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Abstract—Many problems in computer vision can be formulated as
multidimensional ellipsoid-specific fitting, which is to minimize the residual error
such that the underlying quadratic surface is a multidimensional ellipsoid. In this
paper, we present a fast and robust algorithm for solving ellipsoid-specific fitting
directly. Our method is based on the alternating direction method of muiltipliers,
which does not introduce extra positive semi-definiteness constraints. The
computation complexity is thus significantly lower than those of semi-definite
programming (SDP) based methods. More specifically, to fit n data points into a p
dimensional ellipsoid, our complexity is O(p® + np') + O(p®), where the former O
results from preprocessing data once, while that of the state-of-the-art SDP
method is O(p® + np! + n3p?) for each iteration. The storage complexity of our
algorithm is about 1 np?, which is at most 1/4 of those of SDP methods. Extensive
experiments testify to the great speed and accuracy advantages of our method
over the state-of-the-art approaches. The implementation of our method is

also much simpler than SDP based methods.

Index Terms—Multidimensional ellipsoid, ellipsoid-specific fitting, alternating
direction method of multipliers
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1 INTRODUCTION

MULTIDIMENSIONAL ellipsoid-specific fitting problems, i.e., fitting
an ellipsoid surface to a given set of data points, is widely used in
computer vision. For example, in [4], [21] the ellipsoid primitive is
used to fit the limbs and legs of the pedestrian for gait recognition.
Grammalidis and Strintzis [10] used a similar technique to segment
the human head. Post et al. [18] suggested making use of ellipsoids
for feature visualization. Mahdavi and Salcudean [16] and Ge et al.
[9] showed that ellipsoid fitting could facilitate prostate and lung
detection in medical images. Rimon and Boyd [19] and Ju et al. [11]
made use of the ellipsoid primitive to reduce the computation cost
of obstacle collision detection in robotic tasks. Furthermore, in high
dimensional spaces, the ellipsoid fitting problem could facilitate
the task of pattern classification [13], where a finite number of the
ellipsoidal regions are fit to data for multidimensional pattern clas-
sification problems. There are further applications in metrology [7]
as well. Ellipsoid fitting can also be understood abstractly, i.e., find-
ing a positive semi-definite matrix such that the residual error is
minimized. So the camera self-calibration also involves an ellipsoid
fitting problem [26] (see Section 3.2).

There have been many approaches for solving the ellipsoid-
specific fitting problem. Previous work can be classified into two
categories by minimizing either the geometric distance [1], [2], [8],
[12], namely the shortest distance from the given point to the
ellipsoid surface, or the algebraic distance [3], [5], [6], [20], [24],
i.e., the deviations of the implicit equation, which describes the
geometric feature of ellipsoid, from the expected value (i.e., zero)
at each given point. The pros and cons of both approaches have
been well studied in the literature [1], [2], [12], [17]. While geo-
metric fitting has a clearer physical interpretation, the
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corresponding optimization problem is highly non-convex. Bad
initialization, non-uniform point sampling, and heavy noise may
lead to a bad local minimum solution (see Fig. 1). Moreover, it is
difficult to deduce the geometric error in high-dimensional
spaces. In contrast, algebraic fitting is much simpler due to its
convexity. So it is more preferred in the literature, thanks to its
easier numerical treatment and better statistical interpretation
[17]. In this paper, we focus on the minimization of the algebraic
distance.

In the algebraic fitting, when there is no noise, the ellipsoid
fitting problem can be formulated as':

Find Q e RPDx(+D)

st. xX'Qx; =0,i=1,...,n,and S,(Q) = 0, 1

where Q is the parameterizations of a p dimensional ellipsoid sur-
face, Sp(-) is the linear operator that extracts the leading p x p sub-
matrix, M > 0 means that M is a positive semi-definite matrix,
X; = [Ti1, i2y - s Tip, 1}T € R7*! is the homogenous coordinate of a
p dimensional point, and n is the number of data points. Since Q is
a symmetric matrix, it can be parameterized by q = [Q11, @21, Q22,
Q31,Q32,Q33, ...,Q(,,H)(M])]T, which is an m dimensional vector
with m = (p + 1)(p + 2)/2. For simplicity, we define a linear opera-
tor V(Q) = q, which maps a symmetric matrix Q € RP+V*®+) to a
vector q € R™. Its inverse operator is M(q) = Q that maps a vector
q € R™ to a symmetric matrix Q € R¥TD)x@+1),

When there is noise, x/ Qx; = 0 cannot be fulfilled by all data
points. So it is natural to minimize the residual error r=
[r1, ... )t

norm. Note that 7; = d7q, where d; = [xf>]72:57;,1x,;‘27xf_’272:57;,3x,;_1,

, where 7; :foxi, i=1,...,n, measured in some

2xi13mi72,m33,...,1]T € R™ is constructed from quadratic mono-
mials of all entries in x;. So the ellipsoid fitting problem can be
written as

min [D'ql, st S,(M(@) =0, @

where D = [dy,...,d,]and || - || is some norm.
The simplest way to solve the ellipsoid fitting problem is the lin-
ear least-square (LLS) fitting [6]. LLS solves

H{.‘in\\rllgquK% st [lqlly =1, ®)

without respecting the positive-semidefiniteness of S,(M(q)),
where K = DD” and | - ||, is the £, norm of vectors. Thus the LLS
solution is the eigenvector corresponding to the smallest eigen-
value of K.

As LLS does not enforce positive-semidefiniteness, its solution
is not guaranteed to be an ellipsoidal surface when strong noise
exist. To obtain a desired result, Yu et al. [25] suggested an outlier
detection method to remove noise. But to guarantee an ellipsoid-
specific result, one must impose an explicit semi-definiteness con-
straint. Fitzgibbon et al. [6] presented an efficient method by solv-
ing LLS with a quadratic semi-definiteness constraint using
generalized eigenvalue decomposition (EVD), which is for 2D
ellipses. Li and Griffiths [14] extended the method to the 3D case.
However, these methods cannot be generalized for higher dimen-
sional cases because as the dimension increases, the number of the
constraint equations blows up exponentially.

1. Due to the semi-definiteness constraint S,(Q) > 0, the solution may degen-
erate to a paraboloid when the solution lies on the boundary of its feasible set.
When this solution is not acceptable in real world applications, we may modify
the constraint as S,(Q) > eI with a small e. Our algorithm can still work with
slight modification. Note that we cannot change the constraint to S,(Q) > 0. Oth-
erwise, the problem may have no solution when the optimal value is attained on
the boundary of feasible set.

0162-8828 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. A comparison between algebraic fitting [5] and geometric fitting [1]. (@) They produce close results if there is little noise and the sample points are uniform. (b)-(c)
With heavy noise, non-uniform sampling, or bad initialization of the parameters, geometric fitting may produce a bad local minimum solution due to its non-convexity.

When enforcing the semi-definiteness constraint at the high
dimensional case, the ellipsoid fitting problem is often formulated
as semi-definite programs (SDP) [23]. Calafiore [5] first proposed a
practicable SDP approach for multidimensional ellipsoid fitting,
which minimizes the ¢, norm of the residual error. The correspond-
ing SDP is

n
minE ti,
St <
1 i=1

st. A»0, S,(M(q)) =0, trace(S,(M(q)) =1, (4)
where
1 T1
T1 tl
A= )
1 r
TII tn

with the auxiliary variables t = [, ..., tn}T to be optimized. Instead
of the quadratic constraint ||q||, =1 in LLS, here the linear con-
straint trace(S,(M(q)) = 1 is adopted to avoid the trivial solution
q = 0 and also make the problem convex. For different norms of
the residual error, the objective function and the form of A
vary [24], and the sizes of A and S,(M(q)) grow linearly with n
and p, respectively. So it is intractable when dealing with a lot of
data or very high dimensionality.

Since the computation complexity of SDP grows with the sizes
of positive semi-definite matrices, reducing the size of A in (4) is an
effective way to reduce the computation complexity. In [24], Ying
et al. proposed a novel fast SDP method by defining a new norm
for the residual error. Their SDP can be formulated as

where
t L Tdyl Tn
t Ty Ti2 0
t T 0
A= d 2d 7
1 T9 rqg t
T+l Td+2 Y t
L ™n 0 ... 0 t ]

with d = ceil(y/n). Correspondingly, the size of A is reduced
from O(n) to O(y/n). The computation complexity of Ying et al.’s
method is thus O(p® + np! + nip?) for each iteration, which is
much lower than other SDP methods. However, it is still costly
when the number of data points is large. The storage expense is
at least ¢; = m x (2d) x (2d) > 4nm = 2np? units. It is an accept-
able result comparing to Calafiore’s method, but we will show
in Section 2 that there is still potential for further reduction in
memory cost.

In this paper, we apply the alternating direction method of
multipliers (ADMM) [15] for solving the ellipsoid fitting prob-
lem directly, rather than reformulating it into SDP problems. By
ADMM, the extra positive semi-definite matrix A in (4) and (5)
is completely gone, hence further saving the complexity signifi-
cantly. As a matter of fact, the complexity of our method is only
O(P°® + np*) + O(p*), where O(p° + np") results from preprocess-
ing data once. Since the semi-definiteness is still enforced, our
method still results in valid ellipsoid fittings even in the case of
heavy noise (see Fig. 2). Furthermore, we also reduce the storage

mint, : L . .
al requirement significantly to about np®. Finally, the implementa-
st. A=0, S,(M(q) =0, trace(S,(M(q)) =1, (5) tion of our method is much simpler than SDP based methods, as
the latter require special software packages for SDP.
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Fig. 2. An example of ellipse fitting with the presence of noise. (a)-(c) are the cases with 5, 15, and 25 percent Gaussian noise, respectively. The LLS solution may degen-
erate to a hyperbola when noise are strong (c), while other methods remain stable due to the semi-definiteness constraint.
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2 OUuR METHOD

2.1 Problem Formulation

In our current effort, we aim at solving the ellipsoid-specific fitting
problem (2) where the norm of residual error is the /; norm, i.e.,

rr{qin q"Kq, (6)

st 8,(M(@) =0, trace(S,(M(@) = 1, @

where as in SDP methods trace(S,(M(q))) = 1 is added to prevent
the trivial solution q = 0. For other norms of residual error, which
can be general and not limited to the norms proposed by Ying
et al. [24], ADMM can be applied as well but the details would dif-
fer slightly.

Since ||q|l, # IM(q)||z (|| - ||z is the Frobenius norm of matri-
ces), which is needed when implementing ADMM (see the transi-
tion from (18) to (19)), we define new linear operators V(Q) =
q = [Q11,V2Qa1, Q22, vV2Q31, V2Q30, Qs3, . . -, Q(1)+1)(p+1)]T €R™ and
its inverse operator M(q) = Q. With the new linear operators,
lall, = M)l - Accordingly, the residual error r; = (AizTc], where
&i = [:cfl ﬁxi_lxi,z, :5?2, \/Emi.:;éfi,l, \/§$i,:3$i,27 x%g-, EER) 1]T eR™

Then problem (6)-(7) can be rewritten as:

min 7Kg, ®)
q
st S(M(Q) =0, fq=1, )
where K =DD”,D = [&1,.,.,51,1], and ¢ = [1,0,1,0,0,1,...,0]T €

R™ is the binary mask vector such that ¢’q = tracc(Sp(M((j))).

2.2 ADMM for Solving (8)-(9)

Before applying ADMM we first introduce an auxiliary block of
variables & in order to make the update of every block of variables
easy. Namely, we rewrite (8)-(9) as

min 7Kg, (10)
q.s
st. =4, S,(M(8) =0, fg=1 (11)

ADMM [15] updates the variables alternately by minimizing
over the augmented Lagrangian function of the problem and then
updates the Lagrange multiplier. The partial augmented Lagrang-
ian function of problem (10)-(11) is

L(q,8,m) = q"KG + (.5 — q) +5 115 — 41,

where (a,b) = a’b is the inner product, p is the Lagrange multi-
plier and g > 0is the penalty parameter. The extra constraints

S,(M(3)) = 0and ’'q=1

will be enforced when minimizing L with respect to § and q,
respectively.
Then each iteration of ADMM consists of four steps:

1)  Update g:
Qs = argmin (g, 81, )- (12)
q.c’q=1
2) Updates:
Spr1 = argmin  L(qy,,8, My)- (13)
8,5,(M(8))=0
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3) Update u:
Migp1 = K+ ﬂk(§k+1 - qk+1)~ (14)
4)  Update g:
ﬂk+l = mln(pﬂkv ﬁmax)y (15)

where we utilize the adaptive penalty scheme [15]:
_ ] Po>
o={1

and B,.. is an upper bound of B, in which p, >1,
g2 € (0,1),and || - ||, is the £, norm of vectors.
The iteration terminates when

if max{[[d — Qoo 81— 8} < 2,
otherwise,

(16)

18541 — Qe lloe < €1,and

max{[| Qg1 — Qyllocs 1841 = Skllc} < &2

are satisfied, where &; € (0, 1).
In the following, we give details of updating q and 8.

2.3 Update q
The update of q is a linearly constrained quadratic optimization
problem:

. AT oo Bega s
.y = wgmin 7K + (i, 81— @) + 2416, — a2
q‘Cqul 2

By introducing a Lagrange multiplier, one can easily deduce
that the above problem has a closed form solution:

R S /1=c'G™!
41 =G 1<Tflcgc+g>ﬁ

where G = 2K + g, and 8 = Uy, + BiSk-
When computing q,, ;, one may calculate the eigenvalue decom-

an

position UAU” of K in advance, which is done only once. Then G
can be represented as U(2A + 1)~ U”. Without explicitly comput-
ing G, G 'z can be computed as U((QA +80D7" (UTz)>. These

tricks can save computation greatly when p is large.

2.4 \Updates
The subproblem for updating s is

2

. (18)
2

. k K
argmin  — =
6.5, (M(#)=0 2 B

S = S~ Gy, +

By the equivalence between the ¢, norm of q and the Frobenius
norm of M(€1), we may rewrite the above in a matrix form:

Syt — argmin % IS = Ryt |2, (19)

S.5,(8)=0

where Ry;1 = M(flkH = 11,/ Br)-

Note that there is no constraint on the (p + 1)th column and row

of S. So for the optimal solution S, S;; = R;; when max(i, j) =p+ 1,

and we may just focus on the leading p x p principle submatrix S
of S:

st. S = 0.

min S - §,(Rec) . 0

Its solution is

S=vs, V7, (1)
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TABLE 1
Average Runtime (in Seconds) at Different Numbers of Sample Points in Different Dimensions
2D 3D 10D

Point No. 10 10? 10° 10* 10° 100 10 10? 103 10* 10° 100 102 10° 10* 10° 106
Calafiore [5] 0.156 0436 4.183 4185 - - 0222 0494 4903 510.2 - - 0.702 7.144 - - -
Ying [24] 0.168 0.181 0.251 1411 10.09 2029 0.206 0227 0276 2401 1195 2495 0386 0.692 3.834 5740 1445
ADMM 0.001 0.001 0.002 0.019 0.189 1.893 0.001 0.001 0.003 0.025 0.226 2.148 0.029 0.049 0.168 1.346 13.38
where VIV is the EVD of S,(Ry;1), the leading p x p principle  3.1.1 Ellipsoid-Specificity

submatrix of Ry41, and (24),;; = max(Z;;,0) truncates the negative
eigenvalues.
After obtaining Sy1, § is updated as 81 = V(Sk41).

2.5 Complexity of Our Algorithm

As we have shown in the previous section, our algorithm is effi-
cient due to closed form solutions in each iteration. One main
bottleneck of our algorithm is the calculation of K € R™*™ and
its EVD, yielding O(nm? + m?) = O(np* + p°) computation com-
plexity. But these only need to be calculated once during the
whole iteration. The other major computation cost is updating
§ in every iteration, where we have to compute the EVD of
S,(Ri11) and then form S as (21), resulting in additional O(p?)
complexity. So the overall computation complexity of our algo-
rithm is O(np* + p®) + O(p®), where the former does not depend
on numerical precision. Note that this computation complexity
is of the same order of the LLS method. This means that our
algorithm is very efficient.

Our algorithm also has great advantage on storage complexity.
The main expense of the memory in our algorithm is the storage of
D, which costs for ¢y = nm ~ inp® units of memory. It is at least
four times reduction comparing to Ying’s SDP method.

Besides computation complexity and storage complexity, the
implementation complexity of our method is also much lower than
that of SDP based methods, as our method does not rely on special
software packages for SDP.

3 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to verify the
efficiency, robustness, and accuracy of the proposed method.?
We compare our ADMM method with LLS [6], Calafiore’s algo-
rithm [5] where /5 norm is chosen for the residual error, and
Ying et al.’s algorithm [24] where the newly invented 2, .. matrix
norm is chosen to induce the vector norm for the residual error.
We implement our method and other algorithms in Matlab
R2013a, where the implementations of Calafiore’s and Ying
et al’s algorithms are based on the SDPT3 software package
[22]. For ADMM, we set B, = 0.1, py = 1.02, ¢ = €9 = 107%. The
initial values of u, s, and q are simply set to 0. For other meth-
ods, we set default values as specified by respective authors. All
the experiments are done on a PC with an Intel Pentium Dual
core 3.40GHz CPU and 8GB RAM.

3.1 Synthetic Data

We first test with synthetic data. We sample data points uniformly
from the surfaces of ellipsoids. Then we add Gaussian noise to
each of the points, where the standard deviation of noise varies
from 5 to 25 percent of the diameters of the ellipsoids. Finally, we
fit ellipsoids to the data points. We repeat the experiment for 100
times on different levels of noise, numbers of data points, and
dimensions of the data points.

2. Codes are available at http:/[www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm.

Despite the semi-definiteness constraints, it is instructive to
observe the performance on synthetic data to prove the ellipsoid-
specificity of our algorithm. Fig. 2 shows an example. With the
presence of noise, the LLS algorithm may result in a general conic
curve (Fig. 2¢), while other algorithms all produce ellipses. One
should be reminded that our ADMM algorithm produces exactly
the same results as Calafiore’s because they solve exactly the same
optimization problem.

3.1.2  Efficiency

Now we compare the computation efficiency of various algorithms.
As we have shown, LLS cannot ensure ellipsoid-specific results. So
we do not show the results of LLS in this section. For different data
sizes in different dimensionality, we record the average runtime of
the 100 trials of different algorithms and present it in Table 1.

From the Table 1, we can see that Ying et al.’s method is much
faster than Calafiore’s and the latter cannot scale up for a large
amount of data points. Nonetheless, our ADMM method is further
much faster than Ying et al.’s. Even with a million data samples in
10D, the computation time of our method is still affordable.

3.1.3 Accuracy

We now compare the fitting accuracy in terms of the residual error
measured in ¢; norm, ¢, norm, and ¢/, norm, respectively. In this
experiment, we aim at fitting 2D ellipses. The results are shown in
Fig. 3.

Again, one should be reminded that Calafiore’s and ADMM
produce the same result but ADMM is at least hundreds times
faster than Calafiore’s. From Fig. 3, we can see that both of them
result in lower residual errors than Ying et al.’s, measured in
whichever norm in consideration.

3.2 Real Data—Camera Calibration
We further compare the ellipsoid fitting algorithms with real data.
As mentioned in Introduction, camera self-calibration also involves
an ellipsoid-fitting problem. In this section, we focus on the calibra-
tion method proposed by Zhang [26], which is a highly cited flexi-
ble calibration technique. For completeness, we quote part of the
deductions here.

The relationship between a 3D point M = [X,Y; Z,1]" repre-
sented in homogeneous coordinates and its image projection
m=[z,y, I]T is

A = P[R, t{M, (22)

where P encodes the intrinsic parameters of the camera, R and t
represents the rotation and translation which relates the world
coordinate system to the camera coordinate system, respectively,
and ) is the projective depth. Without loss of generality, we assume
that the model plane is on Z = 0 of the world coordinate system.
Then we have

X
=P[Ry, Ry, t]| Y
1

xr
A Yyl = P[Rl, RQ, Rg, t] (23)
1

— o <
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Fig. 3. Residual errors of Calafiore’s, Yin et al.’s, and our ADMM methods, under different noise levels and different numbers of data points, measured in ¢, norm (a), ¢,

norm (b), and /., norm (c).

Fig. 4. Two images of a checkerboard used in our experiment.

(b)

TABLE 2
Success Rate, Mean Reprojection Error (in Pixels), and Mean Runtime (in Seconds) in Camera Intrinsic Parameter Estimation
0.5% 1% 1.5%
Noise Level Succ. Rate Ave. Error Time Succ. Rate Ave. Error Time Succ. Rate Ave. Error Time
LLS [6] 100% 2.64 0.003 97% 5.26 0.003 90% 8.39 0.003
Calafiore [5] 100% 2.52 0.229 100% 4.53 0.232 100% 6.60 0.238
Ying [24] 100% 278 0.205 100% 485 0.206 100% 7.10 0.205
ADMM 100% 2.52 0.021 100% 4.53 0.017 100% 6.60 0.018

Denote H = P[R, t] = [h;, hy,h;], which can be estimated given
an image of the model plane. Due to the orthogonality between R;
and R,, we have

h{Bh, = 0 and h{ Bh; = h] Bh,, (24)

where B =P 7P~ € R¥ is a positive semi-definite matrix, which
can be represented by b = V(B).

Then equations in (24) can be reformulated as a linear system
for b:

[
(V11 - V22)
Vij = [hiahj1, hiihjo + Rishji, Rishja, hith;s + hishji, his

hja + highjs, hiyghjyg]T, i,j € {1,2}. If [ images of the model plane
are observed, by stacking [ such equations as (25), we have

}b =0, (25)

where

Vb =0, (26)

where V collects all v;;’s as its columns.

In [26], Zhang simply used LLS to solve for b, i.e. the eigenvec-
tor of VV associated with the smallest eigenvalue. However, since
the semi-definiteness is not enforced, when the noise are strong
and samples are insufficient, the resulted matrix B may not be posi-
tive semi-definite, which makes the recovery of intrinsic parame-
ters infeasible.

To ensure the positive semi-definiteness of B, we may aim at
solving
rrEn [Vb]ly, s.t. M(b) = 0 and trace(M(b)) =1, 27
instead, which can be solved by Calafiore’s and Ying et al.’s algo-
rithms. When applying our ADMM, we may reformulate (27) as

[Vbl,, s.t. M(b)>0and trace(M(b)) =1, (28)

min
b
where b = M(B) and V collects all Vij’'s as its columns, in which
Vij = [hi‘lhj,la%(hi,lhjj + highj1), hi,th,%%(hi‘lhj,S + hi,s%‘,l%%
(hishia + hishis), hishis]" .

To prepare real data, we take 8 (I = 8, n = 2 = 16) photos of a
checkerboard (see Fig. 4) from different angles and label the feature
points manually. To examine the influence of noise, we further add
different levels of Gaussian noise to the image coordinates of the
feature points. We then estimate the intrinsic and extrinsic parame-
ters of the camera and re-project the ground-truth world coordi-
nate to the image coordinate using the imaging model (23). We
present the success rate (i.e., the percent of trials that produce posi-
tive semi-definite B), the re-projection errors, and the running time
of different approaches in Table 2.

From the table, we can see that LLS does not always guarantee a
successful calibration, although its computation is the fastest.
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Calafiore’s, Ying et al.’s, and our ADMM methods always produce
valid calibration results, in which ADMM (and Calafiore’s) is the
most accurate and is also much faster than Calafiore’s and Ying
et al.’s methods.

4 CONCLUSION

We have proposed using ADMM to solve the ellipsoid-specific fit-
ting problem directly. Our approach does not introduce extra
semi-definiteness constraint and each iteration consists of low-
weight closed-form solutions. Thus our method is much faster
than SDP based methods and still guarantee the positive semi-
definiteness. Extensive experiments show that our method outper-
forms the state-of-the-art methods by a large margin, in both speed
and accuracy. Our method enables at least four times storage
complexity reduction over SDP based methods. The implementa-
tion of our method is also much simpler than SDP based methods,
as the latter rely on special software packages for SDP.
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