories together. See official documentation [http://www.ker-
nel.org/pub/software/scm/git/docs/git-merge.html].

Table C.21: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

remote String Space separated list of branches to
merge into current HEAD. See <commit>
in git-merge [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-merge.html].

n/a No

message String Commit message to be used for the merge
commit (in case one is created). See <msg>
in git-merge [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-merge.html].

n/a No

fastForward-
Commit

Boolean If set false (default), will not gener-
ate a merge commit if the merge re-
solved as a fast-forward, only update the
branch pointer. If set true, will generate a
merge commit even if the merge resolved
as a fast-forward. See --ff/--no-ff options
in git-merge [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-merge.html].

false No

strategy String Merge strategy. One of "resolve", "recursive",
"octopus", "ours", or "subtree". See <strate-
gy> in git-merge [http://www.kernel.org/pub/
software/scm/git/docs/git-merge.html].

n/a No

strategyOption String Pass merge strategy specific option through
to the merge strategy. See <strategy-option>
in git-merge [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-merge.html].

n/a No

commit Boolean See --commit in git-merge [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
merge.html].

false No

159

http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html

Example

Name Type Description Default Required

nocommit Boolean See --no-commit in git-merge [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
merge.html].

false No

quiet Boolean Quiet, suppress feedback messages. See --
quiet in git-merge [http://www.kernel.org/pub/
software/scm/git/docs/git-merge.html].

false No

C.20.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- clone repository -->
<gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

<!-- create couple of test branches -->
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "merge-test-1" startpoint = "origin/master" />
<gitbranch
 repository = "${repo.dir.resolved}"
 branchname = "merge-test-2" startpoint = "origin/master" />

<!-- Merge those branches back into master -->
<gitmerge
 repository = "${repo.dir.resolved}"
 remote = "merge-test-1 merge-test-2"
 message = "merging repos" commit = "true" />

C.21. GitPullTask
Fetch from and merge with another repository or a local branch. See official documentation [http://
www.kernel.org/pub/software/scm/git/docs/git-pull.html].

Table C.22: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

all Boolean Fetch all remotes false No

source String The "remote" repository that is the source of a
fetch or pull operation. See <repository> in git-
pull [http://www.kernel.org/pub/software/scm/
git/docs/git-pull.html].

origin Yes, if allRe-
motes set to
false

refspec String See <refspec> in git-pull [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
pull.html].

n/a No

160

http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-merge.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html

Example

Name Type Description Default Required

strategy String Merge strategy. One of "resolve", "recursive",
"octopus", "ours", or "subtree". See <strate-
gy> in git-pull [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-pull.html].

n/a No

strategyOption String Pass merge strategy specific option through
to the merge strategy. See <strategy-op-
tion> in git-pull [http://www.kernel.org/pub/
software/scm/git/docs/git-pull.html].

n/a No

rebase Boolean See --rebase in git-pull [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
pull.html].

false No

norebase Boolean See --no-rebase in git-pull [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
pull.html].

false No

tags Boolean Enable tag references following. See --
tags in git-pull [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-pull.html].

false No

notags Boolean Disable tag references following. See --no-
tags in git-pull [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-pull.html].

false No

keepFiles Boolean See --keep in git-pull [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
pull.html].

false No

append Boolean See --append in git-pull [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
pull.html].

false No

quiet Boolean Quiet, suppress feedback messages. See
--quiet in git-pull [http://www.kernel.org/pub/
software/scm/git/docs/git-pull.html].

false No

force Boolean Force update. See --force in git-
pull [http://www.kernel.org/pub/software/scm/
git/docs/git-pull.html].

false No

C.21.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- clone repository -->
<gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

<!-- pull from all remotes -->
<gitpull
 repository = "${repo.dir.resolved}" all = "true" />

<!-- pull remote origin/foobranch and rebase when merging -->
<gitpull
 repository = "${repo.dir.resolved}"
 source = "origin" refspec = "foobranch"
 strategy = "recursive" keep = "true"

161

http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html
http://www.kernel.org/pub/software/scm/git/docs/git-pull.html

GitPushTask

 force = "true" quiet = "true" rebase = "true" />

C.22. GitPushTask
Update remote refs along with associated objects. See official documentation [http://www.ker-
nel.org/pub/software/scm/git/docs/git-push.html].

Table C.23: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

all Boolean Push all references false No

destination String The "remote" repository that is destina-
tion of a push operation. See <reposito-
ry> in git-push [http://www.kernel.org/pub/
software/scm/git/docs/git-push.html].

origin Yes, if allRe-
motes set to
false

refspec String See <refspec> in git-push [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
push.html].

n/a No

mirror Boolean See --mirror in git-push [http://www.ker-
nel.org/pub/software/scm/git/docs/git-
push.html].

false No

delete Boolean Delete "remote" reference. Same as pre-
fixing the refspec with colon. See --delete
in git-push [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-push.html].

false No

tags Boolean Push all references under refs/tags. See --
tags in git-push [http://www.kernel.org/pub/
software/scm/git/docs/git-push.html].

false No

quiet Boolean Quiet, suppress feedback messages. See --
quiet in git-push [http://www.kernel.org/pub/
software/scm/git/docs/git-push.html].

false No

force Boolean Force update. See --force in
git-push [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-push.html].

false No

C.22.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- clone repository -->
<gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

<!-- push branch "master" into "foobranch" on "origin" remote -->
<gitpush

162

http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html
http://www.kernel.org/pub/software/scm/git/docs/git-push.html

GitTagTask

 repository = "${repo.dir.resolved}"
 refspec = "master:foobranch" tags = "true" />

<!-- create new branch "newbranch" on "origin" remote -->
<gitpush
 repository = "${repo.dir.resolved}"
 refspec = "master:newbranch" quiet = "true" />

<!-- delete "newbranch" branch from "origin" remote -->
<gitpush
 repository = "${repo.dir.resolved}"
 delete = "true"
 refspec = "newbranch" quiet = "true" />

C.23. GitTagTask
Create, list, delete or verify a tag object signed with GPG. See official documentation [http://www.ker-
nel.org/pub/software/scm/git/docs/git-tag.html].

Table C.24: Attributes

Name Type Description Default Required

gitPath String Path to Git binary /usr/bin/
git

No

repository String Path to Git repository n/a Yes

message String Use given tag message. See -m of git-
tag [http://www.kernel.org/pub/software/scm/
git/docs/git-tag.html]

n/a No

name String Tag name n/a Yes

commit String <commit> argument to git-tag n/a No

object String <object> argument to git-tag n/a No

pattern String <pattern> argument to git-tag n/a No

outputProperty String Property name to set with output value from
git-tag

n/a No

file String Take tag message from given file. See -
F of git-tag [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-tag.html]

n/a No

annotate Boolean Make unsigned, annotated tag object. See
-a of git-tag [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-tag.html]

false No

force Boolean Replace existing tag with given name. See
-f of git-tag [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-tag.html]

false No

delete Boolean Delete existing tags with given names. See
-d of git-tag [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-tag.html]

false No

list Boolean List tags with names matching given pattern.
See -l of git-tag [http://www.kernel.org/pub/
software/scm/git/docs/git-tag.html]

false No

163

http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html

Example

Name Type Description Default Required

num Integer Specifies how many lines from the annota-
tion, if any, are printed when using -l. See
-n of git-tag [http://www.kernel.org/pub/soft-
ware/scm/git/docs/git-tag.html]

n/a No

contains String Only list tags containing speci-
fied commit. See --contains of git-
tag [http://www.kernel.org/pub/software/scm/
git/docs/git-tag.html]

n/a No

sign Boolean Make GPG-signed tag. See -s of git-
tag [http://www.kernel.org/pub/software/scm/
git/docs/git-tag.html]

false No

keySign String Make GPG-signed tag, using giv-
en key. See -u of git-tag of git-
tag [http://www.kernel.org/pub/software/scm/
git/docs/git-tag.html]

n/a No

verify Boolean Verify GPG signature of given tag names.
See -v of git-tag [http://www.kernel.org/pub/
software/scm/git/docs/git-tag.html]

false No

C.23.1. Example

<property name = "repo.dir" value = "./relative/path/to/repo" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />

<!-- clone repository -->
<gitclone
 repository = "git://github.com/path/to/repo/repo.git"
 targetPath = "${repo.dir.resolved}" />

<gittag repository = "${repo.dir.resolved}" name = "ver1.0" />
<!-- Force duplicate tag creation -->
<gittag
 repository = "${repo.dir.resolved}"
 name = "ver1.0" force = "true"/>
<!-- Create tag with annotation and message -->
<gittag
 repository = "${repo.dir.resolved}"
 name = "ver1.0"
 annotate = "true" message = "Version 1.0 tag"/>
<!-- Delete tag -->
<gittag
 repository = "${repo.dir.resolved}"
 name = "ver2.0" delete = "true" />
<!-- List tags matching to pattern "marked" into "tags" variable -->
<gittag repository = "${repo.dir.resolved}"
 list = "true"
 outputProperty = "tags"
 pattern = "marked" />

C.24. GrowlNotifyTask
When you have a long process and want to be notified when it is finished, without to stay focused on
the console windows. Then use the GrowlNotify task.

164

http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html
http://www.kernel.org/pub/software/scm/git/docs/git-tag.html

GrowlNotifyTask

This task requires the PEAR Net_Growl [http://pear.php.net/package/Net_Growl] package installed
(version 2.6.0).

Features

• Compatible Windows and Mac/OSX

• Do not forget notification with sticky option

• Define priority of messages

• Send notification on private or public network

Table C.25: Attributes

Name Type Description Default Required

name String Name of application to be register Growl for
Phing

No

sticky Boolean Indicates if the notification should be sticky on
desktop

false No

message String Text of notification. Use \n to specify a line
break

n/a Yes

title String Title of notification GrowlNo-
tify

No

notification String The notification name/type General
Notifica-
tion

No

appicon String • absolute url (http://domain/image.png)

• absolute file path (c:\temp\image.png)

• relative file path (.\folder\image.png)

n/a No

host String The host address where to send the notifica-
tion

127.0.0.1 No

password String The password required to send notifications
over network

n/a No

priority String The notification priority. Valid values are :

• low

• moderate

• normal

• high

• emergency

normal No

protocol String The protocol used to send the notification. May
be either gntp or udp.

gntp No

icon String The icon to show for the notification.

Must be a valid file type (png, jpg, gif, ico). Can
be any of the following:

• absolute url (http://domain/image.png)

embed-
ded growl
icon v2

No

165

http://pear.php.net/package/Net_Growl
http://pear.php.net/package/Net_Growl

Examples

Name Type Description Default Required

• absolute file path (c:\temp\image.png)

• relative file path (.\folder\image.png)

C.24.1. Examples

Send a single notification on a remote host

Both sender and Growl client (Mac or Windows) should share the same password.

<?xml version="1.0" encoding="UTF-8"?>
<project name = "phing-GrowlNotifyTask" basedir = "." default = "notification">

 <target name = "notification"
 description = "display a single message with growl gntp over network"
 >
 <growlnotify message = "Deployment of project LAMBDA is finished."
 host = "192.168.1.2"
 password = "seCretPa$$word"
 />
 </target>

</project>

Send a single notification with UDP protocol

When you don't have a Macintosh, OS compatible with Growl GNTP, you should use the basic UDP
protocol.

<?xml version="1.0" encoding="UTF-8"?>
<project name = "phing-GrowlNotifyTask" basedir = "." default = "notification">

 <target name = "notification"
 description = "display a single message with growl udp over network"
 >
 <growlnotify message = "Notify my MAC that does not accept GNTP."
 host = "192.168.1.2"
 password = "seCretPa$$word"
 protocol = "udp"
 />
 </target>

</project>

Send an important notification

If you want to send a notification that is so important that you don't want to missed it, even if you are
away from your computer. Use the sticky attribute.

<?xml version="1.0" encoding="UTF-8"?>
<project name = "phing-GrowlNotifyTask" basedir = "." default = "notification">

 <target name = "notification"
 description = "display a sticky message on desktop"
 >
 <growlnotify message = "Project LAMDBA, unit tests FAILED."
 priority = "high"
 sticky = "true"
 />
 </target>

166

HgAddTask

</project>

Use your icons to identify an application

You may customize the Growl notification system, with different icons and more.

<?xml version="1.0" encoding="UTF-8"?>
<project name = "phing-GrowlNotifyTask" basedir = "." default = "notification">

 <target name = "notification"
 description = "display a custom icon message"
 >
 <growlnotify message = "Have a look on my beautiful message!"
 name = "phing Notifier"
 title = "phing notification"
 priority = "low"
 sticky = "false"
 appicon = "../images/my_icon.png"
 />
 </target>

</project>

C.25. HgAddTask
Add files to Mercurial repository on the next commit. This is available for PHP 5.4 and higher.

Table C.26: Attributes

Name Type Description Default Required

repository String Path to Mercurial repository. n/a Yes

C.25.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />
<hgadd repository = "${repo.dir.resolved}">
 <fileset dir = "."/>
</hgadd>

C.25.2. Supported Nested Tags

• fileset

C.26. HgArchiveTask
Create an unversioned archive of a Mercurial repository revision. This is available for PHP 5.4 and
higher.

167

Example

Table C.27: Attributes

Name Type Description Default Required

destination String Name of archive to create. n/a Yes

revision String Revision to distribute in the archive. n/a No

C.26.1. Example

<property name = "version" value = "v0_1_2"/>
<hgarchive destination = "${version}.zip" />
<hgarchive destination = "${version}.tgz" />

C.27. HgCloneTask
Make a copy of an existing Mercurial repository. This is available for PHP 5.4 and higher.

Table C.28: Attributes

Name Type Description Default Required

insecure Boolean Do not verify server certificate. false No

repository String Path to Mercurial repository. n/a Yes

targetPath String Directory to clone into. n/a Yes

quiet Boolean Work silently unless an error occurs. false No

C.27.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<property name = "repo.url" value = "https://bitbucket.org/spaetz/ceyx-mapcss" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />
<hgclone repository = "${repo.url}" quiet = "false" insecure = "true" targetPath = "${repo.dir.resolved}"/>

C.28. HgCommitTask
Commit changes to a Mercurial repository. This is available for PHP 5.4 and higher.

Table C.29: Attributes

Name Type Description Default Required

message String Commit message. n/a Yes

quiet Boolean Work silently unless an error occurs. false No

repository String Path to Mercurial repository. n/a No

168

Example

Name Type Description Default Required

user String User to record as the committer. n/a No

C.28.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />
<hgcommit message = "[ci skip] Compress .js files." user = "phingbot" repository = "${repo.dir.resolved}"/>

C.29. HgInitTask
Create a new Mercurial repository. This is available for PHP 5.4 and higher.

Table C.30: Attributes

Name Type Description Default Required

insecure Boolean Do not verify server certificate. false No

quiet Boolean Work silently unless an error occurs. false No

repository String Path to Mercurial repository. n/a No

C.29.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />
<hginit repository = "${repo.dir.resolved}"/>

C.30. HgLogTask
Show revision history of entire Mercurial repository or files, or limit to a number of revisions. Optionally
store the history to a phing property. This is available for PHP 5.4 and higher.

Table C.31: Attributes

Name Type Description Default Required

format String Display with template, e.g. "{rev}\n", "{branch}"
etc.

n/a No

maxCount Integer Number of commits to show/limit. n/a No

outputProperty String Property name to set output value to from the
execution.

n/a No

repository String Path to Mercurial repository. n/a Yes

169

Example

Name Type Description Default Required

revision String Show the specified revision or range. n/a Yes

C.30.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<resolvepath propertyName = "repo.dir.resolved" file = "${repo.dir}" />
<hglog maxCount = "1" format = "{files}\n" outputproperty = "hgfiles" repository = "${repo.dir.resolved}"/>

C.31. HgPullTask
Pull changes from a specified Mercurial repository to a local one. This is available for PHP 5.4 and
higher.

Table C.32: Attributes

Name Type Description Default Required

insecure Boolean Do not verify server certificate. false No

quiet Boolean Work silently unless an error occurs. false No

repository String Path to Mercurial repository. n/a No

C.31.1. Example

<hgpull quiet = "false" insecure = "true" repository = "${repo.dir}"/>

C.32. HgPushTask
Push changes from the local Mercurial repository to the specified destination. This is available for PHP
5.4 and higher.

Table C.33: Attributes

Name Type Description Default Required

insecure Boolean Do not verify server certificate. false No

quiet Boolean Work silently unless an error occurs. false No

repository String Path to Mercurial repository. n/a No

C.32.1. Example

<property name = "repo.dir" value = "./repo.directory" />

170

HgRevertTask

<hgpush haltonerror = "true" repository = "{repo.dir.resolved}"/>

C.33. HgRevertTask
Revert files to their checkout state from the Mercurial repository. This is available for PHP 5.4 and
higher.

Table C.34: Attributes

Name Type Description Default Required

all Boolean Revert all Changes when no other details are
given.

false No

name String Name of file to revert. n/a No

quiet Boolean Work silently unless an error occurs. false No

revision String Revision to revert to. n/a No

C.33.1. Example

<hgrevert all = "true"/>

C.34. HgTagTask
Add a tag for the current or specified revision of the local Mercurial repository. This is available for
PHP 5.4 and higher.

Table C.35: Attributes

Name Type Description Default Required

message String Message to add/edit tag with. n/a No

name String Name of tag. n/a Yes

repository String Path to Mercurial repository. n/a No

revision String Revision to tag. n/a No

user String User to record as the committer. n/a No

C.34.1. Example

<hgtag user = "phingbot" message = "tagging new release" name = "v0.1.2"/>

C.35. HgUpdateTask
Update the Mercurial repository's working directory or switch revisions. This is available for PHP 5.4
and higher.

171

Example

Table C.36: Attributes

Name Type Description Default Required

branch String A specific branch to pull. n/a No

clean Boolean Discard uncommitted changes. false No

quiet Boolean Work silently unless an error occurs. false No

repository String Path to Mercurial repository. n/a Yes

C.35.1. Example

<property name = "repo.dir" value = "./repo.directory" />
<hgupdate repository = "${repo.dir.resolved}" branch = "dev"/>

C.36. HttpGetTask
This task will download a file through HTTP GET and save it to a specified directory. You need an
installed version of Guzzle [http://docs.guzzlephp.org/en/stable/] to use this task.

Table C.37: Attributes

Name Type Description Default Required

url String The request URL n/a Yes

dir String The directory to save the file n/a Yes

filename String The filename for the downloaded file The file-
name part
of the URL

No

followRedi-
rects

Boolean Whether to follow HTTP redirects false No

sslVerifyPeer Boolean Whether to verify SSL certificates true No

authUser String The authentication user name n/a No

authPassword String The authentication password n/a No

authScheme String The authentication scheme basic No

quiet Boolean If true, set default log level to
Project.MSG_ERR

false No

C.36.1. Example

<httpget url = "http://buildserver.com/builds/latest.stable.tar.bz2" dir = "/usr/local/lib"/>

C.36.2. Supported Nested Tags

• config

172

http://docs.guzzlephp.org/en/stable/
http://docs.guzzlephp.org/en/stable/

Global configuration

Holds additional config data. See Guzzle documentation [http://docs.guzzlephp.org/en/stable/re-
quest-options.html] for supported values.

Table C.38: Attributes

Name Type Description Default Required

name String Config parameter name n/a Yes

value Mixed Config value n/a Yes

• header

Holds additional header name and value.

Table C.39: Attributes

Name Type Description Default Required

name String Header name n/a Yes

value String Header value n/a Yes

C.36.3. Global configuration

In addition to configuring a particular instance of Guzzle via nested <config> tags it is also possible
to set default configuration values for HttpGetTask / HttpRequestTask / VisualizerTask by setting ph-
ing.http.* properties.

<property name="phing.http.proxy" value="socks5://localhost:1080/"/>
<!-- This request will go through the default proxy -->
<httpget url="http://example.com/file.zip" dir="./"/>
<httpget url="http://example.org/file.exe" dir="./">
 <!-- This proxy will be used instead of the default one -->
 <config name="proxy" value="http://foo:bar@proxy.example.org:3128/"/>
</httpget>

C.37. HttpRequestTask
This task will make an HTTP request to the provided URL and match the response against the provided
regular expression. If an regular expression is provided and doesn't match the build will fail. You need
an installed version of Guzzle [http://docs.guzzlephp.org/en/stable/] to use this task.

Table C.40: Attributes

Name Type Description Default Required

url String The request URL n/a Yes

responseRegex String The regular expression for matching the re-
sponse

n/a No

responseC-
odeRegex

String The regular expression for matching the re-
sponse code

n/a No

authUser String The authentication user name n/a No

173

http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/
http://docs.guzzlephp.org/en/stable/

Example

Name Type Description Default Required

authPassword String The authentication password n/a No

authScheme String The authentication scheme basic No

verbose Boolean Whether to enable detailed logging false No

method String The HTTP method of the request, currently on-
ly GET or POST supported

GET No

C.37.1. Example

<http-request url = "http://my-production.example.com/check-deployment.php"/>

Just perform a HTTP request to the given URL.

<http-request
 url = "http://my-production.example.com/check-deployment.php"
 responseRegex = "/Heartbeat/"
 verbose = "true"
 observerEvents = "connect, disconnect"/>

Perform a HTTP request to the given URL and matching the response against the given regex pattern.
Enable detailed logging and log only the specified events.

<http-request url = "http://my-production.example.com/check-deployment.php">
 <header name = "user-agent" value = "Phing HttpRequestTask"/>
 </http-request>

Perform a HTTP request to the given URL. Setting request adapter to curl instead of socket. Setting
an additional header.

<http-request
 url = "http://my-production.example.com/check-deployment.php"
 verbose = "true"
 method = "POST">
 <postparameter name = "param1" value = "value1" />
 <postparameter name = "param2" value = "value2" />
 </http-request>

Perform an HTTP POST request to the given URL. Setting POST request parameters to emulate form
submission.

C.37.2. Supported Nested Tags

• config

Holds additional config data. See Guzzle documentation [http://docs.guzzlephp.org/en/stable/re-
quest-options.html] for supported values.

Table C.41: Attributes

Name Type Description Default Required

name String Config parameter name n/a Yes

value Mixed Config value n/a Yes

174

http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html

Global configuration

• header

Holds additional header name and value.

Table C.42: Attributes

Name Type Description Default Required

name String Header name n/a Yes

value String Header value n/a Yes

• postparameter

Used when performing a POST request. Contains name and value of a form field.

Table C.43: Attributes

Name Type Description Default Required

name String Field name n/a Yes

value String Field value n/a Yes

C.37.3. Global configuration

In addition to configuring a particular instance of Guzzle via nested <config> tags it is also possible
to set default configuration values for HttpGetTask / HttpRequestTask / VisualizerTask by setting ph-
ing.http.* properties.

<property name="phing.http.proxy" value="socks5://localhost:1080/"/>
<!-- This request will go through the default proxy -->
<http-request url="http://example.com/foo"/>
<http-request url="http://example.org/restricted" dir="./">
 <!-- This proxy will be used instead of the default one -->
 <config name="proxy" value="http://foo:bar@proxy.example.org:3128/"/>
</http-request>

C.38. IniFileTask
The IniFileTask is inspired by the Ant-Contrib IniFile [http://ant-contrib.sourceforge.net/tasks/tasks/
inifile.html] and can be used to build and edit .ini files. Unlike the Ant equivalent, it can also read values
from different sections of an .ini file and set the retrieved values to specified properties.

Table C.44: Attributes

Name Type Description Default Required

dest string The name of the .ini file to write to. If not spec-
ified, the source file will be modified instead.

none No

haltOnError boolean Should the build fail when problems occur? false No

source string The name of the .ini file to read from. If not
specified, the dest file will be used instead.

none No

175

http://ant-contrib.sourceforge.net/tasks/tasks/inifile.html
http://ant-contrib.sourceforge.net/tasks/tasks/inifile.html
http://ant-contrib.sourceforge.net/tasks/tasks/inifile.html

Supported Nested Tags

C.38.1. Supported Nested Tags

• get

Use to read a value from a specific key and section of an .ini file

Table C.45: Attributes

Name Type Description Default Required

default String Value to return if section, property or value
are not set

n/a No

section String Name of the section. n/a Yes

property String Name of the key, in the specified section, to
read

n/a Yes

outputpropertyString Name of the property to set the value to n/a Yes

• remove

Use to remove either a specific key or section from an .ini file

Table C.46: Attributes

Name Type Description Default Required

section String Name of the section. n/a Yes

property String Name of the key to remove. If not specified
the entire section is removed.

n/a No

• set

Use to set a key in a section to a specific value

Table C.47: Attributes

Name Type Description Default Required

section String Name of the section. n/a Yes

property String Name of the key/property. n/a Yes

operation String The operation to perform on the existing val-
ue, which must be numeric. Possible values
are "+" and "-", which add and subtract 1, re-
spectively from the existing value. If the val-
ue doesn't already exist, the set is not per-
formed, triggering an error.

n/a No

value String The new value for the property. n/a No, if operation
is specified.

C.38.2. Example

<inifile
 haltonerror = "no"
 dest = "${project.basedir}/application/configs/application.ini">
 <set section = "production" property = "buildTimestamp" value = "${DSTAMP}${TSTAMP}" />
 <set section = "production" property = "buildNumber" operation = "+" />
 <remove section = "development : staging" />

176

IoncubeEncoderTask

</inifile>

C.39. IoncubeEncoderTask
The IoncubeEncoderTask executes the ionCube [http://www.ioncube.com] encoder (for either PHP4
or PHP5 projects).

For more information on the meaning of the various options please consult the ionCube user guide
[http://www.ioncube.com/USER-GUIDE.pdf].

Table C.48: Attributes

Name Type Description Default Required

allowedserver String Restricts the encoded files to particular
servers and/or domains. Consult the IonCude
documentation for more information.

none No

binary Boolean Whether to save encoded files in binary format
(default is ASCII format)

false No

copy String Specifies files or directories to exclude from
being encoded or encrypted and copy them to
the target directory (separated by space).

none No

encode String Specifies additional file patterns, files or direc-
tories to encode, or to reverse the effect of
copy

none No

encrypt String Specify files or directories (space separated
list) that are to be encrypted.

none No

expirein String Sets a period in seconds (s), minutes (m),
hours (h) or days (d) after which the files ex-
pire. Accepts: 500s or 55m or 24h or 7d

none No

expireon String Sets a YYYY-MM-DD date to expire the files. none No

fromdir String Path containing source files none Yes

ignore String Set files and directories to ignore entirely and
exclude from the target directory (separated
by space).

none Yes

ioncubepath String Path to the ionCube binaries /usr/
local/ion-
cube

No

keep String Set files and directories not to be ignored (sep-
arated by space).

none No

licensepath String Path to the license file that will be used by the
encoded files

none No

nodoccomments String Omits documents comments (/** ... */) from
the encoded files.

none No

obfuscationkey String The obfuscation key must be supplied when
using the obfuscate option

none No

obfuscate String The Encoder can obfuscate the names of
global functions, the names of local variables

none No

177

http://www.ioncube.com
http://www.ioncube.com
http://www.ioncube.com/USER-GUIDE.pdf
http://www.ioncube.com/USER-GUIDE.pdf

Example

Name Type Description Default Required

in global functions, and line numbers. Use ei-
ther all or any of functions, locals or
linenos separated by a space.

optimize String Controls the optimization of the encoded files,
accepts either more or max

none No

passphrase String The passphrase to use when encoding with a
license file

none No

phpversion String Defines which php encoder version will be
used (suffix of the encoder file)

5 No

targetoption String Option to use when target directory exists, ac-
cepts replace, merge, update and rename

none No

todir String Path to save encoded files to none Yes

withoutrun-
timeloadersup-
port

Boolean Whether to disable support for runtime initial-
ization of the ionCube Loader

false No

noshortopen-
tags

Boolean Whether to disable support for short PHP tagsfalse No

callbackfile String Path to callback file (.php) n/a No

obfuscationex-
clusionsfile

String Path to obfuscation exclusions file n/a No

ignoredepre-
catedwarnings

Boolean Whether to ignore deprecated warnings false No

ignorestrict-
warnings

Boolean Whether to ignore strict warnings false No

allowencoding-
intosource

Boolean Whether to allow encoding into the source treefalse No

mes-
sageifnoloader

String A valid PHP expression to customize the "no
loader installed" message

n/a No

action-
ifnoloader

String A valid PHP expression to replace the "no
loader installed" action

n/a No

showcommand-
line

Boolean whether to show command line before it is ex-
ecuted

false No

C.39.1. Example

<ioncubeencoder
 binary = "true"
 copy = "*.ini config/*"
 encode = "*.inc licenses/license.key"
 encrypt = "*.tpl *.xml"
 fromdir = "files"
 ignore = "*.bak RCS/ *~ docs/"
 ioncubepath = "/usr/local/ioncube"
 keep = "docs/README"
 licensepath = "mylicense.txt"
 optimize = "max"
 passphrase = "mypassphrase"
 phpversion = "4"

178

Supported Nested Tags

 noshortopentags = "false"
 targetoption = "replace"
 todir = "encoded"
 withoutruntimeloadersupport = "true"
 callbackfile = "errhandler.php"
 obfuscationexlusionsfile = "obfex.txt">
 <comment>A project encoded with the ionCube encoder.</comment>
</ioncubeencoder>

C.39.2. Supported Nested Tags

• comment

Custom text that is added to the start of each encoded file.

C.40. IoncubeLicenseTask
The IoncubeLicenseTask executes the ionCube [http://www.ioncube.com] make_license program.

For more information on the meaning of the various options please consult the ionCube user guide
[http://www.ioncube.com/USER-GUIDE.pdf].

Table C.49: Attributes

Name Type Description Default Required

ioncubepath String Path to the ionCube binaries /usr/
local/ion-
cube

No

licensepath String Path to the license file that will be generated none No

passphrase String The passphrase to use when generating the
license file

none No

allowedserver String Restricts the license to particular servers and/
or domains. Consult the IonCude documenta-
tion for more information.

none No

expirein String Sets a period in seconds (s), minutes (m),
hours (h) or days (d) after which the license
expires. Accepts: 500s or 55m or 24h or 7d.

none No

expireon String Sets a YYYY-MM-DD date to expire the li-
cense.

none No

C.40.1. Example

<ioncubelicense
 ioncubepath = "/usr/local/ioncube"
 licensepath = "mylicense.txt"
 passphrase = "mypassphrase"
 allowedserver = "00:06:4F:01:8F:2C"
 expireon = "2010-09-01"
 expirein = "7d">
 <comment>A license file made with the ionCube encoder.</comment>

179

http://www.ioncube.com
http://www.ioncube.com
http://www.ioncube.com/USER-GUIDE.pdf
http://www.ioncube.com/USER-GUIDE.pdf

Supported Nested Tags

</ioncubelicense>

C.40.2. Supported Nested Tags

• comment

Custom text that is added to the start of each encoded file.

C.41. JsHintTask
This task runs JSHint [http://www.jshint.com/], a tool that helps to detect errors and potential problems
in JavaScript code. JSHint 2.5.6+ is supported, although latest JSHint is recommended.

Table C.50: Attributes

Name Type Description Default Required

file String Single file to perform check on. n/a No, unless no
fileset el-
ements are
present

haltOnError boolean Should the build fail when there are errors in
the JS code?

false No

haltOnWarning boolean Should the build fail when there are warnings
in the JS code?

false No

reporter String JSHint reporter. check-
style

No

checkstyleRe-
portPath

String Path where the the report in Checkstyle format
should be saved.

n/a No

config String JSHint config path. n/a No

C.41.1. Example

 <jshint
 haltonerror = "false"
 haltOnWarning = "false"
 reporter = "jslint"
 checkstyleReportPath = "${project.basedir}/build/checkstyle-jshint.xml">
 <fileset dir = "${project.basedir}/public_html/www/js">
 <include name = "**/**.js"/>
 <exclude name = "js-cache/**"/>
 </fileset>
 </jshint>

C.41.2. Supported Nested Tags

• fileset

180

http://www.jshint.com/
http://www.jshint.com/

JsMinTask

C.42. JsMinTask
The JsMinTask minifies JavaScript files using JShrink [https://github.com/tedivm/JShrink], which can
be installed using composer (Phing will try to use the composer autoloader)

Table C.51: Attributes

Name Type Description Default Required

targetDir String Path where to store minified JavaScript files none Yes

suffix String Suffix to append to the filenames. -min No

failonerror Boolean Whether an error while minifying a JavaScript
file should stop the build or not

false No

C.42.1. Example

<jsMin targetDir = "docroot/script/minified" failOnError = "false">
 <fileset dir = "docroot/script">
 <include name = "**/*.js"/>
 </fileset>
</jsMin>

C.42.2. Supported Nested Tags

• fileset

JavaScript files to be minified.

C.43. JslLintTask
The JslLintTask uses the Javascript Lint [http://www.javascriptlint.com] program to check the sytax
on one or more JavaScript source code files.

NB: the Javascript lint program must be in the system path!

Table C.52: Attributes

Name Type Description Default Required

executable String Path to JSL executable jsl No

file String Path to source file n/a No, unless no
fileset el-
ements are
present

haltonfailure Boolean Stop the build process if the linting process en-
counters an error.

false No

haltonwarning Boolean Stop the build process if the linting process en-
counters a warning.

false No

showwarnings Boolean Sets the flag if warnings should be shown. true No

cachefile String If set, enables writing of last-modified times to
cachefile, to speed up processing of files
that rarely change

none No

181

https://github.com/tedivm/JShrink
https://github.com/tedivm/JShrink
http://www.javascriptlint.com
http://www.javascriptlint.com

Example

Name Type Description Default Required

conffile String Path to JSL config file none No

tofile String File to write list of 'bad files' to. n/a No

C.43.1. Example

<jsllint
 file = "path/to/source.js"/>

Checking syntax of one particular source file.

<jsllint>
 <fileset dir = "src">
 <include name = "**/*.js"/>
 </fileset>
</jsllint>

Check syntax of a fileset of source files.

C.43.2. Supported Nested Tags

• fileset

C.44. LiquibaseChangeLogTask
The LiquibaseChangeLogTask writes the Change Log XML to copy the current state of the database
to the given changeLogFile.

Table C.53: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes

true No

182

Example

Name Type Description Default Required

display, outputProperty and checkRe-
turnare ignored.

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.44.1. Example

<liquibase-changelog
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"
 username = "liquibase"
 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 />

C.44.2. Supported Nested Tags

• parameter

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.45. LiquibaseDbDocTask
The LiquibaseDbDocTask generates a Javadoc-like documentation based on current database and
the given changelog file.

Table C.54: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC URL representing the database
data source, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

183

Example

Name Type Description Default Required

outputDir String Absolute path where the documentation gets
written to. If the given directory does not exist,
it get`s created automatically.

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

true No

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.45.1. Example

<liquibase-dbdoc
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"
 username = "liquibase"
 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 outputDir = "/tmp/generateddocs"
 />

C.45.2. Supported Nested Tags

• parameter

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.46. LiquibaseDiffTask
The LiquibaseDiffTask creates a diff between two databases. Will output the changes needed to
convert the reference database to the state of the database.

Table C.55: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

184

Example

Name Type Description Default Required

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

referenceUser-
name

String The username needed to connect to the refer-
ence database.

n/a Yes

referencePass-
word

String The password needed to connect to the refer-
ence database.

n/a Yes

referenceUrl String The JDBC Url representing the database ref-
erence datasource, e.g jdbc:mysql://lo-
calhost/refdatabase

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

true No

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.46.1. Example

<liquibase-diff
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"
 username = "liquibase"
 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 referenceUsername = "liquibase"
 referencePassword = "liquibase"
 referenceUrl = "jdbc:mysql://localhost/refdatabase"
 />

C.46.2. Supported Nested Tags

• parameter

185

LiquibaseRollbackTask

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.47. LiquibaseRollbackTask
The LiquibaseRollbackTask rolls back the database to the state is was when the tag was applied.

Table C.56: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

rollbackTag String The name of the tag to roll the database back
to.

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

true No

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.47.1. Example

<liquibase-rollback
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"
 username = "liquibase"

186

Supported Nested Tags

 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 rollbackTag = "tag_0_1"
 />

C.47.2. Supported Nested Tags

• parameter

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.48. LiquibaseTagTask
The LiquibaseTagTask tags the current database state for future rollback.

Table C.57: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

tag String The name of the tag to apply. n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

true No

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

187

Example

C.48.1. Example

<liquibase-tag
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"
 username = "liquibase"
 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 tag = "tag_0_1"
 />

C.48.2. Supported Nested Tags

• parameter

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.49. LiquibaseTask
The LiquibaseTask is a generic task for liquibase commands that don't require extra command
parameters. You can run commands like updateSQL, validate or updateTestingRollback with
this task but not rollbackToDateSQL since it requires a date parameter after the command.

Table C.58: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

command String What liquibase command to run. Currently on-
ly supports commands that doesn't require
command parameters, such as validate and
updateSQL.

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-

true No

188

Example

Name Type Description Default Required

wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.49.1. Example

 <liquibase
 jar = "./vendor/alcaeus/liquibase/liquibase.jar"
 classpathref = "./libs/mysql-connector-java.jar"
 changelogFile = "./DB/master.xml"
 username = "${deploy.user}"
 password = "${deploy.password}"
 url = "jdbc:mysql://${database.host}/${database.name}"
 display = 'true'
 checkreturn = "true"
 passthru = 'false'
 outputProperty = "liquibase.updateSQL.output"
 command = "updateSQL"
 >
 <parameter name = "logLevel" value = "info" />
 <property name = "tablename" value = "Person" />
 </liquibase>

The nested parameters in the example above will result in the command:

 --logLevel='info' updateSQL -Dtablename='Person'

C.49.2. Supported Nested Tags

• parameter

Use these nested parameter tags to set optional liquibase commands like --logLevel or --defaultsFile.

Table C.59: Attributes

Name Type Description Default Required

name String Name of the liquibase parameter. Do not in-
clude the '--'.

n/a Yes

value String Value of the liquibase parameter. n/a Yes

• property

These tags are used to set what Liquibase calls "Change Log Properties" which are used for substi-
tution in the change log(s). Note that they are not the same thing as regular Phing properties.

189

LiquibaseUpdateTask

Table C.60: Attributes

Name Type Description Default Required

name String Name of the property. Do not include the '-D'.n/a Yes

value String Value of the property. n/a Yes

C.50. LiquibaseUpdateTask
The LiquibaseUpdateTask applies the latest changes from the changelog file to the definied data-
base.

Table C.61: Attributes

Name Type Description Default Required

jar String Location of the Liquibase jar file. n/a Yes

classpath String Additional classpath entries. n/a Yes

changeLogFile String Location of the changelog file in which the
changes get written or read from.

n/a Yes

username String The username needed to connect to the data-
base.

n/a Yes

password String The password needed to connect to the data-
base.

n/a Yes

url String The JDBC Url representing the database
datasource, e.g jdbc:mysql://local-
host/mydatabase

n/a Yes

display Boolean Whether to display the output of the command.
Only used if passthru isn't true.

false No

passthru Boolean Whether to use PHP's passthru() function
instead of exec(). True by default for back-
wards compatibility. When true, the attributes
display, outputProperty and checkRe-
turnare ignored.

true No

checkreturn Boolean Whether to check the return code of the exe-
cution, throws a BuildException when return-
code != 0.

false No

outputProperty String Property name to set output value to from the
execution. Ignored if passthru attribute is
true.

n/a No

C.50.1. Example

<liquibase-update
 jar = "/usr/local/lib/liquibase/liquibase.jar"
 classpathref = "/usr/local/lib/liquibase/lib/mysql-connector-java-5.1.15-bin.jar"
 changelogFile = "./changelogTest.xml"

190

Supported Nested Tags

 username = "liquibase"
 password = "liquibase"
 url = "jdbc:mysql://localhost/mydatabase"
 />

C.50.2. Supported Nested Tags

• parameter

Same as for Section C.49, “LiquibaseTask”.

• property

Same as for Section C.49, “LiquibaseTask”.

C.51. MailTask
A task to send email. Attachments are supported if the PEAR Mail package [http://pear.php.net/pack-
age/Mail] is installed.

Table C.62: Attributes

Name Type Description Default Required

from String Email address of sender. none Yes

tolist String Comma-separated list of recipients. none Yes

message String Message to send in the body of the email. none No

subject String Email subject line. none No

backend String PEAR Mail backend (see here [http://pear.ph-
p.net/manual/en/
package.mail.mail.factory.php] for possible
values).

mail No

backendParams String Comma-separated key-value pairs with
backend specific parameters (see
here [http://pear.php.net/manual/en/pack-
age.mail.mail.factory.php] for possible val-
ues).

none No

C.51.1. Example

<mail tolist = "user@example.org" subject = "build complete"">
 The build process is a success...
</mail>

C.51.2. Supported Nested Tags

• fileset

191

http://pear.php.net/package/Mail
http://pear.php.net/package/Mail
http://pear.php.net/package/Mail
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php
http://pear.php.net/manual/en/package.mail.mail.factory.php

NotifySendTask

Files to be attached.

C.52. NotifySendTask
This is a wrapper for notify-send, a Linux program that sends desktop notifications to a notification
daemon.

On Windows machines, this port [http://vaskovsky.net/notify-send/] may help.

Table C.63: Attributes

Name Type Description Default Required

icon string Specify an icon filename or stock icon to dis-
play.

info No

message String Text to display. Use \n to specify a line break n/a Yes

title String Title, or summary, of the notification. none No

C.53. OpenTask
Open a file or URL in the user's preferred application.

OpenTaskwill not fail ifpathattribute is invalid. Therefore, this task must not be used to check the
validity of a file or URL.

Table C.64: Attributes

Name Type Description Default Required

path String File path or URL to open. n/a Yes

C.53.1. Examples

Open http://localhost:8080/ on your browser.

<open path = "http://localhost:8080/"/>

Open ./docs/images/screenshot.png on your image viewer.

<open path = "./docs/images/screenshot.png"/>

C.54. PDOSQLExecTask
The PDOSQLExecTask executes SQL statements using PDO.

192

http://vaskovsky.net/notify-send/
http://vaskovsky.net/notify-send/

Example

Note

The combination of large SQL files and delimitertype set to normal can trigger segmentation
faults with large files.

Table C.65: Attributes

Name Type Description Default Required

url String PDO connection URL (DSN) none Yes

userid String Username for connection (if it cannot be spec-
ified in URL)

none No

password String The password to use for the connection (if it
cannot be specified in URL)

none No

src File A single source file of SQL statements to ex-
ecute.

none No

onerror String The action to perform on error (continue, stop,
or abort)

abort No

failonconnec-
tionerror

Boolean If false, will not execute any statement if the
task fails to connect to the database.

true No

delimiter String The delimiter to separate SQL statements
(e.g. "GO" in MSSQL)

; No

delimitertype String The delimiter type ("normal", "row" or "none").
Normal means that any occurrence of the de-
limiter terminate the SQL command whereas
with row, only a line containing just the delim-
iter is recognized as the end of the command.
None disables all delimiter detection.

none No

autocommit Boolean Whether to auto (implicitly) commit every sin-
gle statement, disabling transactions.

false No

keepformat Boolean Control whether the format of SQL will be pre-
served. Useful when loading packages and
procedures.

false No

expandproper-
ties

Boolean Set to false to turn off property expansion in
nested SQL, inline in the task or nested trans-
actions.

true No

errorproperty String The name of a property to set in the event of
an error.

none No

statement-
countproperty

String The name of a property to set to the number
of statements executed successfully.

none No

You can also use PDOSQLExecTask as condition

C.54.1. Example

<pdosqlexec url = "pgsql:host=localhost dbname=test">
 <fileset dir = "sqlfiles">
 <include name = "*.sql"/>
 </fileset>

193

Supported Nested Tags

</pdosqlexec>

<pdosqlexec url = "mysql:host=localhost;dbname=test"
 userid = "username" password = "password">
 <transaction src = "path/to/sqlfile.sql"/>
 <formatter type = "plain" outfile = "path/to/output.txt"/>
</pdosqlexec>

<property name = "color" value = "orange"/>
<pdosqlexec url = "mysql:host=localhost;dbname=test"
 userid = "username" password = "password">
 <transaction>
 SELECT * FROM products WHERE color = '${color}';
 </transaction>
 <formatter type = "xml" outfile = "path/to/output.xml"/>
</pdosqlexec>

Note

Because of backwards compatibility, the PDOSQLExecTask can also be called using the 'pdo'
statement.

<pdo url = "pgsql:host=localhost dbname=test">
 <fileset dir = "sqlfiles">
 <include name = "*.sql"/>
 </fileset>

 <!-- xml formatter -->
 <formatter type = "xml" output = "output.xml"/>

 <!-- custom formatter -->
 <formatter classname = "path.to.CustomFormatterClass">
 <param name = "someClassAttrib" value = "some-value"/>
 </formatter>

 <!-- No output file + usefile=false means it goes to phing log -->
 <formatter type = "plain" usefile = "false" />
</pdo>

C.54.2. Supported Nested Tags

• transaction

Wrapper for a single transaction. Transactions allow several files or blocks of statements to be exe-
cuted using the same PDO connection and commit operation in between.

Table C.66: Attributes

Name Type Description Default Required

src String File with statements to be run as one trans-
action

n/a No

• fileset

Files containing SQL statements.

• filelist

194

PHPMDTask

Files containing SQL statements.

• formatter

The results of any queries that are executed can be printed in different formats. Output will always
be sent to a file, unless you set the usefile attribute to false. The path to the output file can be
specified by the outfile attribute; there is a default filename that will be returned by the formatter
if no output file is specified.

There are three predefined formatters - one prints the query results in XML format, the other emits
plain text. Custom formatters that extend Phing\Task\System\Pdo\PDOResultFormatter can
be specified.

Table C.67: Attributes

Name Type Description Default Required

type String Use a predefined formatter (either xml or
plain).

n/a

classname String Name of a custom formatter class (must ex-
tend Phing\Task\System\Pdo\PDORe-
sultFormatter).

n/a

One of these
attributes is re-
quired.

usefile Boolean Boolean that determines whether output
should be sent to a file.

true No

outfile File Path to file in which to store result. Depends
on format-
ter

No

append Boolean Whether output should be appended to or
overwrite an existing file.

false No

showheaders Boolean (only applies to plain formatter) Whether to
show column headers.

false No

showtrailers Boolean (only applies to plain formatter) Whether to
show successful executed statement counter
trailers.

false No

coldelim String (only applies to plain formatter) The column
delimiter.

, No

rowdelim String (only applies to plain formatter) The row de-
limiter.

\n No

encoding String (only applies to XML formatter) The xml doc-
ument encoding.

(PHP de-
fault)

No

formatoutput Boolean (only applies to XML formatter) Whether to
format XML output.

true No

C.55. PHPMDTask
This task runs phpmd [http://phpmd.org], a Project Mess Detector (PMD) for PHP Code. You need an
installed version of this software to use this task.

NB: if you have installed the PHPMD Phar file, make sure you set the pharLocation attribute!

195

http://phpmd.org
http://phpmd.org

Example

Table C.68: Attributes

Name Type Description Default Required

file String Path to source file or path n/a Only when
there are no
nested file-
set elements

rulesets String Sets the rulesets used for analyzing the
source code

codesize,
unused-
code

No

minimumPriori-
ty

Integer The minimum priority for rules to load. 5 No

allowedFileEx-
tensions

String Comma-separated list of valid file extensions
(without dot) for analyzed files.

php No

ignorePatterns String Comma-separated list of directory patterns to
ignore.

.git,

.svn,
CVS,
.bzr,
.hg

No

format String The format for the report when no nested for-
matter is used.

text No

pharlocation String Location of the PHPMD Phar file. n/a No

cachefile String If set, enables writing of last-modified times to
cachefile, to speed up processing of files
that rarely change

none No

C.55.1. Example

<phpmd file = "path/to/source.php"/>

Checking syntax of one particular source file. Sending Text-Report to STDOUT.

<phpmd file = "path/to/source">
 <formatter type = "html" outfile = "reports/pmd.html"/>
 </phpmd>

Checking syntax of source files in the given path.

<phpmd>
 <fileset dir = "${builddir}">
 <include name = "apps/**/*.php" />
 <include name = "lib/de/**/*.php" />
 </fileset>
 <formatter type = "xml" outfile = "reports/pmd.xml"/>
 </phpmd>

Checking syntax of source files in the fileset pathes.

C.55.2. Supported Nested Tags

• fileset

This nested tag is required when the file attribute is not set.

196

PHPStanTask

• formatter

The results of the analysis can be printed in different formats. Output will always be sent to STDOUT,
unless you set the usefile attribute to true and set an filename in the outfile attribute.

Table C.69: Attributes

Name Type Description Default Required

type String The output format. Accepts the same values
as the format attribute (xml, html, text).

n/a Yes

usefile Boolean Boolean that determines whether output
should be sent to a file.

true No

outfile String Path to write output file to. n/a Yes

C.56. PHPStanTask
The PHPStanTask executes PHPStan - a PHP static analysis tool - with given configuration.

Table C.70: Base attributes

Name Type Description Default Required

command String PHPStan command name analyse No

executable String Path to PHPStan executable phpstan No

checkReturn Boolean Whether to check the return code. false No

passthru Boolean Whether to echo PHPStan's output on the
console.

false No

Table C.71: Analyse command attributes

Name Type Description Default Required

configuration String Path to configuration No

level String Analyse level No

noProgress String NO progress flag false No

debug String Debug flag false No

autoloadFile String Path to autoload file No

errorFormat String Error format No

memoryLimit String Memory limit No

paths String Paths (space separated) No

Table C.72: List command attributes

Name Type Description Default Required

format String Help format No

raw String Raw flag false No

namespace String Namespace No

197

Supported Nested Tags

Table C.73: Help command attributes

Name Type Description Default Required

format String Help format No

raw String Raw flag false No

commandName String Command name No

Table C.74: Common attributes

Name Type Description Default Required

help String Help flag false No

quiet String Quiet flag false No

version String Version flag false No

ansi String ANSI flag false No

noAnsi String No ANSI flag false No

noInteraction String No interaction flag false No

verbose String Verbose flag false No

C.56.1. Supported Nested Tags

• fileset

C.56.2. Example

 <phpstan
 command = "analyse"
 configuration = "anyConfiguration"
 level = "anyLevel"
 noProgress = "true"
 debug = "true"
 autoloadFile = "anyAutoloadFile"
 errorFormat = "anyErrorFormat"
 memoryLimit = "anyMemoryLimit"
 paths = "path1 path2"
 />

 <phpstan command = "analyse">
 <fileset refid = "files-to-analyse"/>
 </phpstan>

C.57. PHPUnitReport
This task transforms PHPUnit xml reports to HTML using XSLT.

198

Example

Table C.75: Attributes

Name Type Description Default Required

infile String The filename of the XML results file to use. test-
suites.xml

No

format String The format of the generated report. Must be
noframes or frames.

noframes No

styledir String The directory where the stylesheets are locat-
ed. They must conform to the following con-
ventions: frames format: the stylesheet must
be named phpunit-frames.xsl. noframes
format: the stylesheet must be named ph-
punit-noframes.xsl. If unspecified, the
task will look for the stylesheet(s) in the follow-
ing directories: the PHP include path, the Ph-
ing home directory and the PEAR data direc-
tory (if applicable).

n/a No

todir String An existing directory where the files resulting
from the transformation should be written to.

Yes

usesorttable Boolean Whether to use the sorttable JavaScript
library (see http://www.kryogenix.org/code/
browser/sorttable/)

false No

C.57.1. Example

<phpunitreport infile = "reports/testsuites.xml"
 format = "frames"
 todir = "reports/tests"
 styledir = "/home/phing/etc"/>

Generates a framed report in the directory reports/tests using the file reports/test-
suites.xml as input.

Important note: testclasses that are not explicitly placed in a package (by using a '@package' tag in
the class-level DocBlock) are listed under the "default" package.

C.58. PHPUnitTask
This task runs testcases using the PHPUnit [http://www.phpunit.de/] framework. It is a functional port
of the Ant JUnit [http://ant.apache.org/manual/OptionalTasks/junit.html] task.

NB: if you want to use the PHPUnit .phar file, please make sure you download the library version
(phpunit-library.phar) and you set the pharlocation attribute!

Table C.76: Attributes

Name Type Description Default Required

printsummary Boolean Print one-line statistics for each testcase. false No

bootstrap String The name of a bootstrap file that is run before
executing the tests.

none No

199

http://www.kryogenix.org/code/browser/sorttable/
http://www.kryogenix.org/code/browser/sorttable/
http://www.phpunit.de/
http://www.phpunit.de/
http://ant.apache.org/manual/OptionalTasks/junit.html
http://ant.apache.org/manual/OptionalTasks/junit.html

Supported Nested Tags

Name Type Description Default Required

codecoverage Boolean Gather code coverage information while run-
ning tests (requires Xdebug).

false No

haltonerror Boolean Stop the build process if an error occurs during
the test run.

false No

haltonfailure Boolean Stop the build process if a test fails (errors are
considered failures as well).

false No

haltondefect Boolean Stop the build process if a test has failures,
errors or warnings.

false No

haltonincom-
plete

Boolean Stop the build process if any incomplete tests
are encountered.

false No

haltonskipped Boolean Stop the build process if any skipped tests are
encountered.

false No

haltonwarning Boolean Stop the build process if any warnings are en-
countered.

false No

haltonrisky Boolean Stop the build process if any risky tests are
encountered.

false No

failureproper-
ty

String Name of property to set (to true) on failure. n/a No

errorproperty String Name of property to set (to true) on error. n/a No

incom-
pleteproperty

String Name of property to set (to true) on incomplete
tests.

n/a No

skippedproper-
ty

String Name of property to set (to true) on skipped
tests.

n/a No

warningproper-
ty

String Name of property to set (to true) on warnings.n/a No

riskyproperty String Name of property to set (to true) on risky tests.n/a No

usecustomer-
rorhandler

Boolean Use a custom Phing/PHPUnit error handler to
process PHP errors.

true No

processisola-
tion

Boolean Enable process isolation when executing
tests.

false No

configuration String Path to a PHPUnit configuration file (such
as phpunit.xml). Supported elements are:
bootstrap, processIsolation, sto-
pOnFailure, stopOnError, stopOnIn-
complete and stopOnSkipped. Values
provided overwrite other attributes!

n/a No

groups String Only run tests from the specified group(s). n/a No

excludeGroups String Exclude tests from the specified group(s). n/a No

pharlocation String Location of the PHPUnit PHAR package. n/a No

C.58.1. Supported Nested Tags

• formatter

200

Example

The results of the tests can be printed in different formats. Output will always be sent to a file, unless
you set the usefile attribute to false. The name of the file is predetermined by the formatter and
can be changed by the outfile attribute.

There are six predefined formatters. xml, clover, and crap4j print the test results in the JUnit,
Clover, and Crap4J XML formats respectively. The clover-html formatter prints code coverage
details to a set of HTML files. The plain formatter emits a short statistics line for all test cases.
The summary formatter print the same statistics as the plain formatter but only to the log output.
Custom formatters that implement Phing\Task\Ext\Formatter\PHPUnitResultFormatter
can be specified.

Table C.77: Attributes

Name Type Description Default Required

type String Use a predefined formatter (either xml,
plain, clover, clover-html, crap4j, or
summary).

n/a

classname String Name of a custom formatter class. n/a

One of these is
required.

usefile Boolean Boolean that determines whether output
should be sent to a file.

true No

todir String Directory to write the file to. n/a No

outfile String Filename of the result. Depends
on format-
ter

No

• batchtest

Define a number of tests based on pattern matching. batchtest collects the included files from
any number of nested <fileset>s. It then generates a lists of classes that are (in)directly defined by
each PHP file.

Table C.78: Attributes

Name Type Description Default Required

exclude String A list of classes to exclude from the pat-
tern matching. For example, when you have
two baseclasses BaseWebTest and Base-
MathTest, which are included a number of
testcases (and thus added to the list of test-
classes), you can exclude those classes from
the list by typing exclude="BaseWebTest
BaseMathTest".

n/a No

classpath String Used to define more paths on which - besides
the PHP include_path - to look for the test
files.

n/a No

name String The name that is used to create a testsuite
from this batchtest.

Phing
Batchtest

No

C.58.2. Example

<phpunit>
 <formatter todir = "reports" type = "xml"/>
 <batchtest>

201

Supported Nested Tags

 <fileset dir = "tests">
 <include name = "**/*Test*.php"/>
 <exclude name = "**/Abstract*.php"/>
 </fileset>
 </batchtest>
</phpunit>

Runs all matching testcases in the directory tests, writing XML results to the directory reports.

<phpunit codecoverage = "true" haltonfailure = "true" haltonerror = "true">
 <formatter type = "plain" usefile = "false"/>
 <batchtest>
 <fileset dir = "tests">
 <include name = "**/*Test*.php"/>
 </fileset>
 </batchtest>
</phpunit>

Runs all matching testcases in the directory tests, gathers code coverage information, writing plain
text results to the console. The build process is aborted if a test fails.

<phpunit bootstrap = "src/autoload.php">
 <formatter type = "plain" usefile = "false"/>
 <batchtest>
 <fileset dir = "tests">
 <include name = "**/*Test*.php"/>
 </fileset>
 </batchtest>
</phpunit>

Runs all matching testcases in the directory tests, writing plain text results to the console. Additionally,
before executing the tests, the bootstrap file src/autoload.php is loaded.

Important note: using a mechanism such as an "AllTests.php" file to execute testcases will bypass
the Phing hooks used for reporting and counting, and could possibly lead to strange results. Instead,
use one of more fileset's to provide a list of testcases to execute.

C.58.3. Supported Nested Tags

• fileset

C.59. ParallelTask
Executes nested tasks in parallel.

Parallel tasks have a number of uses in a Phing build file including:

• Taking advantage of available processing resources to execute external programs simultaneously.

• Testing servers, where the server can be run in one thread and the test harness is run in another
thread.

Any valid Phing task may be embedded within a parallel task, including other parallel tasks.

While the tasks within the parallel task are being run, the main thread will be blocked waiting for all the
child threads to complete. If one of the tasks within the parallel task fails, the remaining tasks will
continue to run until all tasks have completed. In this situation, the parallel task will also fail.

202

Example

The threadCount attribute can be used to place a maximum number of available threads for the exe-
cution. When not present the value is based on the number of processors present. When present then
the maximum number of concurrently executing tasks will not exceed the number of threads specified.
Furthermore, each task will be started in the order they are given. But no guarantee is made as to the
speed of execution or the order of completion of the tasks, only that each will be started before the next.

Warning

This task is highly experimental, and will only work on *nix machines that have the PHP pcntl exten-
sion installed.

Warning

In some cases, such as when running this task from the Phing's .phar bundle, stability issues can
occur. See this issue [https://github.com/phingofficial/guide/issues/51] for more details.

Table C.79: Attributes

Name Type Description Default Required

threadCount Integer Maximum number of threads / processes to
use.

n/a No

C.59.1. Example

<parallel threadCount = "4">
 <echo>Job 1</echo>
 <echo>Job 2</echo>
 <echo>Job 3</echo>
 <echo>Job 4</echo>
 </parallel>

C.60. PatchTask
The PatchTask uses the patch [http://savannah.gnu.org/projects/patch] program to apply diff file to
originals.

NB: the patch program must be in the system path!

Table C.80: Attributes

Name Type Description Default Required

patchfile String File that includes the diff output n/a Yes

originalfile String File to patch. If not specified Task tries to
guess it from the diff file

none No

destfile String File to send the output to instead of patching
the file in place

none No

backups Boolean Keep backups of the unpatched files false No

quiet Boolean Work silently unless an error occurs false No

203

https://github.com/phingofficial/guide/issues/51
https://github.com/phingofficial/guide/issues/51
http://savannah.gnu.org/projects/patch
http://savannah.gnu.org/projects/patch

Example

Name Type Description Default Required

reverse Boolean Assume patch was created with old and new
files swapped

false No

ignorewhite-
space

Boolean Ignore whitespace differences false No

strip Integer Strip the smallest prefix containing specified
number of leading slashes from filenames

none No

dir String The directory in which to run the patch com-
mand

none No

haltonfailure Boolean Stop the build process if the patching process
encounters an error.

false No

forward Boolean Ignore patches that appear to be reversed or
already applied.

false No

fuzz String Set the fuzz factor to LINES for inexact match-
ing.

n/a No

C.60.1. Example

<patch
 patchfile = "/path/to/patches/file.ext.patch"
 dir = "/path/to/original"
/>

Apply "file.ext.path" to original file locataed in "/path/to/original" folder.

C.61. PharDataTask
PharData [http://php.net/manual/en/class.phardata.php] archives generating with Phing. This task re-
quire PECL's Phar [http://pecl.php.net/package/phar] extension to be installed on your system. Phar
is built-in in PHP from 5.3 version.

Table C.81: Attributes

Name Type Description Default Required

basedir String Base directory, which will be deleted from
each included file (from path). Paths with
deleted basedir part are local paths in
archive.

n/a Yes

destfile String Destination (output) file. Will be recreated, if
exists!

n/a Yes

compression String Compression type (gzip, bzip2, none) to apply
to the archive.

none No

C.61.1. Example

Sample build command:

204

http://php.net/manual/en/class.phardata.php
http://php.net/manual/en/class.phardata.php
http://pecl.php.net/package/phar
http://pecl.php.net/package/phar

Supported Nested Tags

<phardata
 destfile = "./build/archive.tar"
 basedir = "./"
 compression = "gzip">
 <fileset dir = "./classes">
 <include name = "**/**" />
 </fileset>
</phardata>

C.61.2. Supported Nested Tags

• fileset

C.62. PharPackageTask
Phar [http://www.php.net/manual/en/book.phar.php] packages generating with Phing. This task require
PECL's Phar [http://pecl.php.net/package/phar] extension to be installed on your system. Phar is built-
in in PHP from 5.3 version.

Table C.82: Attributes

Name Type Description Default Required

basedir String Base directory, which will be deleted from
each included file (from path). Paths with
deleted basedir part are local paths in pack-
age.

n/a Yes

destfile String Destination (output) file. Will be recreated, if
exists!

n/a Yes

compression String Compression type (gzip, bzip2, none) to apply
to the packed files.

none No

webstub String Relative path within the phar package to run,
if accessed through a web browser.

n/a No

clistub String Relative path within the phar package to run,
if accessed on the command line.

n/a No

stub String A path to a php file that contains a custom stubn/a No

alias String An alias to assign to the phar package n/a No

signature String Signature algorithm (md5, sha1, sha256,
sha512), used for this package.

sha1 No

key String The private key to sign the phar package with
(PEM or PKCS#12 encoded)

n/a No

keyPassword String The password to use for the private key n/a No

C.62.1. Example

Sample build command:

<pharpackage

205

http://www.php.net/manual/en/book.phar.php
http://www.php.net/manual/en/book.phar.php
http://pecl.php.net/package/phar
http://pecl.php.net/package/phar

Supported Nested Tags

 destfile = "./build/package.phar"
 basedir = "./">
 <fileset dir = "./classes">
 <include name = "**/**" />
 </fileset>
 <metadata>
 <element name = "version" value = "1.0" />
 <element name = "authors">
 <element name = "John Doe">
 <element name = "e-mail" value = "john@example.com" />
 </element>
 </element>
 </metadata>
</pharpackage>

C.62.2. Supported Nested Tags

• fileset

• metadata

C.63. PhkPackageTask
This task runs PHK_Creator.phk to build PHK-package. Learn more about build process in PHK
Builder's Guide [http://phk.tekwire.net/joomla/support/doc/builders_guide.htm].

Table C.83: Attributes

Name Type Description Default Required

phkcreatorpath String Path to PHK_Creator.phk. n/a Yes

inputdirectory String Path to directory, that will be packed. n/a Yes

outputfile String Output PHK-file. Directory, where file will be
stored, must exist!

n/a Yes

compress String Compression type (gzip, bzip2, none) to apply
to the packed files.

none No

strip Boolean When true, PHP source file(s) are stripped (fil-
tered through php_strip_whitespace()) before
being stored into the archive.

false No

name String The package's name (Information only). n/a No

webrunscript String The script to run in web direct access mode.
Subfile path.

n/a No

crccheck Boolean If true, a CRC check will be forced every time
the package is mounted.

false No

C.63.1. Example

Sample build command:

<phkpackage
 phkcreatorpath = "/path/to/PHK_Creator.phk"

206

http://phk.tekwire.net/joomla/support/doc/builders_guide.htm
http://phk.tekwire.net/joomla/support/doc/builders_guide.htm
http://phk.tekwire.net/joomla/support/doc/builders_guide.htm

Supported Nested Tags

 inputdirectory = "src"
 outputfile = "build/sample-project.phk"
 compress = "gzip"
 strip = "true"
 name = "Sample Project"
 webrunscript = "index.php">
 <webaccess>
 <paentry>/</paentry>
 </webaccess>
</phkpackage>

C.63.2. Supported Nested Tags

• webaccess

Collection of path tags (see example below), that will be visible outside package in web mode.

C.64. PhpCSTask
This task runs PHP_CodeSniffer Version 3+ [http://pear.php.net/package/PHP_CodeSniffer] to detect
violations of a defined set of coding standards.

Table C.84: Attributes

Name Type Description Default Required

file String File or directory to check. n/a Yes

bin String Path to phpcs binary. phpcs No

standard String The list of coding standards to test against.
Separated by space, comma or semicolon.

No

format String The output format. (ex checkstyle, full,
summary, ...)

No

outfile String Filename to write output/report to. If not set
output will be sent to STDOUT.

n/a No

cache Boolean Cache results between runs. false No

ignoreAnnota-
tions

Boolean Ignore all phpcs annotations in code com-
ments.

false No

checkreturn Boolean Whether to check the return code. false No

level String Set the log level of generated messages.
Change this to verbose, if you only want out-
put in verbose mode for example. Valid log lev-
els are one of debug, info, verbose, warn-
ing or error

info No

C.64.1. Supported Nested Tags

• FileSet

• Formatter

207

http://pear.php.net/package/PHP_CodeSniffer
http://pear.php.net/package/PHP_CodeSniffer

Examples

The results of the tests can be printed in different formats. Output will always be sent to a file, unless
you set the usefile attribute to false.

Table C.85: Attributes

Name Type Description Default Required

type String The output format. Accepts the same val-
ues as the format attribute (default, xml,
checkstyle, csv, report, summary &
doc).

n/a Yes

outfile String Path to write output file to. n/a Yes

C.64.2. Examples

<phpcs bin = "bin/phpcs" file = "classes" checkreturn = "true"/>

C.65. PhpDependTask
This task runs PHP_Depend [http://pdepend.org], a software analyzer and metric tool for PHP Code.
You need an installed version of this software to use this task.

NB: if you have installed the PHP_Depend Phar file, make sure you set the pharLocation attribute!

Table C.86: Attributes

Name Type Description Default Required

file String Path to source file or path n/a Only when
there are no
nested file-
set elements

configFile String Path to PHP_Depend configuration file n/a No

allowedFileEx-
tensions

String Comma-separated list of valid file extensions
(without dot) for analyzed files.

php,php5 No

excludeDirec-
tories

String Comma-separated list of directory patterns to
ignore.

.git,

.svn,
CVS

No

excludePack-
ages

String Comma-separated list of packages to ignore. n/a No

withoutAnnota-
tions

Boolean Should the parse ignore doc comment anno-
tations?

false No

supportBadDoc-
umentation

Boolean Should PHP_Depend treat +global as a reg-
ular project package?

false No

debug Boolean Enable debug output? false No

haltonerror Boolean Stop the build process if errors occurred dur-
ing the run.

false No

pharlocation String Location of the PHP_Depend Phar file. n/a No

208

http://pdepend.org
http://pdepend.org

Example

C.65.1. Example

<phpdepend file = "path/to/source">
 <logger type = "phpunit-xml" outfile = "reports/metrics.xml"/>
 </phpdepend>

Running code analysis for source files in the given path.

<phpdepend>
 <fileset dir = "${builddir}">
 <include name = "apps/**/*.php" />
 <include name = "lib/de/**/*.php" />
 </fileset>
 <logger type = "jdepend-xml" outfile = "reports/jdepend.xml"/>
 <analyzer type = "coderank-mode" value = "method"/>
 </phpdepend>

Running code analysis for source files in the fileset pathes with CodeRank strategy method.

C.65.2. Supported Nested Tags

• fileset

This nested tag is required when the file attribute is not set.

• logger

The results of the analysis can be parsed by differed loggers. At least one logger is required. Output
will always be sent to a file.

Table C.87: Attributes

Name Type Description Default Required

type String The name of the logger. Valid log-
gers are: jdepend-chart, jdepend-xml,
overview-pyramid, phpunit-xml and
summary-xml.

n/a Yes

outfile String Path to write output file to. n/a Yes

• analyzer

Some additional analyzers can be added to the runner.

Table C.88: Attributes

Name Type Description Default Required

type String The name of the analyzer. Valid analyzers
are: coderank-mode.

n/a Yes

value String The value for the analyzer. n/a Yes

C.66. PhpDocumentor2Task
This task runs phpDocumentor 2 [http://www.phpdoc.org/], a PHP 5.3-compatible API documentation
tool. This project is the result of the merge of the phpDocumentor and DocBlox projects.

209

http://www.phpdoc.org/
http://www.phpdoc.org/

Example

Table C.89: Attributes

Name Type Description Default Required

title String Title of the project. n/a No

destdir String Destination directory for output files. n/a Yes

template String Name of the documentation template to use. respon-
sive-twig

No

defaultPacka-
geName

String Name of the default package. Default No

pharlocation String Location of the phpDocumentor PHAR pack-
age.

n/a No

C.66.1. Example

<phpdoc2 title = "API Documentation"
 destdir = "apidocs"
 template = "responsive-twig">
 <fileset dir = "./classes">
 <include name = "**/*.php" />
 </fileset>
 </phpdoc2>

C.66.2. Supported Nested Tags

• fileset - Files that should be included for parsing

C.67. rSTTask
Renders rST (reStructuredText) files into different output formats.

This task requires the python docutils installed. They contain rst2html, rst2latex, rst2man,
rst2odt, rst2s5, rst2xml.

Table C.90: Attributes

Name Type Description Default Required

file String rST input file to render n/a Yes (or fileset)

format String Output format:

• html

• latex

• man

• odt

• s5

• xml

html No

destination String Path to store the rendered file to. Used as di-
rectory if it ends with a /.

magically
deter-

No

210

Features

Name Type Description Default Required

mined
from input
file

uptodate Boolean Only render if the input file is newer than the
target file

false No

toolpath String Path to the rst2* tool deter-
mined
from for-
mat

No

toolparam String Additional commandline parameters to the
rst2* tool

n/a No

mode Integer The mode to create directories with. From
umask

No

C.67.1. Features

• renders single files

• render nested filesets

• mappers to generate output file names based on the rst ones

• multiple output formats

• filter chains to e.g. replace variables after rendering

• custom parameters to the rst2* tool

• configurable rst tool path

• uptodate check

• automatically overwrites old files

• automatically creates target directories

C.67.2. Examples

Render a single rST file to HTML

By default, HTML is generated. If no target file is specified, the input file name is taken, and its extension
replaced with the correct one for the output format.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "single">
 <target name = "single" description = "render a single rST file to HTML">

 <rST file = "path/to/file.rst" />

 </target>
</project>

Render a single rST file to any supported format

The format attribute determines the output format:

211

Examples

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "single">
 <target name = "single" description = "render a single rST file to S5 HTML">

 <rST file = "path/to/file.rst" format = "s5" />

 </target>
</project>

Specifying the output file name

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "single">
 <target name = "single" description = "render a single rST file">

 <rST file = "path/to/file.rst" destination = "path/to/output/file.html" />

 </target>
</project>

Rendering multiple files

A nested fileset tag may be used to specify multiple files.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "multiple">
 <target name = "multiple" description = "renders several rST files">

 <rST>
 <fileset dir = ".">
 <include name = "README.rst" />
 <include name = "docs/*.rst" />
 </fileset>
 </rST>

 </target>
</project>

Rendering multiple files to another directory

A nested mapper may be used to determine the output file names.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "multiple">
 <target name = "multiple" description = "renders several rST files">

 <rST>
 <fileset dir = ".">
 <include name = "README.rst" />
 <include name = "docs/*.rst" />
 </fileset>
 <mapper type = "glob" from = "*.rst" to = "path/to/my/*.xhtml"/>
 </rST>

 </target>
</project>

Modifying files after rendering

You may have variables in your rST code that can be replaced after rendering, i.e. the version of your
software.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "filterchain">

212

Supported Nested Tags

 <target name = "filterchain" description = "renders several rST files">

 <rST>
 <fileset dir = ".">
 <include name = "README.rst" />
 <include name = "docs/*.rst" />
 </fileset>
 <filterchain>
 <replacetokens begintoken = "##" endtoken = "##">
 <token key = "VERSION" value = "1.23.0" />
 </replacetokens>
 </filterchain>
 </rST>

 </target>
</project>

Rendering changed files only

The uptodate attribute determines if only those files should be rendered that are newer than their
output file.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "multiple">
 <target name = "multiple" description = "renders several rST files">

 <rST uptodate = "true">
 <fileset dir = ".">
 <include name = "docs/*.rst" />
 </fileset>
 </rST>

 </target>
</project>

Specify a custom CSS file

You may pass any additional parameters to the rst conversion tools with the toolparam attribute.

<?xml version="1.0" encoding="utf-8"?>
<project name = "example" basedir = "." default = "single">
 <target name = "single" description = "render a single rST file to S5 HTML">

 <rST file = "path/to/file.rst" toolparam = "--stylesheet-path=custom.css" />

 </target>
</project>

C.67.3. Supported Nested Tags

• fileset

• mapper

• filterchain

C.68. S3GetTask
Downloads an object from Amazon S3. This task requires the PEAR package Services_Amazon_S3
[http://pear.php.net/package/Services_Amazon_S3]

213

http://pear.php.net/package/Services_Amazon_S3
http://pear.php.net/package/Services_Amazon_S3

Example

Table C.91: Attributes

Name Type Description Default Required

key String Amazon S3 key n/a Yes (or de-
fined before
task call as:
amazon.key)

secret String Amazon S3 secret n/a Yes (or defined
before task call
as: amazon.se-
cret)

bucket String Bucket containing the object n/a Yes (or defined
before task
call as: ama-
zon.bucket)

object String Object name n/a Yes

target String Where to store the object after download n/a Yes

C.68.1. Example

Downloading an object

<s3get object = "file.txt" target = "${project.basedir}" bucket = "mybucket"
key = "AmazonKey" secret = "AmazonSecret" />

You can also define "bucket, key, secret" outside of the task call:

<property name = "amazon.key" value = "my_key" />
<property name = "amazon.secret" value = "my_secret" />
<property name = "amazon.bucket" value = "mybucket" />

<s3get object = "file.txt" target = "${project.basedir}" />

C.69. S3PutTask
Uploads an object to Amazon S3. This task requires the PEAR package Services_Amazon_S3 [http://
pear.php.net/package/Services_Amazon_S3]

Table C.92: Attributes

Name Type Description Default Required

key String Amazon S3 key n/a Yes (or de-
fined before
task call as:
amazon.key)

secret String Amazon S3 secret n/a Yes (or defined
before task call
as: amazon.se-
cret)

214

http://pear.php.net/package/Services_Amazon_S3
http://pear.php.net/package/Services_Amazon_S3
http://pear.php.net/package/Services_Amazon_S3

Example

Name Type Description Default Required

bucket String Bucket to store the object in n/a Yes (or defined
before task
call as: ama-
zon.bucket)

content String Content to store in the object n/a Yes (or source
or fileset)

source String Where to read content for the object from n/a Yes (or content
or fileset)

object String Object name n/a Yes (unless
fileset)

contentType String Content type of the object, set to auto if you
want to autodetect the content type based on
the source file extension

bina-
ry/octet-
stream

No

fileNameOnly Boolean Whether filenames should contain paths when
uploaded to a bucket

false No

C.69.1. Example

Uploading a file

<s3put source = "/path/to/file.txt" object = "file.txt" bucket = "mybucket"
key = "AmazonKey" secret = "AmazonSecret" />

You can also define "bucket, key, secret" outside of the task call:

<property name = "amazon.key" value = "my_key" />
<property name = "amazon.secret" value = "my_secret" />
<property name = "amazon.bucket" value = "mybucket" />

<s3put source = "/path/to/file.txt" object = "file.txt" />

You can also specify inline content instead of a file to upload:

<property name = "amazon.key" value = "my_key" />
<property name = "amazon.secret" value = "my_secret" />
<property name = "amazon.bucket" value = "mybucket" />

<s3put content = "Some content here" object = "file.txt" />

It also works with filesets:

<property name = "amazon.key" value = "my_key" />
<property name = "amazon.secret" value = "my_secret" />
<property name = "amazon.bucket" value = "mybucket" />
<s3put>
 <fileset dir = "${project.basedir}">
 <include name = "**/*.jpg" />
 </fileset>
</s3put>

C.69.2. Supported Nested Tags

• fileset

215

SassTask

C.70. SassTask
The SassTask converts SCSS or Sass files to CSS using either the 'sass' gem [http://sass-lang.com/
documentation/file.SASS_REFERENCE.html#using_sass] or the scssphp package [https://scssph-
p.github.io/scssphp/].

Table C.93: Attributes

Name Type Description Default Required

check Boolean Whether to just check the syntax of the input
files.

False No

compact Boolean Set the style to compact. False No

compressed Boolean Set the style to compressed. False No

crunched Boolean Set the style to crunched. Supported by sc-
ssphp, not sass.

False No

expand Boolean Set the style to expanded. False No

encoding String Default encoding for input files. Supported by
scssphp.

utf-8 No

executable String Location/name of the sass executable, if re-
quired.

sass No

extfilter String Extension to filter against. n/a No

failonerror Boolean Whether to fail/halt if an error occurs. False No

file String Name of single file to process. N/A No

flags String Additional flags to set for sass executable. n/a No

input String Name of single file to process. Synonym for
file.

N/A No

keepsubdirec-
tories

Boolean Whether to keep the directory structure when
compiling.

True No

linenumbers Boolean Whether to annotate generated CSS with
source file and line numbers.

False No

nested Boolean Set the style to expanded. true No

newext String Extension for newly created files. css No

nocache Boolean Whether to cache parsed sass files. n/a No

output String Corresponding output file for 'file'/'input' para-
meter. If not specified and outputpath is, then
the generated file is placed there, with the file-
name based on the input file. If neither is spec-
ified, then the generated file is placed into the
directory that the input file is in.

N/A No

outputpath String Where to place the generated CSS files. n/a Yes

path String Specify sass import path. e.g. --load-path ... n/a No

removeoldext Boolean Whether to strip existing extension off the out-
put filename.

True No

style String Name of style to output. Must be one of 'nest-
ed', 'compact', 'compressed', 'crunched' or 'ex-

nested No

216

http://sass-lang.com/documentation/file.SASS_REFERENCE.html#using_sass
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#using_sass
http://sass-lang.com/documentation/file.SASS_REFERENCE.html#using_sass
https://scssphp.github.io/scssphp/
https://scssphp.github.io/scssphp/
https://scssphp.github.io/scssphp/

Example

Name Type Description Default Required

panded'. 'Helper' attributes may also be used.
'crunched' is supported by scssphp only.

trace Boolean Whether to show a full stack trace on error. False No

unixnewlines Boolean Use Unix-style newlines in written files. True No

useSass Boolean Whether to use the 'sass' command line tool.
Takes precedence over scssphp if both are
available and enabled.

True No

useScssphp Boolean Whether to use the 'scssphp' PHP package. True No

The useSass and useScssphp attributes can be used to indicate which compiler should be used, which
would be useful if both are available. If both are available and enabled, then the 'sass' compiler is used
rather than the scssphp library.

C.70.1. Example

<sass style = "compact" trace = "yes" unixnewlines = "yes" outputpath = "${compiled.dir.resolved}">
 <fileset dir = "."/>
</sass>

C.70.2. Supported Nested Tags

• fileset

C.71. ScpTask
The ScpTask copies files to and from a remote host using scp. This task requires the PHP SSH2
extension [http://pecl.php.net/package/ssh2] to function.

Table C.94: Attributes

Name Type Description Default Required

host String Remote host none Yes

port Integer Remote port 22 No

username String Username to use for the connection none Yes

password String Password to use for the connection none No

pubkeyfile String Public key file (OpenSSH format) to use for the
connection

none No

privkeyfile String Private key file (OpenSSH format) to use for
the connection

none No

privkey-
filepassphrase

String Private key file passphrase to use for the con-
nection

none No

autocreate Boolean Whether to autocreate remote directories true No

todir String Directory to put file(s) in none No

217

http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2

Example

Name Type Description Default Required

file String Filename to use none No

fetch Boolean Whether to fetch (instead of copy to) the file false No

level String Control the level at which the task reports sta-
tus messages. One of error, warning, in-
fo, verbose, debug.

verbose No

C.71.1. Example

<scp username = "john" password = "smith"
host = "webserver" fetch = "true"
todir = "/home/john/backup"
file = "/www/htdocs/test.html" />

Fetches a single file from the remote server.

<scp username = "john" password = "smith"
host = "webserver"
todir = "/www/htdocs/"
file = "/home/john/dev/test.html" />

Copies a single file to the remote server.

<scp username = "john" password = "smith"
host = "webserver" todir = "/www/htdocs/project/">
 <fileset dir = "test">
 <include name = "*.html" />
 </fileset>
</scp>

Copies multiple files to the remote server.

C.71.2. Supported Nested Tags

• fileset

• sshconfig

Sometimes it is necessary to set specific configuration parameters on the ssh connection when con-
necting to a remote server. You can set them with the sshconfig nested tag. Set the parameters
to specify connection and encryption options. These are the parameters as specified by the $meth-
ods parameter of the ssh2_connect function. See ssh2_connect [http://us3.php.net/ssh2_connect]
for more information

sshconfig can also be used as project level parameter with a refid so the same parameters can be
re-used across a project easily.

Table C.95: Attributes

Name Type Description Default Required

kex String List of key exchange methods to advertise,
comma separated in order of preference.

n/a No

hostkey String List of hostkey methods to advertise, come
separated in order of preference.

n/a No

218

http://us3.php.net/ssh2_connect
http://us3.php.net/ssh2_connect

SmartyTask

Name Type Description Default Required

client Nested
Tag

Element containing attributes crypt, comp,
and mac method preferences for messages
sent from client to server. All attributes are
optional.

n/a No

server Nested
Tag

Element containing attributes crypt, comp,
and mac method preferences for messages
sent from server to client. All attributes are
optional.

n/a No

C.72. SmartyTask
A task for generating output by using Smarty.

Table C.96: Attributes

Name Type Description Default Required

controlTem-
plate

String The control template used to generate the out-
put.

none Yes

templatePath String The path where Smarty will look for templates.none Yes

outputDirecto-
ry

String The output directory, will be created if it
doesn't exist.

none Yes

compilePath String The path Smarty uses as a "cache" for com-
piled templates.

none No

forceCompile Boolean Whether Smarty should always recompile
templates.

false No

configPath String The path where Smarty will look for config
files.

none No

leftDelimiter String The template left delimiter. none No

rightDelimiter String The template right delimiter. none No

contextProper-
ties

String The path to a property file that will be fed into
the initial template context.

none No

C.73. SonarTask
This task runs SonarQube Scanner [http://www.sonarqube.org/], a tool for code analysis and continu-
ous inspection.

Table C.97: Attributes

Name Type Description Default Required

executable String Fully-qualified path of SonarQube Scanner ex-
ecutable. If executable is in PATH environ-

n/a Yes

219

http://www.sonarqube.org/
http://www.sonarqube.org/

Examples

Name Type Description Default Required

ment variable, the executable name is suffi-
cient.

configuration String Path of configuration file. The file format is that
of a properties file (as used by Java), i.e. a list
of key-value pairs <key>=<value>.

n/a No

errors String Sets errors flag of SonarQube Scanner. Al-
lowed values are "true", "false", "yes",
"no", "1", and "0".

false No

debug String Sets debug flag of SonarQube Scanner. Al-
lowed values are "true", "false", "yes",
"no", "1", and "0".

false No

C.73.1. Examples

Minimal Example

This example assumes that the SonarQube Scanner is called sonarqube-scanner and is available on
the PATH.

<?xml version="1.0" encoding="UTF-8"?>
<project name = "sonar-minimal-example" default = "sonar">
 <sonar executable = "sonarqube-scanner">
 <property name = "sonar.projectKey" value = "my-unique-project-key" />
 <property name = "sonar.projectName" value = "Foo Project" />
 <property name = "sonar.projectVersion" value = "0.1.0" />
 <property name = "sonar.sources" value = "src" />
 </sonar>
</project>

Full Example

This example consists of two files – build.xml and sonar-project.properties.

The build.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project name = "sonar-full-example" default = "sonar">
 <sonar
 executable = "path/to/sonarqube-scanner"
 errors = "true"
 debug = "true"
 configuration = "path/to/sonar-project.properties"
 >
 <!-- Assume that mandatory SonarQube parameters are defined in configuration file! -->
 <property name = "sonar.log.level" value = "DEBUG" />
 </sonar>
</project>

The configuration file path/to/sonar-project.properties:

sonar.projectKey = my-unique-project-key
sonar.projectName = Foo Project
sonar.projectVersion = 0.1.0

220

Supported Nested Tags

sonar.sources = src

C.73.2. Supported Nested Tags

• property

Analysis parameters of SonarQube Scanner can be defined in a configuration file or via nested prop-
erty elements. If both a configuration file and property elements are provided, the properties are
merged. Values from property elements overwrite values from the configuration file if their property
keys are equal.

Table C.98: Attributes

Name Type Description Default Required

name String Name of property. n/a Yes

value String Value of property. n/a Yes

C.74. SshTask
The SshTask executes commands on a remote host using ssh. This task requires the PHP SSH2
extension [http://pecl.php.net/package/ssh2] to function.

Table C.99: Attributes

Name Type Description Default Required

host String Remote host none Yes

port Integer Remote port 22 No

username String Username to use for the connection none Yes

password String Password to use for the connection none No

pubkeyfile String Public key file (OpenSSH format) to use for the
connection

none No

privkeyfile String Private key file (OpenSSH format) to use for
the connection

none No

privkey-
filepassphrase

String Private key file passphrase to use for the con-
nection

none No

command String Command to execute on the remote server none Yes

property String The name of the property to capture (any) out-
put of the command

none No

display Boolean Whether to display the output of the commandtrue No

pty String The terminal type to open none No

failonerror Boolean Decides if a command chain will fail if one
of the executed commands failed. Added for
backward compatibility. Set to true if you ex-
ecute more than one command and want the
task to fail on any error.

False No

221

http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2
http://pecl.php.net/package/ssh2

Example

C.74.1. Example

<ssh username = "john" password = "smith"
host = "webserver" command = "ls" />

Executes a single command on the remote server.

C.74.2. Supported Nested Tags

• sshconfig

Sometimes it is necessary to set specific configuration parameters on the ssh connection when con-
necting to a remote server. You can set them with the sshconfig nested tag. Set the parameters
to specify connection and encryption options. These are the parameters as specified by the $meth-
ods parameter of the ssh2_connect function. See ssh2_connect [http://us3.php.net/ssh2_connect]
for more information

sshconfig can also be used as project level parameter with a refid so the same parameters can be
re-used across a project easily.

Table C.100: Attributes

Name Type Description Default Required

kex String List of key exchange methods to advertise,
comma separated in order of preference.

n/a No

hostkey String List of hostkey methods to advertise, come
separated in order of preference.

n/a No

client Nested
Tag

Element containing attributes crypt, comp,
and mac method preferences for messages
sent from client to server. All attributes are
optional.

n/a No

server Nested
Tag

Element containing attributes crypt, comp,
and mac method preferences for messages
sent from server to client. All attributes are
optional.

n/a No

C.75. StopwatchTask
The StopwatchTask provides an easy way to measure execution time of phing tasks.

Table C.101: Attributes

Name Type Description Default Required

name String Name of the timer. Yes

category String Set a category for the timer. No

action String Action could be one of start, stop or lap start No

C.75.1. Example

<stopwatch name = "test" />

222

http://us3.php.net/ssh2_connect
http://us3.php.net/ssh2_connect

SvnCheckoutTask

<!-- some other task... -->
<stopwatch name = "test" action = "lap" />
<!-- some other task... -->
<stopwatch name = "test" action = "lap" />
<!-- some other task... -->
<stopwatch name = "test" action = "lap" />
<!-- some other task... -->
<stopwatch name = "test" action = "stop" />

C.76. SvnCheckoutTask
The SvnCheckoutTask checks out a Subversion repository to a local directory.

Table C.102: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of SVN repository none Yes

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

nocache Boolean Connection credentials will not be cached false No

todir String Path to export to none Yes

depth String Limit operation by depth empty,
files,
immedi-
ates or
infini-
ty

No

ignoreexter-
nals

Boolean Ignore externals definitions false No

trustServerCertBoolean Trust self-signed certificates false No

configOption String Override subversion's config option n/a No

C.76.1. Example

<svncheckout
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 nocache = "true"
 repositoryurl = "svn://localhost/project/trunk/"
 todir = "/home/user/svnwc"/>

<svncheckout
 svnpath = "C:/Subversion/bin/svn.exe"
 repositoryurl = "svn://localhost/project/trunk/"

223

SvnCommitTask

 todir = "C:/projects/svnwc"/>

C.77. SvnCommitTask
The SvnCommitTask commits a local working copy to a SVN repository and sets the specified property
(default svn.committedrevision) to the revision number of the committed revision.

Table C.103: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

nocache Boolean Connection credentials will not be cached false No

depth String Limit operation by depth empty,
files,
immedi-
ates or
infini-
ty

No

workingcopy String Working copy none Yes

message String The commit message none Yes

ignoreexter-
nals

Boolean Ignore externals definitions false No

trustServerCertBoolean Trust self-signed certificates false No

propertyname String Name of property to set to the last committed
revision number

svn.com-
mitte-
drevision

No

configOption String Override subversion's config option n/a No

C.77.1. Example

<svncommit
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 nocache = "true"
 workingcopy = "/home/joe/dev/project"
 message = "Updated documentation, fixed typos" />

The most basic usage only needs the working copy and the commit message as in

<svncommit
 workingcopy = "/home/joe/dev/project"
 message = "Updated documentation, fixed typos" />
<echo message = "Committed revision: ${svn.committedrevision}"/>

224

SvnCopyTask

C.78. SvnCopyTask
The SvnCopyTask duplicates something in a working copy or repository, remembering history.

Table C.104: Attributes

Name Type Description Default Required

message String Log message n/a No

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of SVN repository none Yes

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

force Boolean Force overwrite files if they already exist false No

nocache Boolean Connection credentials will not be cached false No

todir String Path to export to none Yes

depth String Limit operation by depth empty,
files,
immedi-
ates or
infini-
ty

No

trustServerCertBoolean Trust self-signed certificates false No

configOption String Override subversion's config option n/a No

C.78.1. Example

<svncopy
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 nocache = "true"
 repositoryurl = "svn://localhost/project/trunk/"
 todir = "svn://localhost/project/tags/0.1"/>

C.79. SvnExportTask
The SvnExportTask exports a Subversion repository to a local directory.

Table C.105: Attributes

Name Type Description Default Required

revision String Revision to use in export HEAD No

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of SVN repository none Yes

225

Example

Name Type Description Default Required

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

nocache Boolean Connection credentials will not be cached false No

todir String Path to export to none Yes

depth String Limit operation by depth empty,
files,
immedi-
ates or
infini-
ty

No

ignoreexter-
nals

Boolean Ignore externals definitions false No

trustServerCertBoolean Trust self-signed certificates false No

configOption String Override subversion's config option n/a No

C.79.1. Example

<svnexport
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 force = "true"
 nocache = "true"
 repositoryurl = "svn://localhost/project/trunk/"
 todir = "/home/user/svnwc"
 configoption = "config:miscellany:use-commit-times=yes" />

<svnexport
 svnpath = "C:/Subversion/bin/svn.exe"
 repositoryurl = "svn://localhost/project/trunk/"
 todir = "C:/projects/svnwc"/>

C.80. SvnInfoTask
The SvnInfoTask parses the output of the 'svn info --xml' command and extracts one specified ele-
ment (+ optional sub element) from that output.

Table C.106: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

workingcopy String Working copy directory none Yes, or repos-
itoryurl

repositoryurl String URL of remote repository none Yes, or work-
ingcopy

226

Example

Name Type Description Default Required

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use svn.info No

element String Sets whether to store actual last changed re-
vision of the directory/file mentioned

url No

subelement String Sets whether to force compatibility with older
SVN versions (< 1.2)

none No

configOption String Override subversion's config option n/a No

C.80.1. Example

<svninfo
 svnpath = "/usr/bin/svn"
 workingcopy = "/home/user/svnwc"
 element = "url"
 propertyname = "svn.url"/>

<svninfo
 repositoryurl = "http://svn.phing.info/"
 element = "commit"
 subelement = "author"
 propertyname = "svn.author"/>

C.81. SvnLastRevisionTask
The SvnLastRevisionTask stores the number of the last revision of a Subversion workingcopy in
a property.

Table C.107: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

workingcopy String Working copy directory none Yes, or repos-
itoryurl

repositoryurl String URL of remote repository none Yes, or work-
ingcopy

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use svn.las-
trevision

No

lastChanged Boolean Sets whether to store actual last changed re-
vision of the directory/file mentioned

false No

configOption String Override subversion's config option n/a No

227

Example

C.81.1. Example

<svnlastrevision
 svnpath = "/usr/bin/svn"
 workingcopy = "/home/user/svnwc"
 propertyname = "svn.lastrevision"/>

<svnlastrevision
 svnpath = "C:/Subversion/bin/svn.exe"
 workingcopy = "C:/projects/svnwc"
 propertyname = "svn.lastrevision"/>

<svnlastrevision
 svnpath = "C:/Subversion/bin/svn.exe"
 repositoryurl = "http://svn.phing.info/"
 propertyname = "svn.lastrevision"/>

C.82. SvnListTask
The SvnListTask stores the output of a svn list command on a workingcopy or repositoryurl in a
property. The result will be stored in an array, one string that is separated by ' | ' (in words: space pipe
space) for easy parsing.

Table C.108: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

workingcopy String Working copy directory none

repositoryurl String URL of remote repository none

One of the two

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use svn.list No

limit Integer Limits the number of items to get back from
the command

n/a No

orderDescend-
ing

Boolean Sets whether to reverse the order of the listed
items

false No

configOption String Override subversion's config option n/a No

C.82.1. Example

<svnlist svnpath = "/usr/bin/svn"
 workingcopy = "/home/user/svnwc" propertyname = "svn.list"/>

<svnlist svnpath = "/usr/bin/svn"
 repositoryurl = "http://svn.example.com/myrepo/tags"
 orderDescending = "true" limit = "10" />

The latter example could produce a list of your tags like this:

228

SvnLogTask

revision | author | date | item
4028 | tony | May 19 18:31 | Release_2.9.1.7
4026 | tony | May 18 14:33 | Release_2.9.1.6
4023 | tony | May 16 15:53 | Release_2.9.1.5
4018 | tony | May 13 11:55 | Release_2.9.1.4
4005 | tony | Apr 27 12:09 | Release_2.9.1.3
...

C.83. SvnLogTask
The SvnLogTask stores the output of a svn log command on a workingcopy or repositoryurl in a
property. The result will be stored in an array, one string that is separated by ' | ' (in words: space pipe
space) for easy parsing.

Table C.109: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

workingcopy String Working copy directory none

repositoryurl String URL of remote repository none

One of the two

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use svn.list No

limit Integer Limits the number of items to get back from
the command

n/a No

configOption String Override subversion's config option n/a No

C.83.1. Example

<svnlog svnpath = "/usr/bin/svn"
 workingcopy = "/home/user/svnwc" propertyname = "svn.log"/>

<svnlog svnpath = "/usr/bin/svn"
 repositoryurl = "http://svn.example.com/myrepo/trunk" limit = "10" />

The latter example could produce a history of the latest revisions in the trunk:

4033 | tony | 2011-05-23T14:21:12.496274Z | some svn commit comment
 4032 | tony | 2011-05-23T13:24:46.496265Z | some svn commit comment
 4031 | tony | 2011-05-23T09:23:28.093167Z | some svn commit comment
 ...

C.84. SvnPropgetTask
The SvnPropgetTask gets a property on files, dirs, or revisions from the working copy.

229

Example

Table C.110: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of remote repository none Yes

todir String Path to the checked out project none Yes

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use. svn.propgetNo

svnproperty-
name

String The svn property to get. none Yes

fromdir String Thr dir the properties are from. none Yes

configOption String Override subversion's config option n/a No

C.84.1. Example

<svnpropget
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 repositoryurl = "http://svn.phing.info/tags/2.4.2"
 fromdir = "/home/user/svnwc"
 svnpropertyname = "propertyname"
 propertyname = "propget"/>

C.85. SvnProplistTask
The SvnProplistTask lists all properties on files, dirs, or revisions from the working copy.

Table C.111: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

workingcopy String Working copy directory none Yes, or repos-
itoryurl

repositoryurl String URL of remote repository none Yes, or work-
ingcopy

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

propertyname String Name of property to use svn.pro-
plist

No

recursive Boolean Recursive proplist usage? false No

230

Example

Name Type Description Default Required

configOption String Override subversion's config option n/a No

C.85.1. Example

<svnproplist
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 repositoryurl = "http://svn.phing.info/tags/2.4.2"
 todir = "/home/user/svnwc"
 recursive = "true"
 propertyname = "proplist"/>

C.86. SvnPropsetTask
The SvnSwitchTask sets a property on files, dirs, or revisions from the working copy.

Table C.112: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of remote repository none Yes

todir String Path to the checked out project none Yes

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

svnproperty-
name

String The svn property to set none Yes

configOption String Override subversion's config option n/a No

C.86.1. Example

<svnpropset
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 repositoryurl = "http://svn.phing.info/tags/2.4.2"
 todir = "/home/user/svnwc"
 svnpropset = "propertyname"/>

C.87. SvnRevertTask
The SvnRevertTask reverts a svn repository.

231

SvnSwitchTask

Table C.113: Attributes

Name Type Description Default Required

workingcopy String Working copy directory none

repositoryurl String URL of remote repository none

One of the two

recursive Boolean Flag for recursive revert. none Yes

configOption String Override subversion's config option n/a No

C.88. SvnSwitchTask
The SvnSwitchTask changes a local directory from one repository to another.

Table C.114: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

repositoryurl String URL of remote repository none Yes

todir String Path to the checked out project none Yes

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

nocache Boolean Connection credentials will not be cached false No

depth String Limit operation by depth empty,
files,
immedi-
ates or
infini-
ty

No

ignoreexter-
nals

Boolean Ignore externals definitions false No

trustServerCertBoolean Trust self-signed certificates false No

configOption String Override subversion's config option n/a No

C.88.1. Example

<svnswitch
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 nocache = "true"
 repositoryurl = "http://svn.phing.info/tags/2.4.2"
 todir = "/home/user/svnwc"/>

<svnswitch
 svnpath = "C:/Subversion/bin/svn.exe"
 repositoryurl = "http://svn.phing.info/tags/2.4.2"
 todir = "C:/projects/svnwc"/>

232

SvnUpdateTask

C.89. SvnUpdateTask
The SvnUpdateTask updates a local directory.

Table C.115: Attributes

Name Type Description Default Required

svnpath String Path to Subversion binary /usr/bin/
svn

No

username String A username used to connect to the SVN serv-
er

none No

password String A password used to connect to the SVN servernone No

nocache Boolean Connection credentials will not be cached false No

todir String Path to the working copy none Yes

revision Integer Specific revision to update the working copy tonone No

ignoreexter-
nals

Boolean Ignore externals definitions false No

trustServerCertBoolean Trust self-signed certificates false No

configOption String Override subversion's config option n/a No

C.89.1. Example

<svnupdate
 svnpath = "/usr/bin/svn"
 username = "anony"
 password = "anony"
 nocache = "true"
 todir = "/home/user/svnwc"/>

<svnupdate
 svnpath = "C:/Subversion/bin/svn.exe"
 todir = "C:/projects/svnwc"/>

C.90. SymfonyConsoleTask
Executes Symfony2 console commands

Table C.116: Attributes

Name Type Description Default Required

command String The Symfony Console command to execute n/a Yes

console String The path to symfony console application bin/
console

No

debug Boolean The symfony cli debug mode true No

silent Boolean Disable task output except errors. Use in con-
junction with additional output helper like Sym-
fonys ProgressBar

false No

233

Examples

Name Type Description Default Required

propertyName String The name of the property to store the applica-
tion output in

n/a No

checkReturn Boolean Whether to check the return code. false No

C.90.1. Examples

Simple example

<SymfonyConsole command = "cache:clear"/>

Complex example

<SymfonyConsole command = "cache:warmup">
 <arg name = "env" value = "prod" />
 <arg value = "some/path/or/single/value" quotes = "true">
</SymfonyConsole>

C.90.2. Supported Nested Tags

• arg

Table C.117: Attributes

Name Type Description Default Required

name String the name for this argument, -- will be append-
ed

n/a No

value String the value for the argument n/a No

quotes String set to true if the value should be enclosed in
double quotes

false No

C.91. TarTask
The TarTask creates a tarball from a fileset or directory.

Table C.118: Attributes

Name Type Description Default Required

destfile String Tarball filename none Yes

basedir String Base directory to tar (if no fileset specified, en-
tire directory contents will be included in tar)

none No

compression String Type of compression to use (gzip, bzip2, lz-
ma2, none)

none No

includeempty-
dirs

Boolean If set to true, also empty directories are
copied.

true No

longfile String How to handle long files, those with a path >
100 chars. Allowable values are: truncate

warn No

234

Example

Name Type Description Default Required

- paths are truncated to the maximum length,
fail - paths greater than the maximim cause
a build exception warn - paths greater than
the maximum cause a warning and GNU is
used, gnu - GNU extensions are used for any
paths greater than the maximum, omit - paths
greater than the maximum are omitted from
the archive

prefix String File path prefix to use when adding files to
archive

none No

Note

files are not replaced if they are already present in the archive.

Note

using basedir and fileset simultaneously can result in strange contents in the archive.

C.91.1. Example

<tar destfile = "phing.tar">
 <fileset dir = ".">
 <include name = "**/**" />
 </fileset>
</tar>

The above example uses a fileset to determine which files to include in the archive.

<tar destfile = "phing.tar.gz" basedir = "." compression = "gzip"/>

The second example uses the basedir attribute to include the contents of that directory (including sub-
directories) in the archive, compressing the archive using gzip.

C.91.2. Supported Nested Tags

• fileset

C.92. UntarTask
The UntarTask unpacks one or more tar archives.

Table C.119: Attributes

Name Type Description Default Required

file String Archive filename n/a No

235

Example

Name Type Description Default Required

todir String Directory to unpack the archive(s) to none Yes

removepath String Path to remove from files in the archive(s) none No

forceExtract Boolean When set to false, only extract files if the des-
tination does not exist yet or is older than the
archive. When set to true, always extract files.

false No

preservePer-
missions

Boolean When set to true, preserve permissions
(mode, uid, gid) as set in the tar file..

false No

C.92.1. Example

<untar file = "testtar.tar.gz" todir = "dest">
 <fileset dir = ".">
 <include name = "*.tar.gz"/>
 <include name = "*.tar"/>
 </fileset>
</untar>

C.92.2. Supported Nested Tags

• fileset

C.93. UnzipTask
The UnzipTask unpacks one or more ZIP archives.

Table C.120: Attributes

Name Type Description Default Required

file String Archive filename n/a No

todir String Directory to unpack the archive(s) to none Yes

forceExtract Boolean When set to false, only extract files if the des-
tination does not exist yet or is older than the
archive. When set to true, always extract files.

false No

C.93.1. Example

<unzip file = "testzip.zip" todir = "dest">
 <fileset dir = ".">
 <include name = "*.zip"/>
 </fileset>
</unzip>

C.93.2. Supported Nested Tags

• fileset

236

VisualizerTask

C.94. VisualizerTask
The VisualizerTask generates a graphical representation of your current buildfile. This allows you
to see all available targets but also the calls and dependencies among targets.

VisualizerTask is able to represent:

• Target's depends

• RunTargetTask

• PhingCallTask

• ForeachTask

Table C.121: Basic attributes

Name Type Description Default Required

format String Diagram's format.
Supported formats
are: png, svg, puml
and eps.

png no

destination String Location where the
diagram will be
saved. It could be a
file or directory path.

Same location as
current buildfile

no

footer String A text to display at
the bottom right of
the diagram.

n/a no

showTitle Bool Should the buildfile's
title be displayed in
diagram?

true no

showDescrip-
tion

Bool Should the buildfile's
description be dis-
played in diagram?

false no

direction String Use this to change
the diagram's lay-
out. Valid values
are: horizontal
and vertical.

vertical no

server String PlantUML server.
Needed by all for-
mats except puml.

http://
www.plantum-
l.com/plantuml

no

If you have network connectivity issues, you should try puml format. This format doesn't require a
PlantUML server (and therefore an internet connection) to generate a diagram.

C.94.1. Examples

Using VisualizerTask with default values:

<visualizer/>

Setting diagram's format to svg with horizontal arrows:

237

Limitations

<visualizer format = "svg" direction = "horizontal"/>

Save diagram into resources/images/ directory:

<visualizer destination = "resources/images/"/>

Display buildfile's description and custom footer text:

<visualizer showDescription = "true" footer = "© Copyright 2021"/>

C.94.2. Limitations

• Special target naming is not interpreted by VisualizerTask, targets' names are used as is. Please
read Target Overriding for more details.

• As said before, VisualizerTask depends on a remote PlantUML server. Even if only buildfile's
name and targets' names are sent to server, please be sure you are not sending any sensible infor-
mation.

• PlantUML limits image width and height to 4096 pixels. Overcoming this limitation will require to
configure your own PlantUML server and to configure it according to PlantUML FAQ [http://plantum-
l.com/faq] instructions.

C.94.3. Requirements

To work properly, VisualizerTask needs to have the following installed:

• SimpleXML extension [http://php.net/manual/en/book.simplexml.php]

• XSL extension [http://php.net/manual/en/book.xsl.php]

• Guzzle [http://docs.guzzlephp.org/en/stable/]

• jawira/plantuml-client [https://packagist.org/packages/jawira/plantuml-client]

C.94.4. Advanced HTTP configuration

As said before VisualizerTask needs a remote server to generate the diagrams. In order to config-
ure the connection with remote server, several attributes and nested tags are available.

Because VisualizerTask relies on an internal Phing's library, these attributes and nested tags are
shared among these tasks: HttpGetTask, HttpRequestTask and VisualizerTask.

HTTP attributes

Use the following attributes if your PlanUML server requires an authentication mechanism.

Table C.122: Attributes

Name Type Description Default Required

authUser String The authentication
user name

n/a No

authPassword String The authentication
password

n/a No

238

http://plantuml.com/faq
http://plantuml.com/faq
http://plantuml.com/faq
http://php.net/manual/en/book.simplexml.php
http://php.net/manual/en/book.simplexml.php
http://php.net/manual/en/book.xsl.php
http://php.net/manual/en/book.xsl.php
http://docs.guzzlephp.org/en/stable/
http://docs.guzzlephp.org/en/stable/
https://packagist.org/packages/jawira/plantuml-client
https://packagist.org/packages/jawira/plantuml-client

WikiPublishTask

Name Type Description Default Required

authScheme String The authentication
scheme

basic No

Supported Nested Tags

• config

Holds additional config data. See Guzzle documentation [http://docs.guzzlephp.org/en/stable/re-
quest-options.html] for supported values.

Table C.123: Attributes

Name Type Description Default Required

name String Config parameter name n/a Yes

value Mixed Config value n/a Yes

• header

Holds additional header name and value.

Table C.124: Attributes

Name Type Description Default Required

name String Header name n/a Yes

value String Header value n/a Yes

Global configuration

In addition to configuring a particular instance of Guzzle via nested <config> tags it is also possible
to set default configuration values for HttpGetTask / HttpRequestTask / VisualizerTask by setting ph-
ing.http.* properties.

<property name="phing.http.proxy" value="socks5://localhost:1080/"/>

<!-- This request will go through the default proxy -->
<visualizer/>

<visualizer>
 <!-- This proxy will be used instead of the default one -->
 <config name="proxy" value="http://foo:bar@proxy.example.org:3128/"/>
 <header name="user-agent" value="Phing VisualizerTask"/>
</visualizer>

C.95. WikiPublishTask
This task can publish Wiki document via Wiki WebAPI. It supports only MediaWiki [http://www.medi-
awiki.org/] engine for now.

cURL [http://www.php.net/manual/en/book.curl.php] extension is required.

239

http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html
http://docs.guzzlephp.org/en/stable/request-options.html
http://www.mediawiki.org/
http://www.mediawiki.org/
http://www.mediawiki.org/
http://www.php.net/manual/en/book.curl.php
http://www.php.net/manual/en/book.curl.php

Example

Table C.125: Attributes

Name Type Description Default Required

apiUrl String Wiki API URL (eg. http://localhost/wi-
ki/api.php)

n/a Yes

apiUser String Wiki API user name n/a No

apiPassword String Wiki API user password n/a No

id Integer ID of page that will be changed n/a

title String Title of page that will be changes. Can also be
used as page identifier

n/a

One of these at-
tributes is re-
quired.

content String Content of published page n/a No

mode String Edit mode (overwrite, prepend, append) append No

C.95.1. Example

<wikipublish
 apiUrl = "http://localhost/wiki/api.php"
 apiUser = "testUser"
 apiPassword = "testPassword"
 title = "Some Page"
 content = "Some content"
 mode = "prepend"/>

C.96. XmlLintTask
The XmlLintTask checks syntax (lint) one or more XML files against an XML Schema Definition.

Note: This assumes that the DOM extension is loaded in PHP5 since this is used to drive the validation
process.

Table C.126: Attributes

Name Type Description Default Required

schema String Path to XSD file n/a Yes

file String Path to XML file n/a No

haltonfailure Boolean Stops the build when validation fails true No

useRNG Boolean Set to Yes if the Schema is in the n Relax NG
format

false No

C.96.1. Examples

<xmllint schema = "schema.xsd" file = "config.xml"/>

Validate one XML file against one XSD file.

<xmllint schema = "schema.xsd">
 <fileset dir = ".">

240

Supported Nested Tags

 <include name = "**/config.xml"/>
 </fileset>
</xmllint>

Validate more XML files against one XSD file.

<fileset dir = "./sources" id = "sources">
 <include name = "main.xml"/>
 <include name = "chapter*.xml"/>
 <include name = "appendix*.xml"/>
</fileset>
<property name = "docbook.relaxng"
 value = "/usr/share/xml/docbook/schema/rng/5.0/docbookxi.rng"/>

<xmllint schema = "${docbook.relaxng}" useRNG = "yes">
 <fileset refid = "sources" />
</xmllint>

Validate a set of DocBook files against the DocBook RNG grammar

C.96.2. Supported Nested Tags

• fileset

C.97. XmlPropertyTask
Loads property values from a well-formed xml file. There are no other restrictions than "well-formed".

Table C.127: Attributes

Name Type Description Default Required

file String The XML file to parse. n/a Yes

prefix String The prefix to prepend to each property n/a No

keepRoot Boolean Keep the xml root tag as the first value in the
property name.

true No

collapseAt-
tributes

Boolean Treat attributes as nested elements. false No

delimiter String Delimiter for splitting multiple values. , No

required Boolean If this is set to true then a build exception will
be raised if the file cannot be found otherwise
only a warning will be logged.

false No

C.97.1. Example

Consider the following XML file:

<root-tag myattr = "true">
 <inner-tag someattr = "val">Text</inner-tag>
 <a2><a3><a4>false</a4></a3></a2>
</root-tag>

Used with the following entry (default):

241

ZSDTPackTask

<xmlproperty file = "somefile.xml"/>

results in the following properties:

root-tag(myattr)=true
root-tag.inner-tag=Text
root-tag.inner-tag(someattr)=val
root-tag.a2.a3.a4=false

Used with the following entry (collapseAttributes=true):

<xmlproperty file = "somefile.xml" collapseAttributes = "true"/>

results in the following properties:

root-tag.myattr=true
root-tag.inner-tag=Text
root-tag.inner-tag.someatt=val
root-tag.a2.a3.a4=false

Used with the following entry (keepRoot=false):

<xmlproperty file = "somefile.xml" keepRoot = "false"/>

results in the following properties:

inner-tag=Text
inner-tag(someattr)=val
a2.a3.a4=false

C.98. ZSDTPackTask
The zsdtPackTask Create a package with the help of the ZendServer Deployment Tool. The pack
options should contain pointers to the application data directory, the package descriptor file, and the
package scripts directory.

Table C.128: Attributes

Name Type Description Default Required

package String A directory containing the data and the script
directories, in addition to the package descrip-
tor file.

none Yes

scripts String The directory which contains the package de-
ployment scripts. The Deployment Tool will
search this directory for the expected files (as
described in section 2.2.1) and then packs
them.

none Yes

descriptor String The package descriptor file. none Yes

source String The directory that contains the application re-
sources (PHP sources, JavaScript, etc.). The
directory's internal structure must match the
necessary structure for the application to be
functional.

none No

242

Example

Name Type Description Default Required

output String The directory in which the package is created.
The package name will be created as app-
name-app-version.zpk".

none No

lint Boolean Performs a PHP lint test on the deployment
scripts before creating the package.

false No

phpbin String The PHP executable to use for lint. none No (Yes if op-
tion lint is set to
true)

schema String The path to the package descriptor schema
used for validation.

none No

C.98.1. Example

<zsdtpack lint = "true"
 schema = "file/to/schema.xsl"
 descriptor = "file/to/descriptor.xml"
 scripts = "path/to/scripts/"
 package = "path/to/package/"
 source = "path/to/source/"
 output = "path/to/output/"
 phpbin = "path/to/php" />

C.99. ZSDTValidateTask
The zsdtValidateTask validates a given Zend package descriptor against the schema file.

Table C.129: Attributes

Name Type Description Default Required

descriptor String The package descriptor file. none Yes

schema String The path to the package descriptor schema
used for validation.

none No

C.99.1. Example

<zsdtvalidate schema = "/path/to/schema.xsl" descriptor = "/path/to/descriptor.xml" />

C.100. ZendCodeAnalyzerTask
The ZendCodeAnalyzerTask analyze PHP source files using the Zend Code Analyzer tool that ships
with all versions of Zend Studio.

Table C.130: Attributes

Name Type Description Default Required

analyzerPath String Path to Zend Code Analyzer binary n/a Yes

243

Example

Name Type Description Default Required

file String Path to PHP source file n/a No

disable String Disable warnings separated by comma n/a No

enable String Enable warnings separated by comma n/a No

haltonwarning Boolean Stop the build process if warnings occurred
during the run.

false No

C.100.1. Example

<zendcodeanalyzer
 analyzerPath = "/usr/local/Zend/ZendStudioClient-5.1.0/bin/ZendCodeAnalyzer"
 file = "SomeClass.php"/>

Analyze one PHP source file with all default warnings enabled.

<zendcodeanalyzer
 analyzerPath = "/usr/local/Zend/ZendStudioClient-5.1.0/bin/ZendCodeAnalyzer"
 disable = "var-ref-notmodified,if-if-else">
 <fileset dir = ".">
 <include name = "**/*.php"/>
 </fileset>
</zendcodeanalyzer>

Analyze a set of PHP source files and disable a few warnings.

C.100.2. Supported Nested Tags

• fileset

C.101. ZipTask
The ZipTask creates a .zip archive from a fileset or directory.

Table C.131: Attributes

Name Type Description Default Required

destfile String .ZIP filename n/a Yes

basedir String Base directory to zip (if no fileset specified, en-
tire directory contents will be included in the
archive)

none No

prefix String File path prefix to use when adding files to zipnone No

includeempty-
dirs

Boolean If set to true, also empty directories are
copied.

true No

comment String Comment to add to the zip archive none No

ignorelinks Boolean Whether to ignore symlinks or not. false No

Important note: using basedir and fileset simultaneously can result in strange contents in the archive.

244

Example

C.101.1. Example

<zip destfile = "phing.zip">
 <fileset dir = ".">
 <include name = "**/**" />
 </fileset>
</zip>

The above example uses a fileset to determine which files to include in the archive.

<zip destfile = "phing.zip" basedir = "."/>

The second example uses the basedir attribute to include the contents of that directory (including sub-
directories) in the archive.

C.101.2. Supported Nested Tags

• fileset

245

246

Appendix D. Core Types
This appendix contains a reference of the system data types contained in Phing.

D.1. Description
Allows for a description of the project to be specified that will be included in the output of the phing
#projecthelp command.

D.1.1. Usage Examples

<description>
This buildfile is used to build the Foo subproject within
the large, complex Bar project.
</description>

D.2. Excludes
Specifies a set of files, classes or methods to be excluded from processing.

This element has no attributes, only nested tags

D.2.1. Nested tags

• file

• class

• method

Table D.1: Common attributes for all file, class, method tags

Name Type Description Default Required

name String The name of the class, method or file. This
may also be specified as a pattern.

n/a Yes

D.2.2. Usage Examples

<coverage-threshold
 perProject = "50"
 perClass = "60"
 perMethod = "70"/>
 <excludes>
 <file>**/*Processor.php</file>
 <class>Model_Filter_Windows</class>
 <method>Model_System::execute()</method>
 </excludes>

247

FileList

D.3. FileList
FileLists offer a way to represent a specific list of files. Unlike FileSets, FileLists may contain files that
do not exist on the filesystem. Also, FileLists can represent files in a specific order -- whereas FileSets
represent files in whichever order they are returned by the filesystem.

Table D.2: Attributes for the <filelist> tag

Name Type Description Default Required

dir String The directory, to which the paths given in
files or listfile are relative.

n/a Yes

files String Comma or space-separated list of files. n/a Yes (or list-
file)

listfile String A text file with one filename per line. n/a Yes (or
files)

D.3.1. Usage Examples

<filelist dir = "/etc" files = "httpd/conf/httpd.conf,php.ini"/>

Or you can use a listfile, which is expected to contain one filename per line:

<filelist dir = "conf/" listfile = "ini_files.txt"/>

This will grab each file as listed in ini_files.txt. This can be useful if one task compiles a list of
files to process and another task needs to read in that list and perform some action to those files.

D.4. FileSet
FileSets offer an easy and straightforward way to include files. The tag supports Selectors and Pat-
ternSets. Additionally, you can include/exclude files in/from a fileset using the <include>/<exclude>
tags. In patterns, one asterisk (*) maps to a part of a file/directory name within a directory level. Two
asterisks (**) may include above the "border" of the directory separator.

Table D.3: Attributes for the <fileset> tag

Name Type Description Default Required

dir String The directory, the paths given in include/
exclude are relative to.

n/a Yes

defaultex-
cludes

Boolean Whether default exclusions should be used
or not. Default excludes are: *~, #*#, .#*,
%*%, CVS, CVS/**, .cvsignore, SCCS, SC-
CS/**, vssver.scc, .svn, .svn/**, ._*,
.DS_Store, .darcs, .darcs/**, .git,
.git/**, .gitattributes, .gitignore,
.gitmodules

true No

casesensitive Boolean The case sensitivity of the file system. true No

expandsymboli-
clinks

Boolean Whether to expand/dereference (follow) sym-
bolic links - set to 'true' to emulate old Phing
behavior.

false No

248

Using wildcards

Name Type Description Default Required

erroronmiss-
ingdir

Boolean Specify what happens if the base directory
does not exist. If true a build error will happen,
if false, the fileset will be ignored/empty.

false No

includes String Comma- or space-separated list of patterns of
files that must be included; all files are includ-
ed when omitted.

n/a No

includesfile String The name of a file; each line of this file is taken
to be an include pattern.

n/a No

excludes String comma- or space-separated list of patterns of
files that must be excluded; no files (except de-
fault excludes) are excluded when omitted.

n/a No

excludesfile String The name of a file; each line of this file is taken
to be an exclude pattern.

n/a No

D.4.1. Using wildcards

• test*.xml will include test_42.xml, but it will not include test/some.xml.

• test**.xml fits to test_42.xml as well as to test/bla.xml, for example.

• **/*.ent.xml fits to all files that end with ent.xml in all subdirectories of the directory specified
with the dir attribute of the <fileset> tag. However, it will not include any files that are directly
in the base directory of the file set.

D.4.2. Usage Examples

<fileset dir = "/etc" >
 <include name = "httpd/**" />
 <include name = "php.ini" />
</fileset>

<fileset dir = "/etc" >
 <patternset>
 <include name = "**/*.php"/>
 <exclude name = "**/*Test*"/>
 </patternset>
</fileset>

This will include the apache configuration and PHP configuration file from /etc.

<fileset id = "files" dir = "${phing.dir}/etc">
 <excludesfile name = "test"/>
</fileset>
<target name = "test">
 <echo msg = "${toString:files}"/>
</target>

This will exclude all files from a file named test. Each line of this file is taken to be an exclude pattern.

D.4.3. Nested tags

The tags that are supported by Fileset are:

249

DirSet

• include

• exclude

• patternset

• any of the selectors

The <include> and the <exclude> tags must have a name attribute that contains the pattern to
include/exclude.

D.5. DirSet
A DirSet is a group of directories. These directories can be found in a directory tree starting in a base
directory and are matched by patterns taken from a number of PatternSets and Selectors.

PatternSets can be specified as nested <patternset> elements. In addition, DirSet holds an implicit
PatternSet and supports the nested <include>, <includesfile>, <exclude> and <excludes-
file> elements of <patternset> directly, as well as <patternset>'s attributes.

Selectors are available as nested elements within the DirSet. If any of the selectors within the DirSet
do not select the directory, it is not considered part of the DirSet. This makes a DirSet equivalent to
an <and> selector container.

Table D.4: Attributes for the <dirset> tag

Name Type Description Default Required

dir String The root of the directory tree of this DirSet. n/a Yes

casesensitive Boolean Specifies whether case-sensitivity should be
applied (true|yes|on or false|no|off).

true No

expandsymboli-
clinks

Boolean Whether to expand/dereference (follow) sym-
bolic links - set to 'true' to emulate old Phing
behavior.

false No

includes String A comma- or space-separated list of patterns
of directories that must be included; all direc-
tories are included when omitted.

n/a No

includesfile String The name of a file; each line of this file is tak-
en to be an include pattern. Note: if the file is
empty and there are no other patterns defined
for the fileset, all directories will be included.

n/a No

excludes String A comma- or space-separated list of patterns
of directories that must be excluded; no direc-
tories are excluded when omitted.

n/a No

excludesfile String The name of a file; each line of this file is taken
to be an exclude pattern.

n/a No

D.5.1. Using wildcards

• test*.xml will include test_42.xml, but it will not include test/some.xml.

• test**.xml fits to test_42.xml as well as to test/bla.xml, for example.

250

Usage Examples

• **/*.ent.xml fits to all files that end with ent.xml in all subdirectories of the directory specified
with the dir attribute of the <fileset> tag. However, it will not include any files that are directly
in the base directory of the file set.

D.5.2. Usage Examples

<dirset dir = "/etc" >
 <include name = "httpd/**" />
 <include name = "php.ini" />
</dirset>

<dirset dir = "/etc" >
 <patternset>
 <include name = "**/*.php"/>
 <exclude name = "**/*Test*"/>
 </patternset>
</dirset>

This will include the apache configuration and PHP configuration file from /etc.

D.5.3. Nested tags

The tags that are supported by Fileset are:

• include

• exclude

• patternset

• any of the selectors

The <include> and the <exclude> tags must have a name attribute that contains the pattern to
include/exclude.

D.6. PatternSet
The PatternSet data type defines patterns that can be grouped into sets and nested into FileSets.
Patterns can be specified by nested <include> or <exclude> elements.

Table D.5: Attributes for <patternset> tag

Name Type Description Default Required

includes String Comma- or space-separated list of patterns of
files that must be included; all files are includ-
ed when omitted.

n/a No

includesfile String The name of a file; each line of this file is taken
to be an include pattern.

n/a No

excludes String comma- or space-separated list of patterns of
files that must be excluded; no files (except de-
fault excludes) are excluded when omitted.

n/a No

excludesfile String The name of a file; each line of this file is taken
to be an exclude pattern.

n/a No

251

Usage Example

D.6.1. Usage Example

<patternset id = "no.tests">
 <include name = "**/*.php"/>
 <exclude name = "**/*Test*"/>
</patternset>

D.6.2. Nested tags

The <patternset> tag only supports <include> and <exclude>. The <include> and the <ex-
clude> tags must have a name attribute that contains the pattern to include/exclude.

D.7. Path / Classpath
The Path data type can be used to represent path structures. In many cases the path type will be used
for nested <classpaentry> tags. E.g.

<path id = "project.class.path">
 <pathelement dir = "lib/"/>
 <pathelement dir = "ext/"/>
</path>

<target name = "blah">
 <taskdef name = "mytask" path = "MyApp\CustomTask\MyTask">
 <classpath refid = "project.class.path"/>
 </taskdef>
</target>

Table D.6: Attributes for <paentry> tag

Name Type Description Default Required

dir String Specific path to directory n/a No

path String A path (which contains multiple locations sep-
arated by path.separator) to add.

n/a No

D.7.1. Nested tags

The <paentry> tag supports nested <fileset> and <dirset> tags.

D.8. Regexp
Regexp represents a regular expression.

Table D.7: Attributes for <regexp> tag

Name Type Description Default Required

pattern String regular expression pattern n/a Yes

refid String Makes this regexp a reference to a regexp de-
fined elsewhere. If specified no other attribut-
es or nested elements are allowed.

n/a No

252

Examples

D.8.1. Examples

<regexp id = "myregexp" pattern = "alpha(.+)beta"/>

Defines a regular expression for later use with id "myregexp".

<regexp refid = "myregexp"/>

Use the regular expression with id "myregexp".

253

254

Appendix E. Core filters
Filters are a subset of Phing data types which provide for the transformation of file contents during
the operation of another task. For example, a filter might replace tokens in a file as part of a copy task.

Filters have to be defined within a <filterchain> context to work. Example:

<filterchain>
 <expandproperties />
</filterchain>

There are two ways to use a filter: System filters (the ones shipped with Phing) can be used with their
own tag name, such as <xsltfilter>, <expandpropertyfilter> or <tabtospaces>. User-
defined filters can use the way is to use the <filterreader> tag.

E.1. PhingFilterReader
The PhingFilterReader is used when you want to use filters that are not directly available through their
own tag. Example:

<filterchain>
 <filterreader classname = "phing.filter.ReplaceTokens">
 <!-- other way to set attributes -->
 <param name = "begintoken" value = "@@" />
 <param name = "endtoken" value = "@@" />

 <!-- other way to set nested tags -->
 <param type = "token" key = "bar" value = "foo" />
 </filterreader>
</filterchain>

In the filterreader tag you have to specify the path the class is in. The FilterReader will then
load this class and pass the parameters to the loaded filter. There are two types of parameters: First,
you can pass "normal" parameters to the loaded filter. That means, you can pass parameters as if they
were attributes. If you want to do this, you only specify the name and value attributes in the param
tag. You can also pass nested elements to the filter. Then, you have to specify the type attribute. This
attribute specifies the name of the nested tag.

The result of the example above is identical with the following code:

<filterchain>
 <replacetokens begintoken = "@@" endtoken = "@@">
 <token key = "bar" value = "foo" />
 </replacetokens>
</filterchain>

Table E.1: Attributes for <filterreader>

Name Type Description Default Required

classname String Name of class to use (in dot-path notation). n/a Yes

classpath String The classpath to use when including classes.
This is added to PHP's include_path.

n/a No

classpatxlink:href String Reference to classpath to use when including
classes. This is added to PHP's include_path.

n/a No

255

Nested tags

E.1.1. Nested tags

The PhingFilterReader supports nested <classpaentry>.

E.1.2. Advanced

In order to support the <filterreader ... /> sytax, your class must extend the BaseParamFilter-
Reader class. Most of the filters that are bundled with Phing can be invoked using this syntax. The no-
table exception (at time of writing) is the ReplaceRegexp filter, which expects find/replace parameters
that do not fit the name/value mold. For this reason, you must always use the shorthand <replac-
eregexp .../> to invoke this filter.

E.2. ExpandProperties
The ExpandProperties simply replaces property names with their property values. For example, if you
have the following in your build file:

<property name = "description.txt" value = "This is a text file" />

<copy todir = "/tmp">
 <filterchain>
 <expandproperties />
 </filterchain>

 <fileset dir = ".">
 <include name = "**" />
 </fileset>
</copy>

And the string ${description.txt} it will be replaced by This is a text file.

Table E.2: Attributes for <expandproperties>

Name Type Description Default Required

level String Control the level at which this message is re-
ported. One of error, warning, info, ver-
bose, debug.

info No

E.3. ConcatFilter
This filter prepends or appends the content file to the filtered files.

<filterchain>
 <concatfilter prepend = "license.txt"/>
 </filterchain>

Table E.3: Attributes for the <concatfilter> tag

Name Type Description Default Required

prepend String The name of the file which content should be
prepended to the file.

n/a No

256

HeadFilter

Name Type Description Default Required

append String The name of the file which content should be
appended to the file.

n/a No

E.4. HeadFilter
This filter reads the first n lines of a file; the others are not further passed through the filter chain. Usage
example:

<filterchain>
 <headfilter lines = "20" />
</filterchain>

Table E.4: Attributes for the <headfilter> tag

Name Type Description Default Required

lines Integer Number of lines to read. 10 No

skip Integer Number of lines to skip (from the beginning). 0 No

E.5. IconvFilter
The IconvFilter encodes file from in encoding to out encoding. Usage example:

<filterchain>
 <iconvfilter inputencoding = "UTF-8" outputencoding = "CP1251" />
</filterchain>

Table E.5: Attributes for the <iconvfilter> tag

Name Type Description Default Required

inputencoding String Input encoding. n/a Yes

outputencoding String Output encoding. n/a Yes

E.6. Line Contains
This filter is only "permeable" for lines that contain the expression given as parameter. For example,
the following filterchain would only let all the lines pass that contain class:

<filterchain>
 <linecontains>
 <contains value = "class" />
 </linecontains>
</filterchain>

257

Nested tags

Table E.6: Attributes for the <linecontains> filter

Name Type Description Default Required

negate Boolean Whether to select non-matching lines only. false No

matchAny Boolean If false, then all the strings are expected to
be present in the line. If true, then the pres-
ence of any of the strings in the line is consid-
ered a successful match.

false No

E.6.1. Nested tags

The linecontains tag must contain one or more contains tags.

E.7. LineContainsRegexp
This filter is similar to Section E.6, “Line Contains ” but you can specify regular expressions instead
of simple strings.

<filterchain>
 <linecontainsregexp>
 <regexp pattern = "foo(.*)bar" />
 </linecontainsregexp>
</filterchain>

Table E.7: Attributes for the <linecontainsregexp> filter

Name Type Description Default Required

casesensitive Boolean Perform a case sensitive match. true No

negate Boolean Whether to select non-matching lines only. false No

regexp String Regular expression to be searched for. n/a No - Un-
less specified,
a valid nested
regexp element
has to be set.

E.7.1. Nested tags

The LineContains filter has to contain at least one regexp tag if the regexp attribute has no pattern
set. This must have a pattern attribute that is set to a regular expression.

E.8. PrefixLines
This filter adds a prefix to every line. The following example will add the string foo: in front of every
line.

<filterchain>

258

ReplaceTokens

 <prefixlines prefix = "foo: " />
</filterchain>

Table E.8: Attributes for the <prefixlines> tag

Name Type Description Default Required

prefix String String to prepend to every line. n/a Yes

E.9. ReplaceTokens
The ReplaceTokens filter will replace certain tokens. Tokens are strings enclosed in special charac-
ters. If you want to replace ##BCHOME## by the path to the directory set in the environment variable
BCHOME, you could do the following:

<property environment = "env" />

<filterchain>
 <replacetokens begintoken = "##" endtoken = "##">
 <token key = "BCHOME" value = "${env.BCHOME}" />
 </replacetokens>
</filterchain>

Table E.9: Attributes for the <replacetokens> tag

Name Type Description Default Required

begintoken String The string that marks the beginning of a token.@ No

endtoken String The string that marks the end of a token. @ No

E.9.1. Nested tags

The ReplaceTokens filter must contain one or more token tags. These must have a key and a
value attribute.

E.10. ReplaceTokensWithFile
The ReplaceTokensWithFile filter will replace certain tokens with the contents of a file. The name
of the file to use as replacement is derived from the token name itself. Tokens are strings enclosed in
special characters which are user selectable.

This filter could for example be used to insert code examples in documentation where the example
code are real executable files kept outside the documentation.

If you for example want to replace #!example1## with the content of the file " example1.php " you
could do the following

<filterchain>
 <replacetokenswithfile begintoken = "#!" endtoken = "##"
 dir = "exampledir/" postfix = ".php" />
 </filterchain>

259

Nested tags

The filer above will replace all tokens within the begin and end token specified with the contents of the
file whose base name is that of the token with the added postfix ".php". Only the directory specified in
the dir attribute is searched. If the file is not found the token is left untouched and an error message is
given. It is important to note that all found tokens will be replaced with the corresponding file. So in the
example below even #!example2## will be replaced with the content of the file " example2.php "

Table E.10: Attributes for the <replacetokenswithfile> tag

Name Type Description Default Required

begintoken String The string that marks the beginning of a token.#@# No

endtoken String The string that marks the end of a token. #@# No

prefix String A string that will be added in front of the token
to construct the filename that will be used as
source when replacing the token.

'' No

postfix String A string that will be added to the end of the to-
ken to construct the filename that will be used
as source when replacing the token.

'' No

dir String The directory where to look for the files to use
as replacements for the tokens

'./' No

translatehtml Boolean If true all html special characters (e.g. ">") in
the file to there corresponding html entities
(e.g. ">") before the file is inserted.

true No

E.10.1. Nested tags

None.

E.11. ReplaceRegexp
The ReplaceRegexp filter will perform a regexp find/replace on the input stream. For example, if you
want to replace ANT with Phing (ignoring case) and you want to replace references to *.java with *.php:

<filterchain>
 <replaceregexp>
 <regexp pattern = "ANT" replace = "Phing" ignoreCase = "true"/>
 <regexp pattern = "(\w+)\.java" replace = "\1.php"/>
 </replaceregexp>
</filterchain>

Or, replace all Windows line-endings with Unix line-endings:

<filterchain>
 <replaceregexp>
 <regexp pattern = "\r(\n)" replace = "\1"/>
 </replaceregexp>
</filterchain>

E.11.1. Nested tags

The ReplaceRegExp filter must contain one or more regexp tags. These must have pattern and
replace attributes. The full list of supported attributes is as following:

260

SortFilter

Table E.11: Attributes for the <regexp> tag

Name Type Description Default Required

pattern String Regular expression used as needle. Phing
relies on Perl-compatible [http://php.net/pcre]
regular expressions.

n/a Yes

replace String Replacement string. n/a Yes

ignoreCase Boolean Whether search is case-insensitive. false No

multiline Boolean Whether regular expression is applied in mul-
ti-line mode.

false No

modifiers String Raw regular expression modifiers [http://ph-
p.net/manual/en/
reference.pcre.pattern.modifiers.php]. You
can pass several modifiers as single string,
and use raw modifiers with ignoreCase and
multiline attributes. In case of conflict,
value specified by dedicated attribute takes
precedence.

'' No

The previous example (using modifiers attribute this time):

<filterchain>
 <replaceregexp>
 <regexp pattern = "ANT" replace = "Phing" modifiers = "i"/>
 <regexp pattern = "(\w+)\.java" replace = "\1.php"/>
 </replaceregexp>
</filterchain>

E.12. SortFilter
The sort filter reads all lines and sorts them. The sort order can be reversed.

<filterchain>
 <sortfilter reverse = "true" />
 </filterchain>

Table E.12: Attributes for the <sortfilter> filter

Name Type Description Default Required

reverse Boolean whether to reverse the sort order, defaults to
false.

false No

E.13. StripLineBreaks
The StripLineBreaks filter removes all linebreaks from the stream passed through the filter chain.

<filterchain>
 <striplinebreaks />
</filterchain>

261

http://php.net/pcre
http://php.net/pcre
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php

StripLineComments

E.14. StripLineComments
The StripLineComments filter removes all line comments from the stream passed through the filter
chain:

<filterchain>
 <striplinecomments>
 <comment value = "#" />
 <comment value = "--" />
 <comment value = "//" />
 </striplinecomments>
</filterchain>

E.14.1. Nested tags

The striplinecomments tag must contain one or more comment tags. These must have a value
attribute that specifies the character(s) that start a line comment.

E.15. StripPhpComments
The StripPhpComments filter removes all PHP comments from the stream passed through the filter.

<filterchain>
 <stripphpcomments />
</filterchain>

E.16. StripWhitespace
The StripWhitespace filter removes all PHP comments and whitespace from the stream passed
through the filter. Internally, this filter uses the php_strip_whitespace() function.

<filterchain>
 <stripwhitespace />
</filterchain>

E.17. TabToSpaces
The TabToSpaces filter replaces all tab characters with a given count of space characters.

<filterchain>
 <tabtospaces tablength = "8" />
</filterchain>

Table E.13: Attributes for the <tabtospaces> filter

Name Type Description Default Required

tablength Integer The number of space characters that a tab is
to represent.

8 No

262

TailFilter

E.18. TailFilter
Similar to Section E.4, “HeadFilter”, this filter reads the last n lines of a file; the others are not further
passed through the filter chain. Usage example:

<filterchain>
 <tailfilter lines = "20" />
</filterchain>

Table E.14: Attributes for the <tailfilter> tag

Name Type Description Default Required

lines Integer Number of lines from the back to read. 10 No

skip Integer Number of lines to be skipped (from the end).0 No

E.19. TidyFilter
The TidyFilter allows you to use the PHP tidy extension [http://php.net/tidy] to clean up and repair
HTML documents. Usage example:

<filterchain>
 <tidyfilter encoding = "utf8">
 <config name = "indent" value = "true" />
 <config name = "output-xhtml" value = "true" />
 </tidyfilter>
</filterchain>

Table E.15: Attributes for the <tidyfilter> tag

Name Type Description Default Required

encoding String The expected input encoding of the file. utf8 No

E.19.1. Nested tags

The TidyFilter supports nested <config> tags to configure how Tidy should manipulate the docu-
ments. For a complete list of configuration options see the official Quick Reference [http://tidy.source-
forge.net/docs/quickref.html].

E.20. XincludeFilter
The XincludeFilter processes a stream for Xinclude tags, and processes the inclusions. This is
useful for processing modular XML files. DocBook book files are one example of modular XML files.
Usage example:

<!--
 Render a DocBook book file called manual.xml, which
 contains Xinclude tags to include individual book sections.
 -->
<copy todir = "${manual.dest.dir}">
 <filterchain>
 <xincludefilter basedir = "${manual.src.dir}" />

263

http://php.net/tidy
http://php.net/tidy
http://tidy.sourceforge.net/docs/quickref.html
http://tidy.sourceforge.net/docs/quickref.html
http://tidy.sourceforge.net/docs/quickref.html

XsltFilter

 <xsltfilter style = "${manual.src.dir}/html.xsl">
 <param name = "base.dir" expression = "${manual.dest.dir}/" />
 </xsltfilter>
 </filterchain>
 <fileset dir = "${manual.src.dir}">
 <include name = "manual.xml" />
 </fileset>
</copy>

Table E.16: Attributes for the <xincludefilter> tag

Name Type Description Default Required

basedir String The working directory from which to process
the Xincludes. Relative pathnames in the in-
clude tags are based on this location.

Project
basedir

No

resolveexter-
nals

Boolean Whether to resolve entities. (see
this link [http://www.php.net/manual/en/
class.domdocument.php#domdocumen-
t.props.resolveexternals] for details)

false No

E.21. XsltFilter
The XsltFilter applies a XSL template to the stream. Though you can use this filter directly, you
should use XslTask Appendix B, Core tasks which is shortcut to the following lines:

<filterchain>
 <xsltfilter style = "somexslt.xsl" />
</filterchain>

This filter relies on PHP5 XSL support via libxslt which must be available for php5. Usually this
means including the php5_xsl module when configuring PHP5. In essence this uses the same core
libraries as "xsltproc" processor.

Table E.17: Attributes for the <xsltfilter> tag

Name Type Description Default Required

style String The XSLT stylesheet to use for transforma-
tion.

n/a Yes

html Boolean Whether to parse the input as HTML (using
libxml2 DOMDocument::loadHTML()).

false No

resolvedocu-
mentexternals

Boolean Whether to resolve entities
in the XML document. (see
this link [http://www.php.net/manual/en/
class.domdocument.php#domdocumen-
t.props.resolveexternals] for details)

false No

re-
solvestyleshee-
texternals

Boolean Whether to resolve entities in the stylesheet. false No

E.21.1. Nested tags

The XsltFilter filter may contain one or more param tags to pass any XSLT parameters to the
stylesheet. These param tags must have name and expression attributes.

264

http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals
http://www.php.net/manual/en/class.domdocument.php#domdocument.props.resolveexternals

ClassConstants

E.22. ClassConstants
This filters basic constants defined in a PHP Class, and outputs them in lines composed of the format
name=value.

<property file = "constants.php">
 <filterchain>
 <classconstants />
 </filterchain>
</property>

265

266

Appendix F. Core mappers
While filters are applied to the content of files, Mappers are applied to the filenames. All mappers
have the same API, i.e. the way you use them is the same:

<mapper type = "mappername" from="frompattern" to="topattern" />

F.1. Common Attributes
Table F.1: Attributes for the <mapper> tag

Name Type Description Default Required

type String Type of the mapper. n/a

classname String Dot-path to a custom mapper class to use. n/a

One of these is
required.

from String The pattern the filename is to be matched to.
The exact meaning is dependent on the imple-
mentation of the mapper.

n/a depends on
the implemen-
tation of the
mapper

to String The pattern according to which the filename is
to be changed to. Here, the usage is depen-
dent on the implementation of the mapper, too.

n/a depends on
the implemen-
tation of the
mapper

F.2. ChainedMapper
This mapper implementation can contain multiple nested mappers. File mapping is performed by pass-
ing the source filename to the first nested mapper, its results to the second, and so on. The target
filenames generated by the last nested mapper comprise the ultimate results of the mapping operation.
The to and from attributes are ignored.

F.2.1. Examples

<mapper type = "chained">
 <mapper type = "flatten"/>
 <mapper type = "glob" from = "*.php" to = "new/path/*.php"/>
 <mapper>
 <mapper type = "glob" from = "*.php" to = "*.php1"/>
 <mapper type = "glob" from = "*.php" to = "*.php2"/>
 </mapper>
 </mapper>

Applying the mapper, you will get the following results from the following filenames:

Table F.2: Result of mapping

From To

foo/bar/a.php new/path/a.php1 and new/path/a.php2

foo/bar/b.php new/path/b.php1 and new/path/b.php2

267

CompositeMapper

F.3. CompositeMapper
This mapper implementation can contain multiple nested mappers. File mapping is performed by pass-
ing the source filename to each nested <mapper> in turn, returning all results. The to and from attrib-
utes are ignored.

<copy todir = "testbuild">
 <fileset dir = "${project.basedir}"/>
 </copy>

This code will copy all files in the fileset to /tmp. All files will be in the target directory.

F.3.1. Examples

<mapper type = "composite">
 <mapper type = "glob" from = "*.xsl" to = "*.from.xsl"/>
 <mapper type = "glob" from = "*.xml" to = "*.from.xml"/>
 <mapper type = "glob" from = "*.php" to = "*.from.php"/>
 </mapper>

Applying the mapper, you will get the following results from the following filenames:

Table F.3: Result of mapping

From To

test.php ./tmp/test.from.php

test.xml ./tmp/test.from.xml

test.xsl ./tmp/test.from.xsl

F.4. FirstMatchMapper
This mapper supports an arbitrary number of nested mappers and returns the results of the first mapper
that matches. This is different from composite mapper which collects the results of all matching children.

F.4.1. Examples

<mapper type = "firstmatch">
 <mapper type = "glob" from = "*.txt" to = "*.bak"/>
 <mapper type = "glob" from = "*.php" to = "*.php"/>
 </mapper>

Applying the mapper, you will get the following results from the following filenames:

Table F.4: Result of mapping

From To

foo/bar/A.txt foo/bar/A.bak

foo/bar/A.php foo/bar/A.php

268

CutDirsMapper

F.5. CutDirsMapper
The CutDirsMapper strips a configured number of leading directories from the source file name.

F.5.1. Examples

<mapper type = "cutdirs" to = "1"/>

The mapper as above will do the following mappings:

Table F.5: Result of mapping

From To

foo/bar/A.txt bar/A.txt

F.6. FlattenMapper
The FlattenMapper removes the directories from a filename and solely returns the filename.

<copy todir = "/tmp">
 <mapper type = "flatten" />

 <fileset refid = "someid" />
</copy>

This code will copy all files in the fileset to /tmp. All files will be in the target directory.

F.6.1. Examples

<mapper type = "flatten" />

Applying the mapper, you will get the following results from the following filenames:

Table F.6: Result of mapping

From To

test.txt test.txt

./foo/bar/test.bak test.bak

F.7. GlobMapper
The GlobMapper works like the copy command in DOS:

<copy todir = "/tmp">
 <mapper type = "glob" from = "*.php" to = "*.php.bak"/>

 <fileset refid = "someid" />
</copy>

269

Examples

This will change the extension of all files matching the pattern *.php to .php.bak.

Table F.7: The globmapper mapper can take the following extra attributes.

Name Type Description Default Required

handledirsep String If this is specified, the mapper will ignore the
difference between the normal directory sepa-
rator characters - \ and /. This attribute is use-
ful for cross-platform build files.

false No

casesensitive Boolean If this is false, the mapper will ignore case
when matching the glob pattern.

true No

F.7.1. Examples

<mapper type = "glob" from = "*txt" to = "*txt.bak"/>

Applying the mapper, you will get the following results from the following filenames:

Table F.8: Result of mapping

From To

test.txt test.txt.bak

./foo/bar/test.txt ./foo/bar/test.txt.bak

mytxt mytxt.bak

SomeClass.php ignored, SomeClass.php

F.8. IdentityMapper
The IdentityMapper will not change anything on the source filenames.

F.9. MergeMapper
The MergeMapper changes all source filenames to the same filename.

F.9.1. Examples

<mapper type = "merge" to = "test.tar"/>

Applying the mapper, you will get the following results from the following filenames:

Table F.9: Result of mapping

From To

test.txt test.tar

./foo/bar/test.txt test.tar

270

RegexpMapper

From To

mytxt test.tar

SomeClass.php test.tar

F.10. RegexpMapper
The RegexpMapper changes filenames according to a pattern defined by a regular expression. This
is the most powerful mapper and you should be able to use it for every possible application.

Table F.10: The regexp mapper can take the following extra attributes.

Name Type Description Default Required

handledirsep String If this is specified, the mapper will ignore the
difference between the normal directory sepa-
rator characters - \ and /. This attribute is use-
ful for cross-platform build files.

false No

casesensitive Boolean If this is false, the mapper will ignore case
when matching the glob pattern.

true No

F.10.1. Examples

<mapper type = "regexp" from = "^(.*)\.conf\.xml" to = "\1.php"/>

The mapper as above will do the following mappings:

Table F.11: Result of mapping

From To

test.txt ignore, test.txt

./foo/bar/test.conf.xml ./foo/bar/test.php

someconf.conf.xml someconf.php

271

272

Appendix G. Core selectors
Selectors are a specific subset of Phing data types that allow you to fine-tune matching in a Appen-
dix D, Core TypesFileSet (or DirSet).

Phing supports the following core selectors, which typically match on both files and directories in a
<fileset>:

• <Contains> - Select files that contain a specific string

• <Readable> - Select files if they are readable

• <Writable> - Select files if they are writable

• <Executable> - Select files if they are executable

• <date> - Select files/directories that have been modified either before or after a specific date/time

• <Depend> - Select files/directories that have been modified more recently than equivalent items
elsewhere

• <Depth> - Select files/directories that appear at a specific depth in a directory tree

• <Different> - Select files that are different from those elsewhere

• <Filename> - Select files/directories whose name matches a particular pattern. Equivalent to the
include and exclude elements of a patternset.

• <Present> - Select files/directories that either do or do not exist in some other location

• <Symlink> - Select files if they are symlink.

• <Containsregexp><containsregexp> - Select files that contain text matching a regular expression

• <Size><size> - Select files that are larger or smaller than a particular number of bytes.

• <Type><type> - Select files/directories by type ('file' or 'dir')

Additionally, to create more complex selections, a variety of selectors that contain other selectors are
available for your use. They combine the selections of their child selectors in various ways.

Phing supports the following selector containers:

• <And><and> - Select a file only if all the contained selectors select it.

• <Majority><majority> - Select a file only if all the contained selectors select it.

• <None><none> - Select a file only if none of the contained selectors select it.

• <Not><not> - Can contain only one selector, and reverses what it selects and doesn't select.

• <Or><or> - Select a file if any one of the contained selectors selects it.

• <Selector><selector> - Contains only one selector and forwards all requests to it without alteration.
This is the selector to use if you want to define a reference. It is usable as an element of <project>.

G.1. Contains
The <contains> tag selects files that contain the string specified by the text attribute.

273

Date

<fileset dir = "${src}" includes = "**/*.php">
 <contains text = "PHP"/>
</fileset>

Table G.1: Attributes for the <contains> selector

Name Description Default Required

text Specifies the text that every file must contain n/a Yes

casesensitive Whether to pay attention to case when looking
for the string in the text attribute.

true No

ignorewhitespace Whether to eliminate whitespace before check-
ing for the string in the text attribute.

false No

G.2. Date
The <date> tag selects files whose last modified date meet the date limits specified by the selector.

<fileset dir = "${src}" includes = "**/*.php">
 <date datetime = "01/01/2001 12:00 AM" when = "before"/>
</fileset>

Table G.2: Attributes for the <date> selector

Name Description Default Required

datetime Specifies the date and time to test for. It should
be in a format parsable by PHP's strtotime()
[http://www.php.net/strtotime] function.

n/a

seconds The number of seconds since Midnight Jan 1
1970 (Unix epoch) that should be tested for.

n/a

One of the two

millis The number of milliseconds since Midnight Jan
1 1970 (Unix epoch) that should be tested for.
Note: It will be internaly converted to seconds.

n/a

when Indicates how to interpret the date, whether the
files to be selected are those whose last mod-
ified times should be before, after, or equal to
the specified value. Accepted values are:

• before - select files whose last modified
date is before the indicated date

• after - select files whose last modified date
is after the indicated date

• equal - select files whose last modified date
is this exact date

equal No

granularity The number of seconds leeway to use when
comparing file modification times.

0 No

checkdirs Indicates whether or not to check dates on di-
rectories.

false No

274

http://www.php.net/strtotime
http://www.php.net/strtotime

Depend

G.3. Depend
The <depend> tag selects files whose last modified date is later than another, equivalent file in another
location.

The <depend> tag supports the use of a contained Appendix F, Core mappers element to define the
location of the file to be compared against. If no mapper element is specified, the identity type mapper
is used.

The <depend> tag is case-sensitive.

<fileset dir = "phing-2.4.5/classes" includes = "**/*.php">
 <depend targetdir = "phing-2.4.6/classes"/>
</fileset>

Table G.3: Attributes for the <depend> selector

Name Description Default Required

targetdir The base directory to look for the files to com-
pare against. The precise location depends on
a combination of this attribute and the mapper
element, if any.

n/a Yes

granularity The number of milliseconds leeway to give be-
fore deciding a file is out of date. This is needed
because not every file system supports tracking
the last modified time to the millisecond level.

0 No

G.4. Depth
The <depentry> tag selects files based on how many directory levels deep they are in relation to the
base directory of the fileset.

<fileset dir = "phing/classes" includes = "**/*.php">
 <depth max = "1"/>
</fileset>

Table G.4: Attributes for the <depentry> selector

Name Description Default Required

min The minimum number of directory levels below
the base directory that a file must be in order to
be selected.

0

max The maximum number of directory levels below
the base directory that a file can be and still be
selected.

0

One of the two

G.5. Different
The <different> selector will select a file if it is deemed to be 'different' from an equivalent file in
another location. The rules for determining difference between the two files are as follows:

275

Filename

• If a file is only present in the resource collection you apply the selector to but not in targetdir (or after
applying the mapper) the file is selected.

• If a file is only present in targetdir (or after applying the mapper) it is ignored.

• Files with different lengths are different.

• If ignoreFileTimes is turned off, then differing file timestamps will cause files to be regarded as dif-
ferent.

• Unless ignoreContents is set to true, a byte-for-byte check is run against the two files.

This is a useful selector to work with programs and tasks that don't handle dependency checking prop-
erly; even if a predecessor task always creates its output files, followup tasks can be driven off copies
made with a different selector, so their dependencies are driven on the absolute state of the files, not
just a timestamp. For example: anything fetched from a web site, or the output of some program. To
reduce the amount of checking, when using this task inside a <copy> task, set preservelastmodified to
true to propagate the timestamp from the source file to the destination file.

The <different> selector supports the use of a contained <mapper> element to define the location of
the file to be compared against. If no <mapper> element is specified, the identity type mapper is used.

<fileset dir = "${phing.1.5}/classes" includes = "**/*.php">
 <different targetdir = "${phing.1.4.1}/classes"
 ignoreFileTimes = "true"/>
 </fileset>

Table G.5: Attributes for the <different> selector

Name Description Default Required

targetdir The base directory to look for the files to com-
pare against. The precise location depends on
a combination of this attribute and the mapper
element, if any.

n/a Yes

ignoreFileTimes Whether to use file times in the comparison or
not.

true No

ignoreContents Whether to do a byte per byte compare. false No

G.6. Filename
The <filename> tag acts like the <include> and <exclude> tags within a fileset. By using a selector
instead, however, one can combine it with all the other selectors using whatever selector container is
desired.

<fileset dir = "${src}" includes = "**/*">
 <filename name = "**/*.php">
</fileset>

Table G.6: Attributes for the <filename> selector

Name Description Default Required

name The name of files to select. The name para-
meter can contain the standard Phing wildcard
characters.

n/a

regex The regular expression matching files to select.n/a

Exactly one of
the two

276

Present

Name Description Default Required

casesensitive Whether to pay attention to case when looking
at file names.

true No

negate Whether to reverse the effects of this filename
selection, therefore emulating an exclude rather
than include tag.

false No

G.7. Present
The <present> tag selects files that have an equivalent file in another directory tree.

The <present> tag supports the use of a contained mapper element to define the location of the file
to be compared against. If no mapper element is specified, the identity type mapper is used.

The <present> tag is case-sensitive.

<fileset dir = "phing-2.4.6/classes" includes = "**/*.php">
 <present present = "srconly" targetdir = "phing-2.4.5/classes">
</fileset>

Table G.7: Attributes for the <present> selector

Name Description Default Required

targetdir The base directory to look for the files to com-
pare against. The precise location depends on
a combination of this attribute and the <map-
per> element, if any.

n/a Yes

present Whether we are requiring that a file is present
in the src directory tree only, or in both the src
and the target directory tree. Valid values are:
srconly - select files only if they are in the src
directory tree but not in the target directory tree
both - select files only if they are present both
in the src and target directory trees

both No

G.8. Containsregexp
The <containsregexp> tag selects the files whose contents contain a match to the regular expres-
sion specified by the expression attribute.

<fileset dir = "${src}" includes = "*.txt">
 <containsregexp expression = "[4-6]\.[0-9]"/>
</fileset>

Table G.8: Attributes for the <containsregexp> selector

Name Description Default Required

expression Specifies the regular expression that must
match true in every file.

n/a Yes

277

Size

Name Description Default Required

casesensitive Perform a case sensitive match. true No

multiline Perform a multi line match. false No

G.9. Size
The <size> tag selects files matching a specified size limit.

<fileset dir = "${src}">
 <size value = "4M" when = "more"/>
</fileset>

Table G.9: Attributes for the <size> selector

Name Description Default Required

value The size of the file which should be tested for.
Examples: 250M, 10G, 1T.

n/a Yes

when Indicates how to interpret the size, whether the
files to be selected should be larger, smaller, or
equal to that value. Accepted values are:

• less - select files less than the indicated size

• more - select files greater than the indicated
size

• equal - select files this exact size

equal No

Note

File size can be written using IEC and SI suffixes, bytes are assumed when suffix is not specified.
The following suffixes (case-insensitive) are supported:

Table G.10: Supported file size suffixes

Standard Suffixes Equivalence

B. 1 byte

K, Ki, KiB, kibi, kibibyte. 1024 bytes

M, Mi, MiB, mebi, mebibyte. 1024 kibibytes

G, Gi, GiB, gibi, gibibyte. 1024 mebibytes

IEC

T, Ti, TiB, tebi, tebibyte. 1024 gibibytes

kB, kilo, kilobyte. 1000 bytes

MB, mega, megabyte. 1000 kilobytes

GB, giga, gigabyte. 1000 megabytes
SI

TB, tera, terabyte. 1000 gigabytes

278

Type

G.10. Type
The <type> tag selects files of a certain type: directory or regular.

<fileset dir = "${src}">
 <type type = "dir"/>
</fileset>

Table G.11: Attributes for the <type> selector

Name Description Default Required

type The type of file which should be tested for. Ei-
ther file or dir.

n/a Yes

G.11. And
The <and> tag selects files that are selected by all of the elements it contains. It returns as soon as it
finds a selector that does not select the file, so it is not guaranteed to check every selector.

<fileset dir = "${src}" includes = "**/*.php">
 <and>
 <size value = "1000" when = "more"/>
 <date datetime = "01/01/2011 12:00 AM" when = "before"/>
 </and>
</fileset>

G.12. Majority
The <majority> tag selects files provided that a majority of the contained elements also select it.
Ties are dealt with as specified by the allowtie attribute.

<fileset dir = "${src}" includes = "**/*.php">
 <majority>
 <contains text = "project" casesensitive = "false"/>
 <contains text = "taskdef" casesensitive = "false"/>
 <contains text = "BaseSelector" casesensitive = "true"/>
 </majority>
</fileset>

Table G.12: Attributes for the <majority> selector container

Name Description Default Required

allowtie Whether files should be selected if there are an
even number of selectors selecting them as are
not selecting them.

true No

G.13. Modified
The <modified> selector computes a value for a file, compares that to the value stored in a cache
and select the file, if these two values differ.

Because this selector is highly configurable the order in which the selection is done is:

279

Parameters specified
as nested elements

1. get the absolute path for the file

2. get the cached value from the configured cache (absolute path as key)

3. get the new value from the configured algorithm

4. compare these two values with the configured comparator

5. update the cache if needed and requested

6. do the selection according to the comparison result

The comparison, computing of the hashvalue and the store is done by implementation of special inter-
faces. Therefore they may provide additional parameters.

Table G.13: Attributes for the <modified> selector

Name Description Default Required

algorithm The type of algorithm should be used. Accept-
able values are (further information see later):

• hashfile

• lastmodified

hashfile No

cache The type of cache should be used. Acceptable
values are (further information see later):

• propertyfile

property-
file

No

comparator The type of comparator should be used. Ac-
ceptable values are:

• equal

equal No

algorithmclass Classname of custom algorithm implementa-
tion. Lower priority than algorithm.

n/a No

cacheclass Classname of custom cache implementation.
Lower priority than cache.

n/a No

comparatorclass Classname of custom comparator implementa-
tion. Lower priority than comparator.

n/a No

update Should the cache be updated when values dif-
fer? (boolean)

true No

seldirs Should directories be selected? (boolean) true No

delayupdate If set to "true", the storage of the cache will
be delayed until the next finished BuildEvent;
task finished, target finished or build finished,
whichever comes first. This is provided for in-
creased performance. If set to "false", the stor-
age of the cache will happen with each change.
This attribute depends upon the update at-
tribute. (boolean)

true No

G.13.1. Parameters specified as nested elements

All attributes of a <modified> selector an be set with nested <param/> tags. Additional values can be
set with <param/> tags according to the rules below.

280

Examples

Table G.14: algorithm

Name Description Default Required

hashfile This Algorithm supports the following attribute:

• algorithm.algorithm (optional): Name of the
hashfile algorithm (e.g. "MD5" or "SHA"); de-
fault is "MD5"

n/a No

lastmodified Uses the lastModified property of a file. No ad-
ditional configuration is required.

n/a No

G.13.2. Examples

Here are some examples of how to use the Modified Selector:

<copy todir = "dest">
 <fileset dir = "src">
 <modified/>
 </fileset>
</copy>

This will copy all files from src to dest which content has changed. Using an updating PropertyfileCache
with cache.properties and MD5-FilehashAlgorithm.

<copy todir = "dest">
 <fileset dir = "src">
 <modified update = "true"
 seldirs = "true"
 cache = "propertyfile"
 algorithm = "digest"
 comparator = "equal">
 <param name = "cache.cachefile" value = "cache.properties"/>
 <param name = "algorithm.algorithm" value = "md5"/>
 </modified>
 </fileset>
</copy>

G.14. None
The <none> tag selects files that are not selected by any of the elements it contains. It returns as soon
as it finds a selector that selects the file, so it is not guaranteed to check every selector.

<fileset dir = "${src}" includes = "**/*.php">
 <none>
 <size value = "1000" when = "more"/>
 <date datetime = "01/01/2011 12:00 AM" when = "before"/>
 </none>
</fileset>

G.15. Not
The <not> tag reverses the meaning of the single selector it contains.

281

Or

<fileset dir = "${src}" includes = "**/*.php">
 <not>
 <contains text = "Phing"/>
 </not>
</fileset>

G.16. Or
The <or> tag selects files that are selected by any one of the elements it contains. It returns as soon
as it finds a selector that selects the file, so it is not guaranteed to check every selector.

<fileset dir = "${src}">
 <or>
 <depth max = "0"/>
 <filename name = "*.png"/>
 <filename name = "*.gif"/>
 <filename name = "*.jpg"/>
 </or>
</fileset>

G.17. Readable
The <readable> selector selects only files that are readable.

<fileset dir = "${src}" includes = "**/*.php">
 <readable>
</fileset>

G.18. Writable
The <writable> selector selects only files that are writable.

<fileset dir = "${src}" includes = "**/*.php">
 <writable>
</fileset>

G.19. Executable
The <executable> selector selects only files that are executable.

<fileset dir = "${src}" includes = "**/*.php">
 <executable>
</fileset>

282

Selector

G.20. Selector
The <selector> tag is used to create selectors that can be reused through references. It is the only
selector which can be used outside of any target, as an element of the <project> tag. It can contain
only one other selector, but of course that selector can be a container.

G.21. Symlink Selector
The <symlink> selector selects only files that are symbolic links.

G.22. PosixPermissions Selector
The <posixpermissions> selector selects only files that have the given POSIX permissions.

Table G.15: Attributes for the <posixpermissions> selector

Name Description Default Required

permissions POSIX permissions in string (rwxrwxrwx) or
octal (777) format

true Yes

283

284

Appendix H. Project Components
This file will give you a quick introduction and a reference of the things that you may see in a build
files besides tasks and types.

H.1. Phing Projects
Projects are the outermost container for everything in build files. The <project> tag also is the root
tag in build files. It contains the name, the directory, a short description and a default target.

Project may contain task calls and targets (see below).

H.1.1. Example

<?xml version="1.0" ?>

<project name = "TestProject" basedir = "." default = "main"
 description = "This is a test project to show how to use projects ;-)">

 <!-- Everything else goes here -->

</project>

Phing allows declaring tasks outside targets. Note that these tasks are evaluated before any targets
are executed.

H.1.3. Attributes

Table H.1: Attributes

Name Type Description Default Required

basedir String The base directory of the project, i.e. the di-
rectory all paths are relative to.

n/a No

default String The name of the target that is executed if none
is explicitly specified when calling Phing

all Yes

description String A free text description of the project n/a No

name String Name of the project n/a No

phingVersion String The minimum Phing version required to exe-
cute the build file, in order to prevent compat-
ibility issues.

n/a No

strict Boolean Enables the strict-mode for the project build
process. If enabled, a warning would be con-
sidered as an error, and the build will be abort-
ed.

false No

285

Targets and Extension-Points

H.2. Targets and Extension-Points

H.2.1. Example

<target if = "lang" unless = "lang.en" depends = "foo1,foo2"
 name = "main" description = "This is an example target" >

 <!-- everything else goes here -->

</target>

The target defined in the example above is only executed, if the property ${lang} is set and the
property ${lang.en} is not set. Additionally, it depends on the targets foo1 and foo2. That means,
the targets foo1 and foo2 are executed before the target main is executed. The name of the target
is main and it also has a description.

H.2.2. Attributes

Table H.2: Parameters

Name Type Description Default Required

depends String One or more names of targets that have to be
executed before this target can be executed.

n/a No

description String A free text description of the target. n/a No

if String The name of the property that is to be set if the
target is to be executed.

n/a No

name String The name of the target n/a Yes

unless String The name of the property that is to be set if the
target is not to be executed.

n/a No

hidden Boolean Whether or not to include this target in the list
of targets generated by phing -l

False No

logskipped Boolean Whether to log message as INFO instead of
VERBOSE if target is skipped

False No

Caution

The if and unless attributes only enable or disable the target to which they are attached. They do
not control whether or not targets that a conditional target depends upon get executed. In fact,
they do not even get evaluated until the target is about to be executed, and all its predecessors
have already run.

H.2.3. Extension-Points

Extension-Points are similar to targets in that they have a name and a depends list and can be executed
from the command line. Just like targets they represent a state during the build process.

Unlike targets they don't contain any tasks, their main purpose is to collect targets that contribute to
the desired state in their depends list.

286

Extension-Points

Targets can add themselves to an extension-point's depends list via their extensionOf attribute.
The targets that add themselves will be added after the targets of the explicit depends attribute of the
extension-point, if multiple targets add themselves, their relative order is not defined.

The main purpose of an extension-point is to act as an extension point for build files designed to be
imported. In the imported file, an extension-point defines a state that must be reached and targets from
other build files can join the depends list of said extension-point in order to contribute to that state.

For example your imported build file may need to compile code, it might look like:

<target name = "create-directory-layout">
 ...
</target>

<extension-point name = "ready-to-compile"
 depends = "create-directory-layout"/>

<target name = "compile" depends = "ready-to-compile">
 ...
</target>

Call-Graph: create-directory-layout -> 'empty slot' -> compile

And you need to generate some source before compilation, then in your main build file you may use
something like

<target name = "generate-sources"
 extensionOf = "ready-to-compile">
...
</target>

Call-Graph: create-directory-layout -> generate-sources -> compile

This will ensure that the "generate-sources" target is executed before the "compile" target.

Don't rely on the order of the depends list, if "generate-sources" depends on "create-directory-layout"
then it must explicitly depend on it via its own depends attribute.

287

288

Appendix I. Loggers and Listeners
Phing has two related features to allow the build process to be monitored: listeners and loggers.

I.1. Listeners
A listener is alerted of the following events.

• build started

• build finished

• target started

• target finished

• task started

• task finishned

• message logged

These are used internally for various recording and housekeeping operations, however new listeners
may registered on the command line through the -listener argument.

I.2. Loggers
Loggers extend the capabilities of listeners and add the following features:

• Receives a handle to the standard output and error print streams and therefore can log information
to the console or the -logfile specified file.

• Logging level (-quiet, -verbose, -debug) aware

• Emacs-mode aware

I.3. DefaultLogger
Simply run Phing normally, or: phing -logger "Phing\Listener\DefaultLogger"

I.4. AnsiColorLogger
The AnsiColorLogger adds color to the standard Phing output by prefixing and suffixing ANSI color
code escape sequences to it. It is just an extension of DefaultLogger and hence provides all features
that DefaultLogger does.

AnsiColorLogger differentiates the output by assigning different colors depending upon the type of the
message.

289

MailLogger

If used with the -logfile option, the output file will contain all the necessary escape codes to display the
text in colorized mode when displayed in the console using applications like cat, more, etc.

This is designed to work on terminals that support ANSI color codes.

If the user wishes to override the default colors with custom ones, a file containing zero or more of
the custom color key-value pairs must be created. The recognized keys and their default values are
shown below:

AnsiColorLogger.ERROR_COLOR=01;31
AnsiColorLogger.WARNING_COLOR=01;35
AnsiColorLogger.INFO_COLOR=00;36
AnsiColorLogger.VERBOSE_COLOR=00;32
AnsiColorLogger.DEBUG_COLOR=01;34

Each key takes as value a color combination defined as "Attribute;Foreground;Background". In the
above example, background value has not been used.

This file must be specified as the value of a system variable named phing.logger.defaults and passed
as an argument using the -D option to the php command that invokes the Phing application. An easy
way to achieve this is to add -Dphing.logger.defaults=/path/to/your/file

phing -logger "Phing\Listener\AnsiColorLogger"

I.5. MailLogger
The MailLogger captures all output logged through DefaultLogger (standard Phing output) and will
send success and failure messages to unique e-mail lists, with control for turning off success or failure
messages individually.

Table I.1: Properties controlling the operation of MailLogger:

Property Description Required

ph-
ing.log.mail.from

Mail "from" address Yes, if mail needs to be sent

phing.log.mail.re-
plyto

Mail "replyto" address(es), com-
ma-separated

No

ph-
ing.log.mail.prop-
erties.file

Filename of properties file that will
override other values.

No

ph-
ing.log.mail.suc-
cess.cc

Address to send success messages to
carbon copy (cc)

No

ph-
ing.log.mail.fail-
ure.cc

Address to send failure messages to
carbon copy (cc)

No

ph-
ing.log.mail.suc-
cess.bcc

Address to send success messages to
blind carbon copy (bcc)

No

ph-
ing.log.mail.fail-
ure.bcc

Address to send failure messages to
blind carbon copy (bcc)

No

290

NoBannerLogger

Property Description Required

ph-
ing.log.mail.suc-
cess.body

fixed text of mail body for a successful
build, default is to send the logfile

No

ph-
ing.log.mail.fail-
ure.body

fixed text of mail body for a failed build,
default is to send the logfile

No

ph-
ing.log.mail.suc-
cess.subject

Subject of successful build No - default to Build Success

ph-
ing.log.mail.fail-
ure.subject

Subject of failed build No - default to Build Failure

ph-
ing.log.mail.suc-
cess.to

Address to send success messages torequired if success mail to be sent

ph-
ing.log.mail.fail-
ure.to

Address to send failure messages to required if failure mail to be sent

ph-
ing.log.mail.suc-
cess.notify

Send build success e-mails? No - default to true

ph-
ing.log.mail.fail-
ure.notify

Send build failure e-mails? No - default to true

phing -logger "Phing\Listener\MailLogger"

I.6. NoBannerLogger
Removes output of empty target output. phing -logger "Phing\Listener\NoBannerLogger"

I.7. ProfileLogger
This logger stores the time needed for executing a task, target and the whole build and prints these
information. The output contains a timestamp when entering the build, target or task and a timestamp
and the needed time when exiting.

I.8. StatisticsListener
A phing BuildListener which can be used to gather statistics while a phing build is executed. Statistics
on the targets and tasks executed are written to the console after the build completes. Some of the
statistics captured are: - the number of times a target / task is called - the average processing time

291

TimestampedLogger

spent on a target / task - the total processing time spent on a target / task - the total processing time
spent on a target / task expressed as a percentage

I.9. TimestampedLogger
Acts like the default logger, except that the final success/failure message also includes the time that
the build completed.

I.10. SilentLogger
A logger which logs nothing but build failure and what task might output.

I.11. MonologListener
Listener which sends events to Monolog.

To use the MonologListener, start Phing with this command: phing -listener "Phing\\Listen-
er\\MonologListener"

Configuration is not (yet) implemented, but you could easily extend the existing MonologListener with
your own implementation. Or better yet, send us a PR :-)

I.12. DisguiseLogger
A logger which masks passwords in URI strings - i.e: [echo] hide password from URI http://
foo:*****@example.com/baz?one=two

To use the DisguiseLogger, start Phing with this command: phing -logger "Phing\\Listener\
\DisguiseLogger"

292

Appendix J. File Formats

J.1. Build File Format
The following XML file shows a basic Phing build file skeleton that can be used as a starting point for
your own build files. See the references in Appendix A, Fact Sheet and Appendix B, Core tasks for
more detailed information on properties and tasks.

<?xml version="1.0" encoding="UTF-8"?>

<!--
 ===
 The root tag of each build file must be a "project" tag.
 ===
-->
<project name = "(projectname)" basedir = "(projectbasedir)"
 default = "(targetname)" description = "(projectdescription)">

 <!--
 ===
 Inclusion of optional overall project properties.
 ===
 -->
 <property file = "(main property file)" />

 <!--
 ===
 Build file wide properties used in the targets below
 ===
 -->

 <!-- Useful to make the current buildtime available as a property -->
 <tstamp>
 <!-- Format is, e.g. Sat, 03 Oct 2009, 16:31 -->
 <format property = "buildtime" pattern = "%a, %d %b %Y, %H:%M"/>
 </tstamp>

 <property name = "(first.property1)" value = "(value1)" override = "true" />
 <property name = "(second.property2)" value = "(value2)" override = "true" />

 <!--
 ===
 Type and task calls here, i.e. filesets, patternsets,
 CopyTask calls etc.
 ===
 -->
 <!-- Filesets -->
 <fileset dir = "(fileset.directory)" id = "(fileset.reference)">
 <include name = "(include.pattern)"/>
 </fileset>

 <!-- Custom tasks -->
 <taskdef classname = "(task.classname)" name = "task.name" />

 <!--
 ===
 All target definitions
 ("if" and "unless" attributes are optional)
 ===
 -->

293

Property File Format

 <target name = "(targetname)" [depends = "targetname1,targetname2"]
 [if = "(ifproperty)"] [unless = "(unlessproperty)"] >
 <!--
 --
 Type and task calls here, i.e. filesets, patternsets,
 CopyTask calls, etc.
 --
 -->
 </target>

 <!--
 ===
 More targets here
 ===
 -->
 <target name = "..." >
 <!--
 --
 Type and task calls here, i.e. filesets, patternsets,
 CopyTask calls, etc.
 --
 -->

 </target>
</project>

Note

By convention properties are named in dot notation in Phing build files, e.g. ftp.upload, tem-
p.builddir and so on

J.2. Property File Format
Property Files define properties. Properties are stored in key/value pairs and may only contain plain
text. The suffix of these files should be .properties, the default Property File for a Build File is
build.properties

Property files contain key/value pairs
key=value

Property keys may contain alphanumeric chars and colons, but
not special chars. This way you can create pseudo-namespaces
myapp.window.hsize=300
myapp.window.vsize=200
myapp.window.xpos=10
myapp.window.ypos=100

You can refer to values of other properties by enclosing their
keys in "${}".
text.width=${myapp.window.hsize}

Everything behind the equal sign is the value, you do
not have to enclose strings:
text=This is some text, Your OS is ${php.os}

Property files may also be formatted in YAML format:

Property files contain key/value pairs
key: value

294

Property File Format

Nested values will be available as concatenated strings after import. E.g.,
you may access these values with keys in the form of "myapp.window.hsize".
myapp:
 window:
 hsize: 300
 vsize: 200
 xpos: 10
 ypos: 100

You can refer to values of other properties by enclosing their
keys in "${}".
text:
 width: "${myapp.window.hsize}"

Property files may also be formatted in XML format:

<myapp>
 <window>
 <hsize>300</hsize>
 <vsize>200</hsize>
 <xpos>10</hsize>
 <ypos>100</hsize>
 </window>
</myapp>

myapp.window.hsize=300
myapp.window.vsize=200
myapp.window.xpos=10
myapp.window.ypos=100

295

296

Bibliography
International Standards
[osi-model] OSI (Open System Interconnect) Model. http://www.iso.org . http://www.instantweb.com/foldoc/

foldoc.cgi?OSI .

[xml10-spec] W3C XML 1.0 Specifications. http://www.w3.org/XML/ .

[unicode] Unicode. http://www.unicode.org .

Licenses
[gnu-lgpl] The GPL (Gnu Lesser Public License). http://www.gnu.org/licenses/lgpl.html .

[gnu-fdl] The Gnu FDL (Free Documentation License), the license used for this documentation. http://
www.gnu.org/licenses/fdl.html .

Open Source Projects
[pear] PEAR (Php Extension Archive Repository). http://pear.php.net .

[ant] Ant, a Java Build Tool, the main inspiration for Phing. http://ant.apache.org .

[gnumake] GNU make, an inspiration for Phing. http://www.gnu.org/software/make/make.html .

[php] The PHP homepage - PHP Hypertext Preprocessor. http://www.php.net .

[phing] Phing (PHing Is Not Gnumake). http://www.phing.info .

Manuals
[svn-howto] Version Control with Subversion (free book). http://svnbook.red-bean.com/ .

[git-book] Pro-git (free book). http://progit.org/ .

Other Resources
[javadoc] Sun Javadoc. http://java.sun.com/j2se/javadoc/ .

297

http://www.iso.org
http://www.instantweb.com/foldoc/foldoc.cgi?OSI
http://www.instantweb.com/foldoc/foldoc.cgi?OSI
http://www.w3.org/XML/
http://www.unicode.org
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://pear.php.net
http://ant.apache.org
http://www.gnu.org/software/make/make.html
http://www.php.net
http://www.phing.info
http://svnbook.red-bean.com/
http://progit.org/
http://java.sun.com/j2se/javadoc/

298

	Phing User Guide
	Table of Contents
	Preface
	Chapter 1. About this book
	1.1. Contributors (present and past)
	1.2. Copyright
	1.3. License
	1.4. DocBook
	1.4.1. Building the documentation
	1.4.2. Template for new tasks
	1.4.3. Customization of the look & feel of the rendered outputs
	1.4.4. DocBook v5 elements used in the manual and their meaning

	Chapter 2. Introduction
	2.1. What Phing Is
	2.2. Phing & Binarycloud: History
	2.3. How Phing Works
	2.4. Cool, so how can I help?
	2.4.1. Participating in the development

	Chapter 3. Setting-up Phing
	3.1. System Requirements
	3.1.1. Operating Systems
	3.1.2. Software Dependencies

	3.2. Obtaining Phing
	3.2.1. Distribution Files
	3.2.2. Composer Install
	3.2.3. Phar package
	3.2.4. Getting the latest source from Phing's Github repository

	3.3. Running Phing
	3.3.1. Command Line
	3.3.2. Supported command line arguments

	Chapter 4. Getting started
	4.1. XML And Phing
	4.2. Writing A Simple Buildfile
	4.2.1. Project Element
	4.2.2. Target Element
	Target attributes

	4.2.3. Task Elements
	4.2.4. Property Element
	Built-in Properties

	4.3. More Complex Buildfile
	4.3.1. Handling source dependencies

	4.4. Relax NG Grammar

	Chapter 5. Project components
	5.1. Projects
	5.2. Version
	5.3. Project Components in General
	5.4. Targets
	5.5. Tasks
	5.6. Types
	5.6.1. Basics
	5.6.2. Referencing Types

	5.7. Basic Types
	5.7.1. FileSet
	5.7.2. FileList
	5.7.3. FilterChains and Filters
	5.7.4. File Mappers

	5.8. Conditions
	5.8.1. not
	5.8.2. and
	5.8.3. or
	5.8.4. xor
	5.8.5. os
	5.8.6. equals
	5.8.7. versioncompare
	5.8.8. http
	5.8.9. PDOSQLExec
	5.8.10. socket
	5.8.11. hasfreespace
	5.8.12. isset
	5.8.13. contains
	5.8.14. istrue
	5.8.15. isfalse
	5.8.16. ispropertytrue
	5.8.17. ispropertyfalse
	5.8.18. referenceexists
	5.8.19. available
	5.8.20. filesmatch
	5.8.21. isfileselected
	5.8.22. isfailure
	5.8.23. matches

	Chapter 6. Extending Phing
	6.1. Extension Possibilities
	6.1.1. Tasks
	6.1.2. Types
	6.1.3. Mappers

	6.2. Source Layout
	6.2.1. Files And Directories
	6.2.2. File Naming Conventions
	6.2.3. Coding Standards

	6.3. System Initialization
	6.3.1. Wrapper Scripts
	6.3.2. The Main Application (phing.php)
	6.3.3. The Phing Class

	6.4. System Services
	6.4.1. The Exception system

	6.5. Build Lifecycle
	6.5.1. How Phing Parses Buildfiles

	6.6. Writing Tasks
	6.6.1. Creating A Task
	6.6.2. Using the Task
	6.6.3. Source Discussion
	6.6.4. Task Structure
	6.6.5. Includes
	6.6.6. Class Declaration
	6.6.7. Class Properties
	6.6.8. The Constructor
	6.6.9. Setter Methods
	6.6.10. Creator Methods
	6.6.11. init() Method
	6.6.12. main() Method
	6.6.13. Arbitrary Methods

	6.7. Writing Types
	6.7.1. Creating a DataType
	6.7.2. Using the DataType
	6.7.3. Source Discussion
	Getters & Setters
	The getRef() Method

	6.8. Writing Mappers
	6.8.1. Creating a Mapper
	6.8.2. Using the Mapper

	6.9. Writing Selectors
	6.10. Writing Conditions

	Appendix A. Fact Sheet
	A.1. Built-In Properties
	A.2. Command Line Arguments
	A.3. Distribution File Layout
	A.4. Program Exit Codes
	A.5. The LGPL License
	A.6. The GFDL License

	Appendix B. Core tasks
	B.1. AdhocTaskdefTask
	B.1.1. Examples

	B.2. AdhocTypedefTask
	B.2.1. Example

	B.3. AppendTask
	B.3.1. Examples
	B.3.2. Supported Nested Tags

	B.4. ApplyTask
	B.4.1. Examples
	B.4.2. Supported Nested Tags

	B.5. AttribTask
	B.5.1. Example
	B.5.2. Supported Nested Tags

	B.6. Augment
	B.6.1. Examples

	B.7. AutoloaderTask
	B.7.1. Example

	B.8. AvailableTask
	B.8.1. Examples

	B.9. Basename
	B.9.1. Examples

	B.10. Bindtargets
	B.10.1. Examples

	B.11. ChmodTask
	B.11.1. Examples
	B.11.2. Supported Nested Tags

	B.12. ChownTask
	B.12.1. Examples
	B.12.2. Supported Nested Tags

	B.13. ConditionTask
	B.13.1. Examples
	B.13.2. Supported Nested Tags

	B.14. CopyTask
	B.14.1. Examples
	B.14.2. Supported Nested Tags

	B.15. DefaultExcludes
	B.15.1. Examples

	B.16. DeleteTask
	B.16.1. Examples
	B.16.2. Supported Nested Tags

	B.17. DependSet
	B.17.1. Examples
	B.17.2. Supported Nested Tags

	B.18. Diagnostics
	B.18.1. Example

	B.19. Dirname
	B.19.1. Example

	B.20. EchoPropertiesTask
	B.20.1. Example

	B.21. EchoTask
	B.21.1. Examples
	B.21.2. Supported Nested Tags

	B.22. EchoXML
	B.22.1. Parameters specified as nested elements
	B.22.2. Examples

	B.23. ExecTask
	B.23.1. Examples
	B.23.2. Supported Nested Tags

	B.24. FailTask
	B.24.1. Examples
	B.24.2. Parameters specified as nested elements.

	B.25. FileHashTask
	B.25.1. Example

	B.26. FileSizeTask
	B.26.1. Examples

	B.27. ForeachTask
	B.27.1. Examples
	B.27.2. Supported Nested Tags

	B.28. IfTask
	B.28.1. Examples

	B.29. ImportTask
	B.29.1. Target Overriding
	B.29.2. Special Properties
	B.29.3. Resolving Files Against the Imported File
	B.29.4. Examples

	B.30. IncludePathTask
	B.30.1. Examples

	B.31. InputTask
	B.31.1. Examples

	B.32. JsonValidateTask
	B.32.1. Example

	B.33. LoadFileTask
	B.33.1. Examples
	B.33.2. Supported Nested Tags:

	B.34. ManifestTask
	B.34.1. Supported Nested Tags

	B.35. MkdirTask
	B.35.1. Examples

	B.36. MoveTask
	B.36.1. Examples
	B.36.2. Attributes and Nested Elements

	B.37. PathConvert
	B.38. PathToFileSetTask
	B.38.1. Examples

	B.39. PhingCallTask
	B.39.1. Examples
	B.39.2. Supported Nested Tags

	B.40. PhingTask
	B.40.1. Examples
	B.40.2. Supported Nested Tags
	B.40.3. Base directory of the new project

	B.41. Phingversion
	B.41.1. Example

	B.42. PhpEvalTask
	B.42.1. Examples
	B.42.2. Supported Nested Tags

	B.43. PhpLintTask
	B.43.1. Example
	B.43.2. Supported Nested Tags

	B.44. PropertyCopy
	B.44.1. Example

	B.45. PropertyRegexTask
	B.45.1. Match expressions
	B.45.2. Replace
	B.45.3. Example

	B.46. PropertySelector
	B.46.1. Select expressions
	B.46.2. Example

	B.47. PropertyTask
	B.47.1. Examples
	B.47.2. Supported Nested Tags:

	B.48. Record
	B.48.1. Example

	B.49. ReflexiveTask
	B.49.1. Examples
	B.49.2. Supported Nested Tags:

	B.50. Relentless
	B.50.1. Example

	B.51. ReplaceRegexpTask
	B.51.1. Supported Nested Tags

	B.52. ResolvePathTask
	B.52.1. Examples

	B.53. Retry
	B.53.1. Example

	B.54. RunTargetTask
	B.54.1. Example

	B.55. SleepTask
	B.55.1. Example

	B.56. SortList
	B.56.1. Example

	B.57. Subphing Task
	B.57.1. Supported Nested Tags

	B.58. SwitchTask
	B.58.1. Supported Nested Tags
	B.58.2. Examples

	B.59. SymlinkTask
	B.59.1. Example
	B.59.2. Supported Nested Tags

	B.60. TaskdefTask
	B.60.1. Examples
	B.60.2. Supported Nested Tags

	B.61. Tempfile Task
	B.61.1. Example

	B.62. ThrowTask
	B.62.1. Example

	B.63. TouchTask
	B.63.1. Examples
	B.63.2. Supported Nested Tags

	B.64. TruncateTask
	B.64.1. Examples

	B.65. TryCatchTask
	B.65.1. Examples

	B.66. TstampTask
	B.66.1. Examples
	B.66.2. Supported Nested Tags
	B.66.3. ICU syntax

	B.67. TypedefTask
	B.67.1. Examples
	B.67.2. Supported Nested Tags

	B.68. URLEncodeTask
	B.68.1. Example

	B.69. UpToDateTask
	B.69.1. Examples
	B.69.2. Supported Nested Tags

	B.70. Variable
	B.70.1. Example

	B.71. VersionTask
	B.71.1. Example

	B.72. WaitForTask
	B.72.1. Examples
	B.72.2. Supported Nested Tags

	B.73. XsltTask
	B.73.1. Examples
	B.73.2. Supported Nested Tags

	Appendix C. Optional tasks
	C.1. ApiGenTask
	C.1.1. Example

	C.2. ComposerTask
	C.2.1. Supported Nested Tags
	C.2.2. Example

	C.3. CoverageMergerTask
	C.3.1. Example
	C.3.2. Supported Nested Tags

	C.4. CoverageReportTask
	C.4.1. Example
	C.4.2. Supported Nested Tags

	C.5. CoverageSetupTask
	C.5.1. Example
	C.5.2. Supported Nested Tags

	C.6. CoverageThresholdTask
	C.6.1. Example
	C.6.2. Supported Nested Tags

	C.7. DbDeployTask
	C.7.1. Example

	C.8. FileSyncTask
	C.8.1. Examples

	C.9. FtpDeployTask
	C.9.1. Example
	C.9.2. Supported Nested Tags

	C.10. GitArchiveTask
	C.10.1. Example

	C.11. GitBranchTask
	C.11.1. Example

	C.12. GitCheckoutTask
	C.12.1. Example

	C.13. GitCloneTask
	C.13.1. Example

	C.14. GitCommitTask
	C.14.1. Example
	C.14.2. Supported Nested Tags

	C.15. GitDescribeTask
	C.15.1. Example

	C.16. GitFetchTask
	C.16.1. Example

	C.17. GitGcTask
	C.17.1. Example

	C.18. GitInitTask
	C.18.1. Example

	C.19. GitLogTask
	C.19.1. Example

	C.20. GitMergeTask
	C.20.1. Example

	C.21. GitPullTask
	C.21.1. Example

	C.22. GitPushTask
	C.22.1. Example

	C.23. GitTagTask
	C.23.1. Example

	C.24. GrowlNotifyTask
	C.24.1. Examples

	C.25. HgAddTask
	C.25.1. Example
	C.25.2. Supported Nested Tags

	C.26. HgArchiveTask
	C.26.1. Example

	C.27. HgCloneTask
	C.27.1. Example

	C.28. HgCommitTask
	C.28.1. Example

	C.29. HgInitTask
	C.29.1. Example

	C.30. HgLogTask
	C.30.1. Example

	C.31. HgPullTask
	C.31.1. Example

	C.32. HgPushTask
	C.32.1. Example

	C.33. HgRevertTask
	C.33.1. Example

	C.34. HgTagTask
	C.34.1. Example

	C.35. HgUpdateTask
	C.35.1. Example

	C.36. HttpGetTask
	C.36.1. Example
	C.36.2. Supported Nested Tags
	C.36.3. Global configuration

	C.37. HttpRequestTask
	C.37.1. Example
	C.37.2. Supported Nested Tags
	C.37.3. Global configuration

	C.38. IniFileTask
	C.38.1. Supported Nested Tags
	C.38.2. Example

	C.39. IoncubeEncoderTask
	C.39.1. Example
	C.39.2. Supported Nested Tags

	C.40. IoncubeLicenseTask
	C.40.1. Example
	C.40.2. Supported Nested Tags

	C.41. JsHintTask
	C.41.1. Example
	C.41.2. Supported Nested Tags

	C.42. JsMinTask
	C.42.1. Example
	C.42.2. Supported Nested Tags

	C.43. JslLintTask
	C.43.1. Example
	C.43.2. Supported Nested Tags

	C.44. LiquibaseChangeLogTask
	C.44.1. Example
	C.44.2. Supported Nested Tags

	C.45. LiquibaseDbDocTask
	C.45.1. Example
	C.45.2. Supported Nested Tags

	C.46. LiquibaseDiffTask
	C.46.1. Example
	C.46.2. Supported Nested Tags

	C.47. LiquibaseRollbackTask
	C.47.1. Example
	C.47.2. Supported Nested Tags

	C.48. LiquibaseTagTask
	C.48.1. Example
	C.48.2. Supported Nested Tags

	C.49. LiquibaseTask
	C.49.1. Example
	C.49.2. Supported Nested Tags

	C.50. LiquibaseUpdateTask
	C.50.1. Example
	C.50.2. Supported Nested Tags

	C.51. MailTask
	C.51.1. Example
	C.51.2. Supported Nested Tags

	C.52. NotifySendTask
	C.53. OpenTask
	C.53.1. Examples

	C.54. PDOSQLExecTask
	C.54.1. Example
	C.54.2. Supported Nested Tags

	C.55. PHPMDTask
	C.55.1. Example
	C.55.2. Supported Nested Tags

	C.56. PHPStanTask
	C.56.1. Supported Nested Tags
	C.56.2. Example

	C.57. PHPUnitReport
	C.57.1. Example

	C.58. PHPUnitTask
	C.58.1. Supported Nested Tags
	C.58.2. Example
	C.58.3. Supported Nested Tags

	C.59. ParallelTask
	C.59.1. Example

	C.60. PatchTask
	C.60.1. Example

	C.61. PharDataTask
	C.61.1. Example
	C.61.2. Supported Nested Tags

	C.62. PharPackageTask
	C.62.1. Example
	C.62.2. Supported Nested Tags

	C.63. PhkPackageTask
	C.63.1. Example
	C.63.2. Supported Nested Tags

	C.64. PhpCSTask
	C.64.1. Supported Nested Tags
	C.64.2. Examples

	C.65. PhpDependTask
	C.65.1. Example
	C.65.2. Supported Nested Tags

	C.66. PhpDocumentor2Task
	C.66.1. Example
	C.66.2. Supported Nested Tags

	C.67. rSTTask
	C.67.1. Features
	C.67.2. Examples
	C.67.3. Supported Nested Tags

	C.68. S3GetTask
	C.68.1. Example

	C.69. S3PutTask
	C.69.1. Example
	C.69.2. Supported Nested Tags

	C.70. SassTask
	C.70.1. Example
	C.70.2. Supported Nested Tags

	C.71. ScpTask
	C.71.1. Example
	C.71.2. Supported Nested Tags

	C.72. SmartyTask
	C.73. SonarTask
	C.73.1. Examples
	Minimal Example
	Full Example

	C.73.2. Supported Nested Tags

	C.74. SshTask
	C.74.1. Example
	C.74.2. Supported Nested Tags

	C.75. StopwatchTask
	C.75.1. Example

	C.76. SvnCheckoutTask
	C.76.1. Example

	C.77. SvnCommitTask
	C.77.1. Example

	C.78. SvnCopyTask
	C.78.1. Example

	C.79. SvnExportTask
	C.79.1. Example

	C.80. SvnInfoTask
	C.80.1. Example

	C.81. SvnLastRevisionTask
	C.81.1. Example

	C.82. SvnListTask
	C.82.1. Example

	C.83. SvnLogTask
	C.83.1. Example

	C.84. SvnPropgetTask
	C.84.1. Example

	C.85. SvnProplistTask
	C.85.1. Example

	C.86. SvnPropsetTask
	C.86.1. Example

	C.87. SvnRevertTask
	C.88. SvnSwitchTask
	C.88.1. Example

	C.89. SvnUpdateTask
	C.89.1. Example

	C.90. SymfonyConsoleTask
	C.90.1. Examples
	C.90.2. Supported Nested Tags

	C.91. TarTask
	C.91.1. Example
	C.91.2. Supported Nested Tags

	C.92. UntarTask
	C.92.1. Example
	C.92.2. Supported Nested Tags

	C.93. UnzipTask
	C.93.1. Example
	C.93.2. Supported Nested Tags

	C.94. VisualizerTask
	C.94.1. Examples
	C.94.2. Limitations
	C.94.3. Requirements
	C.94.4. Advanced HTTP configuration
	HTTP attributes
	Supported Nested Tags
	Global configuration

	C.95. WikiPublishTask
	C.95.1. Example

	C.96. XmlLintTask
	C.96.1. Examples
	C.96.2. Supported Nested Tags

	C.97. XmlPropertyTask
	C.97.1. Example

	C.98. ZSDTPackTask
	C.98.1. Example

	C.99. ZSDTValidateTask
	C.99.1. Example

	C.100. ZendCodeAnalyzerTask
	C.100.1. Example
	C.100.2. Supported Nested Tags

	C.101. ZipTask
	C.101.1. Example
	C.101.2. Supported Nested Tags

	Appendix D. Core Types
	D.1. Description
	D.1.1. Usage Examples

	D.2. Excludes
	D.2.1. Nested tags
	D.2.2. Usage Examples

	D.3. FileList
	D.3.1. Usage Examples

	D.4. FileSet
	D.4.1. Using wildcards
	D.4.2. Usage Examples
	D.4.3. Nested tags

	D.5. DirSet
	D.5.1. Using wildcards
	D.5.2. Usage Examples
	D.5.3. Nested tags

	D.6. PatternSet
	D.6.1. Usage Example
	D.6.2. Nested tags

	D.7. Path / Classpath
	D.7.1. Nested tags

	D.8. Regexp
	D.8.1. Examples

	Appendix E. Core filters
	E.1. PhingFilterReader
	E.1.1. Nested tags
	E.1.2. Advanced

	E.2. ExpandProperties
	E.3. ConcatFilter
	E.4. HeadFilter
	E.5. IconvFilter
	E.6. Line Contains
	E.6.1. Nested tags

	E.7. LineContainsRegexp
	E.7.1. Nested tags

	E.8. PrefixLines
	E.9. ReplaceTokens
	E.9.1. Nested tags

	E.10. ReplaceTokensWithFile
	E.10.1. Nested tags

	E.11. ReplaceRegexp
	E.11.1. Nested tags

	E.12. SortFilter
	E.13. StripLineBreaks
	E.14. StripLineComments
	E.14.1. Nested tags

	E.15. StripPhpComments
	E.16. StripWhitespace
	E.17. TabToSpaces
	E.18. TailFilter
	E.19. TidyFilter
	E.19.1. Nested tags

	E.20. XincludeFilter
	E.21. XsltFilter
	E.21.1. Nested tags

	E.22. ClassConstants

	Appendix F. Core mappers
	F.1. Common Attributes
	F.2. ChainedMapper
	F.2.1. Examples

	F.3. CompositeMapper
	F.3.1. Examples

	F.4. FirstMatchMapper
	F.4.1. Examples

	F.5. CutDirsMapper
	F.5.1. Examples

	F.6. FlattenMapper
	F.6.1. Examples

	F.7. GlobMapper
	F.7.1. Examples

	F.8. IdentityMapper
	F.9. MergeMapper
	F.9.1. Examples

	F.10. RegexpMapper
	F.10.1. Examples

	Appendix G. Core selectors
	G.1. Contains
	G.2. Date
	G.3. Depend
	G.4. Depth
	G.5. Different
	G.6. Filename
	G.7. Present
	G.8. Containsregexp
	G.9. Size
	G.10. Type
	G.11. And
	G.12. Majority
	G.13. Modified
	G.13.1. Parameters specified as nested elements
	G.13.2. Examples

	G.14. None
	G.15. Not
	G.16. Or
	G.17. Readable
	G.18. Writable
	G.19. Executable
	G.20. Selector
	G.21. Symlink Selector
	G.22. PosixPermissions Selector

	Appendix H. Project Components
	H.1. Phing Projects
	H.1.1. Example
	H.1.2.
	H.1.3. Attributes

	H.2. Targets and Extension-Points
	H.2.1. Example
	H.2.2. Attributes
	H.2.3. Extension-Points

	Appendix I. Loggers and Listeners
	I.1. Listeners
	I.2. Loggers
	I.3. DefaultLogger
	I.4. AnsiColorLogger
	I.5. MailLogger
	I.6. NoBannerLogger
	I.7. ProfileLogger
	I.8. StatisticsListener
	I.9. TimestampedLogger
	I.10. SilentLogger
	I.11. MonologListener
	I.12. DisguiseLogger

	Appendix J. File Formats
	J.1. Build File Format
	J.2. Property File Format

	Bibliography

