A small distributed concensus protocol

Yoichi Hirai*

February 27, 2017

Contents

1

2

3

Definition of the Protocol (Not Skippable)

The Slashing Conditions (not skippable)

Useful Lemmas for Accountable Safety (can be skipped)
Accountable Safety (don’t skip)

More Terminology for Liveness

Useful Lemmas for Plausible Liveness (skippable)

Plausible Liveness (don’t skip)

*i@yoichihirai.com

12

12

13

24

e This document is produced from the code available at https://github.
com/pirapira/pos.

e To get updates on this project and similar ones, follow http://gitter.
im/ethereum/formal-methods.

theory MinimumAlgo
imports Main

begin

1 Definition of the Protocol (Not Skippable)

In this development we do not know much about hashes. There are many
hashes. Two hashes might be equal or not.

datatype hash = Hash int
Views are numbers. We actually need the fact that views are in total order.
Otherwise accountable safety can be broken.

type-synonym view = int

We have two kinds of messages.

datatype message =
Commit hash * view
| Prepare hash x view x view

Sometimes we want to talk about the view of a message.

datatype validator = Validator int

type-synonym sent = validator * message

A situation might be seen from a global point of view where every sent
messages can be seen, or more likely seen from a local point of view.

record situation =
Validators :: validator set
Messages :: sent set
PrevHash :: hash = hash option

In the next section, we are going to determine which of the validators are
slashed in a situation.

We will be talking about two conflicting commits. To define ’conflicting’
one needs to look at the hashes.

https://github.com/pirapira/pos
https://github.com/pirapira/pos
http://gitter.im/ethereum/formal-methods
http://gitter.im/ethereum/formal-methods

A situation contains information which hash is the parent of which hash.
We can follow this link n-times.

fun nth-ancestor :: situation = nat = hash = hash option
where
nth-ancestor - 0 h = Some h
| nth-ancestor s (Suc n) h =
(case PrevHash s h of
None = None
| Some h' = nth-ancestor s n h')

And also we are allowed to talk if two hashes are in ancestor-descendant
relation. It does not matter if this is computable.

definition is-descendant-or-self :: situation = hash = hash = bool
where
is-descendant-or-self s © y = (3 n. nth-ancestor s n x = Some y)

We can also talk if two hashes are not in ancestor-descendant relation in
whichever ways.

definition not-on-same-chain :: situation = hash = hash = bool
where
not-on-same-chain s ¢ y = ((— is-descendant-or-self s x y) A (= is-descendant-or-self

5y 1))

In the slashing condition, we will be talking about two-thirds of the valida-
tors doing something.

We can lift any predicate about a validator into a predicate about a situation:
two thirds of the validators satisfy the predicate.

definition two-thirds :: situation = (validator = bool) = bool
where
two-thirds s [=

(2 % card (Validators s) < 3 x card ({n. n € Validators s N\ fn}))

Similarly for one-third, more-than-two-thirds, and more-than-one-third.

definition one-third :: situation = (validator = bool) = bool
where
one-third s f =

(card (Validators s) < 8 x card ({n. n € Validators s A\ fn}))

definition more-than-two-thirds :: situation = (validator = bool) = bool
where
more-than-two-thirds s f =

(2 % card (Validators s) < 3 * card ({n. n € Validators s N\ fn}))

definition more-than-one-third :: situation = (validator = bool) = bool
where
more-than-one-third s f =

(card (Validators s) < 8 * card ({n. n € Validators s A fn}))

definition two-thirds-sent-message :: situation = message = bool
where
two-thirds-sent-message s m =

two-thirds s (A n. (n, m) € Messages s)

A hash is prepared when two-thirds of the validators have sent a certain
message.

definition prepared :: situation = hash = view = view = bool
where
prepared $ h v vs =

(two-thirds-sent-message s (Prepare (h, v, vs)))

A hash is committed when two-thirds of the validators have sent a certain
message.

definition committed :: situation = hash = bool
where
committed s h = (3 v. two-thirds-sent-message s (Commit (h, v)))

2 The Slashing Conditions (not skippable)

[i] A validator is slashed when it has sent a commit message of a hash that
is not prepared yet.

definition slashed-one :: situation = validator = bool
where
slashed-one s n =
(n € Validators s N
(3 ho.
((n, Commit (h, v)) € Messages s A
(= (3 vs. =1 < ws Aws < v A prepared s h v vs)))))

[ii] A validator is slashed when it has sent a prepare message whose view src
is not -1 but has no supporting preparation in the view src.

definition slashed-two :: situation = wvalidator = bool
where
slashed-two s n =
(n € Validators s N
(3 hovows.
((n, Prepare (h, v, vs)) € Messages s A
vs £ —1 A
(= (3 h-anc vs'.
—1 <ws'ANws' <wsA
Some h-anc = nth-ancestor s (nat (v — vs)) b A
prepared s h-anc vs vs')))))

[iii] A validator is slashed when it has sent a commit message and a prepare
message containing view numbers in a specific constellation.

definition slashed-three :: situation = wvalidator = bool
where
slashed-three s n =
(n € Validators s A
(Fzyvwu.
(n, Commit (z, v)) € Messages s N
(n, Prepare (y, w, u)) € Messages s N
u<vAv<w))

[iv] A validator is slashed when it has sent two conflicting Prepare messages
at the same view.

definition slashed-four :: situation = wvalidator = bool
where
slashed-four s n =
(n € Validators s A
(3 x 2 v vsl vs2.
(n, Prepare (z1, v, vsl)) € Messages s A
(n, Prepare (22, v, vs2)) € Messages s A
(x1 # 22 V vsl # vs2)))

A validator is slashed when at least one of the above conditions [i]-[iv] hold.

definition slashed :: situation = wvalidator = bool
where
slashed s n = (slashed-one s n V

slashed-two s n V

slashed-three s n V

slashed-four s n)

definition one-third-slashed :: situation = bool
where
one-third-slashed s = one-third s (slashed s)

However, since cardinality of an infinite set is defined to be zero, we should
be talking about situations where the set of validators is finite.

definition situation-has-finitely-many-validators :: situation = bool
where
situation-has-finitely-many-validators s = (Validators s # {} A finite (Validators

5))

3 Useful Lemmas for Accountable Safety (can be
skipped)

lemma card-not [simp] :
finite s =
card {n € s. = fn} = card s — card {n € s. fn}

(proof)

lemma not-one-third [simp] :
situation-has-finitely-many-validators s =
(— one-third s f) = (more-than-two-thirds s (A n. = f n))
(proof)

lemma condition-one-positive :
3 n. (n, Commit (z, v)) € Messages s N
n € Validators s A
- slashed s n =
(v vs.
two-thirds s (An. (n, Prepare (z, v, vs)) € Messages s)
AN—1<wvsAwvs <o)
(proof)

lemma condition-one-positive’ :
3 n. (n, Commit (z, v)) € Messages s N
n € Validators s N
- slashed s n =
(vs.
two-thirds s (An. (n, Prepare (z, v, vs)) € Messages s)
AN—1<wvsAwvs<uv)

(proof)

lemma set-conj [simp)] :
{nes.fanngnt={nes fnfn{nes gn}
(proof)

lemma two-more-two-set :
finite s =
2% card s < 8 % card {n € s. fn} =
2% card s < 8 * card {n € 5. g n} =
card s
< 83xcard {n€s. fnNn{ne€s gn})

(proof)

lemma two-more-two :
situation-has-finitely-many-validators s =—
two-thirds s [=
more-than-two-thirds s ¢ —
more-than-one-third s (A n. fn A gn)

(proof)

lemma card-nonzero-exists :
card {n € s. fn} > 0 =
dnes fn

{proof)

lemma more-than-one-third-ezists :
situation-has-finitely-many-validators s =
more-than-one-third s [=
3 n € Validators s. fn

(proof)

lemma two-more-two-ex :
situation-has-finitely-many-validators s —
two-thirds s [=
more-than-two-thirds s ¢ =
3 n € Validators s. fn A gn

(proof)

lemma commit-expand:
situation-has-finitely-many-validators s —
two-thirds-sent-message s (Commit (z, v)) =
(3 wvs. prepared s x v vs A —1 < vs A vs < v) V one-third-slashed s

(proof)

lemma card-conj-le :
finite s =
card ({n € s. fn} N {n € s. gn})
=card {n€s. fn} 4+ card {nes. gn}—card ({n€s. fn}U{nes. gn})
(proof)

lemma two-two-set :
2% card s < 3 x card {n € s. fn} =
2% card s < 8 % card {n € s. gn} =

finite s =
card s < 3 x card ({n € s. fn} N {n € s. gn})
(proof)

lemma two-two :
situation-has-finitely-many-validators s —
two-thirds s f —
two-thirds s g =
one-third s (A n. fn A gn)

(proof)

lemma dependency-self [simp]:
- not-on-same-chain s y y

(proof)

lemma prepare-direct-conflict :
not-on-same-chain s ¢y =

n € Validators s =
(n, Prepare (z, v2, vsl)) € Messages s =
(n, Prepare (y, v2, vs2)) € Messages s = slashed-four s n

(proof)

lemma inclusion-card-le :
Vn. n € Validators s — fn — gn —
finite (Validators s) =
card {n € Validators s. f n} < card {n € Validators s. g n}

(proof)

lemma mp-one-third :
finite (Validators s) =
YV n.n € Validators s — fn — gn =
one-third s f = one-third s g

(proof)

lemma mp-two-thirds :
finite (Validators s) =
YV n.n € Validators s — fn — gn =
two-thirds s f = two-thirds s g

{proof)

lemma safety-casel’ :
situation-has-finitely-many-validators s —
not-on-same-chain s © y =
two-thirds s (An. (n, Prepare (z, v2, vsl)) € Messages s) =
two-thirds s (An. (n, Prepare (y, v2, vs2)) € Messages s) = one-third s
(slashed s)

(proof)

lemma safety-casel :
situation-has-finitely-many-validators s =
not-on-same-chain s vy —
prepared s x v2 vsl —>
prepared s y v2 vs2 —>
one-third-slashed s

(proof)

lemma not-on-same-chain-sym [simp] :
not-on-same-chain s x y = not-on-same-chain s y x

(proof)

lemma commit-prepare :
situation-has-finitely-many-validators s =
two-thirds s (An. (n, Commit (y, v)) € Messages s) =
(Jus. prepared s y v vs A —1 < vs A vs < v) V one-third-slashed s

(proof)

lemma one-third-prepared-conflict :
T F Yy =
one-third s
(An. (n, Prepare (y, c-view, vs)) € Messages s A (n, Prepare (x, c-view, vsl))
€ Messages s) =
situation-has-finitely-many-validators s —
one-third s (slashed s)

(proof)

lemma prepared-conflict :

prepared s y c-view vs =
situation-has-finitely-many-validators s —
T £y =

prepared s x c-view vsl —>
one-third-slashed s

(proof)

lemma commit-prepared :
situation-has-finitely-many-validators s =
T #Ey =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s T c-view vsl —>
one-third-slashed s

(proof)

lemma condition-three-again :
situation-has-finitely-many-validators s =
vsl < c-view =
c-view < v =
one-third s (An. (n, Commit (y, c-view)) € Messages s A (n, Prepare (z, v,
vsl)) € Messages s) =
one-third-slashed s

(proof)

lemma between-concrete :
c-view < v =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vs] =
vsl < c-view =
situation-has-finitely-many-validators s =
one-third-slashed s

(proof)

lemma between-case :
c-view < v =
situation-has-finitely-many-validators s =
two-thirds-sent-message s (Commit (y, c-view)) =

prepared s x v vsl = — 1 < vsl = c-view # v = vsl < c-view =
one-third-slashed s

(proof)

lemma ancestors-ancestor :
VYV maxy.
nth-ancestor s n t = Some y —
nth-ancestor s m y = nth-ancestor s (n + m) z

(proof)

lemma nat-min-min :
vsl < v =
- sl < c-view =
(nat (v — vsl) + nat (vsl — c-view)) = nat (v — c-view)

(proof)

lemma ancestor-ancestor :
nth-ancestor s (nat (v — c-view)) © # Some y =
vsl < v =
- sl < c-view =
- oc-vtew < — 1 =
— 1 <’ =
vs' < vsl =
Some h-anc = nth-ancestor s (nat (v — vsl)) © =
nth-ancestor s (nat (vsl — c-view)) h-anc # Some y

(proof)

lemma the-induction :
nat (v — c-view) < Suc n =
situation-has-finitely-many-validators s =
nth-ancestor s (nat (v — c-view)) © # Some y =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vsl =—>
vsl < v =
- sl < c-view =
- oc-vtew < — 1 =
Vzywv.
nat (v — c-view) < n —
c-view < v —»
situation-has-finitely-many-validators s —
nth-ancestor s (nat (v — c-view)) z # Some y —
two-thirds-sent-message s (Commit (y, c-view)) —
(Vwsl. prepared s x v vsl — — 1 < vsl — vsl < v —» one-third-slashed
s) =
one-third-slashed s

(proof)

10

The following lemma is a core of the accountable safety proof. It requires
the mathematical induction.

lemma safety-sub-ind’ :
YV c-view sz y v vsl.
n > nat (v — c-view) —
v > c-view —
situation-has-finitely-many-validators s —
nth-ancestor s (nat (v — c-view)) © # Some y —
two-thirds-sent-message s (Commit (y, c-view)) —
prepared s x v vsl —»
— 1 < wsl — vsl < v — one-third-slashed s

(proof)

lemma safety-sub-ind’’ :
n = nat (v — c-view) =
v > c-vtew —>
situation-has-finitely-many-validators s =
nth-ancestor s n x # Some y =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vsl —>
— 1 < wsl = vsl < v = one-third-slashed s

(proof)

lemma not-on-chain-not-ancestor [simp)] :
not-on-same-chain s © y =
nth-ancestor s m © # Some y

(proof)

lemma safety-sub-ind :
situation-has-finitely-many-validators s —
not-on-same-chain s ©y —>
two-thirds-sent-message s (Commit (z, vl)) —
two-thirds-sent-message s (Commit (y, v2)) —
prepared s © vl' vsl —
prepared s y v2' vs2 —»
vl’ > v2 V2 > vl —
— 1 <wsl — wvsl <vl'— — 1 < vs2 — vs2 < v2' — one-third-slashed

s
(proof)

lemma safety-sub-closer :
situation-has-finitely-many-validators s —»
not-on-same-chain s vy —
two-thirds-sent-message s (Commit (z, vl1)) —
two-thirds-sent-message s (Commit (y, v2)) —
prepared s x vl vsl —
prepared s y v2 vs2 —>
v2 < wvl Vol <92 —

11

— 1 <wsl — vsl <wvl — — 1 < wvs2 — vs2 < v2 — one-third-slashed s

(proof)

lemma view-total [simp]:
(v2 :: view) < vl V vl < v2
(proof)

lemma safety-sub’ :
situation-has-finitely-many-validators s =
not-on-same-chain s vy —
two-thirds-sent-message s (Commit (z, vl)) =
two-thirds-sent-message s (Commit (y, v2)) =
prepared s x vl vsl =
prepared s y v2 vs2 —>
— 1 <wsl = vsl < vl = — 1 <182 — vs2 < v2 — one-third-slashed s

(proof)

lemma accountable-safety-sub :

situation-has-finitely-many-validators s —

3 vl vsl. two-thirds-sent-message s (Commit (x, v1)) A prepared s x vl vsl A
—1 < wsl ANwsl < vl =

3 02 vs2. two-thirds-sent-message s (Commit (y, v2)) A prepared s y v2 vs2 A
—1 < vs2 N vs2 < v =

not-on-same-chain s © y =

one-third-slashed s

(proof)

4 Accountable Safety (don’t skip)

lemma accountable-safety :
situation-has-finitely-many-validators s =
committed s ¥ = committed s y =—>
not-on-same-chain s © y = one-third-slashed s

(proof)

5 More Terminology for Liveness

definition view-of-message :: message = view
where
view-of-message m = (case m of
Commit (h, v) = v
| Prepare (h, v, v-src¢) = v)

definition message-has-valid-view :: message = bool
where
message-has-valid-view m = (case m of

Commit (h,v) = 0 < wv

12

| Prepare (h, v, v-src¢) = —1 < v)

definition view-of-sent-message :: (validator * message) = view
where
view-of-sent-message = view-of-message o snd

definition no-invalid-view :: situation = bool
where
no-invalid-view s =
(V nm. (n, m) € Messages s —»
message-has-valid-view m)

definition finite-messages :: situation = bool
where
finite-messages s = finite (Messages s)

definition new-descendant-available :: situation = bool
where
new-descendant-available s =
(VY n h o diff.
(n, Commit (h, v)) € Messages s —
(3 h-new. nth-ancestor s diff h-new = Some h A = committed s h-new))

definition authors :: (validator * message) set = wvalidator set
where
authors ms = {n. 3 m. (n, m) € ms}

definition unslashed-validators :: situation = validator set
where
unslashed-validators s = {n € Validators s. = slashed s n}

definition unslashed-can-extend :: situation = situation = bool
where
unslashed-can-extend s s-new =
(3 new-messages.
authors new-messages C unslashed-validators s N
Validators s-new = Validators s A
Messages s-new = Messages s U new-messages N
PrevHash s-new = PrevHash s-new)

definition no-new-slashed :: situation = situation = bool
where

no-new-slashed s s-new =
(V n. n € Validators s — slashed s-new n — slashed s n)

6 Useful Lemmas for Plausible Liveness (skippable)

definition no-commits-by-honest :: situation = bool

13

where
no-commits-by-honest s =
(V n € Validators s. (V h v.
(n, Commit (h, v)) € Messages s — slashed s n

)

definition no-messages-by-honest :: situation = bool
where
no-messages-by-honest s =
(V n € Validators s. (Y m. (n, m) € Messages s — slashed s n))

definition some-commits-by-honest-at :: situation = view = bool
where
some-commits-by-honest-at s v =
(3 n € Validators s.
= slashed s n A
(3 h. (n, Commit (h, v)) € Messages s))

definition some-messages-by-honest-at :: situation = view = bool
where
some-messages-by-honest-at s v =
(3 n € Validators s.
- slashed s n A
(3 m. view-of-message m = v A
(n, m) € Messages s))

definition no-commits-by-honest-after :: situation = view = bool
where
no-commits-by-honest-after s v-latest =
(V n € Validators s. (V h v.
(n, Commit (h, v)) € Messages s —
v < v-latest V slashed s n

)

definition no-messages-by-honest-after :: situation = view = bool
where
no-messages-by-honest-after s v-latest =
(V n € Validators s. (Y m.
(n, m) € Messages s —»
view-of-message m < v-latest \V slashed s n))

lemma some-commits-by-honest-intro :

Ine Validators s. (3h v. (n, Commit (h, v)) € Messages s) A\ — slashed s n =
{M1. some-commits-by-honest-at s M1} # {}

(proof)

lemma some-messages-by-honest-intro :

14

Ine Validators s. (3m. (n, m) € Messages s) A = slashed s n =
{M1. some-messages-by-honest-at s M1} # {}

(proof)

lemma finite-commits-by-honest :
finite-messages s =—>
finite {M1. some-commits-by-honest-at s M1}

(proof)

lemma finite-messages-by-honest :
finite-messages s =—>
finite {M1. some-messages-by-honest-at s M1}

(proof)

lemma view-some-arithmetics :
(v view) <z Vo #z

{proof)

lemma finite-views-have-mazx :
finite (views :: view set) = views # {} =
3 v-mazx.
v-maz € views A (V v. v < v-maz V v ¢ views)

(proof)

lemma M1-prop-sub2 :
3 v-mazx. v-maz € {MI1. some-commits-by-honest-at s M1}
AN v.ov < vmaz Vo ¢ {M1. some-commits-by-honest-at s M1})
_—
AMI. M1 = — 1 A (VY n€eValidators s. (3h v. (n, Commit (h, v)) € Messages s)
— slashed s n) V
some-commits-by-honest-at s M1 A no-commits-by-honest-after s M1

{proof)

lemma M1-properties :
finite-messages s =
3 Mi1.
(M1 = —1 A no-commits-by-honest s)
V (some-commits-by-honest-at s M1 A no-commits-by-honest-after s M1)

(proof)

lemma M2-prop-sub2 :
3 v-maz. v-max € {MI1. some-messages-by-honest-at s M1}
AN v.ov < v-maz Vo ¢ {M1. some-messages-by-honest-at s M1})
=
IM2. M2 = — 1 A (VneValidators s. (Am. (n, m) € Messages s) —> slashed s

15

n) VvV
some-messages-by-honest-at s M2 N no-messages-by-honest-after s M2

{proof)

lemma M2-properties:
finite-messages s =—>
3 M2.
(M2 = —1 A no-messages-by-honest s)
V (some-messages-by-honest-at s M2 A no-messages-by-honest-after s M2)

(proof)

lemma no-messages-no-commits [simp] :
no-messages-by-honest s = no-commits-by-honest s

(proof)

lemma no-messages-then-no-messages-after [simp] :
no-messages-by-honest s = no-messages-by-honest-after s m
(proof)

lemma no-messages-denies-somit-commits-at [simp] :
no-messages-by-honest s =—
- some-commits-by-honest-at s m

(proof)

lemma no-messages-denies-some-messages-at [simp] :
no-messages-by-honest s =—
- some-messages-by-honest-at s m

(proof)

lemma no-commits-denies-some-commits-at [simp)] :
no-commits-by-honest s =
no-commits-by-honest-after s M1

(proof)

definition liveness-witness :: hash = view = view = validator set = (validator
* message) set
where
liveness-witness h M1 M2 ns =
{(n, Prepare (h, M2 + 1, M1)) | n.n € ns} U
{(n, Commit (h, M2 + 1)) | n.n € ns}

lemma author-of-witness [simp] :
authors (liveness-witness h-new M1 M2 ns) = ns

(proof)

lemma unslashed-can-use-witness [simp):
unslashed-can-extend s

16

(Validators = Validators s,

Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},

PrevHash = PrevHash s|)

(proof)

lemma more-than-two-thirds-mp :
finite (Validators s) =
YV n.n € Validators s — fn — gn —
more-than-two-thirds s f = more-than-two-thirds s g

(proof)

lemma witness-commits-inner :
Validators s # {} A finite (Validators s) =
more-than-two-thirds s (An. — slashed s n) =
2 x card (Validators s)
< 8 x card {n € Validators s. (n, Commit (h-new, M2 + 1)) € Messages s V
n € Validators s A — slashed s n}

(proof)

lemma witness-commits [simp)] :
situation-has-finitely-many-validators s =
= one-third-slashed s =—>
committed
(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},
PrevHash = PrevHash s))
h-new
(proof)

lemma two-thirds-transfer [simp] :
two-thirds (Validators = Validators s, Messages = X, PrevHash = Y |) g =
two-thirds s g

(proof)

lemma prepared-transfer :
finite (Validators s) =
prepared s ha v vs =
prepared
(Validators = Validators s,
Messages = Messages s U X,
PrevHash = PrevHash s|)
ha v vs

(proof)
lemma witness-has-certain-view :

(na, Commit (ha, v)) € liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n} =

17

v= M2 + 1

(proof)

lemma witness-has-certain-hash :

(na, Commit (ha, v)) € liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n} =

ha = h-new

(proof)

lemma more-than-two-thirds-imply-two-thirds :
more-than-two-thirds s f —>
two-thirds s f

(proof)

lemma witness-prepares:
situation-has-finitely-many-validators s =
— one-third-slashed s —>
prepared
(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s))
h-new (M2 + 1) M1
(proof)

lemma commit-can-be-after-neg-one:
situation-has-finitely-many-validators s —
n € Validators s =

= slashed s n =

(n, Commit (h, M1)) € Messages s =
— 1 < M1

{proof)

lemma witness-not-slashed-one :
situation-has-finitely-many-validators s =—

- one-third-slashed s =

no-messages-by-honest-after s M2 —

n € Validators s =

- slashed s n =

(n, Commit (h, M1)) € Messages s =

na € Validators s —>

slashed-one

(Validators = Validators s,

Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},

18

PrevHash = PrevHash s))
nae =
slashed-one s na

(proof)

lemma nth-ancestor-transfers [simp] :
VY N M s ha.

nth-ancestor

(Validators = N,

Messages = M,

PrevHash = PrevHash s))

n ha =

nth-ancestor s n ha
(proof)

lemma witness-prepares-certain-hash :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators =
ha = h-new

(proof)

lemma witness-prepares-certain-view :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators =
v=M2+ 1

(proof)

lemma witness-commits-certain-view :
(n, Commit (h, v)) € liveness-witness h-new M1 M2 validators =
v=M2+ 1

(proof)

lemma witness-prepares-certain-view-src :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators —>
vs = M1

(proof)

lemma it-is-somebody-that-prepares :
situation-has-finitely-many-validators s =
- one-third-slashed s =
prepared s h v v-src =
3 n. n € Validators s N
- slashed s n A
(n, Prepare (h, v, v-src)) € Messages s

(proof)

lemma slashed-two-transfers :
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-messages-by-honest-after s M2 —

19

n € Validators s —
= slashed s n =
(n, Commit (h, M1)) € Messages s =
nth-ancestor s (nat (M2 + 1 — M1)) h-new = Some h =
na € Validators s =
slashed-two
(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed-two s na

(proof)

lemma no-prepare-after :
no-messages-by-honest-after s M2 —
na € Validators s =
(na, Prepare (y, w, u)) € Messages s —>
= slashed s na — w < M2

(proof)

lemma slashed-intro-three :
slashed-three s n —> slashed s n

(proof)

lemma no-commit-after :
no-commits-by-honest-after s M1 —
na € Validators s =
(na, Commit (z, v)) € Messages s = — slashed s na = v < M1

(proof)

lemma slashed-three-transfers :
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest-after s M1 —>
no-messages-by-honest-after s M2 —
na € Validators s =
slashed-three
(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed s na

(proof)

20

lemma slashed-four-transfers :
no-messages-by-honest-after s M2 —
na € Validators s —>
slashed-four
(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed s na

(proof)

lemma slashed-destruct :
slashed s n =
slashed-one s n V slashed-two s n V slashed-three s n V slashed-four s n

(proof)

lemma slashed-intro-two :
slashed-two s na — slashed s na

(proof)

lemma slashed-intro-four :
slashed-four s na = slashed s na

(proof)

lemma witness-not-guilty [simp]:

situation-has-finitely-many-validators s —>

finite-messages s =

- one-third-slashed s =

- no-messages-by-honest s —

= no-commits-by-honest s =

no-commits-by-honest-after s M1 —>

some-messages-by-honest-at s M2 —>

no-messages-by-honest-after s M2 —

n € Validators s =

- slashed s n =

(n, Commit (h, M1)) € Messages s =

nth-ancestor s (nat (M2 + 1 — M1)) h-new = Some h =

- committed s h-new —>

no-new-slashed s

(Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators

s. = slashed s n},

PrevHash = PrevHash s))
(proof)

lemma no-messages-cannot-commit :
situation-has-finitely-many-validators s =

21

- one-third-slashed s = no-messages-by-honest s => — committed s h

{proof)

lemma corner-kick :
situation-has-finitely-many-validators s =
finite-messages s =
= one-third-slashed s —>
no-messages-by-honest s —
no-new-slashed s
(Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) (— 1) {n €
Validators s. — slashed s n},

PrevHash = PrevHash s|)
(proof)

lemma at-least-neg-one :
no-invalid-view s =
some-messages-by-honest-at s M2 —
-1 < M2

(proof)

lemma no-commit-new-slashed-three:
no-invalid-view s =
situation-has-finitely-many-validators s =
— one-third-slashed s =
no-commits-by-honest s =
no-messages-by-honest-after s M2 —
n € Validators s —
- slashed s n =
slashed-three
(Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n €
Validators s. — slashed s n},
PrevHash = PrevHash s|)
n =
False

(proof)

lemma no-commit-new-slashed-four:

no-invalid-view s =
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest s —
no-messages-by-honest-after s M2 —
n € Validators s =
- slashed s n =
slashed-four

(Validators = Validators s,

Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n € Validators

22

s. = slashed s n},
PrevHash = PrevHash s|)
n —
False

(proof)

lemma two-thirds-sent-message-transfers :
finite (Validators s) =
two-thirds-sent-message s m —>
two-thirds-sent-message
(Validators = Validators s,
Messages =
Messages s U X,
PrevHash = PrevHash s|) m

(proof)

lemma no-commit-new-slashed-two:
no-invalid-view s =
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest s —
some-messages-by-honest-at s M2 —>
no-messages-by-honest-after s M2 —
n € Validators s =
- slashed s n =
slashed-two
(Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n €
Validators s. — slashed s n},
PrevHash = PrevHash s))
n —
False

(proof)

lemma corner-kick2 :
no-invalid-view s —
situation-has-finitely-many-validators s —
new-descendant-available s —>
- one-third-slashed s =
no-commits-by-honest s —
some-messages-by-honest-at s M2 —
no-messages-by-honest-after s M2 —
ds-new h-new.
- committed s h-new A
unslashed-can-extend s s-new N committed s-new h-new A no-new-slashed s
s-new

(proof)

23

7 Plausible Liveness (don’t skip)

lemma plausible-liveness :
situation-has-finitely-many-validators s —
no-invalid-view s =
new-descendant-available s —
finite-messages s =
— one-third-slashed s —>
3 s-new h-new.
- committed s h-new A
unslashed-can-extend s s-new A
committed s-new h-new A
no-new-slashed s s-new

(proof)

end

24

	Definition of the Protocol (Not Skippable)
	The Slashing Conditions (not skippable)
	Useful Lemmas for Accountable Safety (can be skipped)
	Accountable Safety (don't skip)
	More Terminology for Liveness
	Useful Lemmas for Plausible Liveness (skippable)
	Plausible Liveness (don't skip)

