2405.18573v1 [cs.SE] 28 May 2024

arxXiv

Aakash Bansal, Robert Wallace, Zachary Karas, Ningzhi Tang, Yu Huang, Toby Jia-Jun Li, Collin McMillan

Programmer Visual Attention During
Context-Aware Code Summarization

Abstract—Programmer attention represents the visual focus of programmers on parts of the source code in pursuit of programming
tasks. The focus of current research in modeling this programmer attention has been on using mouse cursors, keystrokes, or
eye-tracking equipment to map areas in a snippet of code. These approaches have traditionally only mapped attention for a single
method. However, programming tasks such as source code summarization, require programmers to use contextual knowledge that can
only be found in other parts of the project. To address this knowledge gap, we conducted an in-depth human study with XY Java
programmers, where each programmer generated summaries for 40 methods from five large Java projects over five one-hour sessions.
We used eye-tracking equipment to map the visual attention of programmers while they wrote the summaries. We also rate the quality
of each summary. We found eye-gaze patterns and metrics that define common behaviors between programmer attention during
context-aware code summarization. Specifically, we found that programmers need to read significantly (p<0.01) fewer words and make
significantly fewer revisits to words (p<0.03) as they summarize more methods during a session, while maintaining the quality of
summaries. We also found that the amount of source code a participant looks at correlates with a higher quality summary, but this
trend follows a bell-shaped curve, such that after a threshold reading more source code leads to a significant decrease (p<0.01) in the
quality of summaries. We also gathered insight into the type of methods in the project that provide the most contextual information for
code summarization based on programmer attention. Specifically, we observed that programmers spent a majority of their time looking
at methods inside the same class as the target method to be summarized. Surprisingly, we found that programmers spent significantly
less time looking at methods in the call graph of the target method. We discuss how our empirical observations may aid future studies

towards modeling programmer attention and improving context-aware automatic source code summarization.

Index Terms—automatic documentation generation, source code summarization, neural networks, context-aware models.

1 INTRODUCTION

Code summarization is the act of writing a natural language
description for a snippet of source code, such as a subrou-
tine. These summaries are meant to fill the knowledge gap
between a higher-level understanding of the program that
is necessary to use it, and the lower-level implementation
in the code. The automatic generation of these summaries
has been an important goal for the software engineer-
ing research community for decades. Lately, tools such
as GitHub Copilot and OpenAl ChatGPT with automatic
code summarization capabilities are increasingly becoming
part of Software Engineering workflows [1]]. At the core of
these tools are Large Language Models (LLMs) that learn
representations of both the programming language and
natural language in an attempt to fill the aforementioned
knowledge gap. They can be thought of as translating code
into natural language summaries.

However, these summaries do not necessarily reflect
real-world scenario, as they are not “context-aware”. A sum-

e Manuscript received — — ——. This work is supported in part by the
NSF CCF-2100035. Any opinions, findings, and conclusions expressed
herein are the authors” and do not necessarily reflect those of the sponsors.

o The authors are with the Department of Computer Science and Engineer-
ing, University of Notre Dame, IN 46556, USA.

E-mail: {abansall,rwallacl,ntang,toby.j.licmc} @nd.edu

and with the Department of Computer Science, Vanderbilt University, TN
37235, USA.

E-mail: {z.karas,yu.huang} @uanderbilt.edu

o This paper has supplementary downloadable multimedia material available
at https:// provided by the authors.

mary is context-aware when it considers the context, i.e.,
information from outside the subroutine. Although there
are several types of context, for the purposes of this study,
context is source code from the project surrounding the sub-
routine. Context-aware summaries are important because a
subroutine usually does not exist in a vacuum; the manner
in which a subroutine is used depends on the context. There-
fore project-level information in critical to writing a context-
aware summary. Over the last five years, a few studies have
introduced context to code summarization models, such as
by adding source code from part of the project [2], [3] or
the call-graph [4]. It is cost-prohibitive to feed the entire
project to these language models as a longer input requires
more computational resources. There is a knowledge gap
in related work on how human programmers navigate
through the context in a project to infer the most important
information. That is the core inspiration behind this study.
We designed this study to map the programmers’ visual
attention strategy and find out what in the context they find
most important, so that we may use that information for
future studies in automated source code summarization.
The visual attention strategies of a programmer are
an important indication of their mental model when per-
forming programming tasks [5], [6], [7]. Visual attention
strategies refer to the selective focus humans apply to some
parts of the visual stimulus (i.e., the code in the case of pro-
grammers). This selection of parts of the code is informed
by the mental model of the programmer that evolves as they
retain more information [8]]. These visual attention strategies
can be inferred using eye-tracking data, specifically, gaze

patterns of programmers. Eye-trackers have been used in
fields such as computer vision, psychology, and medical
sciences to create models of human behavior and mental
processes for decades [9], [10], [11]. Although models of
visual attention strategies are interesting on their own, they
can used to learn domain-specific knowledge such as those
programmers use while completing SE tasks.

To that end, recent work in SE towards modeling pro-
grammer attention has mainly used proxies such as mouse
cursor movements and clicks [12]. Studies to model visual
attention directly using eye-trackers have been limited to a
small snippet of code [6]], [13], [14]. Recently, a few studies
have also proposed approaches for automatic inference of
visual attention [15], [16]], [17]. The scope of most of these
studies is limited to one subroutine. We build upon these
works to study eye-tracking and visual attention patterns
at the project-level. Compared to those studies, our study
design is challenging due to difficulty controlling a study
environment where the participants have access to the entire
project. Analyzing the data at the project level also poses
challenges as not all code in the project is useful or even
executed. However, project-level comprehension is a real
world scenario in which programmers complete SE tasks
such as code summarization. To the best of our knowledge,
we conducted the first comprehensive human study to map
these attention patterns in the context of the project.

In this paper, we present an eye-tracking study designed
with the goal of analyzing visual attention strategies of
programmers while they navigate related methods for the
task of source code summarization. We recruited 10 Java
programmers, each tasked with completing five sessions. In
each session, we asked programmers to write context-aware
summaries for 8 subroutines of a Java project. Then, we
manually rated the summaries for accuracy, completeness,
conciseness, and clarity using two graders, who are among
the authors. These ratings help us analyze the effect of
various programmer gaze patterns on the quality of sum-
maries. Finally, we categorized all the code in the project
into categories of code context. We then identified the type
of context to which the programmers gave the highest
attention in pursuit of the summarization tasks. Although
knowledge of programmer visual attention strategies is in-
tellectually interesting, we posit that models of programmer
attention and identification of important parts of context
have practical applications towards improving models for
automatic source code summarization.

We found that: 1) participants looked at fewer words and
revisited words fewer times as they processed more meth-
ods for a given project; 2) the quality of these summaries
did not suffer or decrease with any statistical significance
as the participants processed more tasks; 3) the quality of
summaries is related to the amount of context analyzed
by the participants, like a bell-curve, such that the quality
increases as more context is analyzed by the participants
upto a certain threshold and then the quality decreases; 4)
participants spent the most time looking at class methods,
followed by class declarations and call graphs; 5) the type
of context participants focused on is generally not affected
by the project, session order, method order, or participant.

We make five contributions in this study:

1) We perform an eye-tracking study involving more than

2

60 hours of participant effort by 10 Java programmers.
Each programmer completed 40 context-aware code
summarization tasks.

2) We contribute a novel dataset of 394 context-aware
summaries, to be released publicly with this study.

3) We perform a qualitative comparison of the context-
aware summaries, graded by two authors of this paper
and agreed upon by a discussion-based coding method-
ology, to be released publicly with this study.

4) We perform a quantitative comparison of eye-gaze pat-
terns and visual attention strategies as the program-
mers process more tasks and their correlation with
quality of summaries.

5) We present a quantitative comparison of the varying
levels of attention received by different types of context
and make recommendations to distill context for future
automatic source code summarization studies.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on eye tracking
studies in software engineering and discuss related work
in context-aware code summarization.

2.1 Eye-tracking in Software Engineering

Eye-tracking has been used in SE research for nearly two
decades to gain insight into programmer behavior and
human factors in programming [7]. Recent evolution of
eye-trackers from expensive and difficult-to-operate lab
equipment to simple monitor-mounted devices usable in
development environment has accelerated their use in SE
research [16], [18]. Eye-tracking studies in SE can mainly be
divided into three areas of interest:

Code comprehension is an area of interest that is pri-
marily concerned with the mapping of programmer mental
model during comprehension of a snippet of code or small
program. In 2006, Aschwanden and Crosby [19] presented
gaze patterns of programmers during the comprehension of
a small snippet of code containing a loop and mathematical
equations. They formalized the process of understanding
programmer mental processes using eye-tracking during
program comprehension. Also in 2006, Bednarik and Tuki-
ainen [13] introduced a framework for analyzing eye gaze
patterns, in particular scanpaths, of participants tasked with
comprehension of two small programs. They found that the
mental model of a programmer is refined as they progress
through the task, marked by a decrease in attention switch-
ing. In 2014, Rodeghero et al. [20] presented an analysis of
gaze patterns of programmers tasked with summarization
of source code. They used the findings of that study to
improve automatic source code summarization. Similarly,
Karas et al. [14] presented and compared visual attention
strategies of programmers for two tasks: reading of source
code summaries for assessment and generating their own
source code summaries. They found that programmers tend
to look at specific words in the method in specific order
defined by the syntactic nature of the code. Their work
serves as an inspiration for this study, but these studies
only considered method-level information. In this study, we
focus our analysis on the project-level information.

UML Diagrams are an area of interest concerned with
understanding how programmers use UML diagrams dur-
ing programming tasks. In 2006, Guéhéneuc [21] presented
two case studies on the importance of UML diagrams in
program comprehension by following the gaze patterns of
programmers presented with a comprehension task. In 2010,
Sharif and Maltec [22] showed that eye gaze patterns of
programmers suggest better program comprehension when
presented with particular UML layouts and clustering pat-
terns. A caveat of studies on UML diagrams is that the re-
sults are specific to the visualization tools and programmers
were not presented source code or asked to do a program-
ming task [23]], [24]. Therefore, the observations from these
studies do not necessarily represent visual attention during
code comprehension.

Code Debugging studies are concerned with mapping
programmer attention and mental model during the task
of code debugging [7]. In 2008, Bednarik and Tukiainen [8]
presented an analysis of gaze patterns of programmers
with varying levels of experience during debugging tasks.
They found that more experienced programmers tend to
use context-switching quicker and more often that novice
programmers. In 2014, Turner et al. [25] presented results
of a study performed exclusively with students given two
tasks: 1) over-viewing code to answer questions, and 2)
debugging code. They found that gaze patterns are sig-
nificantly different between the two tasks, suggesting eye-
patterns of code comprehension are goal-dependent. This is
important because it highlights the need for in-depth studies
like ours that specifically ask the programmer to summarize
code using context.

Our study is most closely related to code comprehen-
sion as we present participants with raw source code and
specifically task them with summarization using context.
The novelty of our study lies with the project-level eye-
tracking and data analysis.

2.2 Source Code Summarization

Source code summarization has been a focus of SE research
for a decade and a half. Early work in source code sum-
marization used Information-Retrieval techniques [26], [27].
Around 2015, these techniques were aided by the addition
of contextual information [28], [29]. Around 2017, the advent
of neural networks changed the landscape of automatic
source code summarization research [30], [31], but the initial
approaches lacked contextual information.

In 2020, Haque et al. [2] proposed an encoder to rep-
resent a few subroutines from the same file as the target
subroutine. They showed that the addition of a small part
of the file improved existing approaches in automatic source
code summarization. Then in 2021, Bansal et al. [3] extended
upon that work by introducing a proof-of-concept project
encoder that represents a few files from the project. They
showed further improvement over file context by including
more information but also cautioned against the costs of
adding more context. They selected the files and subroutines
in the files randomly and highlighted the need for a better
methodology to narrow down contextual information.

In 2023, Bansal et al. [4] introduced a Graph Neural
Network (GNN) based encoder to represent the call graph
extracted from the project centered at the target subroutine.

3

Recently, two studies used human visual attention to im-
prove automatic source code summarization by using syn-
thesized human attention data given limited eye-tracking
data [15], [17]. However, the short summaries generated
by these approaches may not represent the full potential
of contextual information. Therefore, in this study we ask
participants to write longer summaries that include specific
contextual information in them.

Recent studies in automatic source code summarization
have been focused on fine-tuning LLMs [32], [33], [34].
However, even for these massive models, the size of the
input, called a “context window” is a limitation. Although
there are proposed techniques for increasing the size of these
context windows [35], there is also evidence that simple
feeding a large amount of context to an LLM may not
be helpful [36]. Therefore, in this study we aim to isolate
specific areas in the project that programmers pay the most
attention to, and may be used to distill contextual infor-
mation for LLMs and any future techniques for automatic
source code summarization.

3 STUuDY DESIGN

In this section, we describe the experimental setup for our
eye tracking study including the study setting, research
questions, interface, procedure, dataset, and tools.

3.1 Study Scenario

We designed this study to emulate a specific scenario in
code comprehension, specifically context-aware source code
summarization. We asked participants to retrospectively
write context-aware descriptions of a target method. We
provide participants access to the entire Java code from
the project that contains the target method. The project is
devoid of any documentation, including header and inline
comments (See on details of the projects). We ask the
programmer to read and understand the target method, as
well as the surrounding code in the context, and to write a
three-sentence context-aware summary with the following
instructions:

e The first sentence should explain the purpose of the
method in as simple of terms as possible, in the context
of the whole program.

e The second should describe the more specific function-
alities and under what circumstances they occur.

o The last sentence should describe why this method is
needed within the context of the overall project.

We asked each programmer to write summaries for 8
methods per project, found to be the ideal number for 1
hour session during our pilot studies. We chose 5 projects
extracted from Github for this study, and displayed only
the raw Java code. We ask every programmer to process
each project in a separate eye-tracking session. We set up
the study entirely in Eclipse IDE, a popular IDE for open
source Java developers to emulate an OSS development
environment. See Section [3| for complete study procedure,
interface and other technical details.

[Project Explorer X

e code

en iterates through the ColorButtons of the class's background color list and

Disconnes ot | [JHighlight Tokens

Fig. 1. A screenshot of our interface. The blue box highlights the summary generated by the participants, while the red box highlights the navigational
window limited to one project. The participant is free to open and read any part of the project.

3.2 Research Question
We answer three main research questions:

RQ1: How do gaze patterns change as the participants
progresses from the first method to the last in a session?

RQ2: How does the quality of summaries correlate with the
gaze patterns?

RQ3: What parts of the project context received the highest
attention?

The rationale behind RQ1 is to evaluate how gaze pat-
terns change as a participant moves from the first method
to the last in a project. As participants investigate more
methods and write descriptions, their knowledge base of
the project may increase. We may be able to isolate specific
gaze patterns associated with an increased knowledge base.

The rationale behind RQ2 is to find gaze patterns that are
characteristics of the quality of summaries that we grade
manually. We aim to find the correlation of high-quality
summaries and the observations from RQ1. We also aim to
isolate gaze patterns that may be characteristic of writing
what we consider to be higher-quality summaries.

The rationale behind RQ3 is that some parts of the
context are more important to the task than others. We
aim to categorize the different parts of context that the
participants looked at and identify the type of context on
which the participants spent the longest time fixating. This
may help future studies distill parts of context for automatic
source code summarization [32].

3.3

We show a screenshot of our study interface in Figure[T]with
the following notable features:

Interface

o We built our interface within the Eclipse IDE, using
iTrace plugin [37] and core [38].

e Study Instructions are in a markdown file named
StudyInstructions.md, which contains an example of a
context-aware summary.

e For each project, we provide the participant with
project.txt file, which contains 8 tasks. For each task,
we provide the path to the Java file, the name of the
method, the line number, and space for the description.

3.4

We use iTrace suite [38], [39] for our eye-tracking study. The
suite includes three tools: 1)iTrace core [40] that manages
the eye-tracking, screen recording, keyboard, and mouse
recording; 2) iTrace Eclipse plugin [37] that connects to the
core and maps the gaze data to specific elements of the IDE
and the text inside files; 3) textbfiTrace toolkit [41] which is
a post-processing tool to isolate gaze patterns. We used this
suite because it is defined to be used over an IDE and can
record eye-tracking data over the entire code project.

3.5 Study Procedure

We ask each participant to complete five sessions, each with
the following study procedure:

o Before the participant arrives, we launched both the
Tobii eye-tracker manager and iTrace core program we
set up the session and participant details.

o Next, the study administrator sets up the Eclipse IDE.
First, we connect the iTrace Eclipse plugin to the iTrace
core. Second, we set the project explorer to only show
the project archived by SRCML [42] for that session.
Then, we open two files: 1) studylnstructions.md and
2) project.txt, where project is a placeholder for the name
of the Java project. See Section [B.6|for details.

o Next, the study administrator seats the participant. We
ask the participant to read the Studylnstructions.md
file. These instructions contain an example of the three-
sentence summary we ask the participants to write.
This step is required for the first session, but the file
is always accessible through the session and for future
sessions if the participant needs a reference.

o Next, we ask the participant to open the project.txt file
that describes the project and contains the location of
the 8 Java methods. Each method is a task for the
purposes of this study.

o We ask the participant to perform two calibrations be-
fore starting the first task as recommended by itrace de-
velopers [40]]. First, Tobii eye-tracker manager and then
the iTrace core calibration. After calibration, we ask the
participant to start a tracking session on the iTrace core
window and begin the task inside the Eclipse IDE.

iTrace

 To complete a task, we ask the participant to navigate to
a file and line number and find the method. Then, the
participant is free to explore any number of files in the
project. After the completion of one task, we designed
the text file to remind the participant to stop tracking
and start a new tracking session for the next task. This
allows each task to have its own eye-tracking data and
screen recording file.

¢ The study administrator helps re-calibrate with both To-
bii eye-tracker manager and iTrace halfway through the
session, after task 4, and before starting the new track-
ing session for task 5. We also prompt re-calibration if
the participant needs a break or leaves the eye-tracking
room at any point during the session.

3.6 Java Projects

We scraped Github for repositories with atleast 90% of the
project code base containing Java source code. We also
filtered for projects that depend heavily on other projects
or codebases. Finally we picked the following five projects:

o Scrimage is an immutable, functional, and performant
JVM library for manipulation of images. The aim of this
library is to provide a simple and concise way to do
common image operations, such as resizing, filter, and
converting between formats.

e« MLTK is a collection of various supervised machine
learning algorithms, which is designed for directly
training models and further development.

o OpenAudible is a cross-platform desktop application
for downloading and managing Audible audiobooks
with both a GUI interface and an organizational library.

o MALLET is a Java-based package for statistical natural
language processing, document classification, cluster-
ing, topic modeling, information extraction, and other
machine learning applications to text.

o FreeCol is a turn-based strategy game based on the
old game Colonization, and similar to Civilization. The
objective of the game is to create an independent nation.

Note, for each project above we chose 8 specific methods.
To ensure that the methods can be described using relevant
context, we prioritized methods that are called by at least
one other method in the project. The order of methods 2
through 8 is randomized. We do this to answer RQ1 by
minimizing the effect of any one method on the observa-
tions, i.e., a particularly tough or easy method would not
skew the results as it would appear at a different position
for each participant. Method 1 is fixed for each session to
start each participant off with the same baseline.

3.7 Eye-Tracker

The eye-tracker used for this study was the Tobii Pro Fu-
sion at 120Hz mounted at the bottom of a Spectre 24-inch
1920x1080 resolution monitor at 60Hz screen refresh rate.
The eye-tracker has an accuracy of 0.03° and precision of
0.04° in optimal conditions [43]. Note, although all sessions
were conducted in the same lab with the same equipment,
we could not ensure optimal conditions were met for all
participants due to factors such as ambient light, natural
light and corrective lenses.

3.8 Software Versions

We list the software versions we used for our study below
to promote future replication of the study and results:
Windows 10 pro 10.0.19045; iTrace core v0.2.0; iTrace Eclipse
Plugin v0.2.0; iTrace Toolkit 0.2.2; Eclipse IDE for Java
V2023-06 (4.28.0); OpenJDK 18

3.9 Participants

We recruited 10 programmers with Java experience to par-
ticipate in our study. Each participant was required to have
at leaszt 1 year of previous Java development experience.
The participants had an average of 2.8 years of Java de-
velopment experience and 5 years of general programming
experience. Each participant was compensated at a flat rate
of USD 60 per session, with an average duration of around 1
hour per session. 4 participants identified as female, while 6
identified as male. 6 participants identified as non-native
but fluent English speakers, while 4 identified as native
English speakers. We designed the study to be in-depth
to answer RQ1, where each participant processes multiple
methods and projects, so we did not recruit a high number
of participants. In this study we focus on general findings
instead of individual differences.

4 METHODOLOGY

In this section, we discuss the methodology for analysis of
data after the eye-tracking study.

4.1 Gaze Pattern Metrics

Following the good practices established by similar studies
in the past [44], [45], [46], we calculate and report the
statistical summaries of the following gaze pattern metrics
to answer the three RQs:

Fixation: A fixation is marked by a steady gaze of the
human eye at a particular location in the stimulus, for
the duration of at least 100-200ms, required for the
visual system to process information. It is the most
common measure of human visual attention in eye-
tracking literature [44]. For this study, we only compute
statistical summaries of fixation count and duration.

Regression Rate: A regression occurs when a fixation oc-
curs against the current direction of reading, such that a
previously read word may be fixated upon again, mark-
ing an event of re-reading [45]]. Higher regressive rate
may indicate higher difficulty in understanding [47].
We calculate regression rate for each method task as
the number of regressive fixations normalized by the
number of total fixations during that task.

Lines of code: We compute and report statistical sum-
maries of counts, density, time spent, and transition
between lines of code [46] seen by a participant as a
measure of programmer attention.

Methods visited: We compute and report statistical sum-
maries of counts, time spent, and manually labeled rela-
tionships between methods in the project as a measure
of programmer attention. The idea is that the methods
that linked to the highest gaze activity, receive more
attention from the programmer.

TABLE 1
Mean and Median values for metrics when grouped by the position in which the method was seen.

Method | Fixation Count | Fixation Duration | Regression Rate Lines Visited Methods Visited
Mean Median | Mean Median | Mean Median | Mean Median | Mean Median

1 331.61 259 44439 289 56.65 56.93 50.03 385 9.04 5

2 268.54 2495 480.37 300 53.78 53.48 46.92 45 9.71 6.5

3 302.89 221 441.05 281 55.07 56.94 4545 38 911 7

4 29046 250.5 484.24 302 56.21 59.21 40.58 34 935 8

5 238.77 216 49190 3105 52.89 52.39 40.58 36.5 10.08 7

6 202.81 156 458.15 283 51.1 49.67 36.03 32 848 6

7 22244 193 47840 3015 51.52 54.78 35.08 31 6.96 7

8 21469 176 491.89 308 49.85 5197 40.81 30.5 819 6

4.2 Qualitative Annotation

Two of the authors annotated the quality of summaries
generated by the participants, to assess the effect of chang-
ing gaze patterns on performance, based on four qualities
recommended in related works [48]:

e Accuracy On a scale of 1-5, how accurate is the sum-
mary? (deduct a point for each instance of inaccuracy)

e Completeness On a scale of 1-5, how complete is the
summary? (deduct a point for each instance of missing
important information)

¢ Conciseness On a scale of 1-5, how concise is the sum-
mary? (deduct a point for each instance of unnecessary
information)

e Clarity On a scale of 1-5, how clear or readable in the
summary? (deduct a point for each instance of lack of
clarity or grammatical incorrectness)

When assigning annotations or “codes” in a qualitative
manner, there are two popular approaches to reduce human
biases. The first approach is an agreement-based approach [49]],
which relies on a high number of annotators (or graders
for the purpose of this study) to reach a Kappa agreement
threshold. However, that approach does not account for
expertise, i.e., a large number of novices may override an
expert. For our study, every grader would have to be 1)
expert in Java documentation, and 2) familiar with the
entirety of the project, as we expect our participants to
explore the project while writing summaries. The second
approach is a discussion-based approach, which relies on
an iterative process of discussion for each disagreement. We
chose this approach as recommended by related work for
tasks with a low tolerance for imperfect grading [50], [51].
Both graders independently graded all summaries, followed
by a discussion phase on each disagreement, until both
graders agreed on one score. Note that the graders did
not know the participant number or the position of the
method for which the summary was generated to eliminate
agreement bias.

4.3 Context Categorization

We divide all areas of context in any of the Java projects into
five categories as they relate to the target method:

Class methods: are the areas of context that fall within a
method in the same class as the target method.

Class declarations: are the areas of context that fall within
the same class as a target method but not inside a
method, such as object and variable declarations.

Call graph: are the areas of context that fall within a
method in the call graph of the target method, i.e., it
is a caller or callee of the target method.

File context: are the areas of context that fall within the
same Java file as the target method but are not in
the same class as the target method or in the call
graph. These may be import statements, global variable
declarations or other private classes defined in the same
Java file.

Project context: are all other areas of context in the project
that are not included in any of the above categories.

We use a SRCML [42] archive to identify types of context for

each fixation recorded in iTrace-toolkit [38]. Additionally,

we use the Call-Hierarchy Plugin for Eclipse for Java IDE

2023 to generate the call graph context.

5 RESULTS

In this section, we report the results for our three RQs.

5.1 RQ1: Effect of the progress through tasks

We found that participants need less information to com-
plete their context-aware summarization task as they
progress through the tasks. To analyze the change in gaze

TABLE 2
Results of the Mann-Whitney U statistical tests on the distributions
presented in Table 1

Gaze Metrics Mann-Whitney U
Ul ‘ U2 ‘ p-value
Fixation Count 1892.5 | 1075.5 0.01
Fixation Duration | 1263 1705 0.18
Regression Rate 1193.5 | 1774.5 0.02
Lines Visited 1773.5 | 1194.5 0.08
Methods Visited | 1501 1467 0.92
TABLE 3

Average quality ratings for summaries when grouped by the position of
the methods.

Method | Accurate | Complete | Concise | Clear | Overall
1 432 3.94 4.42 474 4.36
2 4.36 4.10 4.40 4.40 4.32
3 4.46 4.12 4.22 4.64 4.36
4 4.44 422 4.28 4.58 4.38
5 4.56 4.26 4.28 4.54 4.41
6 4.45 3.98 4.29 4.63 4.34
7 4.50 4.10 413 4.65 4.34
8 4.32 3.98 4.09 4.68 427
All 443 4.09 426 4.61 4.35

TABLE 4
Gaze metrics for summaries grouped by quality scores: low(<=3) and high(=5) for completeness and conciseness. Here U1, U2, and p-value are
results of the Mann-Whitney U statistical test for each group.

Group Fixation Count Regression Rate Fixation Duration Lines Visited Methods Visited
Complete Concise | Complete Concise | Complete Concise | Complete Concise | Complete Concise
Low(<=3) 181.72 350.38 48.38 55.78 562.08 475.47 29.88 53.62 5.60 11.42
High(=5) 264.23 228.87 54.27 52.55 482.01 516.73 43.25 38.49 9.29 8.14
Ul 1,856.00 2,765.00 | 2,239.00 2,353.00 | 2,764.00 1,825.00 | 1,740.50 2,743.50 | 1,796.00 2,684.00
U2 3,734.00 1,369.00 | 3,351.00 1,781.00 | 2,826.00 2,309.00 | 3,849.50 1,390.50 | 3,794.00 1,450.00
p-value 0.001 0.006 0.051 0.259 0.915 0.340 0.000 0.008 0.000 0.015

patterns during this process, we report the change in fixa-
tion duration, fixation count, regression rate, lines visited,
and methods visited by the participants. We make two
interesting observations.

First, we observe a pattern of decreasing fixation counts.
In Table [I| we report the statistical summaries of the count
of fixations when grouped by position of the method,
which denotes the position in which the participants saw
and wrote summaries for the method. We observe a 35%
decrease in the mean number of fixations the participants
made on the last method when compared to the first method
processed. However, with respect to fixation duration, we
did not observe a significant change. This may be because
average time spent on a fixation may be affected by the
reading and comprehension speed of the participants.

Second, we also observe a clear trend of decreasing
regression rate. The mean of normalized regression rates
for each task decreased by roughly 13% when compared by
method position. Regressions often occur when information
is particularly hard to understand or needs context from
the surrounding words before it can be understood [52].
This indicates that as the participants progressed through
the session they did not encounter word tokens that were
hard to comprehend or needed additional information to
understand as frequently as when they started.

We performed the Mann-Whitney U [53] test, a non-
parametric, non-paired statistical test on the distribution
of the values, and report the results in Table |2} We chose
this test because our data does not meet the assumptions
of a parametric test, i.e., it is subjective and is not known
to follow Gaussian or Normal distributions. We compared
the combined distribution of first two methods against the
combined distribution of last two methods seen by the par-
ticipants. We observed that for fixation counts the difference
between the two distributions were statistically significant
(p-value< 0.01). We also observed statistically significant
difference between the two distributions for regression rate
(p-value= 0.02)

However, with respect to number of lines visited and
number of methods visited, we observe a p-value> 0.05.
Therefore we cannot reject the null hypothesis for these
metrics. There is statistical likelihood that patterns such
as decreasing mean number of lines visited may not be
significant. These observations are interesting because they
indicate that the participants continued to cover a large
amount of the context to write these descriptions as they
processed more methods.

Therefore, our interpretation of these observations is that
the participants retain more information about the project
from previous task, and thus needed less information to

write summaries as they processed more tasks. Different
studies have shown how programmers skim source code
whenever possible, reading the minimum amount of in-
formation they need [54]. As programmers become more
familiar with the task, they are more likely to intuitively
know what information they need, and therefore read fewer
details. Our observations support those findings as we do
not see a significant decrease in lines and methods visited
by the participants but fixations and regressions decrease.
Therefore, participants still covered similar amount of code
but seemed to get better at skimming, resulting in lower
frequency of fixations and regression rate.

An alternative explanation might be fatigue or boredom,
the effects of these are marked by decreased thoroughness or
decreased quality of summaries written. Our observations
contradict the former as we did not observe statistically
significant effect on code context coverage in terms of the
number of lines and methods visited. We study the possibil-
ity of the latter in the next section about RQ2.

5.2 RQ2: Quality of Summaries

To analyze the quality of summaries written by the partici-
pants, we had two graders manually grade each summary
for accuracy, completeness, conciseness, and clarity (see Sec-
tion [4.2| for details). We make a the following observations.

First, we observe no significant pattern associated with
the position in which the summary was written. In Table
we report the mean scores for the four quality metrics. We
also report an over score, an average of those 4 metrics
calculated individually for each summary. We also per-
formed the Mann-Whitney U test between the distributions
of the first two methods and the last two methods in a
way consistent with RQ1, with an observed p >= 0.9.
This observation supports our hypothesis about RQ1 that
a decrease in fixation counts and regression rate is likely
not due to exhaustion, as neither code context coverage nor
quality of summaries was affected by the position in which
the methods were seen.

Next, we found that with mean = 4.35 and median = 4
on a scale of 1-5, the summaries were graded to be of high
quality. We observed a higher variance in scores for two
of the qualities, completeness and conciseness, compared to
accuracy and clarity. Therefore, we analyze the eye gaze pat-
terns between two groups, those that received a low score
(<3) for completeness (n = 44) and conciseness(n = 33),
against those that received a high score (= 5) for complete-
ness (n = 147) and conciseness (n = 170). Here n denotes
the number of summary samples in each subset. We do not
compare groups based on accuracy and clarity because the
low score group size is too small (n<5).

=class methods =class declarations

0.6
04
0.2 I ‘ I
AT iy r
scrimage mitk mallet openaudible freecol
Project
(a)
0.6

04

| || w AL T 0 T T
1 2 3 4 5 6 7 8

--------- Method Order--—-->
(c)

call graph -file context =project context
0.6

04

I || I Wl Ml
1 2 3 4

--------- Session Order-—->

[+

L]
5

(b)
0.6
04
oo M i f [|| 31l fl 1,
1 2 3 4 5 6 7 8 9 10
Participant
(d)

Fig. 2. Graphs illustrating the distribution of programmer attention for varying groups defined on the X-axis as (a) project names, (b) the order in
which the session occurred, (c) the order in which the method was seen, and (d) the participant ID. The legend on top is common for the bar colors
on all graphs. The Y-axis in each graph shows mean value for each type of context. The values were normalized by the total time spent fixating on
context outside the target method for each method-summary pair, prior to computing mean for each category.

We observe that the completeness of summaries is cor-
related to the code context coverage by the programmer.
In Table [4 we report the mean values of each of the five
gaze metrics for each subset. We also report the Ul, U2,
and p-value for Mann-Whitney U statistical test. We observe
that the summaries of high completeness correspond to
a significantly (p<0.001) higher number of fixations, lines
visited, and methods visited. Figure El shows this delta
clearly through the blue bars. This suggests that the par-
ticipants that covered a smaller amount of the code context,
wrote summaries that were missing important information.
Although we observe an increase in mean regression rate

B Completeness M Conciseness
Fixation
Count

Fixation
Duration

Regression
Rate

Lines
Visited
Methods
Visited

-50 -25 1] 25 50 75
Fig. 3. Bar chart showing the delta values for gaze metrics computed

between summaries rated low(<=3) and highly(5) in terms of complete-
ness and conciseness.

as well, the p-value for regression rate p = 0.051, which is
not statistically significant by conventional standards, but
approaches significance. We do not observe a significant
difference in fixation duration. This observation supports
the observation in RQ1, and further suggests that fixation
duration may be dependant on each participant’s reading
and comprehension speed.

On the other hand, the conciseness of summaries is
inversely correlated to the code context coverage by the
programmer. From Table @, we observe that the summaries
of high conciseness correspond to a significantly (p < 0.015)
lower number of fixations, lines visited, and methods vis-
ited. Figure [3] shows this delta more clearly. This suggests
that participants included unnecessary information at a
higher rate when they covered an exceptionally larger part
of the code context. As shown in Figure 8| we did not
observe a significant difference in fixation duration or re-
gression rate between the two groups.

Our interpretation of these observations is that there
are diminishing returns in terms of increasing code context
coverage and improvement in the quality of summaries. We
found that gaze metrics for the summaries that achieved a
perfect score for all four qualities (Overall = 5), tend to fall
between the thresholds for high completeness and concise-
ness. For example, in terms of lines visited, the summaries
with a perfect score have a mean score of 41 lines, which is
between the scores of 43.25 and 38.49 reported in Table &

So far, we have looked at how gaze patterns of partic-
ipants change in relation to the task, the quality of sum-
maries generated, and the amount of context analyzed. In

the next subsection, we categorize the type of context on
which the participants fixated.

5.3 RQa3: Attention to Context

We found that participants spent a vast majority of their
time looking at methods and variable declarations in same
class as the target method. Surprisingly, we found that
participants spent a comparatively small amount of time
looking at methods in the call graph, even though we
designed the second and third sentences in the summary to
contain information from the callees and callers respectively.
In Figure |2l we report four graphs, each showing averages
for total time spent fixating on tokens inside each type of
context, normalized by total time spent looking at context
for the summarization task.

In Figure [2| (a), we report the attention grouped by
the project type. We found see similar trends for four of
the five project, namely scrimage, openaudible, mltk, and
freecol. For these projects, participants spent an average of
40-65% of their time looking at methods in the same class
as the target method. Surprisingly, for the mallet project,
on an average participants spent more time looking at
the variable, declarations, and other data inside the class
than methods and calls. One possible explanation for this
outlier we investigated was that mallet relies more on class
variables than the other projects. However, we did not find
any significant difference between average number of class
declarations and variables outside class methods for mallet,
when compared against the other projects.

In Figure [2| (b), we analyze the difference in attention
grouped by session, i.e., the order in which the project was
processed by a participant. We found that on average as
participants processed more sessions, they relied more on
information inside the class, both class methods and class
declarations. This is expected because as participants repeat
the task, they form a consistent pattern of navigating the
context. This supports the earlier observation that overall,
the participants found the class of the target method to be
most important part of the context.

In Figure [2| (c), we analyze the difference in attention
grouped by method, i.e., the order in which the method was
processed by a participant in any given session. We observe
no significant trend based on the order in which the method
was processed. This supports our observation from RQ1 and
RQ2 that although the participants make fewer fixations as
they process more methods, they still get the same general
code context coverage in the context.

In Figure P2] (d), we analyze the difference in attention
of each participant. We found that most of the participants
relied on class methods and the class declaration for con-
textual information. We found that only participant 5 and 6
are outliers, and spent a significant amount of time fixating
on context in other files, and these are areas that do not
fall under the methods in the call hierarchy. This suggests
that observations from (a),(b), and (c) are consistent with a
majority of the participants and not skewed heavily by an
extreme minority.

Overall, our interpretation of these results is that there
is a general agreement of trends between the participants,
which is unaffected by method or session order. We observe
a few spikes in class declarations, which may be skewed by

9

the mallet project. These observations make a case that the
most important part of context for a summarization task like
this is all the information inside the class.

6 EXAMPLE

In Fig [d] we show an example containing target method
and three corresponding summaries written by participant
3,7, and 10. These may explain some of our observations
from Section 5} Notice, the summaries written by Participant
3 and 10 are similar, but the summary written by 10 is
slightly clearer. On the other hand, the summaries written
by Participant 7 for the same method are inaccurate and
hard to comprehend and received one of the lowest overall
scores by our graders (Overall = 2).

We found that the key to writing the last sentence
for both participant 3 and participant 10’s summary is
to track the class variable minCapacity. Instances like this
might explain why mallet shows a higher attention on class
declarations than class methods as observed in Section 5.3

We also notice that participant 7’s summary is an exam-
ple of summaries where excessive code coverage leads to
verbose and unclear summary. Note this is just one example

mallet>types>Multinomial java>ensureCapacity [line 290]

protected void ensureCapacity (int index)

{

if (index > size)

size = index;
if (counts.length <= index) {
@Var

int newLength = ((counts.length < minCapacity)
? minCapacity
: counts.length);
while (newLength <= index)
newLength = 2;
double[] newCounts = new double[newLength];
System.arraycopy (counts, 0, newCounts, O,
counts.length);
this.counts = newCounts;

participant 3

The method ensures the capacity of an Estimator to always
have sufficient storage to hold incoming counts. The
method first checks if the current counts are enough for
the incoming index, and, if not, doubles the current counts
to cover the index. The method is useful to maintain the
valid count number before processing the incoming index.

participant 7

This method is for ensuring that the Estimator class has
enough capacity to execute given the index that the method
is passed through. If index is great than the size of the
class, then the size is set to the index, if the length of
counts is less than the index, then it iterates through
counts to create new counts that is of length of the index.
This method is used by the project for the multinomial
class to make an estimate.

participant 10

This method calculates the appropriate length of counts
based on a given index. After comparing size with index
and the length of counts with min capacity to get the
larger length of counts, it repetitively enlarges the
length of counts twice until it is larger than the input
index. This method is useful when you want to ensure the
counts have enough capacity to store all then input based
on the input maximum index.

Fig. 4. Example with source code of a method in project mallet, accom-
panied by summaries written by participant 3,7, and 10.

we found that fits the observations from Section we do
not claim that this example is representative of a trend or
make any recommendations based on this example.

7 THREATS TO VALIDITY

Our study has several threats to validity. One threat lies
with the selection of projects. We selected open-source
Github projects that neither we nor the participants had any
contribution in developing. Some of our results might be
specific to these projects and any errors or shortcomings
these projects may have. We tried to mitigate this threat by
choosing projects on varying topics, with several contribu-
tors and varying sizes.

Another threat lies with our pool of participants. Our
participants are graduate students, and their experiences
may not translate directly to those of active industry pro-
fessionals. To mitigate this threat, we screened participants
with previous (and recent) Java development experience.
However, industry professionals may have specific mental
models for their industry and may utilize visual attention
strategies that our participants do not represent. Another
threat with our pool of participants is that half of them
wear corrective glasses. In specific circumstances, corrective
glasses can lead to false fixation readings. To try to mitigate
this threat, we recommended that participants complete the
task without glasses or use contact lenses if they are able.

Another threat lies with administrators. Our studies
were administered by two administrators across several
months. There may be differences in the administration
styles and the way the task was explained to each partici-
pant, which could result in variation between data points. To
somewhat mitigate this threat, we created a common script
and provided the instructions in text file to each participant.

Another threat lies with the study conditions. The room
in which we conducted the study has a window. As the
study was conducted over several months, the lighting con-
ditions may have changed between sessions. Newer genera-
tion eye-tracker claim to work in all lighting conditions but
can cause inconsistencies in rare situations. These external
threats exist for all eye-tracking studies.

Another threat lies with the extraction of context cate-
gories. The accuracy of these categorizations is limited by
the accuracy of both SRCML [42] and iTrace-toolkit [41].
Additionally, the categorization of call graph is limited to
a static call graph generated by Call-Hierarchy Plugin for
Eclipse for Java IDE 2023. We only report average fixation
duration and counts, normalized by the sum of fixation
duration and counts for a session, to mitigate some of
these threats. We also take measures to avoid false positives
within any category of context, such that, if a fixation cannot
be confirmed to be within the strict boundaries of any of the
other categories, we assign it the “project context” category.

8 CONCLUSION & FUTURE WORK

In conclusion, we designed an eye-tracking study to ana-
lyze how programmers read source code during context-
aware source code summarization. We first studied how
the gaze patterns change as participants progress through
tasks. We observed a statistically significant decrease in fix-
ation counts and regression rates as participants summarize

10

more methods in a session. This observation meant that
the participant retained and internalized information about
the project code base from earlier tasks. Another possibility
was that the participant was bored or exhausted. To test the
latter, we rated and compared the quality of summaries and
found no significant change in the quality of summaries,
as one would expect from exhaustion or boredom. We also
found that regardless of progress, the amount of context
a participant looked at in terms of lines visited, methods
visited, and fixations affects the quality of summaries. This
effect can be best described to be similar to a bell curve,
such that the quality of a summary increases with coverage
of context until a peak, after which the quality declines as
the summaries become less concise. Next, we categorize and
analyze the context on that the participants looked at for
the longest fixation duration. We found that participants
spent the longest time looking at class methods, followed
by class declarations and call graph. We observed this trend
to be unaffected by project name, task order, session order,
or participant. Based on our study, we propose three main
lines of inquiry for future work:

1) Based on our findings in RQ1, we propose that more
in-depth studies such as ours may be needed to study
the effect of retention of project-level information for SE
tasks such as code debugging and testing.

2) Based on our findings in RQ2 and RQ3, we propose
that automated code summarization models may be im-
proved by using specific areas of the project as context.
Based on our findings, we recommend future studies
prioritize class methods first, class declaration second,
and call graph third.

3) We hope our dataset of context-aware summaries aids
future studies in automatic code summarization. We
propose using these summaries to fine-tune LLMs and
generate more context-aware summaries.

9 ACKNOWLEDGMENTS

This work is supported in part by the NSF grants CCF-
2100035, CCF-2211428 and CCF-2211429. Any opinions,
findings, and conclusions expressed herein are the authors’
and do not necessarily reflect those of the sponsors. We also
sincerely thank participants of our qualitative study.

REFERENCES

[1] J. Camara,]. Troya, L. Burguefio, and A. Vallecillo, “On the assess-
ment of generative ai in modeling tasks: an experience report with
chatgpt and uml,” Software and Systems Modeling, pp. 1-13, 2023.

[2] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved auto-
matic summarization of subroutines via attention to file context,”
International Conference on Mining Software Repositories, 2020.

[3] A.Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” International
Conference on Program Comprehension, 2021.

[4] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and C. McMillan,
“Function call graph context encoding for neural source code
summarization,” IEEE Transactions on Software Engineering, pp. 1-
14, 2023.

[5] R. Bednarik, “Expertise-dependent visual attention strategies de-
velop over time during debugging with multiple code represen-
tations,” International Journal of Human-Computer Studies, vol. 70,
no. 2, pp. 143-155, 2012.

6]

(7]

(8]

(%]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D’Mello, “Improving automated source code summarization via
an eye-tracking study of programmers,” in Proceedings of the 36th
international conference on Software engineering, ser. ICSE "14, 2014,
to appear.
Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature
review on the usage of eye-tracking in software engineering,”
Information and Software Technology, vol. 67, pp. 79-107, 2015.
R. Bednarik and M. Tukiainen, “Temporal eye-tracking data:
Evolution of debugging strategies with multiple representations,”
in Proceedings of the 2008 symposium on Eye tracking research &
applications, 2008, pp. 99-102.
N. Ouerhani, R. Von Wartburg, H. Hugli, and R. Muri, “Empir-
ical validation of the saliency-based model of visual attention,”
ELCVIA Electronic Letters on Computer Vision and Image Analysis,
vol. 3, no. 1, pp. 13-24, 2004.
B. M. Hood, J. D. Willen, and J. Driver, “Adult’s eyes trigger shifts
of visual attention in human infants,” Psychological Science, vol. 9,
no. 2, pp. 131-134, 1998.
C. N. Olivers, F. Meijer, and]J. Theeuwes, “Feature-based memory-
driven attentional capture: visual working memory content affects
visual attention.” Journal of Experimental Psychology: Human Percep-
tion and Performance, vol. 32, no. 5, p. 1243, 2006.
M. Paltenghi and M. Pradel, “Thinking like a developer? com-
aring the attention of humans with neural models of code,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 867-879.
R. Bednarik and M. Tukiainen, “An eye-tracking methodology for
characterizing program comprehension processes,” in Proceedings
of the 2006 symposium on Eye tracking research & applications, 2006,
pp. 125-132.
Z. Karas, A. Bansal, Y. Zhang, T. Li, C. McMillan, and Y. Huang,
“A tale of two comprehensions? analyzing student programmer
attention during code summarization,” ACM Transactions on Soft-
ware Engineering and Methodology, 2024.
A. Bansal, B. Sharif, and C. McMillan, “Towards modeling human
attention from eye movements for neutral source code summa-
rization,” Proceedings of ACM Human-Computer Interaction, ETRA
Vol. 7,2023.
A. Bansal, C.-Y. Su, Z. Karas, Y. Zhang, Y. Huang, T. J.-J. Li,
and C. McMillan, “Modeling programmer attention as scanpath
prediction,” in Proceedings of The 38th IEEE/ACM International
Conference on Automated Software Engineering ASE 2023 - NIER
track, 2023.
Y. Zhang,]. Li, Z. Karas, A. Bansal, T. J.-J. Li, C. McMillan,
K. Leach, and Y. Huang, “Eyetrans: Merging human and machine
attention for neural code summarization,” in Proceedings of The
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2024), 2024.
Y. Braw, M. Ratmansky, and I. Goor-Aryeh, “Integrating the nu-
merical pain rating scale (nprs) with an eye tracker: Feasibility
and initial validation,” 2023.
C. Aschwanden and M. Crosby, “Code scanning patterns in pro-
gram comprehension,” in Proceedings of the 39th hawaii international
conference on system sciences. Citeseer, 2006.
P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D'Mello, “Improving automated source code summarization via
an eye-tracking study of programmers,” in Proceedings of the 36th
international conference on Software engineering. ~ACM, 2014, pp.
390-401.
Y.-G. Guéhéneuc, “Taupe: towards understanding program com-
prehension,” in Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research, 2006, pp. 1—es.
B. Sharif and J. I Maletic, “The effects of layout on
detecting the role of design patterns,” in Proceedings of the
2010 23rd IEEE Conference on Software Engineering Education
and Training, ser. CSEET ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 41-48. [Online]. Available: http:
//dx.doi.org/10.1109/CSEET.2010.23
D. Liibke, M. Ahrens, and K. Schneider, “Influence of diagram
layout and scrolling on understandability of bpmn processes:
an eye tracking experiment with bpmn diagrams,” Information
Technology and Management, vol. 22, pp. 99-131, 2021.
Z. Sharafi, B. Sharif, Y. Guéhéneuc, A. Begel, R. Bednarik,
and M. E. Crosby, “A practical guide on conducting eye
tracking studies in software engineering,” Empir. Softw. Eng.,

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

(33]

(34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

(42]

[43]

[44]

11
vol. 25, no. 5 pp. 3128-3174, 2020. Available:
https://doi.org/10.1007 /s10664-020-09829-4
R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-tracking
study assessing the comprehension of c++ and python source
code,” in Proceedings of the Symposium on Eye Tracking Research and
Applications, 2014, pp. 231-234.

S. Haidug, J. Aponte, and A. Marcus, “Supporting program com-
prehension with source code summarization,” in Proceedings of the
32Nd ACMY/IEEE International Conference on Software Engineering-
Volume 2. ACM, 2010, pp. 223-226.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in
Proceedings of the 33rd International Conference on Software Engineer-
ing. ACM, 2011, pp. 101-110.

P. W. McBurney, C. Liu, and C. McMillan, “Automated feature
discovery via sentence selection and source code summarization,”
Journal of Software: Evolution and Process, vol. 28, no. 2, pp. 120-145,
2016.

B. Zhang, E. Hill, and J. Clause, “Towards automatically gener-
ating descriptive names for unit tests,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 625-636.

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016, pp. 2073-2083.

X.Hu, G. Lj, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence. ~AAAI Press,
2018, pp. 2269-2275.

C.-Y. Su and C. McMillan, “Distilled gpt for source code summa-
rization,” Automated Software Engineering, vol. 31, no. 1, p. 22, 2024.
M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and
X. Liao, “Large language models are few-shot summarizers: Multi-
intent comment generation via in-context learning,” 2024.

C.-Y. Su, A. Bansal, V. Jain, S. Ghanavati, and C. Mcmillan, “A
language model of java methods with train/test deduplication,”
arXiv preprint arXiv:2305.08286, 2023.

P. Zhang, Z. Liu, S. Xiao, N. Shao, Q. Ye, and Z. Dou, “Soaring
from 4k to 400k: Extending 1lm’s context with activation beacon,”
arXiv preprint arXiv:2401.03462, 2024.

A. Bansal, C.-Y. Su, and C. McMillan, “Revisiting file context for
source code summarization,” arXiv preprint arXiv:2309.02326, 2023.
B. Clark and B. Sharif, “itracevis: Visualizing eye movement
data within eclipse,” in 2017 IEEE Working Conference on Software
Visualization (VISSOFT). 1EEE, 2017, pp. 22-32.

T. R. Shaffer, J. L. Wise, B. M. Walters, S. C. Miiller, M. Falcone,
and B. Sharif, “Itrace: Enabling eye tracking on software arti-
facts within the ide to support software engineering tasks,” ser.
ESEC/FSE 2015. Association for Computing Machinery, 2015, p.
954-957.

V. Zyrianov, D. T. Guarnera, C. S. Peterson, B. Sharif, and J. L.
Maletic, “Automated recording and semantics-aware replaying of
high-speed eye tracking and interaction data to support cognitive
studies of software engineering tasks,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
464-475.

D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and
B. Sharif, “itrace: Eye tracking infrastructure for development
environments,” in Proceedings of the 2018 ACM Symposium on Eye
Tracking Research & Applications, 2018, pp. 1-3.

J. Behler, G. Chiudioni, A. Ely,]J. Pangonis, B. Sharif, and J. L
Maletic, “itrace-visualize: Visualizing eye-tracking data for soft-
ware engineering studies,” in 2023 IEEE Working Conference on
Software Visualization (VISSOFT), 2023, pp. 100-104.

M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight trans-
formation and fact extraction with the srcml toolkit,” in 2011
IEEE 11th international working conference on source code analysis and
manipulation. 1EEE, 2011, pp. 173-184.

Tobii, “Reach further with your research: Choose tobii pro
fusion,” 2023. [Online]. Available: https://www.tobii.com/
products/eye-trackers/screen-based /tobii- pro-fusion

G. Buscher, E. Cutrell, and M. R. Morris, “What do you see when
you're surfing? using eye tracking to predict salient regions of web
pages,” ser. CHI'09. Association for Computing Machinery, 2009,
p. 21-30.

[Online].

http://dx.doi.org/10.1109/CSEET.2010.23
http://dx.doi.org/10.1109/CSEET.2010.23
https://doi.org/10.1007/s10664-020-09829-4
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

R. W. Booth and U. W. Weger, “The function of regressions in
reading: Backward eye movements allow rereading,” Memory &
cognition, vol. 41, pp. 82-97, 2013.

P. Rodeghero and C. McMillan, “An empirical study on the
patterns of eye movement during summarization tasks,” in 2015
ACMY/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), 2015, pp. 1-10.

M. Son, J. Lee, and A. Godfroid, “Attention to form and meaning
revisited: Insights from eye tracking,” Studies in Second Language
Acquisition, vol. 44, no. 3, pp. 788-817, 2022.

C. Treude,]J. Middleton, and T. Atapattu, “Beyond accuracy:
Assessing software documentation quality,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1509-1512.

S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summa-
rization of bug reports,” IEEE Transactions on Software Engineering,
vol. 40, no. 4, pp. 366-380, 2014.

V. Rieser and O. Lemon, Reinforcement learning for adaptive dialogue
systems: a data-driven methodology for dialogue management and natu-
ral language generation. Springer Science & Business Media, 2011.
A. Wood, P. Rodeghero, A. Armaly, and C. McMillan, “Detecting
speech act types in developer question/answer conversations
during bug repair,” in Proceedings of the 2018 26th ACM joint
meeting on european software engineering conference and symposium
on the foundations of software engineering, 2018, pp. 491-502.

T. Liu and T. Yuizono, “Mind mapping training’s effects on
reading ability: Detection based on eye tracking sensors,” Sensors,
vol. 20, no. 16, p. 4422, 2020.

N. Nachar et al., “The mann-whitney u: A test for assessing
whether two independent samples come from the same distribu-
tion,” Tutorials in quantitative Methods for Psychology, vol. 4, no. 1,
pp. 13-20, 2008.

J. Starke, C. Luce, and]. Sillito, “Searching and skimming: An ex-
ploratory study,” in 2009 IEEE International Conference on Software
Maintenance. 1EEE, 2009, pp. 157-166.

12

	Introduction
	Background and Related Work
	Eye-tracking in Software Engineering
	Source Code Summarization

	Study Design
	Study Scenario
	Research Question
	Interface
	iTrace
	Study Procedure
	Java Projects
	Eye-Tracker
	Software Versions
	Participants

	Methodology
	Gaze Pattern Metrics
	Qualitative Annotation
	Context Categorization

	Results
	RQ1: Effect of the progress through tasks
	RQ2: Quality of Summaries
	RQ3: Attention to Context

	Example
	Threats to Validity
	Conclusion & Future Work
	Acknowledgments
	References

