

Supplementary Material of

“Automatic Design of Color Filter Arrays in The Frequency Domain”

Chenyan Bai, Jia Li, Zhouchen Lin, and Jian Yu

In this supplementary material, we prove the Theorem 1 which shows the solution to the following problem:

$$\begin{aligned}
 \mathbf{M}^{k+1} &= \underset{\mathbf{M}}{\operatorname{argmin}} \mathcal{L}(\mathbf{M}, \mathbf{N}_1^k, \mathbf{N}_2^k, \mathbf{S}^k, \mathbf{X}^k, \mathbf{x}^k, \mathbf{Y}^k, \mathbf{Z}^k) \\
 &= \underset{\mathbf{M}}{\operatorname{argmin}} \|\mathbf{M}^{-1}\|_2 + \frac{\beta}{2} \|\mathbf{M} - (\mathbf{N}_1^k + i\mathbf{N}_2^k) + \mathbf{X}^k/\beta\|_F^2 \\
 &= \underset{\mathbf{M}}{\operatorname{argmin}} \frac{1}{\beta} \|\mathbf{M}^{-1}\|_2 + \frac{1}{2} \|\mathbf{M} - \mathbf{W}^k\|_F^2.
 \end{aligned} \tag{1}$$

It is problem (17) in the main body of the paper.

Theorem 1. *The solution to problem (1) is:*

$$\mathbf{M}^{k+1} = \mathbf{U}^k \boldsymbol{\Sigma}^{k+1} (\mathbf{V}^k)^H, \tag{2}$$

where $\mathbf{U}^k \boldsymbol{\Lambda}^k (\mathbf{V}^k)^H$ is the SVD of \mathbf{W}^k , \mathbf{U}^k and \mathbf{V}^k are unitary matrices, $\boldsymbol{\Lambda}^k = \operatorname{diag}(\boldsymbol{\lambda}^k)$, in which $\operatorname{diag}(\mathbf{y})$ converts the vector \mathbf{y} into a diagonal matrix whose j -th diagonal element is \mathbf{y}_j , $\boldsymbol{\lambda}^k = (\lambda_1^k, \lambda_2^k, \lambda_3^k)^T$ is the real vector of singular values of \mathbf{W}^k and satisfies $\lambda_1^k \geq \lambda_2^k \geq \lambda_3^k > 0$, and $\boldsymbol{\Sigma}^{k+1} = \operatorname{diag}(\boldsymbol{\sigma}^{k+1})$, in which $\boldsymbol{\sigma}^{k+1} = (\sigma_1^{k+1}, \sigma_2^{k+1}, \sigma_3^{k+1})^T$ is the solution to the following problem:

$$\min_{\sigma_1 \geq \sigma_2 \geq \sigma_3 > 0} \frac{1}{\beta \sigma_3} + \frac{1}{2} \sum_{j=1}^3 (\sigma_j - \lambda_j^k)^2. \tag{3}$$

Before we prove it, we first quote the von Neumann’s inequality [1]: Suppose \mathbf{A} and \mathbf{B} are $m \times n$ matrices. Then $\langle \mathbf{A}, \mathbf{B} \rangle \leq \sum_j \delta_j(\mathbf{A}) \delta_j(\mathbf{B})$, where $\delta_j(\mathbf{B})$ is the j -th largest singular value of \mathbf{B} . The equality holds when the matrices of left and right singular vectors of \mathbf{A} are the same as those of \mathbf{B} .

Proof.

$$\begin{aligned}
 &\frac{1}{\beta} \|\mathbf{M}^{-1}\|_2 + \frac{1}{2} \|\mathbf{M} - \mathbf{W}^k\|_F^2 \\
 &= \frac{1}{\beta \delta_3(\mathbf{M})} + \frac{1}{2} (\|\mathbf{M}\|_F^2 - 2\langle \mathbf{M}, \mathbf{W}^k \rangle + \|\mathbf{W}^k\|_F^2) \\
 &= \frac{1}{\beta \delta_3(\mathbf{M})} + \frac{1}{2} \left(\sum_{j=1}^3 \delta_j(\mathbf{M}) - 2\langle \mathbf{M}, \mathbf{W}^k \rangle + \sum_{j=1}^3 \delta_j(\mathbf{W}^k) \right) \\
 &\geq \frac{1}{\beta \delta_3(\mathbf{M})} + \frac{1}{2} \sum_{j=1}^3 (\delta_j(\mathbf{M}) - 2\delta_j(\mathbf{M})\delta_j(\mathbf{W}^k) + \delta_j(\mathbf{W}^k)) \\
 &= \frac{1}{\beta \delta_3(\mathbf{M})} + \frac{1}{2} \sum_{j=1}^3 (\delta_j(\mathbf{M}) - \delta_j(\mathbf{W}^k))^2.
 \end{aligned}$$

According to the von Neumann’s inequality, the equality can hold when the matrices of left and right singular vectors of \mathbf{M} are the same as those of \mathbf{W}^k . Thus the theorem is proved. \square

So by Theorem 1 the solving for \mathbf{M}^{k+1} in problem (1) is converted into that for $\boldsymbol{\sigma}^{k+1}$ in (3), which is convex. In order to facilitate the presentation and calculation, we drop the superscript k of $\boldsymbol{\lambda}$ and reformulate (3) as:

$$\min_{\boldsymbol{\sigma}} \frac{1}{\beta \sigma_3} + \frac{1}{2} \|\boldsymbol{\sigma} - \boldsymbol{\lambda}\|_2^2, \text{ s.t. } \mathbf{T} \boldsymbol{\sigma} \geq \mathbf{0}, \tag{4}$$

where $\mathbf{T} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

When applying ADM to (4), we first introduce auxiliary variables $\boldsymbol{\tau}$ and φ and rewrite it as:

$$\min_{\boldsymbol{\sigma}, \boldsymbol{\tau}, \varphi} \frac{1}{\beta\varphi} + \frac{1}{2} \|\boldsymbol{\sigma} - \boldsymbol{\lambda}\|_2^2 + \mathcal{I}_{\mathbb{R}_+}(\boldsymbol{\tau}), \text{ s.t. } \mathbf{T}\boldsymbol{\sigma} = \boldsymbol{\tau}, \varphi = \sigma_3. \quad (5)$$

The augmented Lagrangian function of (5) is:

$$\mathcal{L}_\sigma(\boldsymbol{\sigma}, \boldsymbol{\tau}, \varphi, \mathbf{u}, v) = \frac{1}{\beta\varphi} + \frac{1}{2} \|\boldsymbol{\sigma} - \boldsymbol{\lambda}\|_2^2 + \mathcal{I}_{\mathbb{R}_+}(\boldsymbol{\tau}) + \langle \mathbf{u}, \mathbf{T}\boldsymbol{\sigma} - \boldsymbol{\tau} \rangle + \langle v, \varphi - \sigma_3 \rangle + \frac{\kappa}{2} \|\mathbf{T}\boldsymbol{\sigma} - \boldsymbol{\tau}\|_2^2 + \frac{\kappa}{2} (\varphi - \sigma_3)^2, \quad (6)$$

where \mathbf{u} and v are the Lagrange multipliers, and $\kappa > 0$ is the penalty parameter which is fixed during the iterations.

Then by ADM problem (5) can be solved via the following iterations:

$$\begin{aligned} \boldsymbol{\sigma}^{t+1} &= \operatorname{argmin}_{\boldsymbol{\sigma}} \mathcal{L}_\sigma(\boldsymbol{\sigma}, \boldsymbol{\tau}^t, \varphi^t, \mathbf{u}^t, v^t) \\ &= \operatorname{argmin}_{\boldsymbol{\sigma}} \frac{1}{2} \|\boldsymbol{\sigma} - \boldsymbol{\lambda}\|_2^2 + \frac{\kappa}{2} \|\mathbf{T}\boldsymbol{\sigma} - \boldsymbol{\tau}^t + \mathbf{u}^t/\kappa\|_2^2 + \frac{\kappa}{2} (\varphi^t - \mathbf{d}^T \boldsymbol{\sigma} + v^t/\kappa)^2 \\ &= \mathbf{Q}^{-1} (\boldsymbol{\lambda} + \mathbf{T}^T (\kappa \boldsymbol{\tau}^t - \mathbf{u}^t) + \mathbf{d} (\kappa \varphi^t + v^t)), \end{aligned} \quad (7)$$

$$\begin{aligned} \boldsymbol{\tau}^{t+1} &= \operatorname{argmin}_{\boldsymbol{\tau}} \mathcal{L}_\sigma(\boldsymbol{\sigma}^{t+1}, \boldsymbol{\tau}, \varphi^t, \mathbf{u}^t, v^t) \\ &= \operatorname{argmin}_{\boldsymbol{\tau}} \mathcal{I}_{\mathbb{R}_+}(\boldsymbol{\tau}) + \frac{\kappa}{2} \|\mathbf{T}\boldsymbol{\sigma}^{t+1} - \boldsymbol{\tau} + \mathbf{u}^t/\kappa\|_2^2 \\ &= \max(\mathbf{0}, \mathbf{T}\boldsymbol{\sigma}^{t+1} + \mathbf{u}^t/\kappa), \end{aligned} \quad (8)$$

$$\begin{aligned} \varphi^{t+1} &= \operatorname{argmin}_{\varphi} \mathcal{L}_\sigma(\boldsymbol{\sigma}^{t+1}, \boldsymbol{\tau}^{t+1}, \varphi, \mathbf{u}^t, v^t) \\ &= \operatorname{argmin}_{\varphi} \frac{1}{\beta\varphi} + \frac{\kappa}{2} (\varphi - \sigma_3^{t+1} + v^t/\kappa)^2, \end{aligned} \quad (9)$$

$$\mathbf{u}^{t+1} = \mathbf{u}^t + \kappa (\mathbf{T}\boldsymbol{\sigma}^{t+1} - \boldsymbol{\tau}^{t+1}), \quad (10)$$

$$v^{t+1} = v^t + \kappa (\varphi^{t+1} - \sigma_3^{t+1}), \quad (11)$$

where $\mathbf{Q} = \mathbf{I} + \kappa \mathbf{T}^T \mathbf{T} + \kappa \mathbf{d} \mathbf{d}^T$, $\mathbf{d} = (0, 0, 1)^T$, and $\mathbf{I} \in \mathbb{R}^{3 \times 3}$ is the identity matrix.

Let $g^{t+1} = \sigma_3^{t+1} - v^t/\kappa$ in (9), then we have:

$$\varphi^{t+1} = \operatorname{argmin}_{\varphi > 0} q(\varphi) = \frac{1}{\beta\varphi} + \frac{\kappa}{2} (\varphi - g^{t+1})^2. \quad (12)$$

Since $q(\varphi)$ is differentiable w.r.t. φ on the set of positive real numbers, φ^{t+1} is to be among the positive real critical points of $q(\varphi)$, which are the positive real roots of the cubic equation $\varphi^3 - g^{t+1}\varphi^2 - 1/(\beta\kappa) = 0$. It has a closed-form solution and can be computed by the cubic formula.

The stopping criteria are:

$$\max\{\|\boldsymbol{\sigma}^{t+1} - \boldsymbol{\sigma}^t\|_\infty, \|\boldsymbol{\tau}^{t+1} - \boldsymbol{\tau}^t\|_\infty, \|\varphi^{t+1} - \varphi^t\|_\infty\} < \varepsilon_3 \quad (13)$$

$$\text{and } \max\{\|\mathbf{T}\boldsymbol{\sigma}^{t+1} - \boldsymbol{\tau}^{t+1}\|_\infty, \|\varphi^{t+1} - \sigma_3^{t+1}\|_\infty\} < \varepsilon_4. \quad (14)$$

We summarize the whole solution process of problem (5) in Algorithm 1.

Algorithm 1 The ADM algorithm for problem (5)

Input: $\boldsymbol{\lambda}$, β , \mathbf{T} , $\kappa = 1$, $\varepsilon_3 = 10^{-10}$, and $\varepsilon_4 = 10^{-10}$.

- 1: **Initialize:** $\boldsymbol{\tau} = \mathbf{0}$, $\varphi = 0$, $\mathbf{u} = \mathbf{0}$, $v = 0$, $t = 0$.
- 2: **while** the stop conditions (13) and (14) are not met **do**
- 3: fix the others and update $\boldsymbol{\sigma}$ by (7).
- 4: fix the others and update $\boldsymbol{\tau}$ by (8).
- 5: fix the others and update φ by (9).
- 6: update the multipliers \mathbf{u} and v by (10) and (11).
- 7: $t \leftarrow t + 1$.

8: **end while**

Output: $\boldsymbol{\sigma}$.

References

[1] R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge University Press, 2012.