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Abstract

This document contains additional details of using Alter-
nating Direction Method (ADM) to solve (i) the pose esti-
mation problem (Section 1), and (ii) the camera estimation
problem (Section 2).

1. 3D Pose Estimation
Given the camera parameters M and the 2D pose x, we

estimate the 3D pose by solving the followingL1 minimiza-
tion problem using ADM:

min
α

‖x−M (Bα+ µ)‖1 + θ ‖α‖1

s.t. ‖Ci (Bα+ µ)‖22 = Li, i = 1, · · · , t
(1)

We introduce two auxiliary variables β and γ and rewrite
Eq. (1) as:

min
α,β,γ

‖γ‖1 + θ ‖β‖1
s.t. γ = x−M (Bα+ µ) , α = β,

‖Ci (Bα+ µ)‖22 = Li, i = 1, · · · ,m.
(2)

The augmented Lagrangian function of Eq. (2) is:

L1(α, β, γ, λ1, λ2, η) = ‖γ‖1 + θ ‖β‖1 +
λT1 [γ − x+M(Bα+ µ)] + λT2 (α− β)+
η
2

[
‖γ − x+M(Bα+ µ)‖2 + ‖α− β‖2

]
where λ1 and λ2 are the Lagrange multipliers and η > 0 is
the penalty parameter. ADM is to update the variables by
minimizing the augmented Lagrangian function w.r.t. the
variables alternately. In the following, k and l are the in-
dices of iterations.

1.1. Update γ

We discard the terms in L1 which are independent of γ
and update γ by:

γk+1 = argmin
γ
‖γ‖1 +

ηk
2

∥∥∥∥γ − [x−M(Bαk + µ)− λk1
ηk

]∥∥∥∥2

which has a closed form solution [1].

1.2. Update β

We drop the terms in L1 which are independent of β and
update β by:

βk+1 = argmin
β
‖β‖1 +

ηk
2θ

∥∥∥∥β − (λk2ηk + αk
)∥∥∥∥2

which also has a closed form solution [1].

1.3. Update α

We dismiss the terms in L1 which are independent of α
and update α by:

αk+1 = arg min
α

zTWz

s.t. zTΩiz = 0, i = 1, · · · ,m
(3)

where z = [αT 1]T ,

W=

 BTMTMB + I 0

2

[(
γk+1 − x+Mµ+

λk
1

ηk

)T
MB − βk+1 +

λk
2

ηk

]
0


and Ωi =

(
BTCTi CiB BTCTi µ
µTCTi CiB µTCTi Ciµ− Li

)
.

Let Q = zzT . Then the objective function becomes
zTWz = tr(WQ) and Eq. (3) is transformed to:

min
Q

tr(WQ)

s.t. tr(ΩiQ) = 0, i = 1, · · · ,m,
Q � 0, rank(Q) ≤ 1.

(4)

We still solve problem (4) by the alternating direction
method [1]. We introduce an auxiliary variable P and
rewrite the problem as:

min
Q,P

tr(WQ)

s.t. tr(ΩiQ) = 0, i = 1, · · · ,m,
P = Q, rank(P ) ≤ 1, P � 0.

(5)

Its augmented Lagrangian function is:

L2(Q,P,G, δ) = tr(WQ)+tr(GT (Q−P ))+
δ

2
‖Q− P‖2F

1
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whereG is the Lagrange Multiplier and δ > 0 is the penalty
parameter. We update Q and P alternately.

• Update Q:

Ql+1 = argmin
tr(ΩiQ) = 0,
i = 1, · · · ,m

L2(Q,P l, Gl, δl). (6)

This is a constrained least square problem and has a
closed form solution.

• Update P : We discard the terms in L2 which are in-
dependent of P and update P by:

P l+1 = argmin
P � 0,

rank(P ) ≤ 1

∥∥∥P − Q̃∥∥∥2
F

(7)

where Q̃ = Ql+1 + 2
δl
Gl. Note that

∥∥∥P − Q̃∥∥∥2
F

is

equal to
∥∥∥P − Q̃T+Q̃

2

∥∥∥2
F

. Then (7) has a closed form
solution by the lemma 1.1.

• UpdateG: We update the Lagrangian multiplierG by:

Gl+1 = Gl + δl(Ql+1 − P l+1) (8)

• Update δ: We update the penaly parameter by:

δl+1 = min(δl · ρ, δmax), (9)

where ρ ≥ 1 and δmax are constant parameters.

Lemma 1.1 The solution to

min
P
‖P − S‖2F s.t. P � 0, rank(P ) ≤ 1 (10)

is P = max(ξ1, 0)ν1ν
T
1 , where S is a symmetric matrix and

ξ1 and ν1 are the largest eigenvalue and eigenvector of S,
respectively.

Proof Since P is a symmetric semi-positive definite matrix
and its rank is one, we can write P as: P = ξννT , where
ξ ≥ 0. Let the largest eigenvalue of S be ξ1, then we have
νTSν ≤ ξ1, ∀ν. Then we have:

‖P − S‖2F = ‖P‖2F + ‖S‖2F − 2tr(PTS)
≥ ξ2 +

∑n
i=1 ξ

2
i − 2ξξ1

= (ξ − ξ1)2 +
∑n
i=2 ξ

2
i

≥
∑n
i=2 ξ

2
i + min(ξ1, 0)2

(11)

The minimum value can be achieved when ξ = max(ξ1, 0)
and ν = ν1.

1.4. Update λ1
We update the Lagrangian multiplier λ1 by:

λk+1
1 = λk1 + ηk

(
γk+1 − x+M

(
Bαk+1 + µ

))
(12)

1.5. Update λ2
We update the Lagrangian multiplier λ2 by:

λk+1
2 = λk2 + ηk

(
αk+1 − βk+1

)
(13)

1.6. Update η

We update the penalty parameter η by:

ηk+1 = min(ηk · ρ, ηmax), (14)

where ρ ≥ 1 and ηmax are the constant parameters.

2. Camera Parameter Estimation
Given estimated 2D pose X and 3D pose Y , we estimate

camera parameters by solving the following optimization
problem:

min
m1,m2

∥∥∥∥X − ( mT
1

mT
2

)
Y

∥∥∥∥
1

, s.t. mT
1m2 = 0. (15)

We introduce an auxiliary variable R and rewrite
Eq. (15) as:

min
R,m1,m2

‖R‖1

s.t. R = X −
(
mT

1

mT
2

)
Y, mT

1m2 = 0.
(16)

We still use ADM to solve problem (16). Its augmented
Lagrangian function is:

L3(R,m1,m2, H, ζ, τ)

= ‖R‖1 + tr
(
HT

[(
mT

1

mT
2

)
Y +R−X

])
+ ζ(mT

1m2)

+ τ
2

[∥∥∥∥( mT
1

mT
2

)
Y +R−X

∥∥∥∥2
F

+
(
mT

1m2

)2]

where H and ζ are Lagrange multipliers and τ > 0 is the
penalty parameter.

2.1. Update R

We discard the terms in L3 which are independent of R
and update R by:

Rk+1 = argmin
R
‖R‖1 +

τk
2

∥∥∥∥∥R+

( (
mk

1

)T(
mk

2

)T
)
Y −X +

Hk

τk

∥∥∥∥∥
2

F

which has a closed form solution [1].
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2.2. Update m1

We discard the terms in L3 which are independent ofm1

and update m1 by:

mk+1
1 = argmin

m1

∥∥∥∥( mT
1(

mk
2

)T )
Y +Rk+1 −X + Hk

τk

∥∥∥∥2
F

+
(
mT

1m
k
2 + ζk

τk

)2
This is a least square problem and has a closed form solu-
tion.

2.3. Update m2

We discard the terms in L3 which are independent ofm2

and update m2 by:

mk+1
2 = argmin

m2

∥∥∥∥∥
( (

mk+1
1

)T
mT

2

)
Y +Rk+1 −X + Hk

τk

∥∥∥∥∥
2

F

+
((
mk+1

1

)T
m2 + ζk

τk

)2
This is a least square problem and has a closed form solu-
tion.

2.4. Update H

We update Lagrange multiplier H by:

Hk+1 = Hk + τk

(( (
mk+1

1

)T(
mk+1

2

)T
)
Y +Rk+1 −X

)
(17)

2.5. Update ζ

We update the Lagrange multiplier ζ by:

ζk+1 = ζk + τk ·
(
mk+1

1

)T
mk+1

2 (18)

2.6. Update penalty parameter τ

We update the penaly parameter τ by:

τk+1 = min(τk · ρ, τmax, ) (19)

where ρ ≥ 1 and τmax are constant parameters.
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