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A. Convergence Proof

Definition 4. Let ® be the set of all functions ¢ : E —
R which are lower semi-continuous function satisfying the
following properties:

(i) ¢(0)=0,
(@) B(x) = ¢(—x)(symmetry),
(#i4) d(x+y) < P(x) + ¢(y)(subadditivity).

Here E is a finite dimensional Euclidean space.

%

We can verify that the function of matrix Z involved in
the definition of the k-BDMS, i.e., rank(Ly/) with W =
(1Z] +127])/2, falls in the above set .

Definition 5 (SRIP(k, «)). We say the SRIP(k, &) holds for
an dffine operator A if there exist vy, py, > 0 satisfying
Uk / Ve < o such that

viellx[| < A < g lIx]], vx € Ci,

where Cy, := {x : ¢(x) < k} is a nonconvex constraint set
parameterized by k.

We have the following convergence guarantee for apply-
ing the gradient projection algorithm (Algorithm 1) to opti-

mize the function f; in Eqn. (1).

Theorem 2 (Convergence of Alg. 1 for BD-SSC). Consider
the Gradient Projection (GP) method with a constant step-
size n, = n € [u?,2v2) and suppose that SRIP(k,/2) is
satisfied. Then

hZ)-h(z) < (p- ) (20 - (2 v 20

with p =1/ 21/,%. As a consequence,

¢
h(Z)-h(Z) < (p-3) (BZ-A(Z). ¥ 20
and f1(Zy) — f1(Z*) ast — 0.
Proof. Let
a2, 20) = Fu(Z0) +(Z = 20, 00(Z0)) + SN 2 — Zil b
Then the GP method can be equivalently rewritten as

Zyy1 € argmin{q,(Z,2Z,): Z € K},
and hence, for the global optimum Z* € I it holds that

Qt(ZtJtht) < Qt(Z*aZt)- (6)
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Now, since f1(Z) = 3| XZ — X||% + || Z||1. it follows that 212
J1(Zi41) (7) 920
1 ) 921
= fu(Z) + (Zevr = 20,0f1(Ze)) + S X(Zesr = Z0) |7 922
SRIP N ) 923
< f(Ze) +(Ziy — Zi,0f1(Zy)) + EHZt+1 — Zill# 924
925
where the last inequality follows from the fact that Z; — 926
Zi+1 € Ci, (by the subadditivity and symmetry of the func- 927
tion ¢ € ®) and from the fact that the definition of the step- 928
size implies that || X (Z; 1 — Zy)||r < 0| Zi41 — Zi]. 929
Therefore, we have shown that f1(Z;11) < q:(Z¢11, Zt) s0o 930
that 931
(6)
N1(Zi1) = a(Zigr, Z1) < al(Z7, Z1). 932
933
On the other hand, 934
AN o
* ,'7 *

=fi(Z) +(Z —Zt,afl(Zt)>+§t||Z ~ Z||% 937
SRIP § ne . , 38
< fi(2) +(Z7 = 24, 0f1(20)) + 5 5IX(Z7 = Zo) |7 939
. k 940
™ * "t * 2 941

= f1(Z — —— ||| XZ" - XZ
A2+ (g -3)) A o
N N 1 " 943
<72+ (3 - 3 ) (@) - (2. s

k
945
Therefore, we have, 946
n 1 947
* t *

f1(Zer) = 1(Z7) < (22—> (f1(Z) = f1(Z27)). 948
Ve 2 949
O 950
951
Similarly, we have the convergence guarantee for apply- 952
ing the gradient projection algorithm (Algorithm 1) to opti- 953
mize the function f, in Eqn. (2). 954
Theorem 3 (Convergence of Alg. 1 for BD-LRR). Also 222
consider the Gradient Projection (GP) method with a con- 957
stant stepsize my = 1 € [ui,2v}) and suppose that 958
SRIP(k,/2) is satisfied. Then 959
X 1 X 960
FZ)- 12 < (0= 5 ) (2D - 2N 20 o
962
with p =1/ 2V£. As a consequence, 963
. 964
. 1 X 965
FZ)-12) < (o= 3) (RE-LZNz0
967
and f.(Zy) = fo(Z*) ast — . 068
Proof. The proof exactly follows the procedure of proving 969
Theorem 2. O 270
7



