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e This document is produced from the code available at https://github.
com/pirapira/pos.

e To get updates on this project and similar ones, follow http://gitter.
im/ethereum/formal-methods.

theory MinimumAlgo
imports Main

begin

1 Definition of the Protocol (Not Skippable)

In this development we do not know much about hashes. There are many
hashes. Two hashes might be equal or not.

datatype hash = Hash int
Views are numbers. We actually need the fact that views are in total order.
Otherwise accountable safety can be broken.

type-synonym view = int

We have two kinds of messages.

datatype message =
Commit hash * view
| Prepare hash x view x view

Sometimes we want to talk about the view of a message.

datatype validator = Validator int

type-synonym sent = validator * message

A situation might be seen from a global point of view where every sent
messages can be seen, or more likely seen from a local point of view.

record situation =
Validators :: validator set
Messages :: sent set
PrevHash :: hash = hash option

In the next section, we are going to determine which of the validators are
slashed in a situation.

We will be talking about two conflicting commits. To define ’conflicting’
one needs to look at the hashes.
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A situation contains information which hash is the parent of which hash.
We can follow this link n-times.

fun nth-ancestor :: situation = nat = hash = hash option
where
nth-ancestor - 0 h = Some h
| nth-ancestor s (Suc n) h =
(case PrevHash s h of
None = None
| Some h' = nth-ancestor s n h')

And also we are allowed to talk if two hashes are in ancestor-descendant
relation. It does not matter if this is computable.

definition is-descendant-or-self :: situation = hash = hash = bool
where
is-descendant-or-self s © y = (3 n. nth-ancestor s n x = Some y)

We can also talk if two hashes are not in ancestor-descendant relation in
whichever ways.

definition not-on-same-chain :: situation = hash = hash = bool
where
not-on-same-chain s ¢ y = ((— is-descendant-or-self s x y) A (= is-descendant-or-self

5y 1))

In the slashing condition, we will be talking about two-thirds of the valida-
tors doing something.

We can lift any predicate about a validator into a predicate about a situation:
two thirds of the validators satisfy the predicate.

definition two-thirds :: situation = (validator = bool) = bool
where
two-thirds s [ =

(2 % card (Validators s) < 3 x card ({n. n € Validators s N\ fn}))

Similarly for one-third, more-than-two-thirds, and more-than-one-third.

definition one-third :: situation = (validator = bool) = bool
where
one-third s f =

(card (Validators s) < 8 x card ({n. n € Validators s A\ fn}))

definition more-than-two-thirds :: situation = (validator = bool) = bool
where
more-than-two-thirds s f =

(2 % card (Validators s) < 3 * card ({n. n € Validators s N\ fn}))

definition more-than-one-third :: situation = (validator = bool) = bool
where
more-than-one-third s f =



(card (Validators s) < 8 * card ({n. n € Validators s A fn}))

definition two-thirds-sent-message :: situation = message = bool
where
two-thirds-sent-message s m =

two-thirds s (A n. (n, m) € Messages s)

A hash is prepared when two-thirds of the validators have sent a certain
message.

definition prepared :: situation = hash = view = view = bool
where
prepared $ h v vs =

(two-thirds-sent-message s (Prepare (h, v, vs)))

A hash is committed when two-thirds of the validators have sent a certain
message.

definition committed :: situation = hash = bool
where
committed s h = (3 v. two-thirds-sent-message s (Commit (h, v)))

2 The Slashing Conditions (not skippable)

[i] A validator is slashed when it has sent a commit message of a hash that
is not prepared yet.

definition slashed-one :: situation = validator = bool
where
slashed-one s n =
(n € Validators s N
(3 ho.
((n, Commit (h, v)) € Messages s A
(= (3 vs. =1 < ws Aws < v A prepared s h v vs) ))))

[ii] A validator is slashed when it has sent a prepare message whose view src
is not -1 but has no supporting preparation in the view src.

definition slashed-two :: situation = wvalidator = bool
where
slashed-two s n =
(n € Validators s N
(3 hovows.
((n, Prepare (h, v, vs)) € Messages s A
vs £ —1 A
(= (3 h-anc vs'.
—1 <ws'ANws' <wsA
Some h-anc = nth-ancestor s (nat (v — vs)) b A
prepared s h-anc vs vs')))))

[iii] A validator is slashed when it has sent a commit message and a prepare
message containing view numbers in a specific constellation.



definition slashed-three :: situation = wvalidator = bool
where
slashed-three s n =
(n € Validators s A
(Fzyvwu.
(n, Commit (z, v)) € Messages s N
(n, Prepare (y, w, u)) € Messages s N
u<vAv<w))

[iv] A validator is slashed when it has sent two conflicting Prepare messages
at the same view.

definition slashed-four :: situation = wvalidator = bool
where
slashed-four s n =
(n € Validators s A
(3 x 2 v vsl vs2.
(n, Prepare (z1, v, vsl)) € Messages s A
(n, Prepare (22, v, vs2)) € Messages s A
(x1 # 22 V vsl # vs2)))

A validator is slashed when at least one of the above conditions [i]-[iv] hold.

definition slashed :: situation = wvalidator = bool
where
slashed s n = (slashed-one s n V

slashed-two s n V

slashed-three s n V

slashed-four s n)

definition one-third-slashed :: situation = bool
where
one-third-slashed s = one-third s (slashed s)

However, since cardinality of an infinite set is defined to be zero, we should
be talking about situations where the set of validators is finite.

definition situation-has-finitely-many-validators :: situation = bool
where
situation-has-finitely-many-validators s = (Validators s # {} A finite (Validators

5))

3 Useful Lemmas for Accountable Safety (can be
skipped)

lemma card-not [simp] :
finite s =
card {n € s. = fn} = card s — card {n € s. fn}

(proof)



lemma not-one-third [simp] :
situation-has-finitely-many-validators s =
(— one-third s f) = (more-than-two-thirds s (A n. = f n))
(proof)

lemma condition-one-positive :
3 n. (n, Commit (z, v)) € Messages s N
n € Validators s A
- slashed s n =
(v vs.
two-thirds s (An. (n, Prepare (z, v, vs)) € Messages s)
AN—1<wvsAwvs <o)
(proof)

lemma condition-one-positive’ :
3 n. (n, Commit (z, v)) € Messages s N
n € Validators s N
- slashed s n =
(vs.
two-thirds s (An. (n, Prepare (z, v, vs)) € Messages s)
AN—1<wvsAwvs<uv)

(proof)

lemma set-conj [simp)] :
{nes.fanngnt={nes fnfn{nes gn}
(proof )

lemma two-more-two-set :
finite s =
2% card s < 8 % card {n € s. fn} =
2% card s < 8 * card {n € 5. g n} =
card s
< 83xcard {n€s. fnNn{ne€s gn})

(proof)

lemma two-more-two :
situation-has-finitely-many-validators s =—
two-thirds s [ =
more-than-two-thirds s ¢ —
more-than-one-third s (A n. fn A gn)

(proof)

lemma card-nonzero-exists :
card {n € s. fn} > 0 =
dnes fn



{proof)

lemma more-than-one-third-ezists :
situation-has-finitely-many-validators s =
more-than-one-third s [ =
3 n € Validators s. fn

(proof)

lemma two-more-two-ex :
situation-has-finitely-many-validators s —
two-thirds s [ =
more-than-two-thirds s ¢ =
3 n € Validators s. fn A gn

(proof)

lemma commit-expand:
situation-has-finitely-many-validators s —
two-thirds-sent-message s (Commit (z, v)) =
(3 wvs. prepared s x v vs A —1 < vs A vs < v) V one-third-slashed s

(proof)

lemma card-conj-le :
finite s =
card ({n € s. fn} N {n € s. gn})
=card {n€s. fn} 4+ card {nes. gn}—card ({n€s. fn}U{nes. gn})
(proof)

lemma two-two-set :
2% card s < 3 x card {n € s. fn} =
2% card s < 8 % card {n € s. gn} =

finite s =
card s < 3 x card ({n € s. fn} N {n € s. gn})
(proof)

lemma two-two :
situation-has-finitely-many-validators s —
two-thirds s f —
two-thirds s g =
one-third s (A n. fn A gn)

(proof)

lemma dependency-self [simp]:
- not-on-same-chain s y y

(proof)

lemma prepare-direct-conflict :
not-on-same-chain s ¢y =



n € Validators s =
(n, Prepare (z, v2, vsl)) € Messages s =
(n, Prepare (y, v2, vs2)) € Messages s = slashed-four s n

(proof)

lemma inclusion-card-le :
Vn. n € Validators s — fn — gn —
finite (Validators s) =
card {n € Validators s. f n} < card {n € Validators s. g n}

(proof)

lemma mp-one-third :
finite (Validators s) =
YV n.n € Validators s — fn — gn =
one-third s f = one-third s g

(proof)

lemma mp-two-thirds :
finite (Validators s) =
YV n.n € Validators s — fn — gn =
two-thirds s f = two-thirds s g

{proof)

lemma safety-casel’ :
situation-has-finitely-many-validators s —
not-on-same-chain s © y =
two-thirds s (An. (n, Prepare (z, v2, vsl)) € Messages s) =
two-thirds s (An. (n, Prepare (y, v2, vs2)) € Messages s) = one-third s
(slashed s)

(proof)

lemma safety-casel :
situation-has-finitely-many-validators s =
not-on-same-chain s vy —
prepared s x v2 vsl —>
prepared s y v2 vs2 —>
one-third-slashed s

(proof)

lemma not-on-same-chain-sym [simp] :
not-on-same-chain s x y = not-on-same-chain s y x

(proof)

lemma commit-prepare :
situation-has-finitely-many-validators s =
two-thirds s (An. (n, Commit (y, v)) € Messages s) =
(Jus. prepared s y v vs A —1 < vs A vs < v) V one-third-slashed s



(proof)

lemma one-third-prepared-conflict :
T F Yy =
one-third s
(An. (n, Prepare (y, c-view, vs)) € Messages s A (n, Prepare (x, c-view, vsl))
€ Messages s) =
situation-has-finitely-many-validators s —
one-third s (slashed s)

(proof)

lemma prepared-conflict :

prepared s y c-view vs =
situation-has-finitely-many-validators s —
T £y =

prepared s x c-view vsl —>
one-third-slashed s

(proof)

lemma commit-prepared :
situation-has-finitely-many-validators s =
T #Ey =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s T c-view vsl —>
one-third-slashed s

(proof)

lemma condition-three-again :
situation-has-finitely-many-validators s =
vsl < c-view =
c-view < v =
one-third s (An. (n, Commit (y, c-view)) € Messages s A (n, Prepare (z, v,
vsl)) € Messages s) =
one-third-slashed s

(proof)

lemma between-concrete :
c-view < v =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vs] =
vsl < c-view =
situation-has-finitely-many-validators s =
one-third-slashed s

(proof)

lemma between-case :
c-view < v =
situation-has-finitely-many-validators s =
two-thirds-sent-message s (Commit (y, c-view)) =



prepared s x v vsl = — 1 < vsl = c-view # v = vsl < c-view =
one-third-slashed s

(proof)

lemma ancestors-ancestor :
VYV maxy.
nth-ancestor s n t = Some y —
nth-ancestor s m y = nth-ancestor s (n + m) z

(proof)

lemma nat-min-min :
vsl < v =
- sl < c-view =
(nat (v — vsl) + nat (vsl — c-view)) = nat (v — c-view)

(proof)

lemma ancestor-ancestor :
nth-ancestor s (nat (v — c-view)) © # Some y =
vsl < v =
- sl < c-view =
- oc-vtew < — 1 =
— 1 <’ =
vs' < vsl =
Some h-anc = nth-ancestor s (nat (v — vsl)) © =
nth-ancestor s (nat (vsl — c-view)) h-anc # Some y

(proof)

lemma the-induction :
nat (v — c-view) < Suc n =
situation-has-finitely-many-validators s =
nth-ancestor s (nat (v — c-view)) © # Some y =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vsl =—>
vsl < v =
- sl < c-view =
- oc-vtew < — 1 =
Vzywv.
nat (v — c-view) < n —
c-view < v —»
situation-has-finitely-many-validators s —
nth-ancestor s (nat (v — c-view)) z # Some y —
two-thirds-sent-message s (Commit (y, c-view)) —
(Vwsl. prepared s x v vsl — — 1 < vsl — vsl < v —» one-third-slashed
s) =
one-third-slashed s

(proof)
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The following lemma is a core of the accountable safety proof. It requires
the mathematical induction.

lemma safety-sub-ind’ :
YV c-view sz y v vsl.
n > nat (v — c-view) —
v > c-view —
situation-has-finitely-many-validators s —
nth-ancestor s (nat (v — c-view)) © # Some y —
two-thirds-sent-message s (Commit (y, c-view)) —
prepared s x v vsl —»
— 1 < wsl — vsl < v — one-third-slashed s

(proof)

lemma safety-sub-ind’’ :
n = nat (v — c-view) =
v > c-vtew —>
situation-has-finitely-many-validators s =
nth-ancestor s n x # Some y =
two-thirds-sent-message s (Commit (y, c-view)) =
prepared s x v vsl —>
— 1 < wsl = vsl < v = one-third-slashed s

(proof)

lemma not-on-chain-not-ancestor [simp)] :
not-on-same-chain s © y =
nth-ancestor s m © # Some y

(proof)

lemma safety-sub-ind :
situation-has-finitely-many-validators s —
not-on-same-chain s ©y —>
two-thirds-sent-message s (Commit (z, vl)) —
two-thirds-sent-message s (Commit (y, v2)) —
prepared s © vl' vsl —
prepared s y v2' vs2 —»
vl’ > v2 V2 > vl —
— 1 <wsl — wvsl <vl'— — 1 < vs2 — vs2 < v2' — one-third-slashed

s
(proof)

lemma safety-sub-closer :
situation-has-finitely-many-validators s —»
not-on-same-chain s vy —
two-thirds-sent-message s (Commit (z, vl1)) —
two-thirds-sent-message s (Commit (y, v2)) —
prepared s x vl vsl —
prepared s y v2 vs2 —>
v2 < wvl Vol <92 —

11



— 1 <wsl — vsl <wvl — — 1 < wvs2 — vs2 < v2 — one-third-slashed s

(proof)

lemma view-total [simp]:
(v2 :: view) < vl V vl < v2
(proof)

lemma safety-sub’ :
situation-has-finitely-many-validators s =
not-on-same-chain s vy —
two-thirds-sent-message s (Commit (z, vl)) =
two-thirds-sent-message s (Commit (y, v2)) =
prepared s x vl vsl =
prepared s y v2 vs2 —>
— 1 <wsl = vsl < vl = — 1 <182 — vs2 < v2 — one-third-slashed s

(proof)

lemma accountable-safety-sub :

situation-has-finitely-many-validators s —

3 vl vsl. two-thirds-sent-message s (Commit (x, v1)) A prepared s x vl vsl A
—1 < wsl ANwsl < vl =

3 02 vs2. two-thirds-sent-message s (Commit (y, v2)) A prepared s y v2 vs2 A
—1 < vs2 N vs2 < v =

not-on-same-chain s © y =

one-third-slashed s

(proof)

4 Accountable Safety (don’t skip)

lemma accountable-safety :
situation-has-finitely-many-validators s =
committed s ¥ = committed s y =—>
not-on-same-chain s © y = one-third-slashed s

(proof)

5 More Terminology for Liveness

definition view-of-message :: message = view
where
view-of-message m = (case m of
Commit (h, v) = v
| Prepare (h, v, v-src¢) = v)

definition message-has-valid-view :: message = bool
where
message-has-valid-view m = (case m of

Commit (h,v) = 0 < wv

12



| Prepare (h, v, v-src¢) = —1 < v)

definition view-of-sent-message :: (validator * message) = view
where
view-of-sent-message = view-of-message o snd

definition no-invalid-view :: situation = bool
where
no-invalid-view s =
(V nm. (n, m) € Messages s —»
message-has-valid-view m)

definition finite-messages :: situation = bool
where
finite-messages s = finite (Messages s)

definition new-descendant-available :: situation = bool
where
new-descendant-available s =
(VY n h o diff.
(n, Commit (h, v)) € Messages s —
(3 h-new. nth-ancestor s diff h-new = Some h A = committed s h-new))

definition authors :: (validator * message) set = wvalidator set
where
authors ms = {n. 3 m. (n, m) € ms}

definition unslashed-validators :: situation = validator set
where
unslashed-validators s = {n € Validators s. = slashed s n}

definition unslashed-can-extend :: situation = situation = bool
where
unslashed-can-extend s s-new =
(3 new-messages.
authors new-messages C unslashed-validators s N
Validators s-new = Validators s A
Messages s-new = Messages s U new-messages N
PrevHash s-new = PrevHash s-new)

definition no-new-slashed :: situation = situation = bool
where

no-new-slashed s s-new =
(V n. n € Validators s — slashed s-new n — slashed s n)

6 Useful Lemmas for Plausible Liveness (skippable)

definition no-commits-by-honest :: situation = bool

13



where
no-commits-by-honest s =
(V n € Validators s. (V h v.
(n, Commit (h, v)) € Messages s — slashed s n

)

definition no-messages-by-honest :: situation = bool
where
no-messages-by-honest s =
(V n € Validators s. (Y m. (n, m) € Messages s — slashed s n))

definition some-commits-by-honest-at :: situation = view = bool
where
some-commits-by-honest-at s v =
(3 n € Validators s.
= slashed s n A
(3 h. (n, Commit (h, v)) € Messages s))

definition some-messages-by-honest-at :: situation = view = bool
where
some-messages-by-honest-at s v =
(3 n € Validators s.
- slashed s n A
(3 m. view-of-message m = v A
(n, m) € Messages s))

definition no-commits-by-honest-after :: situation = view = bool
where
no-commits-by-honest-after s v-latest =
(V n € Validators s. (V h v.
(n, Commit (h, v)) € Messages s —
v < v-latest V slashed s n

)

definition no-messages-by-honest-after :: situation = view = bool
where
no-messages-by-honest-after s v-latest =
(V n € Validators s. (Y m.
(n, m) € Messages s —»
view-of-message m < v-latest \V slashed s n))

lemma some-commits-by-honest-intro :

Ine Validators s. (3h v. (n, Commit (h, v)) € Messages s) A\ — slashed s n =
{M1. some-commits-by-honest-at s M1} # {}

(proof)

lemma some-messages-by-honest-intro :

14



Ine Validators s. (3m. (n, m) € Messages s) A = slashed s n =
{M1. some-messages-by-honest-at s M1} # {}

(proof)

lemma finite-commits-by-honest :
finite-messages s =—>
finite {M1. some-commits-by-honest-at s M1}

(proof)

lemma finite-messages-by-honest :
finite-messages s =—>
finite {M1. some-messages-by-honest-at s M1}

(proof)

lemma view-some-arithmetics :
(v view) <z Vo #z

{proof)

lemma finite-views-have-mazx :
finite (views :: view set) = views # {} =
3 v-mazx.
v-maz € views A (V v. v < v-maz V v ¢ views)

(proof)

lemma M1-prop-sub2 :
3 v-mazx. v-maz € {MI1. some-commits-by-honest-at s M1}
AN v.ov < vmaz Vo ¢ {M1. some-commits-by-honest-at s M1})
_—
AMI. M1 = — 1 A (VY n€eValidators s. (3h v. (n, Commit (h, v)) € Messages s)
— slashed s n) V
some-commits-by-honest-at s M1 A no-commits-by-honest-after s M1

{proof)

lemma M1-properties :
finite-messages s =
3 Mi1.
(M1 = —1 A no-commits-by-honest s)
V (some-commits-by-honest-at s M1 A no-commits-by-honest-after s M1)

(proof)

lemma M2-prop-sub2 :
3 v-maz. v-max € {MI1. some-messages-by-honest-at s M1}
AN v.ov < v-maz Vo ¢ {M1. some-messages-by-honest-at s M1})
=
IM2. M2 = — 1 A (VneValidators s. (Am. (n, m) € Messages s) —> slashed s

15



n) VvV
some-messages-by-honest-at s M2 N no-messages-by-honest-after s M2

{proof)

lemma M2-properties:
finite-messages s =—>
3 M2.
(M2 = —1 A no-messages-by-honest s)
V (some-messages-by-honest-at s M2 A no-messages-by-honest-after s M2)

(proof)

lemma no-messages-no-commits [simp] :
no-messages-by-honest s = no-commits-by-honest s

(proof)

lemma no-messages-then-no-messages-after [simp] :
no-messages-by-honest s = no-messages-by-honest-after s m
(proof)

lemma no-messages-denies-somit-commits-at [simp] :
no-messages-by-honest s =—
- some-commits-by-honest-at s m

(proof)

lemma no-messages-denies-some-messages-at [simp] :
no-messages-by-honest s =—
- some-messages-by-honest-at s m

(proof)

lemma no-commits-denies-some-commits-at [simp)] :
no-commits-by-honest s =
no-commits-by-honest-after s M1

(proof)

definition liveness-witness :: hash = view = view = validator set = (validator
* message) set
where
liveness-witness h M1 M2 ns =
{(n, Prepare (h, M2 + 1, M1)) | n.n € ns} U
{(n, Commit (h, M2 + 1)) | n.n € ns}

lemma author-of-witness [simp] :
authors (liveness-witness h-new M1 M2 ns) = ns

(proof)

lemma unslashed-can-use-witness [simp):
unslashed-can-extend s

16



( Validators = Validators s,

Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},

PrevHash = PrevHash s|)

(proof)

lemma more-than-two-thirds-mp :
finite (Validators s) =
YV n.n € Validators s — fn — gn —
more-than-two-thirds s f = more-than-two-thirds s g

(proof)

lemma witness-commits-inner :
Validators s # {} A finite (Validators s) =
more-than-two-thirds s (An. — slashed s n) =
2 x card (Validators s)
< 8 x card {n € Validators s. (n, Commit (h-new, M2 + 1)) € Messages s V
n € Validators s A — slashed s n}

(proof)

lemma witness-commits [simp)] :
situation-has-finitely-many-validators s =
= one-third-slashed s =—>
committed
( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},
PrevHash = PrevHash s))
h-new
(proof)

lemma two-thirds-transfer [simp] :
two-thirds ( Validators = Validators s, Messages = X, PrevHash = Y |) g =
two-thirds s g

(proof)

lemma prepared-transfer :
finite (Validators s) =
prepared s ha v vs =
prepared
( Validators = Validators s,
Messages = Messages s U X,
PrevHash = PrevHash s|)
ha v vs

(proof)
lemma witness-has-certain-view :

(na, Commit (ha, v)) € liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n} =

17



v= M2 + 1

(proof)

lemma witness-has-certain-hash :

(na, Commit (ha, v)) € liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n} =

ha = h-new

(proof)

lemma more-than-two-thirds-imply-two-thirds :
more-than-two-thirds s f —>
two-thirds s f

(proof)

lemma witness-prepares:
situation-has-finitely-many-validators s =
— one-third-slashed s —>
prepared
( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s))
h-new (M2 + 1) M1
(proof )

lemma commit-can-be-after-neg-one:
situation-has-finitely-many-validators s —
n € Validators s =

= slashed s n =

(n, Commit (h, M1)) € Messages s =
— 1 < M1

{proof)

lemma witness-not-slashed-one :
situation-has-finitely-many-validators s =—

- one-third-slashed s =

no-messages-by-honest-after s M2 —

n € Validators s =

- slashed s n =

(n, Commit (h, M1)) € Messages s =

na € Validators s —>

slashed-one

( Validators = Validators s,

Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators s. —
slashed s n},
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PrevHash = PrevHash s))
nae =
slashed-one s na

(proof)

lemma nth-ancestor-transfers [simp] :
VY N M s ha.

nth-ancestor

( Validators = N,

Messages = M,

PrevHash = PrevHash s))

n ha =

nth-ancestor s n ha
(proof)

lemma witness-prepares-certain-hash :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators =
ha = h-new

(proof )

lemma witness-prepares-certain-view :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators =
v=M2+ 1

(proof)

lemma witness-commits-certain-view :
(n, Commit (h, v)) € liveness-witness h-new M1 M2 validators =
v=M2+ 1

(proof)

lemma witness-prepares-certain-view-src :
(na, Prepare (ha, v, vs)) € liveness-witness h-new M1 M2 validators —>
vs = M1

(proof)

lemma it-is-somebody-that-prepares :
situation-has-finitely-many-validators s =
- one-third-slashed s =
prepared s h v v-src =
3 n. n € Validators s N
- slashed s n A
(n, Prepare (h, v, v-src)) € Messages s

(proof)

lemma slashed-two-transfers :
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-messages-by-honest-after s M2 —
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n € Validators s —
= slashed s n =
(n, Commit (h, M1)) € Messages s =
nth-ancestor s (nat (M2 + 1 — M1)) h-new = Some h =
na € Validators s =
slashed-two
( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed-two s na

(proof)

lemma no-prepare-after :
no-messages-by-honest-after s M2 —
na € Validators s =
(na, Prepare (y, w, u)) € Messages s —>
= slashed s na — w < M2

(proof)

lemma slashed-intro-three :
slashed-three s n —> slashed s n

(proof)

lemma no-commit-after :
no-commits-by-honest-after s M1 —
na € Validators s =
(na, Commit (z, v)) € Messages s = — slashed s na = v < M1

(proof)

lemma slashed-three-transfers :
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest-after s M1 —>
no-messages-by-honest-after s M2 —
na € Validators s =
slashed-three
( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed s na

(proof)
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lemma slashed-four-transfers :
no-messages-by-honest-after s M2 —
na € Validators s —>
slashed-four
( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators
s. = slashed s n},
PrevHash = PrevHash s|)
na =
slashed s na

(proof)

lemma slashed-destruct :
slashed s n =
slashed-one s n V slashed-two s n V slashed-three s n V slashed-four s n

(proof)

lemma slashed-intro-two :
slashed-two s na — slashed s na

(proof)

lemma slashed-intro-four :
slashed-four s na = slashed s na

(proof)

lemma witness-not-guilty [simp]:

situation-has-finitely-many-validators s —>

finite-messages s =

- one-third-slashed s =

- no-messages-by-honest s —

= no-commits-by-honest s =

no-commits-by-honest-after s M1 —>

some-messages-by-honest-at s M2 —>

no-messages-by-honest-after s M2 —

n € Validators s =

- slashed s n =

(n, Commit (h, M1)) € Messages s =

nth-ancestor s (nat (M2 + 1 — M1)) h-new = Some h =

- committed s h-new —>

no-new-slashed s

( Validators = Validators s,
Messages = Messages s U liveness-witness h-new M1 M2 {n € Validators

s. = slashed s n},

PrevHash = PrevHash s))
(proof)

lemma no-messages-cannot-commit :
situation-has-finitely-many-validators s =
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- one-third-slashed s = no-messages-by-honest s => — committed s h

{proof)

lemma corner-kick :
situation-has-finitely-many-validators s =
finite-messages s =
= one-third-slashed s —>
no-messages-by-honest s —
no-new-slashed s
( Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) (— 1) {n €
Validators s. — slashed s n},

PrevHash = PrevHash s|)
(proof)

lemma at-least-neg-one :
no-invalid-view s =
some-messages-by-honest-at s M2 —
-1 < M2

(proof )

lemma no-commit-new-slashed-three:
no-invalid-view s =
situation-has-finitely-many-validators s =
— one-third-slashed s =
no-commits-by-honest s =
no-messages-by-honest-after s M2 —
n € Validators s —
- slashed s n =
slashed-three
( Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n €
Validators s. — slashed s n},
PrevHash = PrevHash s|)
n =
False

(proof)

lemma no-commit-new-slashed-four:

no-invalid-view s =
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest s —
no-messages-by-honest-after s M2 —
n € Validators s =
- slashed s n =
slashed-four

( Validators = Validators s,

Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n € Validators
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s. = slashed s n},
PrevHash = PrevHash s|)
n —
False

(proof)

lemma two-thirds-sent-message-transfers :
finite (Validators s) =
two-thirds-sent-message s m —>
two-thirds-sent-message
( Validators = Validators s,
Messages =
Messages s U X,
PrevHash = PrevHash s|) m

(proof)

lemma no-commit-new-slashed-two:
no-invalid-view s =
situation-has-finitely-many-validators s =
- one-third-slashed s =
no-commits-by-honest s —
some-messages-by-honest-at s M2 —>
no-messages-by-honest-after s M2 —
n € Validators s =
- slashed s n =
slashed-two
( Validators = Validators s,
Messages = Messages s U liveness-witness (Hash 0) (— 1) M2 {n €
Validators s. — slashed s n},
PrevHash = PrevHash s))
n —
False

(proof)

lemma corner-kick2 :
no-invalid-view s —
situation-has-finitely-many-validators s —
new-descendant-available s —>
- one-third-slashed s =
no-commits-by-honest s —
some-messages-by-honest-at s M2 —
no-messages-by-honest-after s M2 —
ds-new h-new.
- committed s h-new A
unslashed-can-extend s s-new N committed s-new h-new A no-new-slashed s
s-new

(proof)
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7 Plausible Liveness (don’t skip)

lemma plausible-liveness :
situation-has-finitely-many-validators s —
no-invalid-view s =
new-descendant-available s —
finite-messages s =
— one-third-slashed s —>
3 s-new h-new.
- committed s h-new A
unslashed-can-extend s s-new A
committed s-new h-new A
no-new-slashed s s-new

(proof)

end
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