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In this supplementary material, we prove the Theorem 1 which shows the solution to the following problem:
M*H —argmin £(M, N¥ Nk sF X* x* Y* ZF)
M
. _ B ,
= argmin M o= 5[ M- (N-+iN5)+ X3} 1)
1 -1 1 k|2
=argmin - [|[M™" 2+ S [|[M-W?|[%.
M B 2

It is problem (17) in the main body of the paper.

Theorem 1. The solution to problem (1) is:
MFH! = Ukmht (v (2)

where UFA*(VFVH s the SVD of Wk, U* and V¥ are unitary matrices, A* = diag(\*), in which diag(y) converts the
vector y into a diagonal matriz whose j-th diagonal element is y;, A= (\F \E NAYT s the real vector of singular values
of WF and satisfies \¥ > X5 > \s > 0, and T+ = diag(a®*"), in which a*+' = (oF!, o5+ 05T s the solution to
the following problem:
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Before we prove it, we first quote the von Neumann’s inequality [1]: Suppose A and B are m x n matrices. Then

(A,B) <>,;0;(A)d;(B), where §;(B) is the j-th largest singular value of B. The equality holds when the matrices of
left and right singular vectors of A are the same as those of B.
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According to the von Neumann’s inequality, the equality can hold when the matrices of left and right singular vectors of
M are the same as those of W¥. Thus the theorem is proved. O

So by Theorem 1 the solving for M¥*1 in problem (1) is converted into that for ¢**! in (3), which is convex. In order
to facilitate the presentation and calculation, we drop the superscript k of A and reformulate (3) as:
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When applying ADM to (4), we first introduce auxiliary variables 7 and ¢ and rewrite it as:
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The augmented Lagrangian function of (5) is:
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where u and v are the Lagrange multipliers, and x > 0 is the penalty parameter which is fixed during the iterations.
Then by ADM problem (5) can be solved via the following iterations:
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where Q = I++xTTT+kdd?, d = (0,0,1)7, and T € R?*3 is the identity matrix.
Let gttt =of™ —ol/k in (9), then we have:
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Since q(y) is differentiable w.r.t. ¢ on the set of positive real numbers, ¢! is to be among the positive real critical
points of q(¢), which are the positive real roots of the cubic equation ¢3 — g**1p? — 1/(Bk) = 0. It has a closed-form
solution and can be computed by the cubic formula.

The stopping criteria are:
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We summarize the whole solution process of problem (5) in Algorithm 1.

Algorithm 1 The ADM algorithm for problem (5)
Input: X\, 3, T,k =1,e3 =10"1%, and g4 = 10710,
1: Initialize: 7=0,90=0,u=0,v=0,t=0.
2: while the stop conditions (13) and (14) are not met do
3: fix the others and update o by (7).
4 fix the others and update T by (8).
5 fix the others and update ¢ by (9).
6: update the multipliers u and v by (10) and (11).
7
8:

t—t+1.
end while
Output: o.
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