

Eloquent JavaScript
4th edition

Marijn Haverbeke

Copyright © 2024 by Marijn Haverbeke

This work is licensed under a Creative Commons attribution-noncommercial
license (http://creativecommons.org/licenses/by-nc/3.0/). All code in
the book may also be considered licensed under an MIT license (https:
//eloquentjavascript.net/code/LICENSE).

The illustrations are contributed by various artists: Cover by Péchane
Sumi-e. Chapter illustrations by Madalina Tantareanu. Pixel art in
Chapters 7 and 16 by Antonio Perdomo Pastor. Regular expression
diagrams in Chapter 9 generated with regexper.com by Jeff Avallone.
Game concept for Chapter 16 by Thomas Palef.

You can buy a print version of this book, with an extra bonus chapter in-
cluded, printed by No Starch Press at http://a-fwd.com/com=marijhaver-
20&asin-com=1593279507.

i

http://creativecommons.org/licenses/by-nc/3.0/
https://eloquentjavascript.net/code/LICENSE
https://eloquentjavascript.net/code/LICENSE
http://regexper.com
http://lessmilk.com
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507
http://a-fwd.com/com=marijhaver-20&asin-com=1593279507

Contents

Introduction 1
On programming . 2
Why language matters . 4
What is JavaScript? . 8
Code, and what to do with it 11
Overview of this book . 12
Typographic conventions . 13

1 Values, Types, and Operators 15
Values . 16
Numbers . 17
Strings . 20
Unary operators . 23
Boolean values . 24
Empty values . 27
Automatic type conversion . 27
Summary . 31

ii

2 Program Structure 32
Expressions and statements . 32
Bindings . 34
Binding names . 36
The environment . 37
Functions . 38
The console.log function . 39
Return values . 39
Control flow . 40
Conditional execution . 41
while and do loops . 43
Indenting Code . 46
for loops . 47
Breaking Out of a Loop . 49
Updating bindings succinctly 50
Dispatching on a value with switch 50
Capitalization . 52
Comments . 53
Summary . 54
Exercises . 54

3 Functions 58
Defining a function . 59
Bindings and scopes . 60
Nested scope . 62
Functions as values . 63
Declaration notation . 64

iii

Arrow functions . 65
The call stack . 66
Optional Arguments . 68
Closure . 70
Recursion . 72
Growing functions . 76
Functions and side effects . 80
Summary . 81
Exercises . 82

4 Data Structures: Objects and Arrays 84
The weresquirrel . 85
Datasets . 86
Properties . 87
Methods . 88
Objects . 90
Mutability . 94
The lycanthrope’s log . 96
Computing correlation . 99
Array loops . 101
The final analysis . 102
Further arrayology . 105
Strings and their properties . 107
Rest parameters . 109
The Math object . 111
Destructuring . 113
Optional property access . 115

iv

JSON . 116
Summary . 117
Exercises . 118

5 Higher-Order Functions 122
Abstraction . 123
Abstracting repetition . 124
Higher-order functions . 126
Script dataset . 128
Filtering arrays . 130
Transforming with map . 131
Summarizing with reduce . 132
Composability . 134
Strings and character codes . 136
Recognizing text . 139
Summary . 141
Exercises . 142

6 The Secret Life of Objects 144
Abstract Data Types . 144
Methods . 146
Prototypes . 148
Classes . 150
Private Properties . 153
Overriding derived properties 155
Maps . 157
Polymorphism . 159

v

Getters, setters, and statics . 161
Symbols . 163
The iterator interface . 165
Inheritance . 168
The instanceof operator . 170
Summary . 171
Exercises . 172

7 Project: A Robot 175
Meadowfield . 175
The task . 177
Persistent data . 180
Simulation . 182
The mail truck’s route . 185
Pathfinding . 186
Exercises . 189

8 Bugs and Errors 191
Language . 191
Strict mode . 192
Types . 194
Testing . 196
Debugging . 197
Error propagation . 200
Exceptions . 202
Cleaning up after exceptions . 204
Selective catching . 207

vi

Assertions . 210
Summary . 211
Exercises . 212

9 Regular Expressions 214
Creating a regular expression 215
Testing for matches . 216
Sets of characters . 216
International characters . 218
Repeating parts of a pattern . 220
Grouping subexpressions . 221
Matches and groups . 222
The Date class . 224
Boundaries and look-ahead . 226
Choice patterns . 227
The mechanics of matching . 228
Backtracking . 229
The replace method . 232
Greed . 234
Dynamically creating RegExp objects 236
The search method . 237
The lastIndex property . 237
Parsing an INI file . 240
Code units and characters . 243
Summary . 244
Exercises . 246

vii

10 Modules 249
Modular programs . 250
ES modules . 251
Packages . 254
CommonJS modules . 256
Building and bundling . 261
Module design . 262
Summary . 265
Exercises . 266

11 Asynchronous Programming 268
Asynchronicity . 269
Callbacks . 271
Promises . 273
Failure . 276
Carla . 279
Breaking In . 280
Async functions . 283
Generators . 285
A Corvid Art Project . 287
The event loop . 292
Asynchronous bugs . 294
Summary . 296
Exercises . 297

12 Project: A Programming Language 300
Parsing . 300

viii

The evaluator . 307
Special forms . 309
The environment . 311
Functions . 314
Compilation . 315
Cheating . 316
Exercises . 318

13 JavaScript and the Browser 321
Networks and the Internet . 322
The Web . 324
HTML . 325
HTML and JavaScript . 329
In the sandbox . 330
Compatibility and the browser wars 331

14 The Document Object Model 334
Document structure . 334
Trees . 336
The standard . 338
Moving through the tree . 339
Finding elements . 341
Changing the document . 342
Creating nodes . 343
Attributes . 346
Layout . 347
Styling . 350

ix

Cascading styles . 352
Query selectors . 354
Positioning and animating . 356
Summary . 359
Exercises . 360

15 Handling Events 363
Event handlers . 363
Events and DOM nodes . 364
Event objects . 366
Propagation . 367
Default actions . 369
Key events . 370
Pointer events . 372
Scroll events . 378
Focus events . 380
Load event . 381
Events and the event loop . 382
Timers . 384
Debouncing . 385
Summary . 387
Exercises . 388

16 Project: A Platform Game 390
The game . 391
The technology . 392
Levels . 393

x

Reading a level . 394
Actors . 396
Drawing . 402
Motion and collision . 409
Actor updates . 414
Tracking keys . 417
Running the game . 418
Exercises . 421

17 Drawing on Canvas 424
SVG . 425
The canvas element . 426
Lines and surfaces . 428
Paths . 429
Curves . 432
Drawing a pie chart . 435
Text . 437
Images . 438
Transformation . 441
Storing and clearing transformations 445
Back to the game . 447
Choosing a graphics interface 455
Summary . 457
Exercises . 458

18 HTTP and Forms 461
The protocol . 461

xi

Browsers and HTTP . 464
Fetch . 467
HTTP sandboxing . 469
Appreciating HTTP . 470
Security and HTTPS . 471
Form fields . 472
Focus . 475
Disabled fields . 477
The form as a whole . 477
Text fields . 479
Checkboxes and radio buttons 481
Select fields . 483
File fields . 485
Storing data client-side . 487
Summary . 491
Exercises . 492

19 Project: A Pixel Art Editor 495
Components . 496
The state . 498
DOM building . 501
The canvas . 502
The application . 505
Drawing tools . 509
Saving and loading . 513
Undo history . 517
Let’s draw . 519

xii

Why is this so hard? . 521
Exercises . 522

20 Node.js 526
Background . 527
The node command . 527
Modules . 529
Installing with NPM . 531
The filesystem module . 534
The HTTP module . 537
Streams . 539
A file server . 541
Summary . 549
Exercises . 550

21 Project: Skill-Sharing Website 552
Design . 553
Long polling . 555
HTTP interface . 556
The server . 559
The client . 570
Exercises . 579

Exercise Hints 581
Program Structure . 581
Functions . 583
Data Structures: Objects and Arrays 584

xiii

Higher-Order Functions . 587
The Secret Life of Objects . 588
Project: A Robot . 590
Bugs and Errors . 591
Regular Expressions . 592
Modules . 593
Asynchronous Programming . 596
Project: A Programming Language 599
The Document Object Model 601
Handling Events . 602
Project: A Platform Game . 604
Drawing on Canvas . 605
HTTP and Forms . 608
Project: A Pixel Art Editor . 610
Node.js . 614
Project: Skill-Sharing Website 616

xiv

“We think we are creating the system for our own purposes.
We believe we are making it in our own image... But the
computer is not really like us. It is a projection of a very slim
part of ourselves: that portion devoted to logic, order, rule,
and clarity.”
—Ellen Ullman, Close to the Machine: Technophilia and Its

Discontents

Introduction

This is a book about instructing computers. Computers are about as
common as screwdrivers today, but they are quite a bit more complex,
and making them do what you want them to do isn’t always easy.

If the task you have for your computer is a common, well-understood
one, such as showing you your email or acting like a calculator, you can
open the appropriate application and get to work. But for unique or
open-ended tasks, there often is no appropriate application.

That is where programming may come in. Programming is the act of
constructing a program—a set of precise instructions telling a computer
what to do. Because computers are dumb, pedantic beasts, program-
ming is fundamentally tedious and frustrating.

Fortunately, if you can get over that fact—and maybe even enjoy
the rigor of thinking in terms that dumb machines can deal with—
programming can be rewarding. It allows you to do things in seconds
that would take forever by hand. It is a way to make your computer
tool do things that it couldn’t do before. On top of that, it makes for
a wonderful game of puzzle solving and abstract thinking.

Most programming is done with programming languages. A program-

1

ming language is an artificially constructed language used to instruct
computers. It is interesting that the most effective way we’ve found
to communicate with a computer borrows so heavily from the way we
communicate with each other. Like human languages, computer lan-
guages allow words and phrases to be combined in new ways, making
it possible to express ever new concepts.

At one point, language-based interfaces, such as the BASIC and DOS
prompts of the 1980s and 1990s, were the main method of interacting
with computers. For routine computer use, these have largely been
replaced with visual interfaces, which are easier to learn but offer less
freedom. But if you know where to look, the languages are still there.
One of them, JavaScript, is built into every modern web browser—and
is thus available on almost every device.

This book will try to make you familiar enough with this language
to do useful and amusing things with it.

On programming

Besides explaining JavaScript, I will introduce the basic principles of
programming. Programming, it turns out, is hard. The fundamental
rules are simple and clear, but programs built on top of these rules tend
to become complex enough to introduce their own rules and complexity.
You’re building your own maze, in a way, and you can easily get lost in
it.

There will be times when reading this book feels terribly frustrating.
If you are new to programming, there will be a lot of new material to

2

digest. Much of this material will then be combined in ways that require
you to make additional connections.

It is up to you to make the necessary effort. When you are struggling
to follow the book, do not jump to any conclusions about your own
capabilities. You are fine—you just need to keep at it. Take a break,
reread some material, and make sure you read and understand the ex-
ample programs and exercises. Learning is hard work, but everything
you learn is yours and will make further learning easier.

When action grows unprofitable, gather information; when
information grows unprofitable, sleep.
—Ursula K. Le Guin, The Left Hand of Darkness

A program is many things. It is a piece of text typed by a program-
mer, it is the directing force that makes the computer do what it does,
it is data in the computer’s memory, and, at the same time, it controls
the actions performed on this memory. Analogies that try to compare
programs to familiar objects tend to fall short. A superficially fitting
one is to compare a program to a machine—lots of separate parts tend
to be involved, and to make the whole thing tick, we have to consider
the ways in which these parts interconnect and contribute to the oper-
ation of the whole.

A computer is a physical machine that acts as a host for these imma-
terial machines. Computers themselves can do only stupidly straight-
forward things. The reason they are so useful is that they do these
things at an incredibly high speed. A program can ingeniously combine

3

an enormous number of these simple actions to do very complicated
things.

A program is a building of thought. It is costless to build, it is
weightless, and it grows easily under our typing hands. But as a pro-
gram grows, so does its complexity. The skill of programming is the
skill of building programs that don’t confuse the programmer. The best
programs are those that manage to do something interesting while still
being easy to understand.

Some programmers believe that this complexity is best managed by
using only a small set of well-understood techniques in their programs.
They have composed strict rules (“best practices”) prescribing the form
programs should have and carefully stay within their safe little zone.

This is not only boring—it is ineffective. New problems often require
new solutions. The field of programming is young and still developing
rapidly, and it is varied enough to have room for wildly different ap-
proaches. There are many terrible mistakes to make in program design,
and you should go ahead and make them at least once so that you un-
derstand them. A sense of what a good program looks like is developed
with practice, not learned from a list of rules.

Why language matters

In the beginning, at the birth of computing, there were no programming
languages. Programs looked something like this:

00110001 00000000 00000000
00110001 00000001 00000001

4

00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

This is a program to add the numbers from 1 to 10 together and print
the result: 1 + 2 + ... + 10 = 55. It could run on a simple hypotheti-
cal machine. To program early computers, it was necessary to set large
arrays of switches in the right position or punch holes in strips of card-
board and feed them to the computer. You can imagine how tedious
and error prone this procedure was. Even writing simple programs
required much cleverness and discipline. Complex ones were nearly
inconceivable.

Of course, manually entering these arcane patterns of bits (the ones
and zeros) did give the programmer a profound sense of being a mighty
wizard. And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It
could be written in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.

4. Subtract the number 11 from the value in memory location 2.

5

5. If the value in memory location 2 is the number 0, continue with
instruction 9.

6. Add the value of memory location 1 to memory location 0.

7. Add the number 1 to the value of memory location 1.

8. Continue with instruction 3.

9. Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is
still rather obscure. Using names instead of numbers for the instructions
and memory locations helps.

Set “total” to 0.
Set “count” to 1.

[loop]
Set “compare” to “count”.
Subtract 11 from “compare”.
If “compare” is 0, continue at [end].
Add “count” to “total”.
Add 1 to “count”.
Continue at [loop].

[end]
Output “total”.

Can you see how the program works at this point? The first two lines
give two memory locations their starting values: total will be used to
build up the result of the computation, and count will keep track of the
number that we are currently looking at. The lines using compare are

6

probably the most confusing ones. The program wants to see whether
count is equal to 11 to decide whether it can stop running. Because
our hypothetical machine is rather primitive, it can test only whether a
number is zero and make a decision based on that. It therefore uses the
memory location labeled compare to compute the value of count - 11

and makes a decision based on that value. The next two lines add the
value of count to the result and increment count by 1 every time the
program decides that count is not 11 yet.

Here is the same program in JavaScript:

let total = 0, count = 1;
while (count <= 10) {

total += count;
count += 1;

}
console.log(total);
// → 55

This version gives us a few more improvements. Most importantly,
there is no need to specify the way we want the program to jump
back and forth anymore—the while construct takes care of that. It
continues executing the block (wrapped in braces) below it as long as
the condition it was given holds. That condition is count <= 10, which
means “the count is less than or equal to 10”. We no longer have to
create a temporary value and compare that to zero, which was just an
uninteresting detail. Part of the power of programming languages is
that they can take care of uninteresting details for us.

At the end of the program, after the while construct has finished, the

7

console.log operation is used to write out the result.
Finally, here is what the program could look like if we happened to

have the convenient operations range and sum available, which respec-
tively create a collection of numbers within a range and compute the
sum of a collection of numbers:

console.log(sum(range(1, 10)));
// → 55

The moral of this story is that the same program can be expressed in
both long and short, unreadable and readable ways. The first version
of the program was extremely obscure, whereas this last one is almost
English: log the sum of the range of numbers from 1 to 10. (We will see
in later chapters how to define operations like sum and range.)

A good programming language helps the programmer by allowing
them to talk about the actions that the computer has to perform on a
higher level. It helps omit details, provides convenient building blocks
(such as while and console.log), allows you to define your own building
blocks (such as sum and range), and makes those blocks easy to compose.

What is JavaScript?

JavaScript was introduced in 1995 as a way to add programs to web
pages in the Netscape Navigator browser. The language has since been
adopted by all other major graphical web browsers. It has made modern
web applications possible—that is, applications with which you can in-
teract directly without doing a page reload for every action. JavaScript

8

is also used in more traditional websites to provide various forms of
interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do
with the programming language named Java. The similar name was
inspired by marketing considerations rather than good judgment. When
JavaScript was being introduced, the Java language was being heavily
marketed and was gaining popularity. Someone thought it was a good
idea to try to ride along on this success. Now we are stuck with the
name.

After its adoption outside of Netscape, a standard document was
written to describe the way the JavaScript language should work so that
the various pieces of software that claimed to support JavaScript could
make sure they actually provided the same language. This is called the
ECMAScript standard, after the Ecma International organization that
conducted the standardization. In practice, the terms ECMAScript
and JavaScript can be used interchangeably—they are two names for
the same language.

There are those who will say terrible things about JavaScript. Many
of these things are true. When I was required to write something in
JavaScript for the first time, I quickly came to despise it. It would
accept almost anything I typed but interpret it in a way that was com-
pletely different from what I meant. This had a lot to do with the fact
that I did not have a clue what I was doing, of course, but there is a real
issue here: JavaScript is ridiculously liberal in what it allows. The idea
behind this design was that it would make programming in JavaScript
easier for beginners. In actuality, it mostly makes finding problems in

9

your programs harder because the system will not point them out to
you.

This flexibility also has its advantages, though. It leaves room for
techniques that are impossible in more rigid languages and makes for
a pleasant, informal style of programming. After learning the language
properly and working with it for a while, I have come to actually like
JavaScript.

There have been several versions of JavaScript. ECMAScript version
3 was the widely supported version during JavaScript’s ascent to dom-
inance, roughly between 2000 and 2010. During this time, work was
underway on an ambitious version 4, which planned a number of rad-
ical improvements and extensions to the language. Changing a living,
widely used language in such a radical way turned out to be politically
difficult, and work on version 4 was abandoned in 2008. A much less
ambitious version 5, which made only some uncontroversial improve-
ments, came out in 2009. In 2015, version 6 came out, a major update
that included some of the ideas planned for version 4. Since then we’ve
had new, small updates every year.

The fact that JavaScript is evolving means that browsers have to
constantly keep up. If you’re using an older browser, it may not sup-
port every feature. The language designers are careful to not make
any changes that could break existing programs, so new browsers can
still run old programs. In this book, I’m using the 2024 version of
JavaScript.

Web browsers are not the only platforms on which JavaScript is used.
Some databases, such as MongoDB and CouchDB, use JavaScript as

10

their scripting and query language. Several platforms for desktop and
server programming, most notably the Node.js project (the subject of
Chapter 20), provide an environment for programming JavaScript out-
side of the browser.

Code, and what to do with it

Code is the text that makes up programs. Most chapters in this book
contain quite a lot of code. I believe reading code and writing code
are indispensable parts of learning to program. Try to not just glance
over the examples—read them attentively and understand them. This
may be slow and confusing at first, but I promise that you’ll quickly
get the hang of it. The same goes for the exercises. Don’t assume you
understand them until you’ve actually written a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what
you are doing is working, and, I hope, you’ll be tempted to experiment
and go beyond the exercises.

The easiest way to run the example code in the book—and to ex-
periment with it—is to look it up in the online version of the book
at https://eloquentjavascript.net. There, you can click any code exam-
ple to edit and run it and to see the output it produces. To work on
the exercises, go to https://eloquentjavascript.net/code, which provides
starting code for each coding exercise and allows you to look at the
solutions.

Running the programs defined in this book outside of the book’s

11

https://eloquentjavascript.net/
https://eloquentjavascript.net/code

website requires some care. Many examples stand on their own and
should work in any JavaScript environment. But code in later chapters
is often written for a specific environment (the browser or Node.js) and
can run only there. In addition, many chapters define bigger programs,
and the pieces of code that appear in them depend on each other or on
external files. The sandbox on the website provides links to ZIP files
containing all the scripts and data files necessary to run the code for a
given chapter.

Overview of this book

This book contains roughly three parts. The first 12 chapters discuss the
JavaScript language. The next seven chapters are about web browsers
and the way JavaScript is used to program them. Finally, two chapters
are devoted to Node.js, another environment to program JavaScript in.
There are five project chapters in the book that describe larger example
programs to give you a taste of actual programming.

The language part of the book starts with four chapters that in-
troduce the basic structure of the JavaScript language. They discuss
control structures (such as the while word you saw in this introduction),
functions (writing your own building blocks), and data structures. Af-
ter these, you will be able to write basic programs. Next, Chapters 5
and 6 introduce techniques to use functions and objects to write more
abstract code and keep complexity under control.

After a first project chapter that builds a crude delivery robot, the
language part of the book continues with chapters on error handling

12

https://eloquentjavascript.net/code

and bug fixing, regular expressions (an important tool for working
with text), modularity (another defense against complexity), and asyn-
chronous programming (dealing with events that take time). The sec-
ond project chapter, where we implement a programming language,
concludes the first part of the book.

The second part of the book, Chapters 13 to 19, describes the tools
that browser JavaScript has access to. You’ll learn to display things
on the screen (Chapters 14 and 17), respond to user input (Chapter
15), and communicate over the network (Chapter 18). There are again
two project chapters in this part: building a platform game and a pixel
paint program.

Chapter 20 describes Node.js, and Chapter 21 builds a small website
using that tool.

Typographic conventions

In this book, text written in a monospaced font will represent elements of
programs. Sometimes these are self-sufficient fragments, and sometimes
they just refer to part of a nearby program. Programs (of which you
have already seen a few) are written as follows:

function factorial(n) {
if (n == 0) {

return 1;
} else {

return factorial(n - 1) * n;
}

13

}

Sometimes, to show the output that a program produces, the expected
output is written after it, with two slashes and an arrow in front.

console.log(factorial(8));
// → 40320

Good luck!

14

“Below the surface of the machine, the program moves.
Without effort, it expands and contracts. In great harmony,
electrons scatter and regroup. The forms on the monitor are
but ripples on the water. The essence stays invisibly below.”

—Master Yuan-Ma, The Book of Programming

Chapter 1

Values, Types, and Operators

In the computer’s world, there is only data. You can read data, modify
data, create new data—but that which isn’t data cannot be mentioned.
All this data is stored as long sequences of bits and is thus fundamen-
tally alike.

Bits are any kind of two-valued things, usually described as zeros
and ones. Inside the computer, they take forms such as a high or low
electrical charge, a strong or weak signal, or a shiny or dull spot on the
surface of a CD. Any piece of discrete information can be reduced to a
sequence of zeros and ones and thus represented in bits.

For example, we can express the number 13 in bits. This works the
same way as a decimal number, but instead of 10 different digits, we
have only 2, and the weight of each increases by a factor of 2 from right
to left. Here are the bits that make up the number 13, with the weights
of the digits shown below them:

0 0 0 0 1 1 0 1
128 64 32 16 8 4 2 1

That’s the binary number 00001101. Its nonzero digits stand for 8, 4,

15

and 1, and add up to 13.

Values

Imagine a sea of bits—an ocean of them. A typical modern computer
has more than 100 billion bits in its volatile data storage (working
memory). Nonvolatile storage (the hard disk or equivalent) tends to
have yet a few orders of magnitude more.

To be able to work with such quantities of bits without getting lost,
we separate them into chunks that represent pieces of information. In
a JavaScript environment, those chunks are called values. Though all
values are made of bits, they play different roles. Every value has a
type that determines its role. Some values are numbers, some values
are pieces of text, some values are functions, and so on.

To create a value, you must merely invoke its name. This is conve-
nient. You don’t have to gather building material for your values or
pay for them. You just call for one, and whoosh, you have it. Of course,
values are not really created from thin air. Each one has to be stored
somewhere, and if you want to use a gigantic number of them at the
same time, you might run out of computer memory. Fortunately, this
is a problem only if you need them all simultaneously. As soon as you
no longer use a value, it will dissipate, leaving behind its bits to be
recycled as building material for the next generation of values.

The remainder of this chapter introduces the atomic elements of
JavaScript programs, that is, the simple value types and the operators
that can act on such values.

16

Numbers

Values of the number type are, unsurprisingly, numeric values. In a
JavaScript program, they are written as follows:

13

Using that in a program will cause the bit pattern for the number 13
to come into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, 64 of them, to store a sin-
gle number value. There are only so many patterns you can make
with 64 bits, which limits the number of different numbers that can be
represented. With N decimal digits, you can represent 10N numbers.
Similarly, given 64 binary digits, you can represent 264 different num-
bers, which is about 18 quintillion (an 18 with 18 zeros after it). That’s
a lot.

Computer memory used to be much smaller, and people tended to
use groups of 8 or 16 bits to represent their numbers. It was easy to
accidentally overflow such small numbers—to end up with a number
that did not fit into the given number of bits. Today, even computers
that fit in your pocket have plenty of memory, so you are free to use
64-bit chunks, and you need to worry about overflow only when dealing
with truly astronomical numbers.

Not all whole numbers less than 18 quintillion fit in a JavaScript
number, though. Those bits also store negative numbers, so one bit in-
dicates the sign of the number. A bigger issue is representing nonwhole
numbers. To do this, some of the bits are used to store the position
of the decimal point. The actual maximum whole number that can be

17

stored is more in the range of 9 quadrillion (15 zeros)—which is still
pleasantly huge.

Fractional numbers are written using a dot:

9.81

For very big or very small numbers, you may also use scientific notation
by adding an e (for exponent), followed by the exponent of the number.

2.998e8

That’s 2.998 × 108 = 299,800,000.
Calculations with whole numbers (also called integers) that are smaller

than the aforementioned 9 quadrillion are guaranteed to always be pre-
cise. Unfortunately, calculations with fractional numbers are generally
not. Just as π (pi) cannot be precisely expressed by a finite number of
decimal digits, many numbers lose some precision when only 64 bits are
available to store them. This is a shame, but it causes practical prob-
lems only in specific situations. The important thing is to be aware of it
and treat fractional digital numbers as approximations, not as precise
values.

Arithmetic

The main thing to do with numbers is arithmetic. Arithmetic oper-
ations such as addition or multiplication take two number values and
produce a new number from them. Here is what they look like in
JavaScript:

18

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition
and the second stands for multiplication. Putting an operator between
two values will apply it to those values and produce a new value.

Does this example mean “Add 4 and 100, and multiply the result by
11”, or is the multiplication done before the adding? As you might have
guessed, the multiplication happens first. As in mathematics, you can
change this by wrapping the addition in parentheses.

(100 + 4) * 11

For subtraction, there is the - operator. Division can be done with the
/ operator.

When operators appear together without parentheses, the order in
which they are applied is determined by the precedence of the operators.
The example shows that multiplication comes before addition. The /

operator has the same precedence as *. Likewise, + and - have the
same precedence. When multiple operators with the same precedence
appear next to each other, as in 1 - 2 + 1, they are applied left to right:
(1 - 2)+ 1.

Don’t worry too much about these precedence rules. When in doubt,
just add parentheses.

There is one more arithmetic operator, which you might not imme-
diately recognize. The % symbol is used to represent the remainder
operation. X % Y is the remainder of dividing X by Y. For example,
314 % 100 produces 14, and 144 % 12 gives 0. The remainder operator’s
precedence is the same as that of multiplication and division. You’ll

19

also often see this operator referred to as modulo.

Special numbers

There are three special values in JavaScript that are considered numbers
but don’t behave like normal numbers. The first two are Infinity and
-Infinity, which represent the positive and negative infinities. Infinity

- 1 is still Infinity, and so on. Don’t put too much trust in infinity-
based computation, though. It isn’t mathematically sound, and it will
quickly lead to the next special number: NaN.

NaN stands for “not a number”, even though it is a value of the number
type. You’ll get this result when you, for example, try to calculate 0 /

0 (zero divided by zero), Infinity - Infinity, or any number of other
numeric operations that don’t yield a meaningful result.

Strings

The next basic data type is the string. Strings are used to represent
text. They are written by enclosing their content in quotes.

`Down on the sea`
"Lie on the ocean"
'Float on the ocean'

You can use single quotes, double quotes, or backticks to mark strings,
as long as the quotes at the start and the end of the string match.

You can put almost anything between quotes to have JavaScript make
a string value out of it. But a few characters are more difficult. You

20

can imagine how putting quotes between quotes might be hard, since
they will look like the end of the string. Newlines (the characters you
get when you press enter) can be included only when the string is
quoted with backticks (`).

To make it possible to include such characters in a string, the follow-
ing notation is used: a backslash (\) inside quoted text indicates that
the character after it has a special meaning. This is called escaping the
character. A quote that is preceded by a backslash will not end the
string but be part of it. When an n character occurs after a backslash,
it is interpreted as a newline. Similarly, a t after a backslash means a
tab character. Take the following string:

"This is the first line\nAnd this is the second"

This is the actual text in that string:

This is the first line
And this is the second

There are, of course, situations where you want a backslash in a string
to be just a backslash, not a special code. If two backslashes follow
each other, they will collapse together, and only one will be left in the
resulting string value. This is how the string “A newline character is
written like "\n".” can be expressed:

"A newline character is written like \"\\n\"."

Strings, too, have to be modeled as a series of bits to be able to ex-
ist inside the computer. The way JavaScript does this is based on the

21

Unicode standard. This standard assigns a number to virtually every
character you would ever need, including characters from Greek, Ara-
bic, Japanese, Armenian, and so on. If we have a number for every
character, a string can be described by a sequence of numbers. And
that’s what JavaScript does.

There’s a complication though: JavaScript’s representation uses 16
bits per string element, which can describe up to 216 different characters.
However, Unicode defines more characters than that—about twice as
many, at this point. So some characters, such as many emoji, take up
two “character positions” in JavaScript strings. We’ll come back to this
in Chapter 5.

Strings cannot be divided, multiplied, or subtracted. The + operator
can be used on them, not to add, but to concatenate—to glue two strings
together. The following line will produce the string "concatenate":

"con" + "cat" + "e" + "nate"

String values have a number of associated functions (methods) that can
be used to perform other operations on them. I’ll say more about these
in Chapter 4.

Strings written with single or double quotes behave very much the
same—the only difference lies in which type of quote you need to escape
inside of them. Backtick-quoted strings, usually called template literals,
can do a few more tricks. Apart from being able to span lines, they can
also embed other values.

`half of 100 is ${100 / 2}`

22

When you write something inside ${} in a template literal, its result
will be computed, converted to a string, and included at that position.
This example produces the string "half of 100 is 50".

Unary operators

Not all operators are symbols. Some are written as words. One example
is the typeof operator, which produces a string value naming the type
of the value you give it.

console.log(typeof 4.5)
// → number
console.log(typeof "x")
// → string

We will use console.log in example code to indicate that we want to
see the result of evaluating something. (More about that in the next
chapter.)

The other operators shown so far in this chapter all operated on two
values, but typeof takes only one. Operators that use two values are
called binary operators, while those that take one are called unary op-
erators. The minus operator (-) can be used both as a binary operator
and as a unary operator.

console.log(- (10 - 2))
// → -8

23

Boolean values

It is often useful to have a value that distinguishes between only two
possibilities, like “yes” and “no” or “on” and “off”. For this purpose,
JavaScript has a Boolean type, which has just two values, true and false,
written as those words.

Comparison

Here is one way to produce Boolean values:

console.log(3 > 2)
// → true
console.log(3 < 2)
// → false

The > and < signs are the traditional symbols for “is greater than” and
“is less than”, respectively. They are binary operators. Applying them
results in a Boolean value that indicates whether they hold true in this
case.

Strings can be compared in the same way.

console.log("Aardvark" < "Zoroaster")
// → true

The way strings are ordered is roughly alphabetic but not really what
you’d expect to see in a dictionary: uppercase letters are always “less”
than lowercase ones, so "Z" < "a", and nonalphabetic characters (!, -,
and so on) are also included in the ordering. When comparing strings,

24

JavaScript goes over the characters from left to right, comparing the
Unicode codes one by one.

Other similar operators are >= (greater than or equal to), <= (less
than or equal to), == (equal to), and != (not equal to).

console.log("Garnet" != "Ruby")
// → true
console.log("Pearl" == "Amethyst")
// → false

There is only one value in JavaScript that is not equal to itself, and
that is NaN (“not a number”).

console.log(NaN == NaN)
// → false

NaN is supposed to denote the result of a nonsensical computation, and as
such, it isn’t equal to the result of any other nonsensical computations.

Logical operators

There are also some operations that can be applied to Boolean values
themselves. JavaScript supports three logical operators: and, or, and
not. These can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and
its result is true only if both the values given to it are true.

console.log(true && false)
// → false
console.log(true && true)

25

// → true

The || operator denotes logical or. It produces true if either of the
values given to it is true.

console.log(false || true)
// → true
console.log(false || false)
// → false

Not is written as an exclamation mark (!). It is a unary operator that
flips the value given to it—!true produces false and !false gives true.

When mixing these Boolean operators with arithmetic and other op-
erators, it is not always obvious when parentheses are needed. In prac-
tice, you can usually get by with knowing that of the operators we have
seen so far, || has the lowest precedence, then comes &&, then the com-
parison operators (>, ==, and so on), and then the rest. This order has
been chosen such that, in typical expressions like the following one, as
few parentheses as possible are necessary:

1 + 1 == 2 && 10 * 10 > 50

The last logical operator we will look at is not unary, not binary, but
ternary, operating on three values. It is written with a question mark
and a colon, like this:

console.log(true ? 1 : 2);
// → 1
console.log(false ? 1 : 2);
// → 2

26

This one is called the conditional operator (or sometimes just the ternary
operator since it is the only such operator in the language). The oper-
ator uses the value to the left of the question mark to decide which of
the two other values to “pick”. If you write a ? b : c, the result will be
b when a is true and c otherwise.

Empty values

There are two special values, written null and undefined, that are used
to denote the absence of a meaningful value. They are themselves val-
ues, but they carry no information.

Many operations in the language that don’t produce a meaningful
value yield undefined simply because they have to yield some value.

The difference in meaning between undefined and null is an accident
of JavaScript’s design, and it doesn’t matter most of the time. In
cases where you actually have to concern yourself with these values, I
recommend treating them as mostly interchangeable.

Automatic type conversion

In the introduction, I mentioned that JavaScript goes out of its way
to accept almost any program you give it, even programs that do odd
things. This is nicely demonstrated by the following expressions:

console.log(8 * null)
// → 0
console.log("5" - 1)

27

// → 4
console.log("5" + 1)
// → 51
console.log("five" * 2)
// → NaN
console.log(false == 0)
// → true

When an operator is applied to the “wrong” type of value, JavaScript
will quietly convert that value to the type it needs, using a set of rules
that often aren’t what you want or expect. This is called type coercion.
The null in the first expression becomes 0 and the "5" in the second
expression becomes 5 (from string to number). Yet in the third expres-
sion, + tries string concatenation before numeric addition, so the 1 is
converted to "1" (from number to string).

When something that doesn’t map to a number in an obvious way
(such as "five" or undefined) is converted to a number, you get the
value NaN. Further arithmetic operations on NaN keep producing NaN, so
if you find yourself getting one of those in an unexpected place, look
for accidental type conversions.

When comparing values of the same type using the == operator, the
outcome is easy to predict: you should get true when both values are the
same, except in the case of NaN. But when the types differ, JavaScript
uses a complicated and confusing set of rules to determine what to do.
In most cases, it just tries to convert one of the values to the other
value’s type. However, when null or undefined occurs on either side
of the operator, it produces true only if both sides are one of null or
undefined.

28

console.log(null == undefined);
// → true
console.log(null == 0);
// → false

That behavior is often useful. When you want to test whether a value
has a real value instead of null or undefined, you can compare it to null

with the == or != operator.
What if you want to test whether something refers to the precise

value false? Expressions like 0 == false and "" == false are also true
because of automatic type conversion. When you do not want any type
conversions to happen, there are two additional operators: === and !==.
The first tests whether a value is precisely equal to the other, and the
second tests whether it is not precisely equal. Thus "" === false is
false, as expected.

I recommend using the three-character comparison operators defen-
sively to prevent unexpected type conversions from tripping you up.
But when you’re certain the types on both sides will be the same, there
is no problem with using the shorter operators.

Short-circuiting of logical operators

The logical operators && and || handle values of different types in a
peculiar way. They will convert the value on their left side to Boolean
type in order to decide what to do, but depending on the operator
and the result of that conversion, they will return either the original
left-hand value or the right-hand value.

The || operator, for example, will return the value to its left when

29

that value can be converted to true and will return the value on its right
otherwise. This has the expected effect when the values are Boolean
and does something analogous for values of other types.

console.log(null || "user")
// → user
console.log("Agnes" || "user")
// → Agnes

We can use this functionality as a way to fall back on a default value.
If you have a value that might be empty, you can put || after it with
a replacement value. If the initial value can be converted to false,
you’ll get the replacement instead. The rules for converting strings and
numbers to Boolean values state that 0, NaN, and the empty string ("")
count as false, while all the other values count as true. That means
0 || -1 produces -1, and "" || "!?" yields "!?".

The ?? operator resembles || but returns the value on the right only
if the one on the left is null or undefined, not if it is some other value
that can be converted to false. Often, this is preferable to the behavior
of ||.

console.log(0 || 100);
// → 100
console.log(0 ?? 100);
// → 0
console.log(null ?? 100);
// → 100

The && operator works similarly but the other way around. When the

30

value to its left is something that converts to false, it returns that value,
and otherwise it returns the value on its right.

Another important property of these two operators is that the part
to their right is evaluated only when necessary. In the case of true

|| X, no matter what X is—even if it’s a piece of program that does
something terrible—the result will be true, and X is never evaluated.
The same goes for false && X, which is false and will ignore X. This is
called short-circuit evaluation.

The conditional operator works in a similar way. Of the second and
third values, only the one that is selected is evaluated.

Summary

We looked at four types of JavaScript values in this chapter: numbers,
strings, Booleans, and undefined values. Such values are created by
typing in their name (true, null) or value (13, "abc").

You can combine and transform values with operators. We saw binary
operators for arithmetic (+, -, *, /, and %), string concatenation (+),
comparison (==, !=, ===, !==, <, >, <=, >=), and logic (&&, ||, ??), as well
as several unary operators (- to negate a number, ! to negate logically,
and typeof to find a value’s type) and a ternary operator (?:) to pick
one of two values based on a third value.

This gives you enough information to use JavaScript as a pocket
calculator but not much more. The next chapter will start tying these
expressions together into basic programs.

31

“And my heart glows bright red under my filmy, translucent
skin and they have to administer 10cc of JavaScript to get me
to come back. (I respond well to toxins in the blood.) Man,
that stuff will kick the peaches right out your gills!”

—_why, Why’s (Poignant) Guide to Ruby

Chapter 2

Program Structure

In this chapter, we will start to do things that can actually be called
programming. We will expand our command of the JavaScript language
beyond the nouns and sentence fragments we’ve seen so far to the point
where we can express meaningful prose.

Expressions and statements

In Chapter 1, we made values and applied operators to them to get new
values. Creating values like this is the main substance of any JavaScript
program. But that substance has to be framed in a larger structure to
be useful. That’s what we’ll cover in this chapter.

A fragment of code that produces a value is called an expression.
Every value that is written literally (such as 22 or "psychoanalysis") is
an expression. An expression between parentheses is also an expression,
as is a binary operator applied to two expressions or a unary operator
applied to one.

This shows part of the beauty of a language-based interface. Expres-

32

sions can contain other expressions in a way similar to how subsentences
in human languages are nested—a subsentence can contain its own sub-
sentences, and so on. This allows us to build expressions that describe
arbitrarily complex computations.

If an expression corresponds to a sentence fragment, a JavaScript
statement corresponds to a full sentence. A program is a list of state-
ments.

The simplest kind of statement is an expression with a semicolon
after it. This is a program:

1;
!false;

It is a useless program, though. An expression can be content to just
produce a value, which can then be used by the enclosing code. How-
ever, a statement stands on its own, so if it doesn’t affect the world, it’s
useless. It may display something on the screen, as with console.log, or
change the state of the machine in a way that will affect the statements
that come after it. These changes are called side effects. The state-
ments in the previous example just produce the values 1 and true and
then immediately throw them away. This leaves no impression on the
world at all. When you run this program, nothing observable happens.

In some cases, JavaScript allows you to omit the semicolon at the
end of a statement. In other cases, it has to be there, or the next line
will be treated as part of the same statement. The rules for when it
can be safely omitted are somewhat complex and error prone. So in
this book, every statement that needs a semicolon will always get one.
I recommend you do the same, at least until you’ve learned more about

33

the subtleties of missing semicolons.

Bindings

How does a program keep an internal state? How does it remember
things? We have seen how to produce new values from old values,
but this does not change the old values, and the new value must be
used immediately or it will dissipate again. To catch and hold values,
JavaScript provides a thing called a binding, or variable.

let caught = 5 * 5;

That gives us a second kind of statement. The special word (keyword)
let indicates that this sentence is going to define a binding. It is followed
by the name of the binding and, if we want to immediately give it a
value, by an = operator and an expression.

The example creates a binding called caught and uses it to grab hold
of the number that is produced by multiplying 5 by 5.

After a binding has been defined, its name can be used as an expres-
sion. The value of such an expression is the value the binding currently
holds. Here’s an example:

let ten = 10;
console.log(ten * ten);
// → 100

When a binding points at a value, that does not mean it is tied to
that value forever. The = operator can be used at any time on existing

34

bindings to disconnect them from their current value and have them
point to a new one:

let mood = "light";
console.log(mood);
// → light
mood = "dark";
console.log(mood);
// → dark

You should imagine bindings as tentacles rather than boxes. They do
not contain values; they grasp them—two bindings can refer to the
same value. A program can access only the values to which it still has
a reference. When you need to remember something, you either grow a
tentacle to hold on to it or reattach one of your existing tentacles to it.

Let’s look at another example. To remember the number of dollars
that Luigi still owes you, you create a binding. When he pays back $35,
you give this binding a new value.

let luigisDebt = 140;
luigisDebt = luigisDebt - 35;
console.log(luigisDebt);
// → 105

When you define a binding without giving it a value, the tentacle has
nothing to grasp, so it ends in thin air. If you ask for the value of an
empty binding, you’ll get the value undefined.

A single let statement may define multiple bindings. The definitions
must be separated by commas:

35

let one = 1, two = 2;
console.log(one + two);
// → 3

The words var and const can also be used to create bindings, in a similar
fashion to let.

var name = "Ayda";
const greeting = "Hello ";
console.log(greeting + name);
// → Hello Ayda

The first of these, var (short for “variable”), is the way bindings were
declared in pre-2015 JavaScript, when let didn’t exist yet. I’ll get back
to the precise way it differs from let in the next chapter. For now,
remember that it mostly does the same thing, but we’ll rarely use it in
this book because it behaves oddly in some situations.

The word const stands for constant. It defines a constant binding,
which points at the same value for as long as it lives. This is useful for
bindings that just give a name to a value so that you can easily refer
to it later.

Binding names

Binding names can be any sequence of one or more letters. Digits can
be part of binding names—catch22 is a valid name, for example—but
the name must not start with a digit. A binding name may include
dollar signs ($) or underscores (_) but no other punctuation or special

36

characters.
Words with a special meaning, such as let, are keywords, and may

not be used as binding names. There are also a number of words that
are “reserved for use” in future versions of JavaScript, which also can’t
be used as binding names. The full list of keywords and reserved words
is rather long:

break case catch class const continue debugger default
delete do else enum export extends false finally for
function if implements import interface in instanceof let
new package private protected public return static super
switch this throw true try typeof var void while with yield

Don’t worry about memorizing this list. When creating a binding pro-
duces an unexpected syntax error, check whether you’re trying to define
a reserved word.

The environment

The collection of bindings and their values that exist at a given time is
called the environment. When a program starts up, this environment
is not empty. It always contains bindings that are part of the language
standard, and most of the time, it also has bindings that provide ways
to interact with the surrounding system. For example, in a browser,
there are functions to interact with the currently loaded website and to
read mouse and keyboard input.

37

Functions

A lot of the values provided in the default environment have the type
function. A function is a piece of program wrapped in a value. Such
values can be applied in order to run the wrapped program. For exam-
ple, in a browser environment, the binding prompt holds a function that
shows a little dialog asking for user input. It is used like this:

prompt("Enter passcode");

Executing a function is called invoking, calling, or applying it. You
can call a function by putting parentheses after an expression that pro-
duces a function value. Usually you’ll directly use the name of the
binding that holds the function. The values between the parentheses
are given to the program inside the function. In the example, the prompt

function uses the string that we give it as the text to show in the dialog
box. Values given to functions are called arguments. Different functions
might need a different number or different types of arguments.

The prompt function isn’t used much in modern web programming,
mostly because you have no control over the way the resulting dialog

38

looks, but it can be helpful in toy programs and experiments.

The console.log function

In the examples, I used console.log to output values. Most JavaScript
systems (including all modern web browsers and Node.js) provide a
console.log function that writes out its arguments to some text output
device. In browsers, the output lands in the JavaScript console. This
part of the browser interface is hidden by default, but most browsers
open it when you press F12 or, on a Mac, command-option-I. If that
does not work, search through the menus for an item named Developer
Tools or similar.

Though binding names cannot contain period characters, console.log
does have one. This is because console.log isn’t a simple binding, but
an expression that retrieves the log property from the value held by the
console binding. We’ll find out exactly what this means in Chapter 4.

Return values

Showing a dialog box or writing text to the screen is a side effect. Many
functions are useful because of the side effects they produce. Functions
may also produce values, in which case they don’t need to have a side
effect to be useful. For example, the function Math.max takes any amount
of number arguments and gives back the greatest.

console.log(Math.max(2, 4));
// → 4

39

When a function produces a value, it is said to return that value. Any-
thing that produces a value is an expression in JavaScript, which means
that function calls can be used within larger expressions. In the follow-
ing code, a call to Math.min, which is the opposite of Math.max, is used
as part of a plus expression:

console.log(Math.min(2, 4) + 100);
// → 102

Chapter 3 will explain how to write your own functions.

Control flow

When your program contains more than one statement, the statements
are executed as though they were a story, from top to bottom. For
example, the following program has two statements. The first asks the
user for a number, and the second, which is executed after the first,
shows the square of that number:

let theNumber = Number(prompt("Pick a number"));
console.log("Your number is the square root of " +

theNumber * theNumber);

The function Number converts a value to a number. We need that con-
version because the result of prompt is a string value, and we want a
number. There are similar functions called String and Boolean that
convert values to those types.

Here is the rather trivial schematic representation of straight-line
control flow:

40

Conditional execution

Not all programs are straight roads. We may, for example, want to
create a branching road where the program takes the proper branch
based on the situation at hand. This is called conditional execution.

Conditional execution is created with the if keyword in JavaScript.
In the simple case, we want some code to be executed if, and only if,
a certain condition holds. We might, for example, want to show the
square of the input only if the input is actually a number:

let theNumber = Number(prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {

console.log("Your number is the square root of " +
theNumber * theNumber);

}

With this modification, if you enter “parrot”, no output is shown.
The if keyword executes or skips a statement depending on the value

of a Boolean expression. The deciding expression is written after the
keyword, between parentheses, followed by the statement to execute.

The Number.isNaN function is a standard JavaScript function that re-
turns true only if the argument it is given is NaN. The Number function

41

happens to return NaN when you give it a string that doesn’t represent
a valid number. Thus, the condition translates to “unless theNumber is
not-a-number, do this”.

The statement after the if is wrapped in braces ({ and }) in this
example. The braces can be used to group any number of statements
into a single statement, called a block. You could also have omitted them
in this case, since they hold only a single statement, but to avoid having
to think about whether they are needed, most JavaScript programmers
use them in every wrapped statement like this. We’ll mostly follow that
convention in this book, except for the occasional one-liner.

if (1 + 1 == 2) console.log("It's true");
// → It's true

You often won’t just have code that executes when a condition holds
true, but also code that handles the other case. This alternate path is
represented by the second arrow in the diagram. You can use the else

keyword, together with if, to create two separate, alternative execution
paths:

let theNumber = Number(prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {

console.log("Your number is the square root of " +
theNumber * theNumber);

} else {
console.log("Hey. Why didn't you give me a number?");

}

If you have more than two paths to choose from, you can “chain” mul-

42

tiple if/else pairs together. Here’s an example:

let num = Number(prompt("Pick a number"));

if (num < 10) {
console.log("Small");

} else if (num < 100) {
console.log("Medium");

} else {
console.log("Large");

}

The program will first check whether num is less than 10. If it is, it
chooses that branch, shows "Small", and is done. If it isn’t, it takes the
else branch, which itself contains a second if. If the second condition
(< 100) holds, that means the number is at least 10 but below 100, and
"Medium" is shown. If it doesn’t, the second and last else branch is
chosen.

The schema for this program looks something like this:

while and do loops

Consider a program that outputs all even numbers from 0 to 12. One
way to write this is as follows:

43

console.log(0);
console.log(2);
console.log(4);
console.log(6);
console.log(8);
console.log(10);
console.log(12);

That works, but the idea of writing a program is to make something
less work, not more. If we needed all even numbers less than 1,000, this
approach would be unworkable. What we need is a way to run a piece
of code multiple times. This form of control flow is called a loop.

Looping control flow allows us to go back to some point in the pro-
gram where we were before and repeat it with our current program
state. If we combine this with a binding that counts, we can do some-
thing like this:

let number = 0;
while (number <= 12) {

console.log(number);
number = number + 2;

}
// → 0
// → 2
// … etcetera

44

A statement starting with the keyword while creates a loop. The word
while is followed by an expression in parentheses and then a statement,
much like if. The loop keeps entering that statement as long as the
expression produces a value that gives true when converted to Boolean.

The number binding demonstrates the way a binding can track the
progress of a program. Every time the loop repeats, number gets a
value that is 2 more than its previous value. At the beginning of every
repetition, it is compared with the number 12 to decide whether the
program’s work is finished.

As an example that actually does something useful, we can now write
a program that calculates and shows the value of 210 (2 to the 10th
power). We use two bindings: one to keep track of our result and one
to count how often we have multiplied this result by 2. The loop tests
whether the second binding has reached 10 yet and, if not, updates both
bindings.

let result = 1;
let counter = 0;
while (counter < 10) {

result = result * 2;
counter = counter + 1;

}
console.log(result);
// → 1024

The counter could also have started at 1 and checked for <= 10, but for
reasons that will become apparent in Chapter 4, it is a good idea to get
used to counting from 0.

45

Note that JavaScript also has an operator for exponentiation (2 **

10), which you would use to compute this in real code—but that would
have ruined the example.

A do loop is a control structure similar to a while loop. It differs only
on one point: a do loop always executes its body at least once, and it
starts testing whether it should stop only after that first execution. To
reflect this, the test appears after the body of the loop:

let yourName;
do {

yourName = prompt("Who are you?");
} while (!yourName);
console.log("Hello " + yourName);

This program will force you to enter a name. It will ask again and
again until it gets something that is not an empty string. Applying the
! operator will convert a value to Boolean type before negating it, and
all strings except "" convert to true. This means the loop continues
going round until you provide a non-empty name.

Indenting Code

In the examples, I’ve been adding spaces in front of statements that
are part of some larger statement. These spaces are not required—the
computer will accept the program just fine without them. In fact, even
the line breaks in programs are optional. You could write a program as
a single long line if you felt like it.

The role of this indentation inside blocks is to make the structure of

46

the code stand out to human readers. In code where new blocks are
opened inside other blocks, it can become hard to see where one block
ends and another begins. With proper indentation, the visual shape of
a program corresponds to the shape of the blocks inside it. I like to
use two spaces for every open block, but tastes differ—some people use
four spaces, and some people use tab characters. The important thing
is that each new block adds the same amount of space.

if (false != true) {
console.log("That makes sense.");
if (1 < 2) {

console.log("No surprise there.");
}

}

Most code editor programs will help by automatically indenting new
lines the proper amount.

for loops

Many loops follow the pattern shown in the while examples. First a
“counter” binding is created to track the progress of the loop. Then
comes a while loop, usually with a test expression that checks whether
the counter has reached its end value. At the end of the loop body, the
counter is updated to track progress.

Because this pattern is so common, JavaScript and similar languages
provide a slightly shorter and more comprehensive form, the for loop:

47

for (let number = 0; number <= 12; number = number + 2) {
console.log(number);

}
// → 0
// → 2
// … etcetera

This program is exactly equivalent to the earlier even-number-printing
example. The only change is that all the statements that are related to
the “state” of the loop are grouped together after for.

The parentheses after a for keyword must contain two semicolons.
The part before the first semicolon initializes the loop, usually by defin-
ing a binding. The second part is the expression that checks whether
the loop must continue. The final part updates the state of the loop
after every iteration. In most cases, this is shorter and clearer than a
while construct.

This is the code that computes 210 using for instead of while:

let result = 1;
for (let counter = 0; counter < 10; counter = counter + 1) {

result = result * 2;
}
console.log(result);
// → 1024

48

Breaking Out of a Loop

Having the looping condition produce false is not the only way a loop
can finish. The break statement has the effect of immediately jumping
out of the enclosing loop. Its use is demonstrated in the following
program, which finds the first number that is both greater than or
equal to 20 and divisible by 7:

for (let current = 20; ; current = current + 1) {
if (current % 7 == 0) {

console.log(current);
break;

}
}
// → 21

Using the remainder (%) operator is an easy way to test whether a
number is divisible by another number. If it is, the remainder of their
division is zero.

The for construct in the example does not have a part that checks
for the end of the loop. This means that the loop will never stop unless
the break statement inside is executed.

If you were to remove that break statement or you accidentally write
an end condition that always produces true, your program would get
stuck in an infinite loop. A program stuck in an infinite loop will never
finish running, which is usually a bad thing.

The continue keyword is similar to break in that it influences the
progress of a loop. When continue is encountered in a loop body, control

49

jumps out of the body and continues with the loop’s next iteration.

Updating bindings succinctly

Especially when looping, a program often needs to “update” a binding
to hold a value based on that binding’s previous value.

counter = counter + 1;

JavaScript provides a shortcut for this:

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2

to double result or counter -= 1 to count downward.
This allows us to further shorten our counting example:

for (let number = 0; number <= 12; number += 2) {
console.log(number);

}

For counter += 1 and counter -= 1, there are even shorter equivalents:
counter++ and counter--.

Dispatching on a value with switch

It is not uncommon for code to look like this:

if (x == "value1") action1();
else if (x == "value2") action2();

50

else if (x == "value3") action3();
else defaultAction();

There is a construct called switch that is intended to express such a
“dispatch” in a more direct way. Unfortunately, the syntax JavaScript
uses for this (which it inherited from the C/Java line of programming
languages) is somewhat awkward—a chain of if statements may look
better. Here is an example:

switch (prompt("What is the weather like?")) {
case "rainy":

console.log("Remember to bring an umbrella.");
break;

case "sunny":
console.log("Dress lightly.");

case "cloudy":
console.log("Go outside.");
break;

default:
console.log("Unknown weather type!");
break;

}

You may put any number of case labels inside the block opened by
switch. The program will start executing at the label that corresponds
to the value that switch was given, or at default if no matching value
is found. It will continue executing, even across other labels, until it
reaches a break statement. In some cases, such as the "sunny" case in
the example, this can be used to share some code between cases (it
recommends going outside for both sunny and cloudy weather). Be

51

careful, though—it is easy to forget such a break, which will cause the
program to execute code you do not want executed.

Capitalization

Binding names may not contain spaces, yet it is often helpful to use
multiple words to clearly describe what the binding represents. These
are pretty much your choices for writing a binding name with several
words in it:

fuzzylittleturtle
fuzzy_little_turtle
FuzzyLittleTurtle
fuzzyLittleTurtle

The first style can be hard to read. I rather like the look of the un-
derscores, though that style is a little painful to type. The standard
JavaScript functions, and most JavaScript programmers, follow the fi-
nal style—they capitalize every word except the first. It is not hard to
get used to little things like that, and code with mixed naming styles
can be jarring to read, so we follow this convention.

In a few cases, such as the Number function, the first letter of a binding
is also capitalized. This was done to mark this function as a constructor.
It will become clear what a constructor is in Chapter 6. For now,
the important thing is to not be bothered by this apparent lack of
consistency.

52

Comments

Often, raw code does not convey all the information you want a program
to convey to human readers, or it conveys it in such a cryptic way that
people might not understand it. At other times, you might just want
to include some related thoughts as part of your program. This is what
comments are for.

A comment is a piece of text that is part of a program but is com-
pletely ignored by the computer. JavaScript has two ways of writing
comments. To write a single-line comment, you can use two slash char-
acters (//) and then the comment text after it:

let accountBalance = calculateBalance(account);
// It's a green hollow where a river sings
accountBalance.adjust();
// Madly catching white tatters in the grass.
let report = new Report();
// Where the sun on the proud mountain rings:
addToReport(accountBalance, report);
// It's a little valley, foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between
/* and */ will be ignored in its entirety, regardless of whether it contains
line breaks. This is useful for adding blocks of information about a file
or a chunk of program:

/*
I first found this number scrawled on the back of an old
notebook. Since then, it has often dropped by, showing up in

53

phone numbers and the serial numbers of products that I've
bought. It obviously likes me, so I've decided to keep it.

*/
const myNumber = 11213;

Summary

You now know that a program is built out of statements, which them-
selves sometimes contain more statements. Statements tend to contain
expressions, which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is
executed from top to bottom. You can introduce disturbances in the
flow of control by using conditional (if, else, and switch) and looping
(while, do, and for) statements.

Bindings can be used to file pieces of data under a name, and they are
useful for tracking state in your program. The environment is the set
of bindings that are defined. JavaScript systems always put a number
of useful standard bindings into your environment.

Functions are special values that encapsulate a piece of program. You
can invoke them by writing functionName(argument1, argument2). Such
a function call is an expression and may produce a value.

Exercises

If you are unsure how to test your solutions to the exercises, refer to
the introduction.

54

Each exercise starts with a problem description. Read this descrip-
tion and try to solve the exercise. If you run into problems, consider
reading the hints at the end of the book. You can find full solutions to
the exercises online at https://eloquentjavascript.net/code. If you want
to learn something from the exercises, I recommend looking at the so-
lutions only after you’ve solved the exercise, or at least after you’ve
attacked it long and hard enough to have a slight headache.

Looping a triangle

Write a loop that makes seven calls to console.log to output the fol-
lowing triangle:

#
##
###
####
#####
######
#######

It may be useful to know that you can find the length of a string by
writing .length after it.

let abc = "abc";
console.log(abc.length);
// → 3

55

https://eloquentjavascript.net/code#2

FizzBuzz

Write a program that uses console.log to print all the numbers from 1
to 100, with two exceptions. For numbers divisible by 3, print "Fizz"

instead of the number, and for numbers divisible by 5 (and not 3), print
"Buzz" instead.

When you have that working, modify your program to print "FizzBuzz
" for numbers that are divisible by both 3 and 5 (and still print "Fizz"

or "Buzz" for numbers divisible by only one of those).
(This is actually an interview question that has been claimed to weed

out a significant percentage of programmer candidates. So if you solved
it, your labor market value just went up.)

Chessboard

Write a program that creates a string that represents an 8×8 grid, using
newline characters to separate lines. At each position of the grid there
is either a space or a "#" character. The characters should form a
chessboard.

Passing this string to console.log should show something like this:

#
#
#

#
#

#
#

#

56

When you have a program that generates this pattern, define a bind-
ing size = 8 and change the program so that it works for any size,
outputting a grid of the given width and height.

57

“People think that computer science is the art of geniuses but
the actual reality is the opposite, just many people doing
things that build on each other, like a wall of mini stones.”

—Donald Knuth

Chapter 3

Functions

Functions are one of the most central tools in JavaScript programming.
The concept of wrapping a piece of program in a value has many uses.
It gives us a way to structure larger programs, to reduce repetition, to
associate names with subprograms, and to isolate these subprograms
from each other.

The most obvious application of functions is defining new vocabulary.
Creating new words in prose is usually bad style, but in programming,
it is indispensable.

Typical adult English speakers have some 20,000 words in their vo-
cabulary. Few programming languages come with 20,000 commands
built in. And the vocabulary that is available tends to be more precisely
defined, and thus less flexible, than in human language. Therefore, we
have to introduce new words to avoid excessive verbosity.

58

Defining a function

A function definition is a regular binding where the value of the binding
is a function. For example, this code defines square to refer to a function
that produces the square of a given number:

const square = function(x) {
return x * x;

};

console.log(square(12));
// → 144

A function is created with an expression that starts with the keyword
function. Functions have a set of parameters (in this case, only x) and
a body, which contains the statements that are to be executed when the
function is called. The body of a function created this way must always
be wrapped in braces, even when it consists of only a single statement.

A function can have multiple parameters or no parameters at all. In
the following example, makeNoise does not list any parameter names,
whereas roundTo (which rounds n to the nearest multiple of step) lists
two:

const makeNoise = function() {
console.log("Pling!");

};

makeNoise();
// → Pling!

59

const roundTo = function(n, step) {
let remainder = n % step;
return n - remainder + (remainder < step / 2 ? 0 : step);

};

console.log(roundTo(23, 10));
// → 20

Some functions, such as roundTo and square, produce a value, and some
don’t, such as makeNoise, whose only result is a side effect. A return

statement determines the value the function returns. When control
comes across such a statement, it immediately jumps out of the cur-
rent function and gives the returned value to the code that called the
function. A return keyword without an expression after it will cause
the function to return undefined. Functions that don’t have a return

statement at all, such as makeNoise, similarly return undefined.
Parameters to a function behave like regular bindings, but their ini-

tial values are given by the caller of the function, not the code in the
function itself.

Bindings and scopes

Each binding has a scope, which is the part of the program in which the
binding is visible. For bindings defined outside of any function, block,
or module (see Chapter 10), the scope is the whole program—you can
refer to such bindings wherever you want. These are called global.

Bindings created for function parameters or declared inside a function

60

can be referenced only in that function, so they are known as local
bindings. Every time the function is called, new instances of these
bindings are created. This provides some isolation between functions—
each function call acts in its own little world (its local environment)
and can often be understood without knowing a lot about what’s going
on in the global environment.

Bindings declared with let and const are in fact local to the block
in which they are declared, so if you create one of those inside of a
loop, the code before and after the loop cannot “see” it. In pre-2015
JavaScript, only functions created new scopes, so old-style bindings,
created with the var keyword, are visible throughout the whole function
in which they appear—or throughout the global scope, if they are not
in a function.

let x = 10; // global
if (true) {

let y = 20; // local to block
var z = 30; // also global

}

Each scope can “look out” into the scope around it, so x is visible inside
the block in the example. The exception is when multiple bindings have
the same name—in that case, code can see only the innermost one. For
example, when the code inside the halve function refers to n, it is seeing
its own n, not the global n.

const halve = function(n) {
return n / 2;

};

61

let n = 10;
console.log(halve(100));
// → 50
console.log(n);
// → 10

Nested scope

JavaScript distinguishes not just global and local bindings. Blocks and
functions can be created inside other blocks and functions, producing
multiple degrees of locality.

For example, this function—which outputs the ingredients needed to
make a batch of hummus—has another function inside it:

const hummus = function(factor) {
const ingredient = function(amount, unit, name) {

let ingredientAmount = amount * factor;
if (ingredientAmount > 1) {

unit += "s";
}
console.log(`${ingredientAmount} ${unit} ${name}`);

};
ingredient(1, "can", "chickpeas");
ingredient(0.25, "cup", "tahini");
ingredient(0.25, "cup", "lemon juice");
ingredient(1, "clove", "garlic");
ingredient(2, "tablespoon", "olive oil");

62

ingredient(0.5, "teaspoon", "cumin");
};

The code inside the ingredient function can see the factor binding from
the outer function, but its local bindings, such as unit or ingredientAmount
, are not visible in the outer function.

The set of bindings visible inside a block is determined by the place
of that block in the program text. Each local scope can also see all the
local scopes that contain it, and all scopes can see the global scope.
This approach to binding visibility is called lexical scoping.

Functions as values

A function binding usually simply acts as a name for a specific piece of
the program. Such a binding is defined once and never changed. This
makes it easy to confuse the function and its name.

But the two are different. A function value can do all the things that
other values can do—you can use it in arbitrary expressions, not just
call it. It is possible to store a function value in a new binding, pass
it as an argument to a function, and so on. Similarly, a binding that
holds a function is still just a regular binding and can, if not constant,
be assigned a new value, like so:

let launchMissiles = function() {
missileSystem.launch("now");

};
if (safeMode) {

launchMissiles = function() {/* do nothing */};

63

}

In Chapter 5, we’ll discuss the interesting things that we can do by
passing function values to other functions.

Declaration notation

There is a slightly shorter way to create a function binding. When the
function keyword is used at the start of a statement, it works differently:

function square(x) {
return x * x;

}

This is a function declaration. The statement defines the binding square

and points it at the given function. It is slightly easier to write and
doesn’t require a semicolon after the function.

There is one subtlety with this form of function definition.

console.log("The future says:", future());

function future() {
return "You'll never have flying cars";

}

The preceding code works, even though the function is defined below
the code that uses it. Function declarations are not part of the regular
top-to-bottom flow of control. They are conceptually moved to the top
of their scope and can be used by all the code in that scope. This is

64

sometimes useful because it offers the freedom to order code in a way
that seems the clearest, without worrying about having to define all
functions before they are used.

Arrow functions

There’s a third notation for functions, which looks very different from
the others. Instead of the function keyword, it uses an arrow (=>) made
up of an equal sign and a greater-than character (not to be confused
with the greater-than-or-equal operator, which is written >=):

const roundTo = (n, step) => {
let remainder = n % step;
return n - remainder + (remainder < step / 2 ? 0 : step);

};

The arrow comes after the list of parameters and is followed by the func-
tion’s body. It expresses something like “this input (the parameters)
produces this result (the body)”.

When there is only one parameter name, you can omit the paren-
theses around the parameter list. If the body is a single expression
rather than a block in braces, that expression will be returned from the
function. So, these two definitions of square do the same thing:

const square1 = (x) => { return x * x; };
const square2 = x => x * x;

When an arrow function has no parameters at all, its parameter list is
just an empty set of parentheses.

65

const horn = () => {
console.log("Toot");

};

There’s no deep reason to have both arrow functions and function ex-
pressions in the language. Apart from a minor detail, which we’ll discuss
in Chapter 6, they do the same thing. Arrow functions were added in
2015, mostly to make it possible to write small function expressions in
a less verbose way. We’ll use them often in Chapter 5.

The call stack

The way control flows through functions is somewhat involved. Let’s
take a closer look at it. Here is a simple program that makes a few
function calls:

function greet(who) {
console.log("Hello " + who);

}
greet("Harry");
console.log("Bye");

A run through this program goes roughly like this: the call to greet

causes control to jump to the start of that function (line 2). The
function calls console.log, which takes control, does its job, and then
returns control to line 2. There, it reaches the end of the greet function,
so it returns to the place that called it—line 4. The line after that calls
console.log again. After that returns, the program reaches its end.

66

We could show the flow of control schematically like this:

not in function
in greet

in console.log
in greet

not in function
in console.log

not in function

Because a function has to jump back to the place that called it when it
returns, the computer must remember the context from which the call
happened. In one case, console.log has to return to the greet function
when it is done. In the other case, it returns to the end of the program.

The place where the computer stores this context is the call stack.
Every time a function is called, the current context is stored on top of
this stack. When a function returns, it removes the top context from
the stack and uses that context to continue execution.

Storing this stack requires space in the computer’s memory. When
the stack grows too big, the computer will fail with a message like “out
of stack space” or “too much recursion”. The following code illustrates
this by asking the computer a really hard question that causes an infinite
back-and-forth between two functions. Or rather, it would be infinite,
if the computer had an infinite stack. As it is, we will run out of space,
or “blow the stack”.

function chicken() {
return egg();

}

67

function egg() {
return chicken();

}
console.log(chicken() + " came first.");
// → ??

Optional Arguments

The following code is allowed and executes without any problem:

function square(x) { return x * x; }
console.log(square(4, true, "hedgehog"));
// → 16

We defined square with only one parameter. Yet when we call it with
three, the language doesn’t complain. It ignores the extra arguments
and computes the square of the first one.

JavaScript is extremely broad-minded about the number of argu-
ments you can pass to a function. If you pass too many, the extra ones
are ignored. If you pass too few, the missing parameters are assigned
the value undefined.

The downside of this is that it is possible—likely, even—that you’ll
accidentally pass the wrong number of arguments to functions. And no
one will tell you about it. The upside is that you can use this behavior
to allow a function to be called with different numbers of arguments.
For example, this minus function tries to imitate the - operator by acting
on either one or two arguments:

68

function minus(a, b) {
if (b === undefined) return -a;
else return a - b;

}

console.log(minus(10));
// → -10
console.log(minus(10, 5));
// → 5

If you write an = operator after a parameter, followed by an expression,
the value of that expression will replace the argument when it is not
given. For example, this version of roundTo makes its second argument
optional. If you don’t provide it or pass the value undefined, it will
default to one:

function roundTo(n, step = 1) {
let remainder = n % step;
return n - remainder + (remainder < step / 2 ? 0 : step);

};

console.log(roundTo(4.5));
// → 5
console.log(roundTo(4.5, 2));
// → 4

The next chapter will introduce a way in which a function body can get
at the whole list of arguments it was passed. This is helpful because
it allows a function to accept any number of arguments. For example,
console.log does this, outputting all the values it is given:

69

console.log("C", "O", 2);
// → C O 2

Closure

The ability to treat functions as values, combined with the fact that
local bindings are re-created every time a function is called, brings
up an interesting question: What happens to local bindings when the
function call that created them is no longer active?

The following code shows an example of this. It defines a function,
wrapValue, that creates a local binding. It then returns a function that
accesses and returns this local binding.

function wrapValue(n) {
let local = n;
return () => local;

}

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);
console.log(wrap1());
// → 1
console.log(wrap2());
// → 2

This is allowed and works as you’d hope—both instances of the binding
can still be accessed. This situation is a good demonstration of the fact
that local bindings are created anew for every call, and different calls

70

don’t affect each other’s local bindings.
This feature—being able to reference a specific instance of a local

binding in an enclosing scope—is called closure. A function that ref-
erences bindings from local scopes around it is called a closure. This
behavior not only frees you from having to worry about the lifetimes
of bindings but also makes it possible to use function values in some
creative ways.

With a slight change, we can turn the previous example into a way
to create functions that multiply by an arbitrary amount.

function multiplier(factor) {
return number => number * factor;

}

let twice = multiplier(2);
console.log(twice(5));
// → 10

The explicit local binding from the wrapValue example isn’t really needed
since a parameter is itself a local binding.

Thinking about programs like this takes some practice. A good men-
tal model is to think of function values as containing both the code
in their body and the environment in which they are created. When
called, the function body sees the environment in which it was created,
not the environment in which it is called.

In the previous example, multiplier is called and creates an environ-
ment in which its factor parameter is bound to 2. The function value it
returns, which is stored in twice, remembers this environment so that

71

when that is called, it multiplies its argument by 2.

Recursion

It is perfectly okay for a function to call itself, as long as it doesn’t do it
so often that it overflows the stack. A function that calls itself is called
recursive. Recursion allows some functions to be written in a different
style. Take, for example, this power function, which does the same as
the ** (exponentiation) operator:

function power(base, exponent) {
if (exponent == 0) {

return 1;
} else {

return base * power(base, exponent - 1);
}

}

console.log(power(2, 3));
// → 8

This is rather close to the way mathematicians define exponentiation
and arguably describes the concept more clearly than the loop we used
in Chapter 2. The function calls itself multiple times with ever smaller
exponents to achieve the repeated multiplication.

However, this implementation has one problem: in typical JavaScript
implementations, it’s about three times slower than a version using a
for loop. Running through a simple loop is generally cheaper than

72

calling a function multiple times.
The dilemma of speed versus elegance is an interesting one. You can

see it as a kind of continuum between human-friendliness and machine-
friendliness. Almost any program can be made faster by making it
bigger and more convoluted. The programmer has to find an appropri-
ate balance.

In the case of the power function, an inelegant (looping) version is still
fairly simple and easy to read. It doesn’t make much sense to replace
it with a recursive function. Often, though, a program deals with such
complex concepts that giving up some efficiency in order to make the
program more straightforward is helpful.

Worrying about efficiency can be a distraction. It’s yet another fac-
tor that complicates program design, and when you’re doing something
that’s already difficult, that extra thing to worry about can be para-
lyzing.

Therefore, you should generally start by writing something that’s
correct and easy to understand. If you’re worried that it’s too slow—
which it usually isn’t since most code simply isn’t executed often enough
to take any significant amount of time—you can measure afterward and
improve it if necessary.

Recursion is not always just an inefficient alternative to looping.
Some problems really are easier to solve with recursion than with loops.
Most often these are problems that require exploring or processing sev-
eral “branches”, each of which might branch out again into even more
branches.

Consider this puzzle: by starting from the number 1 and repeatedly

73

either adding 5 or multiplying by 3, an infinite set of numbers can be
produced. How would you write a function that, given a number, tries
to find a sequence of such additions and multiplications that produces
that number? For example, the number 13 could be reached by first
multiplying by 3 and then adding 5 twice, whereas the number 15 can-
not be reached at all.

Here is a recursive solution:

function findSolution(target) {
function find(current, history) {

if (current == target) {
return history;

} else if (current > target) {
return null;

} else {
return find(current + 5, `(${history} + 5)`) ??

find(current * 3, `(${history} * 3)`);
}

}
return find(1, "1");

}

console.log(findSolution(24));
// → (((1 * 3) + 5) * 3)

Note that this program doesn’t necessarily find the shortest sequence
of operations. It is satisfied when it finds any sequence at all.

It’s okay if you don’t see how this code works right away. Let’s work
through it since it makes for a great exercise in recursive thinking.

74

The inner function find does the actual recursing. It takes two argu-
ments: the current number and a string that records how we reached
this number. If it finds a solution, it returns a string that shows how to
get to the target. If it can find no solution starting from this number,
it returns null.

To do this, the function performs one of three actions. If the current
number is the target number, the current history is a way to reach that
target, so it is returned. If the current number is greater than the target,
there’s no sense in further exploring this branch because both adding
and multiplying will only make the number bigger, so it returns null.
Finally, if we’re still below the target number, the function tries both
possible paths that start from the current number by calling itself twice,
once for addition and once for multiplication. If the first call returns
something that is not null, it is returned. Otherwise, the second call is
returned, regardless of whether it produces a string or null.

To better understand how this function produces the effect we’re look-
ing for, let’s look at all the calls to find that are made when searching
for a solution for the number 13:

find(1, "1")
find(6, "(1 + 5)")

find(11, "((1 + 5) + 5)")
find(16, "(((1 + 5) + 5) + 5)")

too big
find(33, "(((1 + 5) + 5) * 3)")

too big
find(18, "((1 + 5) * 3)")

too big

75

find(3, "(1 * 3)")
find(8, "((1 * 3) + 5)")

find(13, "(((1 * 3) + 5) + 5)")
found!

The indentation indicates the depth of the call stack. The first time
find is called, the function starts by calling itself to explore the solution
that starts with (1 + 5). That call will further recurse to explore every
continued solution that yields a number less than or equal to the target
number. Since it doesn’t find one that hits the target, it returns null

back to the first call. There the ?? operator causes the call that explores
(1 * 3) to happen. This search has more luck—its first recursive call,
through yet another recursive call, hits upon the target number. That
innermost call returns a string, and each of the ?? operators in the
intermediate calls passes that string along, ultimately returning the
solution.

Growing functions

There are two more or less natural ways for functions to be introduced
into programs.

The first occurs when you find yourself writing similar code multiple
times. You’d prefer not to do that, as having more code means more
space for mistakes to hide and more material to read for people trying
to understand the program. So you take the repeated functionality, find
a good name for it, and put it into a function.

The second way is that you find you need some functionality that you

76

haven’t written yet and that sounds like it deserves its own function.
You start by naming the function, and then write its body. You might
even start writing code that uses the function before you actually define
the function itself.

How difficult it is to find a good name for a function is a good indi-
cation of how clear a concept it is that you’re trying to wrap. Let’s go
through an example.

We want to write a program that prints two numbers: the numbers
of cows and chickens on a farm, with the words Cows and Chickens after
them and zeros padded before both numbers so that they are always
three digits long:

007 Cows
011 Chickens

This asks for a function of two arguments—the number of cows and the
number of chickens. Let’s get coding.

function printFarmInventory(cows, chickens) {
let cowString = String(cows);
while (cowString.length < 3) {

cowString = "0" + cowString;
}
console.log(`${cowString} Cows`);
let chickenString = String(chickens);
while (chickenString.length < 3) {

chickenString = "0" + chickenString;
}
console.log(`${chickenString} Chickens`);

77

}
printFarmInventory(7, 11);

Writing .length after a string expression will give us the length of that
string. Thus, the while loops keep adding zeros in front of the number
strings until they are at least three characters long.

Mission accomplished! But just as we are about to send the farmer
the code (along with a hefty invoice), she calls and tells us she’s also
started keeping pigs, and couldn’t we please extend the software to also
print pigs?

We sure can. But just as we’re in the process of copying and pasting
those four lines one more time, we stop and reconsider. There has to
be a better way. Here’s a first attempt:

function printZeroPaddedWithLabel(number, label) {
let numberString = String(number);
while (numberString.length < 3) {

numberString = "0" + numberString;
}
console.log(`${numberString} ${label}`);

}

function printFarmInventory(cows, chickens, pigs) {
printZeroPaddedWithLabel(cows, "Cows");
printZeroPaddedWithLabel(chickens, "Chickens");
printZeroPaddedWithLabel(pigs, "Pigs");

}

printFarmInventory(7, 11, 3);

78

It works! But that name, printZeroPaddedWithLabel, is a little awkward.
It conflates three things—printing, zero-padding, and adding a label—
into a single function.

Instead of lifting out the repeated part of our program wholesale,
let’s try to pick out a single concept:

function zeroPad(number, width) {
let string = String(number);
while (string.length < width) {

string = "0" + string;
}
return string;

}

function printFarmInventory(cows, chickens, pigs) {
console.log(`${zeroPad(cows, 3)} Cows`);
console.log(`${zeroPad(chickens, 3)} Chickens`);
console.log(`${zeroPad(pigs, 3)} Pigs`);

}

printFarmInventory(7, 16, 3);

A function with a nice, obvious name like zeroPad makes it easier for
someone who reads the code to figure out what it does. Such a function
is also useful in more situations than just this specific program. For
example, you could use it to help print nicely aligned tables of numbers.

How smart and versatile should our function be? We could write any-
thing, from a terribly simple function that can only pad a number to be
three characters wide to a complicated generalized number-formatting

79

system that handles fractional numbers, negative numbers, alignment
of decimal dots, padding with different characters, and so on.

A useful principle is to refrain from adding cleverness unless you are
absolutely sure you’re going to need it. It can be tempting to write
general “frameworks” for every bit of functionality you come across.
Resist that urge. You won’t get any real work done—you’ll be too busy
writing code that you never use.

Functions and side effects

Functions can be roughly divided into those that are called for their
side effects and those that are called for their return value (though it
is also possible to both have side effects and return a value).

The first helper function in the farm example, printZeroPaddedWithLabel
, is called for its side effect: it prints a line. The second version, zeroPad,
is called for its return value. It is no coincidence that the second is use-
ful in more situations than the first. Functions that create values are
easier to combine in new ways than functions that directly perform side
effects.

A pure function is a specific kind of value-producing function that
not only has no side effects but also doesn’t rely on side effects from
other code—for example, it doesn’t read global bindings whose value
might change. A pure function has the pleasant property that, when
called with the same arguments, it always produces the same value (and
doesn’t do anything else). A call to such a function can be substituted
by its return value without changing the meaning of the code. When

80

you are not sure that a pure function is working correctly, you can
test it by simply calling it and know that if it works in that context,
it will work in any context. Nonpure functions tend to require more
scaffolding to test.

Still, there’s no need to feel bad when writing functions that are not
pure. Side effects are often useful. There’s no way to write a pure
version of console.log, for example, and console.log is good to have.
Some operations are also easier to express in an efficient way when we
use side effects.

Summary

This chapter taught you how to write your own functions. The function

keyword, when used as an expression, can create a function value. When
used as a statement, it can be used to declare a binding and give it a
function as its value. Arrow functions are yet another way to create
functions.

// Define f to hold a function value
const f = function(a) {

console.log(a + 2);
};

// Declare g to be a function
function g(a, b) {

return a * b * 3.5;
}

81

// A less verbose function value
let h = a => a % 3;

A key part of understanding functions is understanding scopes. Each
block creates a new scope. Parameters and bindings declared in a given
scope are local and not visible from the outside. Bindings declared with
var behave differently—they end up in the nearest function scope or the
global scope.

Separating the tasks your program performs into different functions
is helpful. You won’t have to repeat yourself as much, and functions can
help organize a program by grouping code into pieces that do specific
things.

Exercises

Minimum

The previous chapter introduced the standard function Math.min that re-
turns its smallest argument. We can write a function like that ourselves
now. Define the function min that takes two arguments and returns their
minimum.

Recursion

We’ve seen that we can use % (the remainder operator) to test whether
a number is even or odd by using % 2 to see whether it’s divisible by
two. Here’s another way to define whether a positive whole number is
even or odd:

82

• Zero is even.

• One is odd.

• For any other number N, its evenness is the same as N - 2.

Define a recursive function isEven corresponding to this description.
The function should accept a single parameter (a positive, whole num-
ber) and return a Boolean.

Test it on 50 and 75. See how it behaves on -1. Why? Can you think
of a way to fix this?

Bean counting

You can get the Nth character, or letter, from a string by writing [N]

after the string (for example, string[2]). The resulting value will be a
string containing only one character (for example, "b"). The first char-
acter has position 0, which causes the last one to be found at position
string.length - 1. In other words, a two-character string has length 2,
and its characters have positions 0 and 1.

Write a function called countBs that takes a string as its only ar-
gument and returns a number that indicates how many uppercase B
characters there are in the string.

Next, write a function called countChar that behaves like countBs,
except it takes a second argument that indicates the character that
is to be counted (rather than counting only uppercase B characters).
Rewrite countBs to make use of this new function.

83

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right answers
come out?’ [...] I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.”
—Charles Babbage, Passages from the Life of a Philosopher

(1864)

Chapter 4

Data Structures: Objects and Arrays

Numbers, Booleans, and strings are the atoms from which data struc-
tures are built. Many types of information require more than one atom,
though. Objects allow us to group values—including other objects—to
build more complex structures.

The programs we have built so far have been limited by the fact that
they were operating only on simple data types. After learning the basics
of data structures in this chapter, you’ll know enough to start writing
useful programs.

The chapter will work through a more or less realistic programming
example, introducing concepts as they apply to the problem at hand.
The example code will often build on functions and bindings introduced
earlier in the book.

The online coding sandbox for the book (https://eloquentjavascript.net/
code) provides a way to run code in the context of a particular chapter.
If you decide to work through the examples in another environment, be
sure to first download the full code for this chapter from the sandbox
page.

84

https://eloquentjavascript.net/code
https://eloquentjavascript.net/code

The weresquirrel

Every now and then, usually between 8 p.m. and 10 p.m., Jacques finds
himself transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycan-
thropy. Turning into a squirrel does cause fewer problems than turning
into a wolf. Instead of having to worry about accidentally eating the
neighbor (that would be awkward), he worries about being eaten by the
neighbor’s cat. After two occasions of waking up on a precariously thin
branch in the crown of an oak, naked and disoriented, he has taken to
locking the doors and windows of his room at night and putting a few
walnuts on the floor to keep himself busy.

But Jacques would prefer to get rid of his condition entirely. The
irregular occurrences of the transformation make him suspect that they
might be triggered by something. For a while, he believed that it hap-
pened only on days when he had been near oak trees. However, avoiding
oak trees did not solve the problem.

Switching to a more scientific approach, Jacques has started keeping a
daily log of everything he does on a given day and whether he changed
form. With this data he hopes to narrow down the conditions that
trigger the transformations.

The first thing he needs is a data structure to store this information.

85

Datasets

To work with a chunk of digital data, we first have to find a way to
represent it in our machine’s memory. Say, for example, that we want
to represent a collection of the numbers 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can have any
length, so we can put a lot of data into them—and use "2 3 5 7 11"

as our representation. But this is awkward. We’d have to somehow
extract the digits and convert them back to numbers to access them.

Fortunately, JavaScript provides a data type specifically for storing
sequences of values. It is called an array and is written as a list of
values between square brackets, separated by commas.

let listOfNumbers = [2, 3, 5, 7, 11];
console.log(listOfNumbers[2]);
// → 5
console.log(listOfNumbers[0]);
// → 2
console.log(listOfNumbers[2 - 1]);
// → 3

The notation for getting at the elements inside an array also uses square
brackets. A pair of square brackets immediately after an expression,
with another expression inside of them, will look up the element in
the left-hand expression that corresponds to the index given by the
expression in the brackets.

The first index of an array is zero, not one, so the first element is
retrieved with listOfNumbers[0]. Zero-based counting has a long tradi-

86

tion in technology and in certain ways makes a lot of sense, but it takes
some getting used to. Think of the index as the number of items to
skip, counting from the start of the array.

Properties

We’ve seen a few expressions like myString.length (to get the length
of a string) and Math.max (the maximum function) in past chapters.
These expressions access a property of some value. In the first case, we
access the length property of the value in myString. In the second, we
access the property named max in the Math object (which is a collection
of mathematics-related constants and functions).

Almost all JavaScript values have properties. The exceptions are null
and undefined. If you try to access a property on one of these nonvalues,
you get an error:

null.length;
// → TypeError: null has no properties

The two main ways to access properties in JavaScript are with a dot and
with square brackets. Both value.x and value[x] access a property on
value—but not necessarily the same property. The difference is in how
x is interpreted. When using a dot, the word after the dot is the literal
name of the property. When using square brackets, the expression
between the brackets is evaluated to get the property name. Whereas
value.x fetches the property of value named “x”, value[x] takes the
value of the variable named x and uses that, converted to a string, as

87

the property name.
If you know that the property in which you are interested is called

color, you say value.color. If you want to extract the property named
by the value held in the binding i, you say value[i]. Property names
are strings. They can be any string, but the dot notation works only
with names that look like valid binding names—starting with a letter
or underscore, and containing only letters, numbers, and underscores.
If you want to access a property named 2 or John Doe, you must use
square brackets: value[2] or value["John Doe"].

The elements in an array are stored as the array’s properties, using
numbers as property names. Because you can’t use the dot notation
with numbers and usually want to use a binding that holds the index
anyway, you have to use the bracket notation to get at them.

Just like strings, arrays have a length property that tells us how many
elements the array has.

Methods

Both string and array values contain, in addition to the length property,
a number of properties that hold function values.

let doh = "Doh";
console.log(typeof doh.toUpperCase);
// → function
console.log(doh.toUpperCase());
// → DOH

Every string has a toUpperCase property. When called, it will return a

88

copy of the string in which all letters have been converted to uppercase.
There is also toLowerCase, going the other way.

Interestingly, even though the call to toUpperCase does not pass any
arguments, the function somehow has access to the string "Doh", the
value whose property we called. You’ll find out how this works in
Chapter 6.

Properties that contain functions are generally called methods of the
value they belong to, as in “toUpperCase is a method of a string”.

This example demonstrates two methods you can use to manipulate
arrays.

let sequence = [1, 2, 3];
sequence.push(4);
sequence.push(5);
console.log(sequence);
// → [1, 2, 3, 4, 5]
console.log(sequence.pop());
// → 5
console.log(sequence);
// → [1, 2, 3, 4]

The push method adds values to the end of an array. The pop method
does the opposite, removing the last value in the array and returning
it.

These somewhat silly names are the traditional terms for operations
on a stack. A stack, in programming, is a data structure that allows you
to push values into it and pop them out again in the opposite order so
that the thing that was added last is removed first. Stacks are common

89

in programming—you might remember the function call stack from the
previous chapter, which is an instance of the same idea.

Objects

Back to the weresquirrel. A set of daily log entries can be represented
as an array, but the entries do not consist of just a number or a string—
each entry needs to store a list of activities and a Boolean value that
indicates whether Jacques turned into a squirrel or not. Ideally, we
would like to group these together into a single value and then put
those grouped values into an array of log entries.

Values of the type object are arbitrary collections of properties. One
way to create an object is by using braces as an expression.

let day1 = {
squirrel: false,
events: ["work", "touched tree", "pizza", "running"]

};
console.log(day1.squirrel);
// → false
console.log(day1.wolf);
// → undefined
day1.wolf = false;
console.log(day1.wolf);
// → false

Inside the braces, you write a list of properties separated by commas.
Each property has a name followed by a colon and a value. When

90

an object is written over multiple lines, indenting it as shown in this
example helps with readability. Properties whose names aren’t valid
binding names or valid numbers must be quoted:

let descriptions = {
work: "Went to work",
"touched tree": "Touched a tree"

};

This means that braces have two meanings in JavaScript. At the start
of a statement, they begin a block of statements. In any other posi-
tion, they describe an object. Fortunately, it is rarely useful to start
a statement with an object in braces, so the ambiguity between these
two is not much of a problem. The one case where this does come up is
when you want to return an object from a shorthand arrow function—
you can’t write n => {prop: n} since the braces will be interpreted as
a function body. Instead, you have to put a set of parentheses around
the object to make it clear that it is an expression.

Reading a property that doesn’t exist will give you the value undefined
.

It is possible to assign a value to a property expression with the =

operator. This will replace the property’s value if it already existed or
create a new property on the object if it didn’t.

To briefly return to our tentacle model of bindings—property bind-
ings are similar. They grasp values, but other bindings and properties
might be holding onto those same values. You can think of objects
as octopuses with any number of tentacles, each of which has a name
written on it.

91

The delete operator cuts off a tentacle from such an octopus. It is a
unary operator that, when applied to an object property, will remove
the named property from the object. This is not a common thing to
do, but it is possible.

let anObject = {left: 1, right: 2};
console.log(anObject.left);
// → 1
delete anObject.left;
console.log(anObject.left);
// → undefined
console.log("left" in anObject);
// → false
console.log("right" in anObject);
// → true

The binary in operator, when applied to a string and an object, tells
you whether that object has a property with that name. The difference
between setting a property to undefined and actually deleting it is that
in the first case, the object still has the property (it just doesn’t have a
very interesting value), whereas in the second case, the property is no
longer present and in will return false.

To find out what properties an object has, you can use the Object.

keys function. Give the function an object and it will return an array
of strings—the object’s property names:

console.log(Object.keys({x: 0, y: 0, z: 2}));
// → ["x", "y", "z"]

There’s an Object.assign function that copies all properties from one

92

object into another:

let objectA = {a: 1, b: 2};
Object.assign(objectA, {b: 3, c: 4});
console.log(objectA);
// → {a: 1, b: 3, c: 4}

Arrays, then, are just a kind of object specialized for storing sequences
of things. If you evaluate typeof [], it produces "object". You can
visualize arrays as long, flat octopuses with all their tentacles in a neat
row, labeled with numbers.

Jacques will represent the journal that Jacques keeps as an array of
objects:

let journal = [
{events: ["work", "touched tree", "pizza",

"running", "television"],
squirrel: false},

{events: ["work", "ice cream", "cauliflower",
"lasagna", "touched tree", "brushed teeth"],

squirrel: false},
{events: ["weekend", "cycling", "break", "peanuts",

"beer"],
squirrel: true},

/* And so on... */
];

93

Mutability

We will get to actual programming soon, but first, there’s one more
piece of theory to understand.

We saw that object values can be modified. The types of values
discussed in earlier chapters, such as numbers, strings, and Booleans,
are all immutable—it is impossible to change values of those types. You
can combine them and derive new values from them, but when you take
a specific string value, that value will always remain the same. The text
inside it cannot be changed. If you have a string that contains "cat",
it is not possible for other code to change a character in your string to
make it spell "rat".

Objects work differently. You can change their properties, causing a
single object value to have different content at different times.

When we have two numbers, 120 and 120, we can consider them pre-
cisely the same number, whether or not they refer to the same physical
bits. With objects, there is a difference between having two references
to the same object and having two different objects that contain the
same properties. Consider the following code:

let object1 = {value: 10};
let object2 = object1;
let object3 = {value: 10};

console.log(object1 == object2);
// → true
console.log(object1 == object3);
// → false

94

object1.value = 15;
console.log(object2.value);
// → 15
console.log(object3.value);
// → 10

The object1 and object2 bindings grasp the same object, which is why
changing object1 also changes the value of object2. They are said to
have the same identity. The binding object3 points to a different ob-
ject, which initially contains the same properties as object1 but lives a
separate life.

Bindings can also be changeable or constant, but this is separate
from the way their values behave. Even though number values don’t
change, you can use a let binding to keep track of a changing number
by changing the value at which the binding points. Similarly, though a
const binding to an object can itself not be changed and will continue
to point at the same object, the contents of that object might change.

const score = {visitors: 0, home: 0};
// This is okay
score.visitors = 1;
// This isn't allowed
score = {visitors: 1, home: 1};

When you compare objects with JavaScript’s == operator, it compares
by identity: it will produce true only if both objects are precisely the
same value. Comparing different objects will return false, even if they
have identical properties. There is no “deep” comparison operation

95

built into JavaScript that compares objects by contents, but it is possi-
ble to write it yourself (which is one of the exercises at the end of this
chapter).

The lycanthrope's log

Jacques starts up his JavaScript interpreter and sets up the environment
he needs to keep his journal:

let journal = [];

function addEntry(events, squirrel) {
journal.push({events, squirrel});

}

Note that the object added to the journal looks a little odd. Instead of
declaring properties like events: events, it just gives a property name:
events. This is shorthand that means the same thing—if a property
name in brace notation isn’t followed by a value, its value is taken from
the binding with the same name.

Every evening at 10 p.m.—or sometimes the next morning, after
climbing down from the top shelf of his bookcase—Jacques records the
day:

addEntry(["work", "touched tree", "pizza", "running",
"television"], false);

addEntry(["work", "ice cream", "cauliflower", "lasagna",
"touched tree", "brushed teeth"], false);

addEntry(["weekend", "cycling", "break", "peanuts",

96

"beer"], true);

Once he has enough data points, he intends to use statistics to find out
which of these events may be related to the squirrelifications.

Correlation is a measure of dependence between statistical variables.
A statistical variable is not quite the same as a programming variable.
In statistics you typically have a set of measurements, and each variable
is measured for every measurement. Correlation between variables is
usually expressed as a value that ranges from -1 to 1. Zero correlation
means the variables are not related. A correlation of 1 indicates that
the two are perfectly related—if you know one, you also know the other.
Negative 1 also means that the variables are perfectly related but are
opposites—when one is true, the other is false.

To compute the measure of correlation between two Boolean vari-
ables, we can use the phi coefficient (φ). This is a formula whose input
is a frequency table containing the number of times the different com-
binations of the variables were observed. The output of the formula is
a number between -1 and 1 that describes the correlation.

We could take the event of eating pizza and put that in a frequency
table like this, where each number indicates the number of times that
combination occurred in our measurements.

97

No squirrel, no pizza 76

Squirrel, no pizza 4

No squirrel, pizza 9

Squirrel, pizza 1

If we call that table n, we can compute φ using the following formula:

φ =
n11n00 − n10n01√

n1•n0•n•1n•0
(4.1)

(If at this point you’re putting the book down to focus on a terrible
flashback to 10th grade math class—hold on! I do not intend to torture
you with endless pages of cryptic notation—it’s just this one formula
for now. And even with this one, all we do is turn it into JavaScript.)

The notation n01 indicates the number of measurements where the
first variable (squirrelness) is false (0) and the second variable (pizza)
is true (1). In the pizza table, n01 is 9.

The value n1• refers to the sum of all measurements where the first
variable is true, which is 5 in the example table. Likewise, n•0 refers to
the sum of the measurements where the second variable is false.

So for the pizza table, the part above the division line (the dividend)
would be 1×76−4×9 = 40, and the part below it (the divisor) would
be the square root of 5×85×10×80, or √

340, 000. This comes out to φ

98

≈ 0.069, which is tiny. Eating pizza does not appear to have influence
on the transformations.

Computing correlation

We can represent a two-by-two table in JavaScript with a four-element
array ([76, 9, 4, 1]). We could also use other representations, such
as an array containing two two-element arrays ([[76, 9], [4, 1]]) or
an object with property names like "11" and "01", but the flat array is
simple and makes the expressions that access the table pleasantly short.
We’ll interpret the indices to the array as two-bit binary numbers, where
the leftmost (most significant) digit refers to the squirrel variable and
the rightmost (least significant) digit refers to the event variable. For
example, the binary number 10 refers to the case where Jacques did
turn into a squirrel, but the event (say, “pizza”) didn’t occur. This
happened four times. And since binary 10 is 2 in decimal notation, we
will store this number at index 2 of the array.

This is the function that computes the φ coefficient from such an
array:

function phi(table) {
return (table[3] * table[0] - table[2] * table[1]) /

Math.sqrt((table[2] + table[3]) *
(table[0] + table[1]) *
(table[1] + table[3]) *
(table[0] + table[2]));

}

99

console.log(phi([76, 9, 4, 1]));
// → 0.068599434

This is a direct translation of the φ formula into JavaScript. Math.sqrt

is the square root function, as provided by the Math object in a standard
JavaScript environment. We have to add two fields from the table to
get fields like n1• because the sums of rows or columns are not stored
directly in our data structure.

Jacques keeps his journal for three months. The resulting dataset is
available in the coding sandbox for this chapter (https://eloquentjavascript.net/
code#4), where it is stored in the JOURNAL binding, and in a download-
able file.

To extract a two-by-two table for a specific event from the journal,
we must loop over all the entries and tally how many times the event
occurs in relation to squirrel transformations:

function tableFor(event, journal) {
let table = [0, 0, 0, 0];
for (let i = 0; i < journal.length; i++) {

let entry = journal[i], index = 0;
if (entry.events.includes(event)) index += 1;
if (entry.squirrel) index += 2;
table[index] += 1;

}
return table;

}

console.log(tableFor("pizza", JOURNAL));
// → [76, 9, 4, 1]

100

https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code/journal.js

Arrays have an includes method that checks whether a given value
exists in the array. The function uses that to determine whether the
event name it is interested in is part of the event list for a given day.

The body of the loop in tableFor figures out which box in the table
each journal entry falls into by checking whether the entry contains the
specific event it’s interested in and whether the event happens alongside
a squirrel incident. The loop then adds one to the correct box in the
table.

We now have the tools we need to compute individual correlations.
The only step remaining is to find a correlation for every type of event
that was recorded and see whether anything stands out.

Array loops

In the tableFor function, there’s a loop like this:

for (let i = 0; i < JOURNAL.length; i++) {
let entry = JOURNAL[i];
// Do something with entry

}

This kind of loop is common in classical JavaScript—going over arrays
one element at a time is something that comes up a lot, and to do
that you’d run a counter over the length of the array and pick out each
element in turn.

There is a simpler way to write such loops in modern JavaScript:

for (let entry of JOURNAL) {

101

console.log(`${entry.events.length} events.`);
}

When a for loop uses the word of after its variable definition, it will
loop over the elements of the value given after of. This works not only
for arrays but also for strings and some other data structures. We’ll
discuss how it works in Chapter 6.

The final analysis

We need to compute a correlation for every type of event that occurs
in the dataset. To do that, we first need to find every type of event.

function journalEvents(journal) {
let events = [];
for (let entry of journal) {

for (let event of entry.events) {
if (!events.includes(event)) {

events.push(event);
}

}
}
return events;

}

console.log(journalEvents(JOURNAL));
// → ["carrot", "exercise", "weekend", "bread", …]

By adding any event names that aren’t already in it to the events array,

102

the function collects every type of event.
Using that function, we can see all the correlations:

for (let event of journalEvents(JOURNAL)) {
console.log(event + ":", phi(tableFor(event, JOURNAL)));

}
// → carrot: 0.0140970969
// → exercise: 0.0685994341
// → weekend: 0.1371988681
// → bread: -0.0757554019
// → pudding: -0.0648203724
// And so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or
pudding apparently does not trigger squirrel-lycanthropy. The trans-
formations do seem to occur somewhat more often on weekends. Let’s
filter the results to show only correlations greater than 0.1 or less than
-0.1:

for (let event of journalEvents(JOURNAL)) {
let correlation = phi(tableFor(event, JOURNAL));
if (correlation > 0.1 || correlation < -0.1) {

console.log(event + ":", correlation);
}

}
// → weekend: 0.1371988681
// → brushed teeth: -0.3805211953
// → candy: 0.1296407447
// → work: -0.1371988681
// → spaghetti: 0.2425356250

103

// → reading: 0.1106828054
// → peanuts: 0.5902679812

Aha! There are two factors with a correlation clearly stronger than
the others. Eating peanuts has a strong positive effect on the chance of
turning into a squirrel, whereas brushing teeth has a significant negative
effect.

Interesting. Let’s try something.

for (let entry of JOURNAL) {
if (entry.events.includes("peanuts") &&

!entry.events.includes("brushed teeth")) {
entry.events.push("peanut teeth");

}
}
console.log(phi(tableFor("peanut teeth", JOURNAL)));
// → 1

That’s a strong result. The phenomenon occurs precisely when Jacques
eats peanuts and fails to brush his teeth. If only he weren’t such a slob
about dental hygiene, he’d never even have noticed his affliction.

Knowing this, Jacques stops eating peanuts altogether and finds that
his transformations stop.

But it takes only a few months for him to notice that something
is missing from this entirely human way of living. Without his feral
adventures, Jacques hardly feels alive at all. He decides he’d rather be
a full-time wild animal. After building a beautiful little tree house in
the forest and equipping it with a peanut butter dispenser and a ten-
year supply of peanut butter, he changes form one last time, and lives

104

the short and energetic life of a squirrel.

Further arrayology

Before finishing the chapter, I want to introduce you to a few more
object-related concepts. I’ll start with some generally useful array meth-
ods.

We saw push and pop, which add and remove elements at the end of
an array, earlier in this chapter. The corresponding methods for adding
and removing things at the start of an array are called unshift and
shift.

let todoList = [];
function remember(task) {

todoList.push(task);
}
function getTask() {

return todoList.shift();
}
function rememberUrgently(task) {

todoList.unshift(task);
}

This program manages a queue of tasks. You add tasks to the end of
the queue by calling remember("groceries"), and when you’re ready to
do something, you call getTask() to get (and remove) the front item
from the queue. The rememberUrgently function also adds a task but
adds it to the front instead of the back of the queue.

105

To search for a specific value, arrays provide an indexOf method.
The method searches through the array from the start to the end and
returns the index at which the requested value was found—or -1 if it
wasn’t found. To search from the end instead of the start, there’s a
similar method called lastIndexOf:

console.log([1, 2, 3, 2, 1].indexOf(2));
// → 1
console.log([1, 2, 3, 2, 1].lastIndexOf(2));
// → 3

Both indexOf and lastIndexOf take an optional second argument that
indicates where to start searching.

Another fundamental array method is slice, which takes start and
end indices and returns an array that has only the elements between
them. The start index is inclusive and the end index is exclusive.

console.log([0, 1, 2, 3, 4].slice(2, 4));
// → [2, 3]
console.log([0, 1, 2, 3, 4].slice(2));
// → [2, 3, 4]

When the end index is not given, slice will take all of the elements
after the start index. You can also omit the start index to copy the
entire array.

The concat method can be used to append arrays together to create
a new array, similar to what the + operator does for strings.

The following example shows both concat and slice in action. It
takes an array and an index and returns a new array that is a copy of

106

the original array with the element at the given index removed:

function remove(array, index) {
return array.slice(0, index)

.concat(array.slice(index + 1));
}
console.log(remove(["a", "b", "c", "d", "e"], 2));
// → ["a", "b", "d", "e"]

If you pass concat an argument that is not an array, that value will be
added to the new array as if it were a one-element array.

Strings and their properties

We can read properties like length and toUpperCase from string values.
But if we try to add a new property, it doesn’t stick.

let kim = "Kim";
kim.age = 88;
console.log(kim.age);
// → undefined

Values of type string, number, and Boolean are not objects, and though
the language doesn’t complain if you try to set new properties on them,
it doesn’t actually store those properties. As mentioned earlier, such
values are immutable and cannot be changed.

But these types do have built-in properties. Every string value has
a number of methods. Some very useful ones are slice and indexOf,
which resemble the array methods of the same name:

107

console.log("coconuts".slice(4, 7));
// → nut
console.log("coconut".indexOf("u"));
// → 5

One difference is that a string’s indexOf can search for a string contain-
ing more than one character, whereas the corresponding array method
looks only for a single element:

console.log("one two three".indexOf("ee"));
// → 11

The trim method removes whitespace (spaces, newlines, tabs, and sim-
ilar characters) from the start and end of a string:

console.log(" okay \n ".trim());
// → okay

The zeroPad function from the previous chapter also exists as a method.
It is called padStart and takes the desired length and padding character
as arguments:

console.log(String(6).padStart(3, "0"));
// → 006

You can split a string on every occurrence of another string with split

and join it again with join:

let sentence = "Secretarybirds specialize in stomping";
let words = sentence.split(" ");
console.log(words);

108

// → ["Secretarybirds", "specialize", "in", "stomping"]
console.log(words.join(". "));
// → Secretarybirds. specialize. in. stomping

A string can be repeated with the repeat method, which creates a new
string containing multiple copies of the original string, glued together:

console.log("LA".repeat(3));
// → LALALA

We have already seen the string type’s length property. Accessing the
individual characters in a string looks like accessing array elements
(with a complication that we’ll discuss in Chapter 5).

let string = "abc";
console.log(string.length);
// → 3
console.log(string[1]);
// → b

Rest parameters

It can be useful for a function to accept any number of arguments.
For example, Math.max computes the maximum of all the arguments
it is given. To write such a function, you put three dots before the
function’s last parameter, like this:

function max(...numbers) {
let result = -Infinity;

109

for (let number of numbers) {
if (number > result) result = number;

}
return result;

}
console.log(max(4, 1, 9, -2));
// → 9

When such a function is called, the rest parameter is bound to an array
containing all further arguments. If there are other parameters before
it, their values aren’t part of that array. When, as in max, it is the only
parameter, it will hold all arguments.

You can use a similar three-dot notation to call a function with an
array of arguments.

let numbers = [5, 1, 7];
console.log(max(...numbers));
// → 7

This “spreads” out the array into the function call, passing its elements
as separate arguments. It is possible to include an array like that along
with other arguments, as in max(9, ...numbers, 2).

Square bracket array notation similarly allows the triple-dot operator
to spread another array into the new array:

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);
// → ["will", "never", "fully", "understand"]

This works even in curly brace objects, where it adds all properties from

110

another object. If a property is added multiple times, the last value to
be added wins:

let coordinates = {x: 10, y: 0};
console.log({...coordinates, y: 5, z: 1});
// → {x: 10, y: 5, z: 1}

The Math object

As we’ve seen, Math is a grab bag of number-related utility functions such
as Math.max (maximum), Math.min (minimum), and Math.sqrt (square
root).

The Math object is used as a container to group a bunch of related
functionality. There is only one Math object, and it is almost never useful
as a value. Rather, it provides a namespace so that all these functions
and values do not have to be global bindings.

Having too many global bindings “pollutes” the namespace. The
more names have been taken, the more likely you are to accidentally
overwrite the value of some existing binding. For example, it’s not
unlikely you’ll want to name something max in one of your programs.
Since JavaScript’s built-in max function is tucked safely inside the Math

object, you don’t have to worry about overwriting it.
Many languages will stop you, or at least warn you, when you are

defining a binding with a name that is already taken. JavaScript does
this for bindings you declared with let or const but—perversely—not
for standard bindings nor for bindings declared with var or function.

111

Back to the Math object. If you need to do trigonometry, Math can
help. It contains cos (cosine), sin (sine), and tan (tangent), as well as
their inverse functions, acos, asin, and atan, respectively. The number
π (pi)—or at least the closest approximation that fits in a JavaScript
number—is available as Math.PI. There is an old programming tradition
of writing the names of constant values in all caps.

function randomPointOnCircle(radius) {
let angle = Math.random() * 2 * Math.PI;
return {x: radius * Math.cos(angle),

y: radius * Math.sin(angle)};
}
console.log(randomPointOnCircle(2));
// → {x: 0.3667, y: 1.966}

If you’re not familiar with sines and cosines, don’t worry. I’ll explain
them when they are used in Chapter 14.

The previous example used Math.random. This is a function that re-
turns a new pseudorandom number between 0 (inclusive) and 1 (exclu-
sive) every time you call it:

console.log(Math.random());
// → 0.36993729369714856
console.log(Math.random());
// → 0.727367032552138
console.log(Math.random());
// → 0.40180766698904335

Though computers are deterministic machines—they always react the
same way if given the same input—it is possible to have them produce

112

numbers that appear random. To do that, the machine keeps some hid-
den value, and whenever you ask for a new random number, it performs
complicated computations on this hidden value to create a new value.
It stores a new value and returns some number derived from it. That
way, it can produce ever new, hard-to-predict numbers in a way that
seems random.

If we want a whole random number instead of a fractional one, we
can use Math.floor (which rounds down to the nearest whole number)
on the result of Math.random:

console.log(Math.floor(Math.random() * 10));
// → 2

Multiplying the random number by 10 gives us a number greater than or
equal to 0 and below 10. Since Math.floor rounds down, this expression
will produce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling”, which rounds up
to a whole number), Math.round (to the nearest whole number), and Math

.abs, which takes the absolute value of a number, meaning it negates
negative values but leaves positive ones as they are.

Destructuring

Let’s return to the phi function for a moment.

function phi(table) {
return (table[3] * table[0] - table[2] * table[1]) /

Math.sqrt((table[2] + table[3]) *

113

(table[0] + table[1]) *
(table[1] + table[3]) *
(table[0] + table[2]));

}

One reason this function is awkward to read is that we have a binding
pointing at our array, but we’d much prefer to have bindings for the ele-
ments of the array—that is, let n00 = table[0] and so on. Fortunately,
there is a succinct way to do this in JavaScript:

function phi([n00, n01, n10, n11]) {
return (n11 * n00 - n10 * n01) /

Math.sqrt((n10 + n11) * (n00 + n01) *
(n01 + n11) * (n00 + n10));

}

This also works for bindings created with let, var, or const. If you
know that the value you are binding is an array, you can use square
brackets to “look inside” of the value, binding its contents.

A similar trick works for objects, using braces instead of square brack-
ets.

let {name} = {name: "Faraji", age: 23};
console.log(name);
// → Faraji

Note that if you try to destructure null or undefined, you get an error,
much as you would if you directly try to access a property of those
values.

114

Optional property access

When you aren’t sure whether a given value produces an object, but
still want to read a property from it when it does, you can use a variant
of the dot notation: object?.property.

function city(object) {
return object.address?.city;

}
console.log(city({address: {city: "Toronto"}}));
// → Toronto
console.log(city({name: "Vera"}));
// → undefined

The expression a?.b means the same as a.b when a isn’t null or unde-
fined. When it is, it evaluates to undefined. This can be convenient
when, as in the example, you aren’t sure that a given property exists
or when a variable might hold an undefined value.

A similar notation can be used with square bracket access, and even
with function calls, by putting ?. in front of the parentheses or brackets:

console.log("string".notAMethod?.());
// → undefined
console.log({}.arrayProp?.[0]);
// → undefined

115

JSON

Because properties grasp their value rather than contain it, objects and
arrays are stored in the computer’s memory as sequences of bits holding
the addresses—the place in memory—of their contents. An array with
another array inside of it consists of (at least) one memory region for the
inner array and another for the outer array, containing (among other
things) a number that represents the address of the inner array.

If you want to save data in a file for later or send it to another
computer over the network, you have to somehow convert these tangles
of memory addresses to a description that can be stored or sent. You
could send over your entire computer memory along with the address
of the value you’re interested in, I suppose, but that doesn’t seem like
the best approach.

What we can do is serialize the data. That means it is converted
into a flat description. A popular serialization format is called JSON
(pronounced “Jason”), which stands for JavaScript Object Notation. It
is widely used as a data storage and communication format on the web,
even with languages other than JavaScript.

JSON looks similar to JavaScript’s way of writing arrays and objects,
with a few restrictions. All property names have to be surrounded
by double quotes, and only simple data expressions are allowed—no
function calls, bindings, or anything that involves actual computation.
Comments are not allowed in JSON.

A journal entry might look like this when represented as JSON data:

{

116

"squirrel": false,
"events": ["work", "touched tree", "pizza", "running"]

}

JavaScript gives us the functions JSON.stringify and JSON.parse to con-
vert data to and from this format. The first takes a JavaScript value
and returns a JSON-encoded string. The second takes such a string
and converts it to the value it encodes:

let string = JSON.stringify({squirrel: false,
events: ["weekend"]});

console.log(string);
// → {"squirrel":false,"events":["weekend"]}
console.log(JSON.parse(string).events);
// → ["weekend"]

Summary

Objects and arrays provide ways to group several values into a single
value. This allows us to put a bunch of related things in a bag and run
around with the bag instead of wrapping our arms around all of the
individual things and trying to hold on to them separately.

Most values in JavaScript have properties, with the exceptions being
null and undefined. Properties are accessed using value.prop or value["
prop"]. Objects tend to use names for their properties and store more
or less a fixed set of them. Arrays, on the other hand, usually con-
tain varying amounts of conceptually identical values and use numbers
(starting from 0) as the names of their properties.

117

There are some named properties in arrays, such as length and a
number of methods. Methods are functions that live in properties and
(usually) act on the value of which they are a property.

You can iterate over arrays using a special kind of for loop: for (let

element of array).

Exercises

The sum of a range

The introduction of this book alluded to the following as a nice way to
compute the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end, and
returns an array containing all the numbers from start up to and in-
cluding end.

Next, write a sum function that takes an array of numbers and returns
the sum of these numbers. Run the example program and see whether
it does indeed return 55.

As a bonus assignment, modify your range function to take an op-
tional third argument that indicates the “step” value used when build-
ing the array. If no step is given, the elements should go up by in-
crements of one, corresponding to the old behavior. The function call
range(1, 10, 2) should return [1, 3, 5, 7, 9]. Make sure this also
works with negative step values so that range(5, 2, -1) produces [5,

4, 3, 2].

118

Reversing an array

Arrays have a reverse method that changes the array by inverting the
order in which its elements appear. For this exercise, write two func-
tions, reverseArray and reverseArrayInPlace. The first, reverseArray,
should take an array as its argument and produce a new array that has
the same elements in the inverse order. The second, reverseArrayInPlace
, should do what the reverse method does: modify the array given as
its argument by reversing its elements. Neither may use the standard
reverse method.

Thinking back to the notes about side effects and pure functions in
the previous chapter, which variant do you expect to be useful in more
situations? Which one runs faster?

A list

As generic blobs of values, objects can be used to build all sorts of data
structures. A common data structure is the list (not to be confused
with arrays). A list is a nested set of objects, with the first object
holding a reference to the second, the second to the third, and so on:

let list = {
value: 1,
rest: {

value: 2,
rest: {

value: 3,
rest: null

}

119

}
};

The resulting objects form a chain, as shown in the following diagram:

value: 1
rest: value: 2

rest: value: 3
rest: null

A nice thing about lists is that they can share parts of their struc-
ture. For example, if I create two new values {value: 0, rest: list}

and {value: -1, rest: list} (with list referring to the binding defined
earlier), they are both independent lists, but they share the structure
that makes up their last three elements. The original list is also still a
valid three-element list.

Write a function arrayToList that builds up a list structure like the
one shown when given [1, 2, 3] as argument. Also write a listToArray

function that produces an array from a list. Add the helper functions
prepend, which takes an element and a list and creates a new list that
adds the element to the front of the input list, and nth, which takes a
list and a number and returns the element at the given position in the
list (with zero referring to the first element) or undefined when there is
no such element.

If you haven’t already, also write a recursive version of nth.

120

Deep comparison

The == operator compares objects by identity, but sometimes you’d
prefer to compare the values of their actual properties.

Write a function deepEqual that takes two values and returns true

only if they are the same value or are objects with the same properties,
where the values of the properties are equal when compared with a
recursive call to deepEqual.

To find out whether values should be compared directly (using the
=== operator for that) or have their properties compared, you can use
the typeof operator. If it produces "object" for both values, you should
do a deep comparison. But you have to take one silly exception into
account: because of a historical accident, typeof null also produces
"object".

The Object.keys function will be useful when you need to go over the
properties of objects to compare them.

121

“
There are two ways of constructing a software design: One
way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies.”

—C.A.R. Hoare, 1980 ACM Turing Award Lecture

Chapter 5

Higher-Order Functions

A large program is a costly program, and not just because of the time
it takes to build. Size almost always involves complexity, and complex-
ity confuses programmers. Confused programmers, in turn, introduce
mistakes (bugs) into programs. A large program then provides a lot of
space for these bugs to hide, making them hard to find.

Let’s briefly go back to the final two example programs in the intro-
duction. The first is self contained and six lines long.

let total = 0, count = 1;
while (count <= 10) {

total += count;
count += 1;

}
console.log(total);

The second relies on two external functions and is one line long.

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?

122

If we count the size of the definitions of sum and range, the second
program is also big—even bigger than the first. But still, I’d argue that
it is more likely to be correct.

This is because the solution is expressed in a vocabulary that corre-
sponds to the problem being solved. Summing a range of numbers isn’t
about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will
still involve loops, counters, and other incidental details. But because
they are expressing simpler concepts than the program as a whole, they
are easier to get right.

Abstraction

In the context of programming, these kinds of vocabularies are usually
called abstractions. Abstractions give us the ability to talk about prob-
lems at a higher (or more abstract) level, without getting sidetracked
by uninteresting details.

As an analogy, compare these two recipes for pea soup. The first goes
like this:

Put 1 cup of dried peas per person into a container. Add
water until the peas are well covered. Leave the peas in
water for at least 12 hours. Take the peas out of the water
and put them in a cooking pan. Add 4 cups of water per
person. Cover the pan and keep the peas simmering for two
hours. Take half an onion per person. Cut it into pieces
with a knife. Add it to the peas. Take a stalk of celery per

123

person. Cut it into pieces with a knife. Add it to the peas.
Take a carrot per person. Cut it into pieces. With a knife!
Add it to the peas. Cook for 10 more minutes.

And this is the second recipe:

Per person: 1 cup dried split peas, 4 cups of water, half a
chopped onion, a stalk of celery, and a carrot.
Soak peas for 12 hours. Simmer for 2 hours. Chop and add
vegetables. Cook for 10 more minutes.

The second is shorter and easier to interpret. But you do need to
understand a few more cooking-related words such as soak, simmer,
chop, and, I guess, vegetable.

When programming, we can’t rely on all the words we need to be
waiting for us in the dictionary. Thus, we might fall into the pattern of
the first recipe—work out the precise steps the computer has to perform,
one by one, blind to the higher-level concepts they express.

It is a useful skill, in programming, to notice when you are working
at too low a level of abstraction.

Abstracting repetition

Plain functions, as we’ve seen them so far, are a good way to build
abstractions. But sometimes they fall short.

It is common for a program to do something a given number of times.
You can write a for loop for that, like this:

124

for (let i = 0; i < 10; i++) {
console.log(i);

}

Can we abstract “doing something N times” as a function? Well, it’s
easy to write a function that calls console.log N times.

function repeatLog(n) {
for (let i = 0; i < n; i++) {

console.log(i);
}

}

But what if we want to do something other than logging the numbers?
Since “doing something” can be represented as a function and functions
are just values, we can pass our action as a function value.

function repeat(n, action) {
for (let i = 0; i < n; i++) {

action(i);
}

}

repeat(3, console.log);
// → 0
// → 1
// → 2

We don’t have to pass a predefined function to repeat. Often, it is easier
to create a function value on the spot instead.

125

let labels = [];
repeat(5, i => {

labels.push(`Unit ${i + 1}`);
});
console.log(labels);
// → ["Unit 1", "Unit 2", "Unit 3", "Unit 4", "Unit 5"]

This is structured a little like a for loop—it first describes the kind
of loop and then provides a body. However, the body is now written
as a function value, which is wrapped in the parentheses of the call
to repeat. This is why it has to be closed with the closing brace and
closing parenthesis. In cases like this example, where the body is a
single small expression, you could also omit the braces and write the
loop on a single line.

Higher-order functions

Functions that operate on other functions, either by taking them as ar-
guments or by returning them, are called higher-order functions. Since
we have already seen that functions are regular values, there is nothing
particularly remarkable about the fact that such functions exist. The
term comes from mathematics, where the distinction between functions
and other values is taken more seriously.

Higher-order functions allow us to abstract over actions, not just
values. They come in several forms. For example, we can have functions
that create new functions.

function greaterThan(n) {

126

return m => m > n;
}
let greaterThan10 = greaterThan(10);
console.log(greaterThan10(11));
// → true

We can also have functions that change other functions.

function noisy(f) {
return (...args) => {

console.log("calling with", args);
let result = f(...args);
console.log("called with", args, ", returned", result);
return result;

};
}
noisy(Math.min)(3, 2, 1);
// → calling with [3, 2, 1]
// → called with [3, 2, 1] , returned 1

We can even write functions that provide new types of control flow.

function unless(test, then) {
if (!test) then();

}

repeat(3, n => {
unless(n % 2 == 1, () => {

console.log(n, "is even");
});

});

127

// → 0 is even
// → 2 is even

There is a built-in array method, forEach, that provides something like
a for/of loop as a higher-order function.

["A", "B"].forEach(l => console.log(l));
// → A
// → B

Script dataset

One area where higher-order functions shine is data processing. To
process data, we’ll need some actual example data. This chapter will
use a dataset about scripts—writing systems such as Latin, Cyrillic, or
Arabic.

Remember Unicode, the system that assigns a number to each char-
acter in written language, from Chapter 1? Most of these characters are
associated with a specific script. The standard contains 140 different
scripts, of which 81 are still in use today and 59 are historic.

Though I can fluently read only Latin characters, I appreciate the
fact that people are writing texts in at least 80 other writing systems,
many of which I wouldn’t even recognize. For example, here’s a sample
of Tamil handwriting:

128

The example dataset contains some pieces of information about the
140 scripts defined in Unicode. It is available in the coding sandbox
for this chapter (https://eloquentjavascript.net/code#5) as the SCRIPTS

binding. The binding contains an array of objects, each of which
describes a script.

{
name: "Coptic",
ranges: [[994, 1008], [11392, 11508], [11513, 11520]],
direction: "ltr",
year: -200,
living: false,
link: "https://en.wikipedia.org/wiki/Coptic_alphabet"

}

Such an object tells us the name of the script, the Unicode ranges
assigned to it, the direction in which it is written, the (approximate)
origin time, whether it is still in use, and a link to more information.
The direction may be "ltr" for left to right, "rtl" for right to left (the
way Arabic and Hebrew text are written), or "ttb" for top to bottom
(as with Mongolian writing).

The ranges property contains an array of Unicode character ranges,
each of which is a two-element array containing a lower bound and an
upper bound. Any character codes within these ranges are assigned to

129

https://eloquentjavascript.net/code#5
https://eloquentjavascript.net/code#5

the script. The lower bound is inclusive (code 994 is a Coptic character)
and the upper bound is noninclusive (code 1008 isn’t).

Filtering arrays

If we want to find the scripts in the dataset that are still in use, the
following function might be helpful. It filters out elements in an array
that don’t pass a test.

function filter(array, test) {
let passed = [];
for (let element of array) {

if (test(element)) {
passed.push(element);

}
}
return passed;

}

console.log(filter(SCRIPTS, script => script.living));
// → [{name: "Adlam", …}, …]

The function uses the argument named test, a function value, to fill a
“gap” in the computation—the process of deciding which elements to
collect.

Note how the filter function, rather than deleting elements from the
existing array, builds up a new array with only the elements that pass
the test. This function is pure. It does not modify the array it is given.

Like forEach, filter is a standard array method. The example defined

130

the function only to show what it does internally. From now on, we’ll
use it like this instead:

console.log(SCRIPTS.filter(s => s.direction == "ttb"));
// → [{name: "Mongolian", …}, …]

Transforming with map

Say we have an array of objects representing scripts, produced by fil-
tering the SCRIPTS array somehow. We want an array of names instead,
which is easier to inspect.

The map method transforms an array by applying a function to all of
its elements and building a new array from the returned values. The
new array will have the same length as the input array, but its content
will have been mapped to a new form by the function.

function map(array, transform) {
let mapped = [];
for (let element of array) {

mapped.push(transform(element));
}
return mapped;

}

let rtlScripts = SCRIPTS.filter(s => s.direction == "rtl");
console.log(map(rtlScripts, s => s.name));
// → ["Adlam", "Arabic", "Imperial Aramaic", …]

Like forEach and filter, map is a standard array method.

131

Summarizing with reduce

Another common thing to do with arrays is to compute a single value
from them. Our recurring example, summing a collection of numbers,
is an instance of this. Another example is finding the script with the
most characters.

The higher-order operation that represents this pattern is called re-
duce (sometimes also called fold). It builds a value by repeatedly tak-
ing a single element from the array and combining it with the current
value. When summing numbers, you’d start with the number zero and,
for each element, add that to the sum.

The parameters to reduce are, apart from the array, a combining
function and a start value. This function is a little less straightforward
than filter and map, so take a close look at it:

function reduce(array, combine, start) {
let current = start;
for (let element of array) {

current = combine(current, element);
}
return current;

}

console.log(reduce([1, 2, 3, 4], (a, b) => a + b, 0));
// → 10

The standard array method reduce, which of course corresponds to this
function, has an added convenience. If your array contains at least
one element, you are allowed to leave off the start argument. The

132

method will take the first element of the array as its start value and
start reducing at the second element.

console.log([1, 2, 3, 4].reduce((a, b) => a + b));
// → 10

To use reduce (twice) to find the script with the most characters, we
can write something like this:

function characterCount(script) {
return script.ranges.reduce((count, [from, to]) => {

return count + (to - from);
}, 0);

}

console.log(SCRIPTS.reduce((a, b) => {
return characterCount(a) < characterCount(b) ? b : a;

}));
// → {name: "Han", …}

The characterCount function reduces the ranges assigned to a script by
summing their sizes. Note the use of destructuring in the parameter list
of the reducer function. The second call to reduce then uses this to find
the largest script by repeatedly comparing two scripts and returning
the larger one.

The Han script has more than 89,000 characters assigned to it in the
Unicode standard, making it by far the biggest writing system in the
dataset. Han is a script sometimes used for Chinese, Japanese, and
Korean text. Those languages share a lot of characters, though they
tend to write them differently. The (US-based) Unicode Consortium

133

decided to treat them as a single writing system to save character codes.
This is called Han unification and still makes some people very angry.

Composability

Consider how we would have written the previous example (finding the
biggest script) without higher-order functions. The code is not that
much worse.

let biggest = null;
for (let script of SCRIPTS) {

if (biggest == null ||
characterCount(biggest) < characterCount(script)) {

biggest = script;
}

}
console.log(biggest);
// → {name: "Han", …}

There are a few more bindings, and the program is four lines longer,
but it is still very readable.

The abstractions these functions provide really shine when you need
to compose operations. As an example, let’s write code that finds the
average year of origin for living and dead scripts in the dataset.

function average(array) {
return array.reduce((a, b) => a + b) / array.length;

}

134

console.log(Math.round(average(
SCRIPTS.filter(s => s.living).map(s => s.year))));

// → 1165
console.log(Math.round(average(

SCRIPTS.filter(s => !s.living).map(s => s.year))));
// → 204

As you can see, the dead scripts in Unicode are, on average, older than
the living ones. This is not a terribly meaningful or surprising statistic.
But I hope you’ll agree that the code used to compute it isn’t hard to
read. You can see it as a pipeline: we start with all scripts, filter out
the living (or dead) ones, take the years from those, average them, and
round the result.

You could definitely also write this computation as one big loop.

let total = 0, count = 0;
for (let script of SCRIPTS) {

if (script.living) {
total += script.year;
count += 1;

}
}
console.log(Math.round(total / count));
// → 1165

However, it is harder to see what was being computed and how. And
because intermediate results aren’t represented as coherent values, it’d
be a lot more work to extract something like average into a separate
function.

In terms of what the computer is actually doing, these two approaches

135

are also quite different. The first will build up new arrays when running
filter and map, whereas the second computes only some numbers, doing
less work. You can usually afford the readable approach, but if you’re
processing huge arrays and doing so many times, the less abstract style
might be worth the extra speed.

Strings and character codes

One interesting use of this dataset would be figuring out what script a
piece of text is using. Let’s go through a program that does this.

Remember that each script has an array of character code ranges
associated with it. Given a character code, we could use a function like
this to find the corresponding script (if any):

function characterScript(code) {
for (let script of SCRIPTS) {

if (script.ranges.some(([from, to]) => {
return code >= from && code < to;

})) {
return script;

}
}
return null;

}

console.log(characterScript(121));
// → {name: "Latin", …}

The some method is another higher-order function. It takes a test func-

136

tion and tells you whether that function returns true for any of the
elements in the array.

But how do we get the character codes in a string?
In Chapter 1 I mentioned that JavaScript strings are encoded as a

sequence of 16-bit numbers. These are called code units. A Unicode
character code was initially supposed to fit within such a unit (which
gives you a little over 65,000 characters). When it became clear that
wasn’t going to be enough, many people balked at the need to use
more memory per character. To address these concerns, UTF-16, the
format also used by JavaScript strings, was invented. It describes most
common characters using a single 16-bit code unit but uses a pair of
two such units for others.

UTF-16 is generally considered a bad idea today. It seems almost
intentionally designed to invite mistakes. It’s easy to write programs
that pretend code units and characters are the same thing. And if your
language doesn’t use two-unit characters, that will appear to work just
fine. But as soon as someone tries to use such a program with some less
common Chinese characters, it breaks. Fortunately, with the advent of
emoji, everybody has started using two-unit characters, and the burden
of dealing with such problems is more fairly distributed.

Unfortunately, obvious operations on JavaScript strings, such as get-
ting their length through the length property and accessing their con-
tent using square brackets, deal only with code units.

// Two emoji characters, horse and shoe

let horseShoe = "🐴👟";
console.log(horseShoe.length);

137

// → 4
console.log(horseShoe[0]);
// → (Invalid half-character)
console.log(horseShoe.charCodeAt(0));
// → 55357 (Code of the half-character)
console.log(horseShoe.codePointAt(0));
// → 128052 (Actual code for horse emoji)

JavaScript’s charCodeAt method gives you a code unit, not a full charac-
ter code. The codePointAt method, added later, does give a full Unicode
character, so we could use that to get characters from a string. But the
argument passed to codePointAt is still an index into the sequence of
code units. To run over all characters in a string, we’d still need to
deal with the question of whether a character takes up one or two code
units.

In the previous chapter, I mentioned that a for/of loop can also be
used on strings. Like codePointAt, this type of loop was introduced at
a time when people were acutely aware of the problems with UTF-16.
When you use it to loop over a string, it gives you real characters, not
code units.

let roseDragon = "🌹🐉";
for (let char of roseDragon) {

console.log(char);
}

// → 🌹
// → 🐉

If you have a character (which will be a string of one or two code units),

138

you can use codePointAt(0) to get its code.

Recognizing text

We have a characterScript function and a way to correctly loop over
characters. The next step is to count the characters that belong to each
script. The following counting abstraction will be useful there:

function countBy(items, groupName) {
let counts = [];
for (let item of items) {

let name = groupName(item);
let known = counts.find(c => c.name == name);
if (!known) {

counts.push({name, count: 1});
} else {

known.count++;
}

}
return counts;

}

console.log(countBy([1, 2, 3, 4, 5], n => n > 2));
// → [{name: false, count: 2}, {name: true, count: 3}]

The countBy function expects a collection (anything that we can loop
over with for/of) and a function that computes a group name for a
given element. It returns an array of objects, each of which names a
group and tells you the number of elements that were found in that

139

group.
It uses another array method, find, which goes over the elements in

the array and returns the first one for which a function returns true. It
returns undefined when it finds no such element.

Using countBy, we can write the function that tells us which scripts
are used in a piece of text.

function textScripts(text) {
let scripts = countBy(text, char => {

let script = characterScript(char.codePointAt(0));
return script ? script.name : "none";

}).filter(({name}) => name != "none");

let total = scripts.reduce((n, {count}) => n + count, 0);
if (total == 0) return "No scripts found";

return scripts.map(({name, count}) => {
return `${Math.round(count * 100 / total)}% ${name}`;

}).join(", ");
}

console.log(textScripts('英国的狗说"woof", 俄罗斯的狗说"тяв"'))
;

// → 61% Han, 22% Latin, 17% Cyrillic

The function first counts the characters by name, using characterScript

to assign them a name and falling back to the string "none" for char-
acters that aren’t part of any script. The filter call drops the entry
for "none" from the resulting array, since we aren’t interested in those

140

characters.
To be able to compute percentages, we first need the total number of

characters that belong to a script, which we can compute with reduce

. If we find no such characters, the function returns a specific string.
Otherwise, it transforms the counting entries into readable strings with
map and then combines them with join.

Summary

Being able to pass function values to other functions is a deeply useful
aspect of JavaScript. It allows us to write functions that model com-
putations with “gaps” in them. The code that calls these functions can
fill in the gaps by providing function values.

Arrays provide a number of useful higher-order methods. You can
use forEach to loop over the elements in an array. The filter method
returns a new array containing only the elements that pass the predicate
function. You can transform an array by putting each element through
a function using map. You can use reduce to combine all the elements
in an array into a single value. The some method tests whether any
element matches a given predicate function, while find finds the first
element that matches a predicate.

141

Exercises

Flattening

Use the reduce method in combination with the concat method to “flat-
ten” an array of arrays into a single array that has all the elements of
the original arrays.

Your own loop

Write a higher-order function loop that provides something like a for

loop statement. It should take a value, a test function, an update
function, and a body function. Each iteration, it should first run the
test function on the current loop value and stop if that returns false.
It should then call the body function, giving it the current value, and
finally call the update function to create a new value and start over
from the beginning.

When defining the function, you can use a regular loop to do the
actual looping.

Everything

Arrays also have an every method analogous to the some method. This
method returns true when the given function returns true for every
element in the array. In a way, some is a version of the || operator that
acts on arrays, and every is like the && operator.

Implement every as a function that takes an array and a predicate
function as parameters. Write two versions, one using a loop and one

142

using the some method.

Dominant writing direction

Write a function that computes the dominant writing direction in a
string of text. Remember that each script object has a direction prop-
erty that can be "ltr" (left to right), "rtl" (right to left), or "ttb" (top
to bottom).

The dominant direction is the direction of a majority of the char-
acters that have a script associated with them. The characterScript

and countBy functions defined earlier in the chapter are probably useful
here.

143

“An abstract data type is realized by writing a special kind of
program […] which defines the type in terms of the operations
which can be performed on it.”
—Barbara Liskov, Programming with Abstract Data Types

Chapter 6

The Secret Life of Objects

Chapter 4 introduced JavaScript’s objects as containers that hold other
data. In programming culture, object-oriented programming is a set of
techniques that use objects as the central principle of program organi-
zation. Though no one really agrees on its precise definition, object-
oriented programming has shaped the design of many programming
languages, including JavaScript. This chapter describes the way these
ideas can be applied in JavaScript.

Abstract Data Types

The main idea in object-oriented programming is to use objects, or
rather types of objects, as the unit of program organization. Setting
up a program as a number of strictly separated object types provides
a way to think about its structure and thus to enforce some kind of
discipline, preventing everything from becoming entangled.

The way to do this is to think of objects somewhat like you’d think of
an electric mixer or other consumer appliance. The people who design

144

and assemble a mixer have to do specialized work requiring material
science and understanding of electricity. They cover all that up in a
smooth plastic shell so that the people who only want to mix pancake
batter don’t have to worry about all that—they have to understand
only the few knobs that the mixer can be operated with.

Similarly, an abstract data type, or object class, is a subprogram that
may contain arbitrarily complicated code but exposes a limited set of
methods and properties that people working with it are supposed to
use. This allows large programs to be built up out of a number of
appliance types, limiting the degree to which these different parts are
entangled by requiring them to only interact with each other in specific
ways.

If a problem is found in one such object class, it can often be repaired
or even completely rewritten without impacting the rest of the program.
Even better, it may be possible to use object classes in multiple different
programs, avoiding the need to recreate their functionality from scratch.
You can think of JavaScript’s built-in data structures, such as arrays
and strings, as such reusable abstract data types.

Each abstract data type has an interface, the collection of operations
that external code can perform on it. Any details beyond that interface
are encapsulated, treated as internal to the type and of no concern to
the rest of the program.

Even basic things like numbers can be thought of as an abstract data
type whose interface allows us to add them, multiply them, compare
them, and so on. In fact, the fixation on single objects as the main unit
of organization in classical object-oriented programming is somewhat

145

unfortunate since useful pieces of functionality often involve a group of
different object classes working closely together.

Methods

In JavaScript, methods are nothing more than properties that hold
function values. This is a simple method:

function speak(line) {
console.log(`The ${this.type} rabbit says '${line}'`);

}
let whiteRabbit = {type: "white", speak};
let hungryRabbit = {type: "hungry", speak};

whiteRabbit.speak("Oh my fur and whiskers");
// → The white rabbit says 'Oh my fur and whiskers'
hungryRabbit.speak("Got any carrots?");
// → The hungry rabbit says 'Got any carrots?'

Typically a method needs to do something with the object on which
it was called. When a function is called as a method—looked up as
a property and immediately called, as in object.method()—the binding
called this in its body automatically points at the object on which it
was called.

You can think of this as an extra parameter that is passed to the
function in a different way than regular parameters. If you want to
provide it explicitly, you can use a function’s call method, which takes
the this value as its first argument and treats further arguments as

146

normal parameters.

speak.call(whiteRabbit, "Hurry");
// → The white rabbit says 'Hurry'

Since each function has its own this binding whose value depends on
the way it is called, you cannot refer to the this of the wrapping scope
in a regular function defined with the function keyword.

Arrow functions are different—they do not bind their own this but
can see the this binding of the scope around them. Thus, you can do
something like the following code, which references this from inside a
local function:

let finder = {
find(array) {

return array.some(v => v == this.value);
},
value: 5

};
console.log(finder.find([4, 5]));
// → true

A property like find(array) in an object expression is a shorthand way
of defining a method. It creates a property called find and gives it a
function as its value.

If I had written the argument to some using the function keyword,
this code wouldn’t work.

147

Prototypes

One way to create a rabbit object type with a speak method would
be to create a helper function that has a rabbit type as its parameter
and returns an object holding that as its type property and our speak
function in its speak property.

All rabbits share that same method. Especially for types with many
methods, it would be nice if there were a way to keep a type’s methods
in a single place, rather than adding them to each object individually.

In JavaScript, prototypes are the way to do that. Objects can be
linked to other objects, to magically get all the properties that other
object has. Plain old objects created with {} notation are linked to an
object called Object.prototype.

let empty = {};
console.log(empty.toString);
// → function toString()…{}
console.log(empty.toString());
// → [object Object]

It looks like we just pulled a property out of an empty object. But
in fact, toString is a method stored in Object.prototype, meaning it is
available in most objects.

When an object gets a request for a property that it doesn’t have,
its prototype will be searched for the property. If that doesn’t have it,
the prototype’s prototype is searched, and so on until an object without
prototype is reached (Object.prototype is such an object).

console.log(Object.getPrototypeOf({}) == Object.prototype);

148

// → true
console.log(Object.getPrototypeOf(Object.prototype));
// → null

As you’d guess, Object.getPrototypeOf returns the prototype of an ob-
ject.

Many objects don’t directly have Object.prototype as their prototype
but instead have another object that provides a different set of default
properties. Functions derive from Function.prototype and arrays derive
from Array.prototype.

console.log(Object.getPrototypeOf(Math.max) ==
Function.prototype);

// → true
console.log(Object.getPrototypeOf([]) == Array.prototype);
// → true

Such a prototype object will itself have a prototype, often Object.

prototype, so that it still indirectly provides methods like toString.
You can use Object.create to create an object with a specific proto-

type.

let protoRabbit = {
speak(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
}

};
let blackRabbit = Object.create(protoRabbit);
blackRabbit.type = "black";
blackRabbit.speak("I am fear and darkness");

149

// → The black rabbit says 'I am fear and darkness'

The “proto” rabbit acts as a container for the properties shared by all
rabbits. An individual rabbit object, like the black rabbit, contains
properties that apply only to itself—in this case its type—and derives
shared properties from its prototype.

Classes

JavaScript’s prototype system can be interpreted as a somewhat free-
form take on abstract data types or classes. A class defines the shape of
a type of object—what methods and properties it has. Such an object
is called an instance of the class.

Prototypes are useful for defining properties for which all instances
of a class share the same value. Properties that differ per instance, such
as our rabbits’ type property, need to be stored directly in the objects
themselves.

To create an instance of a given class, you have to make an object
that derives from the proper prototype, but you also have to make sure
it itself has the properties that instances of this class are supposed to
have. This is what a constructor function does.

function makeRabbit(type) {
let rabbit = Object.create(protoRabbit);
rabbit.type = type;
return rabbit;

}

150

JavaScript’s class notation makes it easier to define this type of function,
along with a prototype object.

class Rabbit {
constructor(type) {

this.type = type;
}
speak(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
}

}

The class keyword starts a class declaration, which allows us to define
a constructor and a set of methods together. Any number of methods
may be written inside the declaration’s braces. This code has the effect
of defining a binding called Rabbit, which holds a function that runs the
code in constructor and has a prototype property that holds the speak

method.
This function cannot be called like a normal function. Constructors,

in JavaScript, are called by putting the keyword new in front of them.
Doing so creates a fresh instance object whose prototype is the object
from the function’s prototype property, then runs the function with this

bound to the new object, and finally returns the object.

let killerRabbit = new Rabbit("killer");

In fact, class was only introduced in the 2015 edition of JavaScript.
Any function can be used as a constructor, and before 2015, the way to
define a class was to write a regular function and then manipulate its

151

prototype property.

function ArchaicRabbit(type) {
this.type = type;

}
ArchaicRabbit.prototype.speak = function(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
};
let oldSchoolRabbit = new ArchaicRabbit("old school");

For this reason, all non-arrow functions start with a prototype property
holding an empty object.

By convention, the names of constructors are capitalized so that they
can easily be distinguished from other functions.

It is important to understand the distinction between the way a pro-
totype is associated with a constructor (through its prototype property)
and the way objects have a prototype (which can be found with Object

.getPrototypeOf). The actual prototype of a constructor is Function.

prototype since constructors are functions. The constructor function’s
prototype property holds the prototype used for instances created through
it.

console.log(Object.getPrototypeOf(Rabbit) ==
Function.prototype);

// → true
console.log(Object.getPrototypeOf(killerRabbit) ==

Rabbit.prototype);
// → true

Constructors will typically add some per-instance properties to this. It

152

is also possible to declare properties directly in the class declaration.
Unlike methods, such properties are added to instance objects and not
the prototype.

class Particle {
speed = 0;
constructor(position) {

this.position = position;
}

}

Like function, class can be used both in statements and in expressions.
When used as an expression, it doesn’t define a binding but just pro-
duces the constructor as a value. You are allowed to omit the class
name in a class expression.

let object = new class { getWord() { return "hello"; } };
console.log(object.getWord());
// → hello

Private Properties

It is common for classes to define some properties and methods for
internal use that are not part of their interface. These are called private
properties, as opposed to public ones, which are part of the object’s
external interface.

To declare a private method, put a # sign in front of its name. Such
methods can be called only from inside the class declaration that de-

153

fines them.

class SecretiveObject {
#getSecret() {

return "I ate all the plums";
}
interrogate() {

let shallISayIt = this.#getSecret();
return "never";

}
}

When a class does not declare a constructor, it will automatically get
an empty one.

If you try to call #getSecret from outside the class, you get an error.
Its existence is entirely hidden inside the class declaration.

To use private instance properties, you must declare them. Regu-
lar properties can be created by just assigning to them, but private
properties must be declared in the class declaration to be available at
all.

This class implements an appliance for getting a random whole num-
ber below a given maximum number. It has only one public property:
getNumber.

class RandomSource {
#max;
constructor(max) {

this.#max = max;
}
getNumber() {

154

return Math.floor(Math.random() * this.#max);
}

}

Overriding derived properties

When you add a property to an object, whether it is present in the
prototype or not, the property is added to the object itself. If there was
already a property with the same name in the prototype, this property
will no longer affect the object, as it is now hidden behind the object’s
own property.

Rabbit.prototype.teeth = "small";
console.log(killerRabbit.teeth);
// → small
killerRabbit.teeth = "long, sharp, and bloody";
console.log(killerRabbit.teeth);
// → long, sharp, and bloody
console.log((new Rabbit("basic")).teeth);
// → small
console.log(Rabbit.prototype.teeth);
// → small

The following diagram sketches the situation after this code has run.
The Rabbit and Object prototypes lie behind killerRabbit as a kind of
backdrop, where properties that are not found in the object itself can
be looked up.

155

toString: <function>
...

teeth: "small"
speak: <function>

killerRabbit

teeth: "long, sharp, ..."
type: "killer"

Rabbit

prototype

Object

create: <function>
prototype
...

Overriding properties that exist in a prototype can be a useful thing
to do. As the rabbit teeth example shows, overriding can be used to
express exceptional properties in instances of a more generic class of
objects while letting the nonexceptional objects take a standard value
from their prototype.

Overriding is also used to give the standard function and array pro-
totypes a different toString method than the basic object prototype.

console.log(Array.prototype.toString ==
Object.prototype.toString);

// → false
console.log([1, 2].toString());
// → 1,2

Calling toString on an array gives a result similar to calling .join(",")

on it—it puts commas between the values in the array. Directly calling
Object.prototype.toString with an array produces a different string.
That function doesn’t know about arrays, so it simply puts the word
object and the name of the type between square brackets.

console.log(Object.prototype.toString.call([1, 2]));

156

// → [object Array]

Maps

We saw the word map used in the previous chapter for an operation
that transforms a data structure by applying a function to its elements.
Confusing as it is, in programming the same word is used for a related
but rather different thing.

A map (noun) is a data structure that associates values (the keys)
with other values. For example, you might want to map names to ages.
It is possible to use objects for this.

let ages = {
Boris: 39,
Liang: 22,
Júlia: 62

};

console.log(`Júlia is ${ages["Júlia"]}`);
// → Júlia is 62
console.log("Is Jack's age known?", "Jack" in ages);
// → Is Jack's age known? false
console.log("Is toString's age known?", "toString" in ages);
// → Is toString's age known? true

Here, the object’s property names are the people’s names and the prop-
erty values are their ages. But we certainly didn’t list anybody named
toString in our map. Yet because plain objects derive from Object.

157

prototype, it looks like the property is there.
For this reason, using plain objects as maps is dangerous. There are

several possible ways to avoid this problem. First, you can create ob-
jects with no prototype. If you pass null to Object.create, the resulting
object will not derive from Object.prototype and can be safely used as
a map.

console.log("toString" in Object.create(null));
// → false

Object property names must be strings. If you need a map whose keys
can’t easily be converted to strings—such as objects—you cannot use
an object as your map.

Fortunately, JavaScript comes with a class called Map that is written
for this exact purpose. It stores a mapping and allows any type of keys.

let ages = new Map();
ages.set("Boris", 39);
ages.set("Liang", 22);
ages.set("Júlia", 62);

console.log(`Júlia is ${ages.get("Júlia")}`);
// → Júlia is 62
console.log("Is Jack's age known?", ages.has("Jack"));
// → Is Jack's age known? false
console.log(ages.has("toString"));
// → false

The methods set, get, and has are part of the interface of the Map object.
Writing a data structure that can quickly update and search a large set

158

of values isn’t easy, but we don’t have to worry about that. Someone
else did it for us, and we can go through this simple interface to use
their work.

If you do have a plain object that you need to treat as a map for some
reason, it is useful to know that Object.keys returns only an object’s
own keys, not those in the prototype. As an alternative to the in

operator, you can use the Object.hasOwn function, which ignores the
object’s prototype.

console.log(Object.hasOwn({x: 1}, "x"));
// → true
console.log(Object.hasOwn({x: 1}, "toString"));
// → false

Polymorphism

When you call the String function (which converts a value to a string)
on an object, it will call the toString method on that object to try
to create a meaningful string from it. I mentioned that some of the
standard prototypes define their own version of toString so they can
create a string that contains more useful information than "[object

Object]". You can also do that yourself.

Rabbit.prototype.toString = function() {
return `a ${this.type} rabbit`;

};

console.log(String(killerRabbit));

159

// → a killer rabbit

This is a simple instance of a powerful idea. When a piece of code is
written to work with objects that have a certain interface—in this case,
a toString method—any kind of object that happens to support this
interface can be plugged into the code and will be able to work with it.

This technique is called polymorphism. Polymorphic code can work
with values of different shapes, as long as they support the interface it
expects.

An example of a widely used interface is that of array-like objects that
have a length property holding a number and numbered properties for
each of their elements. Both arrays and strings support this interface, as
do various other objects, some of which we’ll see later in the chapters
about the browser. Our implementation of forEach from Chapter 5
works on anything that provides this interface. In fact, so does Array.

prototype.forEach.

Array.prototype.forEach.call({
length: 2,
0: "A",
1: "B"

}, elt => console.log(elt));
// → A
// → B

160

Getters, setters, and statics

Interfaces often contain plain properties, not just methods. For exam-
ple, Map objects have a size property that tells you how many keys are
stored in them.

It is not necessary for such an object to compute and store such a
property directly in the instance. Even properties that are accessed
directly may hide a method call. Such methods are called getters and
are defined by writing get in front of the method name in an object
expression or class declaration.

let varyingSize = {
get size() {

return Math.floor(Math.random() * 100);
}

};

console.log(varyingSize.size);
// → 73
console.log(varyingSize.size);
// → 49

Whenever someone reads from this object’s size property, the associ-
ated method is called. You can do a similar thing when a property is
written to, using a setter.

class Temperature {
constructor(celsius) {

this.celsius = celsius;
}

161

get fahrenheit() {
return this.celsius * 1.8 + 32;

}
set fahrenheit(value) {

this.celsius = (value - 32) / 1.8;
}

static fromFahrenheit(value) {
return new Temperature((value - 32) / 1.8);

}
}

let temp = new Temperature(22);
console.log(temp.fahrenheit);
// → 71.6
temp.fahrenheit = 86;
console.log(temp.celsius);
// → 30

The Temperature class allows you to read and write the temperature
in either degrees Celsius or degrees Fahrenheit, but internally it stores
only Celsius and automatically converts to and from Celsius in the
fahrenheit getter and setter.

Sometimes you want to attach some properties directly to your con-
structor function rather than to the prototype. Such methods won’t
have access to a class instance but can, for example, be used to provide
additional ways to create instances.

Inside a class declaration, methods or properties that have static

written before their name are stored on the constructor. For example,

162

the Temperature class allows you to write Temperature.fromFahrenheit

(100) to create a temperature using degrees Fahrenheit.

let boil = Temperature.fromFahrenheit(212);
console.log(boil.celsius);
// → 100

Symbols

I mentioned in Chapter 4 that a for/of loop can loop over several kinds
of data structures. This is another case of polymorphism—such loops
expect the data structure to expose a specific interface, which arrays
and strings do. And we can also add this interface to our own objects!
But before we can do that, we need to briefly take a look at the symbol
type.

It is possible for multiple interfaces to use the same property name
for different things. For example, on array-like objects, length refers
to the number of elements in the collection. But an object interface
describing a hiking route could use length to provide the length of the
route in meters. It would not be possible for an object to conform to
both these interfaces.

An object trying to be a route and array-like (maybe to enumerate its
waypoints) is somewhat far-fetched, and this kind of problem isn’t that
common in practice. For things like the iteration protocol, though, the
language designers needed a type of property that really doesn’t conflict
with any others. So in 2015, symbols were added to the language.

163

Most properties, including all those we have seen so far, are named
with strings. But it is also possible to use symbols as property names.
Symbols are values created with the Symbol function. Unlike strings,
newly created symbols are unique—you cannot create the same symbol
twice.

let sym = Symbol("name");
console.log(sym == Symbol("name"));
// → false
Rabbit.prototype[sym] = 55;
console.log(killerRabbit[sym]);
// → 55

The string you pass to Symbol is included when you convert it to a
string and can make it easier to recognize a symbol when, for example,
showing it in the console. But it has no meaning beyond that—multiple
symbols may have the same name.

Being both unique and usable as property names makes symbols suit-
able for defining interfaces that can peacefully live alongside other prop-
erties, no matter what their names are.

const length = Symbol("length");
Array.prototype[length] = 0;

console.log([1, 2].length);
// → 2
console.log([1, 2][length]);
// → 0

It is possible to include symbol properties in object expressions and

164

classes by using square brackets around the property name. That causes
the expression between the brackets to be evaluated to produce the
property name, analogous to the square bracket property access nota-
tion.

let myTrip = {
length: 2,
0: "Lankwitz",
1: "Babelsberg",
[length]: 21500

};
console.log(myTrip[length], myTrip.length);
// → 21500 2

The iterator interface

The object given to a for/of loop is expected to be iterable. This means
it has a method named with the Symbol.iterator symbol (a symbol value
defined by the language, stored as a property of the Symbol function).

When called, that method should return an object that provides a
second interface, iterator. This is the actual thing that iterates. It has
a next method that returns the next result. That result should be an
object with a value property that provides the next value, if there is
one, and a done property, which should be true when there are no more
results and false otherwise.

Note that the next, value, and done property names are plain strings,
not symbols. Only Symbol.iterator, which is likely to be added to a lot

165

of different objects, is an actual symbol.
We can directly use this interface ourselves.

let okIterator = "OK"[Symbol.iterator]();
console.log(okIterator.next());
// → {value: "O", done: false}
console.log(okIterator.next());
// → {value: "K", done: false}
console.log(okIterator.next());
// → {value: undefined, done: true}

Let’s implement an iterable data structure similar to the linked list from
the exercise in Chapter 4. We’ll write the list as a class this time.

class List {
constructor(value, rest) {

this.value = value;
this.rest = rest;

}

get length() {
return 1 + (this.rest ? this.rest.length : 0);

}

static fromArray(array) {
let result = null;
for (let i = array.length - 1; i >= 0; i--) {

result = new this(array[i], result);
}
return result;

}

166

}

Note that this, in a static method, points at the constructor of the class,
not an instance—there is no instance around when a static method is
called.

Iterating over a list should return all the list’s elements from start to
end. We’ll write a separate class for the iterator.

class ListIterator {
constructor(list) {

this.list = list;
}

next() {
if (this.list == null) {

return {done: true};
}
let value = this.list.value;
this.list = this.list.rest;
return {value, done: false};

}
}

The class tracks the progress of iterating through the list by updating
its list property to move to the next list object whenever a value is
returned and reports that it is done when that list is empty (null).

Let’s set up the List class to be iterable. Throughout this book, I’ll
occasionally use after-the-fact prototype manipulation to add methods
to classes so that the individual pieces of code remain small and self
contained. In a regular program, where there is no need to split the

167

code into small pieces, you’d declare these methods directly in the class
instead.

List.prototype[Symbol.iterator] = function() {
return new ListIterator(this);

};

We can now loop over a list with for/of.

let list = List.fromArray([1, 2, 3]);
for (let element of list) {

console.log(element);
}
// → 1
// → 2
// → 3

The ... syntax in array notation and function calls similarly works with
any iterable object. For example, you can use [...value] to create an
array containing the elements in an arbitrary iterable object.

console.log([..."PCI"]);
// → ["P", "C", "I"]

Inheritance

Imagine we need a list type much like the List class we saw before, but
because we will be asking for its length all the time, we don’t want it
to have to scan through its rest every time. Instead, we want to store

168

the length in every instance for efficient access.
JavaScript’s prototype system makes it possible to create a new class,

much like the old class, but with new definitions for some of its prop-
erties. The prototype for the new class derives from the old prototype
but adds a new definition for, say, the length getter.

In object-oriented programming terms, this is called inheritance. The
new class inherits properties and behavior from the old class.

class LengthList extends List {
#length;

constructor(value, rest) {
super(value, rest);
this.#length = super.length;

}

get length() {
return this.#length;

}
}

console.log(LengthList.fromArray([1, 2, 3]).length);
// → 3

The use of the word extends indicates that this class shouldn’t be di-
rectly based on the default Object prototype but on some other class.
This is called the superclass. The derived class is the subclass.

To initialize a LengthList instance, the constructor calls the construc-
tor of its superclass through the super keyword. This is necessary be-

169

cause if this new object is to behave (roughly) like a List, it is going to
need the instance properties that lists have.

The constructor then stores the list’s length in a private property.
If we had written this.length there, the class’s own getter would have
been called, which doesn’t work yet since #length hasn’t been filled in
yet. We can use super.something to call methods and getters on the
superclass’s prototype, which is often useful.

Inheritance allows us to build slightly different data types from ex-
isting data types with relatively little work. It is a fundamental part
of the object-oriented tradition, alongside encapsulation and polymor-
phism. But while the latter two are now generally regarded as wonderful
ideas, inheritance is more controversial.

Whereas encapsulation and polymorphism can be used to separate
pieces of code from one another, reducing the tangledness of the over-
all program, inheritance fundamentally ties classes together, creating
more tangle. When inheriting from a class, you usually have to know
more about how it works than when simply using it. Inheritance can
be a useful tool to make some types of programs more succinct, but it
shouldn’t be the first tool you reach for, and you probably shouldn’t ac-
tively go looking for opportunities to construct class hierarchies (family
trees of classes).

The instanceof operator

It is occasionally useful to know whether an object was derived from
a specific class. For this, JavaScript provides a binary operator called

170

instanceof.

console.log(
new LengthList(1, null) instanceof LengthList);

// → true
console.log(new LengthList(2, null) instanceof List);
// → true
console.log(new List(3, null) instanceof LengthList);
// → false
console.log([1] instanceof Array);
// → true

The operator will see through inherited types, so a LengthList is an
instance of List. The operator can also be applied to standard con-
structors like Array. Almost every object is an instance of Object.

Summary

Objects do more than just hold their own properties. They have pro-
totypes, which are other objects. They’ll act as if they have properties
they don’t have as long as their prototype has that property. Simple
objects have Object.prototype as their prototype.

Constructors, which are functions whose names usually start with a
capital letter, can be used with the new operator to create new objects.
The new object’s prototype will be the object found in the prototype

property of the constructor. You can make good use of this by putting
the properties that all values of a given type share into their proto-
type. There’s a class notation that provides a clear way to define a

171

constructor and its prototype.
You can define getters and setters to secretly call methods every time

an object’s property is accessed. Static methods are methods stored in
a class’s constructor rather than its prototype.

The instanceof operator can, given an object and a constructor, tell
you whether that object is an instance of that constructor.

One useful thing to do with objects is to specify an interface for them
and tell everybody that they are supposed to talk to your object only
through that interface. The rest of the details that make up your object
are now encapsulated, hidden behind the interface. You can use private
properties to hide a part of your object from the outside world.

More than one type may implement the same interface. Code written
to use an interface automatically knows how to work with any number of
different objects that provide the interface. This is called polymorphism.

When implementing multiple classes that differ in only some details,
it can be helpful to write the new classes as subclasses of an existing
class, inheriting part of its behavior.

Exercises

A vector type

Write a class Vec that represents a vector in two-dimensional space. It
takes x and y parameters (numbers), that it saves to properties of the
same name.

Give the Vec prototype two methods, plus and minus, that take an-
other vector as a parameter and return a new vector that has the sum or

172

difference of the two vectors’ (this and the parameter) x and y values.
Add a getter property length to the prototype that computes the

length of the vector—that is, the distance of the point (x, y) from the
origin (0, 0).

Groups

The standard JavaScript environment provides another data structure
called Set. Like an instance of Map, a set holds a collection of values.
Unlike Map, it does not associate other values with those—it just tracks
which values are part of the set. A value can be part of a set only
once—adding it again doesn’t have any effect.

Write a class called Group (since Set is already taken). Like Set, it has
add, delete, and has methods. Its constructor creates an empty group,
add adds a value to the group (but only if it isn’t already a member),
delete removes its argument from the group (if it was a member), and
has returns a Boolean value indicating whether its argument is a mem-
ber of the group.

Use the === operator, or something equivalent such as indexOf, to
determine whether two values are the same.

Give the class a static from method that takes an iterable object as
its argument and creates a group that contains all the values produced
by iterating over it.

173

Iterable groups

Make the Group class from the previous exercise iterable. Refer to the
section about the iterator interface earlier in the chapter if you aren’t
clear on the exact form of the interface anymore.

If you used an array to represent the group’s members, don’t just
return the iterator created by calling the Symbol.iterator method on
the array. That would work, but it defeats the purpose of this exercise.

It is okay if your iterator behaves strangely when the group is modi-
fied during iteration.

174

“The question of whether Machines Can Think [...] is about as
relevant as the question of whether Submarines Can Swim.”

—Edsger Dijkstra, The Threats to Computing Science

Chapter 7

Project: A Robot

In “project” chapters, I’ll stop pummeling you with new theory for
a brief moment, and instead we’ll work through a program together.
Theory is necessary to learn to program, but reading and understanding
actual programs is just as important.

Our project in this chapter is to build an automaton, a little program
that performs a task in a virtual world. Our automaton will be a mail-
delivery robot picking up and dropping off parcels.

Meadowfield

The village of Meadowfield isn’t very big. It consists of 11 places with
14 roads between them. It can be described with this array of roads:

const roads = [
"Alice's House-Bob's House", "Alice's House-Cabin",
"Alice's House-Post Office", "Bob's House-Town Hall",
"Daria's House-Ernie's House", "Daria's House-Town Hall",
"Ernie's House-Grete's House", "Grete's House-Farm",

175

"Grete's House-Shop", "Marketplace-Farm",
"Marketplace-Post Office", "Marketplace-Shop",
"Marketplace-Town Hall", "Shop-Town Hall"

];

The network of roads in the village forms a graph. A graph is a col-
lection of points (places in the village) with lines between them (roads).
This graph will be the world that our robot moves through.

The array of strings isn’t very easy to work with. What we’re inter-
ested in is the destinations that we can reach from a given place. Let’s
convert the list of roads to a data structure that, for each place, tells
us what can be reached from there.

176

function buildGraph(edges) {
let graph = Object.create(null);
function addEdge(from, to) {

if (from in graph) {
graph[from].push(to);

} else {
graph[from] = [to];

}
}
for (let [from, to] of edges.map(r => r.split("-"))) {

addEdge(from, to);
addEdge(to, from);

}
return graph;

}

const roadGraph = buildGraph(roads);

Given an array of edges, buildGraph creates a map object that, for each
node, stores an array of connected nodes. It uses the split method to
go from the road strings—which have the form "Start-End")—to two-
element arrays containing the start and end as separate strings.

The task

Our robot will be moving around the village. There are parcels in
various places, each addressed to some other place. The robot picks up
parcels when it comes across them and delivers them when it arrives at
their destinations.

177

The automaton must decide, at each point, where to go next. It has
finished its task when all parcels have been delivered.

To be able to simulate this process, we must define a virtual world
that can describe it. This model tells us where the robot is and where
the parcels are. When the robot has decided to move somewhere, we
need to update the model to reflect the new situation.

If you’re thinking in terms of object-oriented programming, your first
impulse might be to start defining objects for the various elements in
the world: a class for the robot, one for a parcel, maybe one for places.
These could then hold properties that describe their current state, such
as the pile of parcels at a location, which we could change when updat-
ing the world.

This is wrong. At least, it usually is. The fact that something sounds
like an object does not automatically mean that it should be an object
in your program. Reflexively writing classes for every concept in your
application tends to leave you with a collection of interconnected objects
that each have their own internal, changing state. Such programs are
often hard to understand and thus easy to break.

Instead, let’s condense the village’s state down to the minimal set
of values that define it. There’s the robot’s current location and the
collection of undelivered parcels, each of which has a current location
and a destination address. That’s it.

While we’re at it, let’s make it so that we don’t change this state
when the robot moves but rather compute a new state for the situation
after the move.

class VillageState {

178

constructor(place, parcels) {
this.place = place;
this.parcels = parcels;

}

move(destination) {
if (!roadGraph[this.place].includes(destination)) {

return this;
} else {

let parcels = this.parcels.map(p => {
if (p.place != this.place) return p;
return {place: destination, address: p.address};

}).filter(p => p.place != p.address);
return new VillageState(destination, parcels);

}
}

}

The move method is where the action happens. It first checks whether
there is a road going from the current place to the destination, and if
not, it returns the old state, since this is not a valid move.

Next, the method creates a new state with the destination as the
robot’s new place. It also needs to create a new set of parcels—parcels
that the robot is carrying (that are at the robot’s current place) need
to be moved along to the new place. And parcels that are addressed to
the new place need to be delivered—that is, they need to be removed
from the set of undelivered parcels. The call to map takes care of the
moving, and the call to filter does the delivering.

Parcel objects aren’t changed when they are moved but re-created.

179

The move method gives us a new village state but leaves the old one
entirely intact.

let first = new VillageState(
"Post Office",
[{place: "Post Office", address: "Alice's House"}]

);
let next = first.move("Alice's House");

console.log(next.place);
// → Alice's House
console.log(next.parcels);
// → []
console.log(first.place);
// → Post Office

The move causes the parcel to be delivered, which is reflected in the
next state. But the initial state still describes the situation where the
robot is at the post office and the parcel is undelivered.

Persistent data

Data structures that don’t change are called immutable or persistent.
They behave a lot like strings and numbers in that they are who they are
and stay that way, rather than containing different things at different
times.

In JavaScript, just about everything can be changed, so working with
values that are supposed to be persistent requires some restraint. There
is a function called Object.freeze that changes an object so that writing

180

to its properties is ignored. You could use that to make sure your
objects aren’t changed, if you want to be careful. Freezing does require
the computer to do some extra work, and having updates ignored is
just about as likely to confuse someone as having them do the wrong
thing. I usually prefer to just tell people that a given object shouldn’t
be messed with and hope they remember it.

let object = Object.freeze({value: 5});
object.value = 10;
console.log(object.value);
// → 5

Why am I going out of my way to not change objects when the language
is obviously expecting me to? Because it helps me understand my
programs. This is about complexity management again. When the
objects in my system are fixed, stable things, I can consider operations
on them in isolation—moving to Alice’s house from a given start state
always produces the same new state. When objects change over time,
that adds a whole new dimension of complexity to this kind of reasoning.

For a small system like the one we are building in this chapter, we
could handle that bit of extra complexity. But the most important limit
on what kind of systems we can build is how much we can understand.
Anything that makes your code easier to understand makes it possible
to build a more ambitious system.

Unfortunately, although understanding a system built on persistent
data structures is easier, designing one, especially when your program-
ming language isn’t helping, can be a little harder. We’ll look for op-
portunities to use persistent data structures in this book, but we’ll also

181

be using changeable ones.

Simulation

A delivery robot looks at the world and decides in which direction it
wants to move. So we could say that a robot is a function that takes a
VillageState object and returns the name of a nearby place.

Because we want robots to be able to remember things so they can
make and execute plans, we also pass them their memory and allow
them to return a new memory. Thus, the thing a robot returns is an
object containing both the direction it wants to move in and a memory
value that will be given back to it the next time it is called.

function runRobot(state, robot, memory) {
for (let turn = 0;; turn++) {

if (state.parcels.length == 0) {
console.log(`Done in ${turn} turns`);
break;

}
let action = robot(state, memory);
state = state.move(action.direction);
memory = action.memory;
console.log(`Moved to ${action.direction}`);

}
}

Consider what a robot has to do to “solve” a given state. It must pick
up all parcels by visiting every location that has a parcel and deliver
them by visiting every location to which a parcel is addressed, but only

182

after picking up the parcel.
What is the dumbest strategy that could possibly work? The robot

could just walk in a random direction every turn. That means, with
great likelihood, it will eventually run into all parcels and then also at
some point reach the place where they should be delivered.

Here’s what that could look like:

function randomPick(array) {
let choice = Math.floor(Math.random() * array.length);
return array[choice];

}

function randomRobot(state) {
return {direction: randomPick(roadGraph[state.place])};

}

Remember that Math.random() returns a number between 0 and 1—but
always below 1. Multiplying such a number by the length of an array
and then applying Math.floor to it gives us a random index for the
array.

Since this robot does not need to remember anything, it ignores its
second argument (remember that JavaScript functions can be called
with extra arguments without ill effects) and omits the memory property
in its returned object.

To put this sophisticated robot to work, we’ll first need a way to
create a new state with some parcels. A static method (written here by
directly adding a property to the constructor) is a good place to put
that functionality.

183

VillageState.random = function(parcelCount = 5) {
let parcels = [];
for (let i = 0; i < parcelCount; i++) {

let address = randomPick(Object.keys(roadGraph));
let place;
do {

place = randomPick(Object.keys(roadGraph));
} while (place == address);
parcels.push({place, address});

}
return new VillageState("Post Office", parcels);

};

We don’t want any parcels to be sent from the same place that they
are addressed to. For this reason, the do loop keeps picking new places
when it gets one that’s equal to the address.

Let’s start up a virtual world.

runRobot(VillageState.random(), randomRobot);
// → Moved to Marketplace
// → Moved to Town Hall
// →…
// → Done in 63 turns

It takes the robot a lot of turns to deliver the parcels because it isn’t
planning ahead very well. We’ll address that soon.

184

The mail truck's route

We should be able to do a lot better than the random robot. An easy
improvement would be to take a hint from the way real-world mail
delivery works. If we find a route that passes all places in the village,
the robot could run that route twice, at which point it is guaranteed to
be done. Here is one such route (starting from the post office):

const mailRoute = [
"Alice's House", "Cabin", "Alice's House", "Bob's House",
"Town Hall", "Daria's House", "Ernie's House",
"Grete's House", "Shop", "Grete's House", "Farm",
"Marketplace", "Post Office"

];

To implement the route-following robot, we’ll need to make use of robot
memory. The robot keeps the rest of its route in its memory and drops
the first element every turn.

function routeRobot(state, memory) {
if (memory.length == 0) {

memory = mailRoute;
}
return {direction: memory[0], memory: memory.slice(1)};

}

This robot is a lot faster already. It’ll take a maximum of 26 turns
(twice the 13-step route) but usually less.

185

Pathfinding

Still, I wouldn’t really call blindly following a fixed route intelligent be-
havior. The robot could work more efficiently if it adjusted its behavior
to the actual work that needs to be done.

To do that, it has to be able to deliberately move toward a given
parcel or toward the location where a parcel has to be delivered. Doing
that, even when the goal is more than one move away, will require some
kind of route-finding function.

The problem of finding a route through a graph is a typical search
problem. We can tell whether a given solution (a route) is valid, but
we can’t directly compute the solution the way we could for 2 + 2.
Instead, we have to keep creating potential solutions until we find one
that works.

The number of possible routes through a graph is infinite. But when
searching for a route from A to B, we are interested only in the ones
that start at A. We also don’t care about routes that visit the same
place twice—those are definitely not the most efficient route anywhere.
So that cuts down on the number of routes that the route finder has to
consider.

In fact, since we are mostly interested in the shortest route, we want
to make sure we look at short routes before we look at longer ones.
A good approach would be to “grow” routes from the starting point,
exploring every reachable place that hasn’t been visited yet until a
route reaches the goal. That way, we’ll explore only routes that are
potentially interesting, and we know that the first route we find is the
shortest route (or one of the shortest routes, if there are more than

186

one).
Here is a function that does this:

function findRoute(graph, from, to) {
let work = [{at: from, route: []}];
for (let i = 0; i < work.length; i++) {

let {at, route} = work[i];
for (let place of graph[at]) {

if (place == to) return route.concat(place);
if (!work.some(w => w.at == place)) {

work.push({at: place, route: route.concat(place)});
}

}
}

}

The exploring has to be done in the right order—the places that were
reached first have to be explored first. We can’t immediately explore a
place as soon as we reach it because that would mean places reached
from there would also be explored immediately, and so on, even though
there may be other, shorter paths that haven’t yet been explored.

Therefore, the function keeps a work list. This is an array of places
that should be explored next, along with the route that got us there.
It starts with just the start position and an empty route.

The search then operates by taking the next item in the list and
exploring that, which means it looks at all roads going from that place.
If one of them is the goal, a finished route can be returned. Otherwise,
if we haven’t looked at this place before, a new item is added to the
list. If we have looked at it before, since we are looking at short routes

187

first, we’ve found either a longer route to that place or one precisely as
long as the existing one, and we don’t need to explore it.

You can visualize this as a web of known routes crawling out from
the start location, growing evenly on all sides (but never tangling back
into itself). As soon as the first thread reaches the goal location, that
thread is traced back to the start, giving us our route.

Our code doesn’t handle the situation where there are no more work
items on the work list because we know that our graph is connected,
meaning that every location can be reached from all other locations.
We’ll always be able to find a route between two points, and the search
can’t fail.

function goalOrientedRobot({place, parcels}, route) {
if (route.length == 0) {

let parcel = parcels[0];
if (parcel.place != place) {

route = findRoute(roadGraph, place, parcel.place);
} else {

route = findRoute(roadGraph, place, parcel.address);
}

}
return {direction: route[0], memory: route.slice(1)};

}

This robot uses its memory value as a list of directions to move in, just
like the route-following robot. Whenever that list is empty, it has to
figure out what to do next. It takes the first undelivered parcel in the
set and, if that parcel hasn’t been picked up yet, plots a route toward
it. If the parcel has been picked up, it still needs to be delivered, so the

188

robot creates a route toward the delivery address instead.
This robot usually finishes the task of delivering 5 parcels in about

16 turns. That’s slightly better than routeRobot but still definitely not
optimal. We’ll continue refining it in the exercises.

Exercises

Measuring a robot

It’s hard to objectively compare robots by just letting them solve a few
scenarios. Maybe one robot just happened to get easier tasks or the
kind of tasks that it is good at, whereas the other didn’t.

Write a function compareRobots that takes two robots (and their start-
ing memory). It should generate 100 tasks and let both of the robots
solve each of these tasks. When done, it should output the average
number of steps each robot took per task.

For the sake of fairness, make sure you give each task to both robots,
rather than generating different tasks per robot.

Robot efficiency

Can you write a robot that finishes the delivery task faster than goalOrientedRobot

? If you observe that robot’s behavior, what obviously stupid things
does it do? How could those be improved?

If you solved the previous exercise, you might want to use your
compareRobots function to verify whether you improved the robot.

189

Persistent group

Most data structures provided in a standard JavaScript environment
aren’t very well suited for persistent use. Arrays have slice and concat

methods, which allow us to easily create new arrays without damaging
the old one. But Set, for example, has no methods for creating a new
set with an item added or removed.

Write a new class PGroup, similar to the Group class from Chapter
6, which stores a set of values. Like Group, it has add, delete, and
has methods. Its add method, however, should return a new PGroup

instance with the given member added and leave the old one unchanged.
Similarly, delete should create a new instance without a given member.

The class should work for values of any type, not just strings. It does
not have to be efficient when used with large numbers of values.

The constructor shouldn’t be part of the class’s interface (though
you’ll definitely want to use it internally). Instead, there is an empty
instance, PGroup.empty, that can be used as a starting value.

Why do you need only one PGroup.empty value rather than having a
function that creates a new, empty map every time?

190

“Debugging is twice as hard as writing the code in the first
place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.”

—Brian Kernighan and P.J. Plauger, The Elements of
Programming Style

Chapter 8

Bugs and Errors

Flaws in computer programs are usually called bugs. It makes program-
mers feel good to imagine them as little things that just happen to crawl
into our work. In reality, of course, we put them there ourselves.

If a program is crystallized thought, we can roughly categorize bugs
into those caused by the thoughts being confused and those caused by
mistakes introduced while converting a thought to code. The former
type is generally harder to diagnose and fix than the latter.

Language

Many mistakes could be pointed out to us automatically by the com-
puter if it knew enough about what we’re trying to do. But here,
JavaScript’s looseness is a hindrance. Its concept of bindings and prop-
erties is vague enough that it will rarely catch typos before actually
running the program. Even then, it allows you to do some clearly non-
sensical things without complaint, such as computing true * "monkey".

There are some things that JavaScript does complain about. Writing

191

a program that does not follow the language’s grammar will imme-
diately make the computer complain. Other things, such as calling
something that’s not a function or looking up a property on an unde-
fined value, will cause an error to be reported when the program tries
to perform the action.

Often, however, your nonsense computation will merely produce NaN

(not a number) or an undefined value, while the program happily
continues, convinced that it’s doing something meaningful. The mistake
will manifest itself only later, after the bogus value has traveled through
several functions. It might not trigger an error at all, but silently cause
the program’s output to be wrong. Finding the source of such problems
can be difficult.

The process of finding mistakes—bugs—in programs is called debug-
ging.

Strict mode

JavaScript can be made a little stricter by enabling strict mode. This
can done by putting the string "use strict" at the top of a file or a
function body. Here’s an example:

function canYouSpotTheProblem() {
"use strict";
for (counter = 0; counter < 10; counter++) {

console.log("Happy happy");
}

}

192

canYouSpotTheProblem();
// → ReferenceError: counter is not defined

Code inside classes and modules (which we will discuss in Chapter 10) is
automatically strict. The old nonstrict behavior still exists only because
some old code might depend on it, and the language designers work hard
to avoid breaking any existing programs.

Normally, when you forget to put let in front of your binding, as with
counter in the example, JavaScript quietly creates a global binding and
uses that. In strict mode, an error is reported instead. This is very
helpful. It should be noted, though, that this doesn’t work when the
binding in question already exists somewhere in scope. In that case,
the loop will still quietly overwrite the value of the binding.

Another change in strict mode is that the this binding holds the value
undefined in functions that are not called as methods. When making
such a call outside of strict mode, this refers to the global scope object,
which is an object whose properties are the global bindings. So if you
accidentally call a method or constructor incorrectly in strict mode,
JavaScript will produce an error as soon as it tries to read something
from this, rather than happily writing to the global scope.

For example, consider the following code, which calls a constructor
function without the new keyword so that its this will not refer to a
newly constructed object:

function Person(name) { this.name = name; }
let ferdinand = Person("Ferdinand"); // oops
console.log(name);

193

// → Ferdinand

The bogus call to Person succeeded, but returned an undefined value and
created the global binding name. In strict mode, the result is different.

"use strict";
function Person(name) { this.name = name; }
let ferdinand = Person("Ferdinand"); // forgot new
// → TypeError: Cannot set property 'name' of undefined

We are immediately told that something is wrong. This is helpful.
Fortunately, constructors created with the class notation will always

complain if they are called without new, making this less of a problem
even in nonstrict mode.

Strict mode does a few more things. It disallows giving a function
multiple parameters with the same name and removes certain problem-
atic language features entirely (such as the with statement, which is so
wrong it is not further discussed in this book).

In short, putting "use strict" at the top of your program rarely hurts
and might help you spot a problem.

Types

Some languages want to know the types of all your bindings and ex-
pressions before even running a program. They will tell you right away
when a type is used in an inconsistent way. JavaScript considers types
only when actually running the program, and even there often tries to
implicitly convert values to the type it expects, so it’s not much help.

194

Still, types provide a useful framework for talking about programs.
A lot of mistakes come from being confused about the kind of value
that goes into or comes out of a function. If you have that information
written down, you’re less likely to get confused.

You could add a comment like the following before the findRoute

function from the previous chapter to describe its type:

// (graph: Object, from: string, to: string) => string[]
function findRoute(graph, from, to) {

// ...
}

There are a number of different conventions for annotating JavaScript
programs with types.

One thing about types is that they need to introduce their own com-
plexity to be able to describe enough code to be useful. What do you
think would be the type of the randomPick function that returns a ran-
dom element from an array? You’d need to introduce a type variable,
T, which can stand in for any type, so that you can give randomPick a
type like (T[])→T (function from an array of Ts to a T).

When the types of a program are known, it is possible for the com-
puter to check them for you, pointing out mistakes before the program
is run. There are several JavaScript dialects that add types to the lan-
guage and check them. The most popular one is called TypeScript. If
you are interested in adding more rigor to your programs, I recommend
you give it a try.

In this book, we will continue using raw, dangerous, untyped JavaScript
code.

195

https://www.typescriptlang.org/

Testing

If the language is not going to do much to help us find mistakes, we’ll
have to find them the hard way: by running the program and seeing
whether it does the right thing.

Doing this by hand, again and again, is a really bad idea. Not only
is it annoying but it also tends to be ineffective, since it takes too much
time to exhaustively test everything every time you make a change.

Computers are good at repetitive tasks, and testing is the ideal repet-
itive task. Automated testing is the process of writing a program that
tests another program. Writing tests is a bit more work than testing
manually, but once you’ve done it, you gain a kind of superpower: it
takes you only a few seconds to verify that your program still behaves
properly in all the situations you wrote tests for. When you break some-
thing, you’ll immediately notice rather than randomly running into it
at some later time.

Tests usually take the form of little labeled programs that verify
some aspect of your code. For example, a set of tests for the (standard,
probably already tested by someone else) toUpperCase method might
look like this:

function test(label, body) {
if (!body()) console.log(`Failed: ${label}`);

}

test("convert Latin text to uppercase", () => {
return "hello".toUpperCase() == "HELLO";

});

196

test("convert Greek text to uppercase", () => {
return "Χαίρετε".toUpperCase() == "ΧΑΊΡΕΤΕ";

});
test("don't convert case-less characters", () => {

return " ".toUpperCase() == " ";
});

Writing tests like this tends to produce rather repetitive, awkward code.
Fortunately, there exist pieces of software that help you build and run
collections of tests (test suites) by providing a language (in the form
of functions and methods) suited to expressing tests and by outputting
informative information when a test fails. These are usually called test
runners.

Some code is easier to test than other code. Generally, the more
external objects that the code interacts with, the harder it is to set up
the context in which to test it. The style of programming shown in
the previous chapter, which uses self-contained persistent values rather
than changing objects, tends to be easy to test.

Debugging

Once you notice there is something wrong with your program because
it misbehaves or produces errors, the next step is to figure out what the
problem is.

Sometimes it is obvious. The error message will point at a specific
line of your program, and if you look at the error description and that
line of code, you can often see the problem.

197

But not always. Sometimes the line that triggered the problem is
simply the first place where a flaky value produced elsewhere gets used
in an invalid way. If you have been solving the exercises in earlier
chapters, you will probably have already experienced such situations.

The following example program tries to convert a whole number to a
string in a given base (decimal, binary, and so on) by repeatedly picking
out the last digit and then dividing the number to get rid of this digit.
But the strange output that it currently produces suggests that it has
a bug.

function numberToString(n, base = 10) {
let result = "", sign = "";
if (n < 0) {

sign = "-";
n = -n;

}
do {

result = String(n % base) + result;
n /= base;

} while (n > 0);
return sign + result;

}
console.log(numberToString(13, 10));
// → 1.5e-3231.3e-3221.3e-3211.3e-3201.3e-3191.3e…-3181.3

Even if you see the problem already, pretend for a moment that you
don’t. We know that our program is malfunctioning, and we want to
find out why.

This is where you must resist the urge to start making random

198

changes to the code to see whether that makes it better. Instead, think.
Analyze what is happening and come up with a theory of why it might
be happening. Then make additional observations to test this theory—
or, if you don’t yet have a theory, make additional observations to help
you come up with one.

Putting a few strategic console.log calls into the program is a good
way to get additional information about what the program is doing. In
this case, we want n to take the values 13, 1, and then 0. Let’s write
out its value at the start of the loop.

13
1.3
0.13
0.013…

1.5e-323

Right. Dividing 13 by 10 does not produce a whole number. Instead of
n /= base, what we actually want is n = Math.floor(n / base) so that
the number is properly “shifted” to the right.

An alternative to using console.log to peek into the program’s be-
havior is to use the debugger capabilities of your browser. Browsers
come with the ability to set a breakpoint on a specific line of your code.
When the execution of the program reaches a line with a breakpoint, it
is paused, and you can inspect the values of bindings at that point. I
won’t go into details, as debuggers differ from browser to browser, but
look in your browser’s developer tools or search the web for instructions.

Another way to set a breakpoint is to include a debugger statement

199

(consisting simply of that keyword) in your program. If the developer
tools of your browser are active, the program will pause whenever it
reaches such a statement.

Error propagation

Not all problems can be prevented by the programmer, unfortunately.
If your program communicates with the outside world in any way, it is
possible to get malformed input, to become overloaded with work, or
to have the network fail.

If you’re programming only for yourself, you can afford to just ignore
such problems until they occur. But if you build something that is going
to be used by anybody else, you usually want the program to do better
than just crash. Sometimes the right thing to do is take the bad input
in stride and continue running. In other cases, it is better to report
to the user what went wrong and then give up. In either situation the
program has to actively do something in response to the problem.

Say you have a function promptNumber that asks the user for a number
and returns it. What should it return if the user inputs “orange”?

One option is to make it return a special value. Common choices for
such values are null, undefined, or -1.

function promptNumber(question) {
let result = Number(prompt(question));
if (Number.isNaN(result)) return null;
else return result;

}

200

console.log(promptNumber("How many trees do you see?"));

Now any code that calls promptNumber must check whether an actual
number was read and, failing that, must somehow recover—maybe by
asking again or by filling in a default value. Or it could again return
a special value to its caller to indicate that it failed to do what it was
asked.

In many situations, mostly when errors are common and the caller
should be explicitly taking them into account, returning a special value
is a good way to indicate an error. It does, however, have its downsides.
First, what if the function can already return every possible kind of
value? In such a function, you’ll have to do something like wrap the
result in an object to be able to distinguish success from failure, the
way the next method on the iterator interface does.

function lastElement(array) {
if (array.length == 0) {

return {failed: true};
} else {

return {value: array[array.length - 1]};
}

}

The second issue with returning special values is that it can lead to
awkward code. If a piece of code calls promptNumber 10 times, it has to
check 10 times whether null was returned. If its response to finding
null is to simply return null itself, callers of the function will in turn
have to check for it, and so on.

201

Exceptions

When a function cannot proceed normally, what we would often like
to do is just stop what we are doing and immediately jump to a place
that knows how to handle the problem. This is what exception handling
does.

Exceptions are a mechanism that makes it possible for code that
runs into a problem to raise (or throw) an exception. An exception can
be any value. Raising one somewhat resembles a super-charged return
from a function: it jumps out of not just the current function but also
its callers, all the way down to the first call that started the current
execution. This is called unwinding the stack. You may remember the
stack of function calls mentioned in Chapter 3. An exception zooms
down this stack, throwing away all the call contexts it encounters.

If exceptions always zoomed right down to the bottom of the stack,
they would not be of much use. They’d just provide a novel way to
blow up your program. Their power lies in the fact that you can set
“obstacles” along the stack to catch the exception as it is zooming down.
Once you’ve caught an exception, you can do something with it to
address the problem and then continue to run the program.

Here’s an example:

function promptDirection(question) {
let result = prompt(question);
if (result.toLowerCase() == "left") return "L";
if (result.toLowerCase() == "right") return "R";
throw new Error("Invalid direction: " + result);

}

202

function look() {
if (promptDirection("Which way?") == "L") {

return "a house";
} else {

return "two angry bears";
}

}

try {
console.log("You see", look());

} catch (error) {
console.log("Something went wrong: " + error);

}

The throw keyword is used to raise an exception. Catching one is done
by wrapping a piece of code in a try block, followed by the keyword
catch. When the code in the try block causes an exception to be raised,
the catch block is evaluated, with the name in parentheses bound to
the exception value. After the catch block finishes—or if the try block
finishes without problems—the program proceeds beneath the entire
try/catch statement.

In this case, we used the Error constructor to create our exception
value. This is a standard JavaScript constructor that creates an object
with a message property. Instances of Error also gather information
about the call stack that existed when the exception was created, a so-
called stack trace. This information is stored in the stack property and
can be helpful when trying to debug a problem: it tells us the function
where the problem occurred and which functions made the failing call.

203

Note that the look function completely ignores the possibility that
promptDirection might go wrong. This is the big advantage of excep-
tions: error-handling code is necessary only at the point where the error
occurs and at the point where it is handled. The functions in between
can forget all about it.

Well, almost...

Cleaning up after exceptions

The effect of an exception is another kind of control flow. Every action
that might cause an exception, which is pretty much every function call
and property access, might cause control to suddenly leave your code.

This means when code has several side effects, even if its “regular”
control flow looks like they’ll always all happen, an exception might
prevent some of them from taking place.

Here is some really bad banking code:

const accounts = {
a: 100,
b: 0,
c: 20

};

function getAccount() {
let accountName = prompt("Enter an account name");
if (!Object.hasOwn(accounts, accountName)) {

throw new Error(`No such account: ${accountName}`);
}

204

return accountName;
}

function transfer(from, amount) {
if (accounts[from] < amount) return;
accounts[from] -= amount;
accounts[getAccount()] += amount;

}

The transfer function transfers a sum of money from a given account
to another, asking for the name of the other account in the process. If
given an invalid account name, getAccount throws an exception.

But transfer first removes the money from the account and then calls
getAccount before it adds it to another account. If it is broken off by an
exception at that point, it’ll just make the money disappear.

That code could have been written a little more intelligently, for ex-
ample by calling getAccount before it starts moving money around. But
often problems like this occur in more subtle ways. Even functions that
don’t look like they will throw an exception might do so in exceptional
circumstances or when they contain a programmer mistake.

One way to address this is to use fewer side effects. Again, a pro-
gramming style that computes new values instead of changing existing
data helps. If a piece of code stops running in the middle of creating a
new value, no existing data structures were damaged, making it easier
to recover.

Since that isn’t always practical, try statements have another feature:
they may be followed by a finally block either instead of or in addition
to a catch block. A finally block says “no matter what happens, run

205

this code after trying to run the code in the try block.”

function transfer(from, amount) {
if (accounts[from] < amount) return;
let progress = 0;
try {

accounts[from] -= amount;
progress = 1;
accounts[getAccount()] += amount;
progress = 2;

} finally {
if (progress == 1) {

accounts[from] += amount;
}

}
}

This version of the function tracks its progress, and if, when leaving, it
notices that it was aborted at a point where it had created an inconsis-
tent program state, it repairs the damage it did.

Note that even though the finally code is run when an exception is
thrown in the try block, it does not interfere with the exception. After
the finally block runs, the stack continues unwinding.

Writing programs that operate reliably even when exceptions pop up
in unexpected places is hard. Many people simply don’t bother, and
because exceptions are typically reserved for exceptional circumstances,
the problem may occur so rarely that it is never even noticed. Whether
that is a good thing or a really bad thing depends on how much damage
the software will do when it fails.

206

Selective catching

When an exception makes it all the way to the bottom of the stack
without being caught, it gets handled by the environment. What
this means differs between environments. In browsers, a description
of the error typically gets written to the JavaScript console (reach-
able through the browser’s Tools or Developer menu). Node.js, the
browserless JavaScript environment we will discuss in Chapter 20, is
more careful about data corruption. It aborts the whole process when
an unhandled exception occurs.

For programmer mistakes, just letting the error go through is often
the best you can do. An unhandled exception is a reasonable way to
signal a broken program, and the JavaScript console will, on modern
browsers, provide you with some information about which function calls
were on the stack when the problem occurred.

For problems that are expected to happen during routine use, crashing
with an unhandled exception is a terrible strategy.

Invalid uses of the language, such as referencing a nonexistent bind-
ing, looking up a property on null, or calling something that’s not a
function, will also result in exceptions being raised. Such exceptions
can also be caught.

When a catch body is entered, all we know is that something in our
try body caused an exception. But we don’t know what did or which
exception it caused.

JavaScript (in a rather glaring omission) doesn’t provide direct sup-
port for selectively catching exceptions: either you catch them all or
you don’t catch any. This makes it tempting to assume that the ex-

207

ception you get is the one you were thinking about when you wrote the
catch block.

But it might not be. Some other assumption might be violated, or
you might have introduced a bug that is causing an exception. Here
is an example that attempts to keep on calling promptDirection until it
gets a valid answer:

for (;;) {
try {

let dir = promtDirection("Where?"); // ← typo!
console.log("You chose ", dir);
break;

} catch (e) {
console.log("Not a valid direction. Try again.");

}
}

The for (;;) construct is a way to intentionally create a loop that
doesn’t terminate on its own. We break out of the loop only when a
valid direction is given. Unfortunately, we misspelled promptDirection,
which will result in an “undefined variable” error. Because the catch

block completely ignores its exception value (e), assuming it knows
what the problem is, it wrongly treats the binding error as indicating
bad input. Not only does this cause an infinite loop but it also “buries”
the useful error message about the misspelled binding.

As a general rule, don’t blanket-catch exceptions unless it is for the
purpose of “routing” them somewhere—for example, over the network
to tell another system that our program crashed. And even then, think

208

carefully about how you might be hiding information.
We want to catch a specific kind of exception. We can do this by

checking in the catch block whether the exception we got is the one we
are interested in, and if not, rethrow it. But how do we recognize an
exception?

We could compare its message property against the error message
we happen to expect. But that’s a shaky way to write code—we’d be
using information that’s intended for human consumption (the message)
to make a programmatic decision. As soon as someone changes (or
translates) the message, the code will stop working.

Rather, let’s define a new type of error and use instanceof to identify
it.

class InputError extends Error {}

function promptDirection(question) {
let result = prompt(question);
if (result.toLowerCase() == "left") return "L";
if (result.toLowerCase() == "right") return "R";
throw new InputError("Invalid direction: " + result);

}

The new error class extends Error. It doesn’t define its own constructor,
which means that it inherits the Error constructor, which expects a
string message as argument. In fact, it doesn’t define anything at all—
the class is empty. InputError objects behave like Error objects, except
that they have a different class by which we can recognize them.

Now the loop can catch these more carefully.

209

for (;;) {
try {

let dir = promptDirection("Where?");
console.log("You chose ", dir);
break;

} catch (e) {
if (e instanceof InputError) {

console.log("Not a valid direction. Try again.");
} else {

throw e;
}

}
}

This will catch only instances of InputError and let unrelated exceptions
through. If you reintroduce the typo, the undefined binding error will
be properly reported.

Assertions

Assertions are checks inside a program that verify that something is the
way it is supposed to be. They are used not to handle situations that
can come up in normal operation but to find programmer mistakes.

If, for example, firstElement is described as a function that should
never be called on empty arrays, we might write it like this:

function firstElement(array) {
if (array.length == 0) {

throw new Error("firstElement called with []");

210

}
return array[0];

}

Now, instead of silently returning undefined (which you get when read-
ing an array property that does not exist), this will loudly blow up
your program as soon as you misuse it. This makes it less likely for
such mistakes to go unnoticed and easier to find their cause when they
occur.

I do not recommend trying to write assertions for every possible kind
of bad input. That’d be a lot of work and would lead to very noisy
code. You’ll want to reserve them for mistakes that are easy to make
(or that you find yourself making).

Summary

An important part of programming is finding, diagnosing, and fixing
bugs. Problems can become easier to notice if you have an automated
test suite or add assertions to your programs.

Problems caused by factors outside the program’s control should usu-
ally be actively planned for. Sometimes, when the problem can be
handled locally, special return values are a good way to track them.
Otherwise, exceptions may be preferable.

Throwing an exception causes the call stack to be unwound until the
next enclosing try/catch block or until the bottom of the stack. The
exception value will be given to the catch block that catches it, which
should verify that it is actually the expected kind of exception and then

211

do something with it. To help address the unpredictable control flow
caused by exceptions, finally blocks can be used to ensure that a piece
of code always runs when a block finishes.

Exercises

Retry

Say you have a function primitiveMultiply that in 20 percent of cases
multiplies two numbers and in the other 80 percent of cases raises an ex-
ception of type MultiplicatorUnitFailure. Write a function that wraps
this clunky function and just keeps trying until a call succeeds, after
which it returns the result.

Make sure you handle only the exceptions you are trying to handle.

The locked box

Consider the following (rather contrived) object:

const box = new class {
locked = true;
#content = [];

unlock() { this.locked = false; }
lock() { this.locked = true; }
get content() {

if (this.locked) throw new Error("Locked!");
return this.#content;

}

212

};

It is a box with a lock. There is an array in the box, but you can get
at it only when the box is unlocked.

Write a function called withBoxUnlocked that takes a function value as
argument, unlocks the box, runs the function, and then ensures that the
box is locked again before returning, regardless of whether the argument
function returned normally or threw an exception.

For extra points, make sure that if you call withBoxUnlocked when the
box is already unlocked, the box stays unlocked.

213

“Some people, when confronted with a problem, think ‘I know,
I’ll use regular expressions.’ Now they have two problems.”

—Jamie Zawinski

Chapter 9

Regular Expressions

Programming tools and techniques survive and spread in a chaotic,
evolutionary way. It’s not always the best or most brilliant ones that
win, but rather the ones that function well enough within the right
niche or that happen to be integrated with another successful piece of
technology.

In this chapter, I will discuss one such tool, regular expressions. Reg-
ular expressions are a way to describe patterns in string data. They
form a small, separate language that is part of JavaScript and many
other languages and systems.

Regular expressions are both terribly awkward and extremely useful.
Their syntax is cryptic and the programming interface JavaScript pro-
vides for them is clumsy. But they are a powerful tool for inspecting
and processing strings. Properly understanding regular expressions will
make you a more effective programmer.

214

Creating a regular expression

A regular expression is a type of object. It can be either constructed
with the RegExp constructor or written as a literal value by enclosing a
pattern in forward slash (/) characters.

let re1 = new RegExp("abc");
let re2 = /abc/;

Both of those regular expression objects represent the same pattern: an
a character followed by a b followed by a c.

When using the RegExp constructor, the pattern is written as a normal
string, so the usual rules apply for backslashes.

The second notation, where the pattern appears between slash char-
acters, treats backslashes somewhat differently. First, since a forward
slash ends the pattern, we need to put a backslash before any forward
slash that we want to be part of the pattern. In addition, backslashes
that aren’t part of special character codes (like \n) will be preserved,
rather than ignored as they are in strings, and change the meaning of
the pattern. Some characters, such as question marks and plus signs,
have special meanings in regular expressions and must be preceded by
a backslash if they are meant to represent the character itself.

let aPlus = /A\+/;

215

Testing for matches

Regular expression objects have a number of methods. The simplest
one is test. If you pass it a string, it will return a Boolean telling you
whether the string contains a match of the pattern in the expression.

console.log(/abc/.test("abcde"));
// → true
console.log(/abc/.test("abxde"));
// → false

A regular expression consisting of only nonspecial characters simply
represents that sequence of characters. If abc occurs anywhere in the
string we are testing against (not just at the start), test will return
true.

Sets of characters

Finding out whether a string contains abc could just as well be done
with a call to indexOf. Regular expressions are useful because they allow
us to describe more complicated patterns.

Say we want to match any number. In a regular expression, putting
a set of characters between square brackets makes that part of the
expression match any of the characters between the brackets.

Both of the following expressions match all strings that contain a
digit:

console.log(/[0123456789]/.test("in 1992"));

216

// → true
console.log(/[0-9]/.test("in 1992"));
// → true

Within square brackets, a hyphen (-) between two characters can be
used to indicate a range of characters, where the ordering is determined
by the character’s Unicode number. Characters 0 to 9 sit right next to
each other in this ordering (codes 48 to 57), so [0-9] covers all of them
and matches any digit.

A number of common character groups have their own built-in short-
cuts. Digits are one of them: \d means the same thing as [0-9].
\d Any digit character
\w An alphanumeric character (“word character”)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A nonalphanumeric character
\S A nonwhitespace character
. Any character except for newline
You could match a date and time format like 01-30-2003 15:20 with

the following expression:

let dateTime = /\d\d-\d\d-\d\d\d\d \d\d:\d\d/;
console.log(dateTime.test("01-30-2003 15:20"));
// → true
console.log(dateTime.test("30-jan-2003 15:20"));
// → false

That regular expression looks completely awful, doesn’t it? Half of it is
backslashes, producing a background noise that makes it hard to spot

217

the actual pattern expressed. We’ll see a slightly improved version of
this expression later.

These backslash codes can also be used inside square brackets. For
example, [\d.] means any digit or a period character. The period itself,
between square brackets, loses its special meaning. The same goes for
other special characters, such as the plus sign (+).

To invert a set of characters—that is, to express that you want to
match any character except the ones in the set—you can write a caret
(^) character after the opening bracket.

let nonBinary = /[^01]/;
console.log(nonBinary.test("1100100010100110"));
// → false
console.log(nonBinary.test("0111010112101001"));
// → true

International characters

Because of JavaScript’s initial simplistic implementation and the fact
that this simplistic approach was later set in stone as standard behav-
ior, JavaScript’s regular expressions are rather dumb about characters
that do not appear in the English language. For example, as far as
JavaScript’s regular expressions are concerned, a “word character” is
only one of the 26 characters in the Latin alphabet (uppercase or low-
ercase), decimal digits, and, for some reason, the underscore character.
Things like é or ß, which most definitely are word characters, will not
match \w (and will match uppercase \W, the nonword category).

218

By a strange historical accident, \s (whitespace) does not have this
problem and matches all characters that the Unicode standard con-
siders whitespace, including things like the nonbreaking space and the
Mongolian vowel separator.

It is possible to use \p in a regular expression to match all characters
to which the Unicode standard assigns a given property. This allows
us to match things like letters in a more cosmopolitan way. However,
again due to compatibility with the original language standards, those
are recognized only when you put a u character (for Unicode) after the
regular expression.
\p{L} Any letter
\p{N} Any numeric character
\p{P} Any punctuation character
\P{L} Any nonletter (uppercase P inverts)
\p{Script=Hangul} Any character from the given script (see Chapter 5)
Using \w for text processing that may need to handle non-English text

(or even English text with borrowed words like “cliché”) is a liability,
since it won’t treat characters like “é” as letters. Though they tend to
be a bit more verbose, \p property groups are more robust.

console.log(/\p{L}/u.test("α"));
// → true
console.log(/\p{L}/u.test("!"));
// → false
console.log(/\p{Script=Greek}/u.test("α"));
// → true
console.log(/\p{Script=Arabic}/u.test("α"));
// → false

219

On the other hand, if you are matching numbers in order to do some-
thing with them, you often do want \d for digits, since converting ar-
bitrary numeric characters into a JavaScript number is not something
that a function like Number can do for you.

Repeating parts of a pattern

We now know how to match a single digit. What if we want to match
a whole number—a sequence of one or more digits?

When you put a plus sign (+) after something in a regular expression,
it indicates that the element may be repeated more than once. Thus,
/\d+/ matches one or more digit characters.

console.log(/'\d+'/.test("'123'"));
// → true
console.log(/'\d+'/.test("''"));
// → false
console.log(/'\d*'/.test("'123'"));
// → true
console.log(/'\d*'/.test("''"));
// → true

The star (*) has a similar meaning but also allows the pattern to match
zero times. Something with a star after it never prevents a pattern from
matching—it’ll just match zero instances if it can’t find any suitable
text to match.

A question mark (?) makes a part of a pattern optional, meaning
it may occur zero times or one time. In the following example, the u

220

character is allowed to occur, but the pattern also matches when it is
missing:

let neighbor = /neighbou?r/;
console.log(neighbor.test("neighbour"));
// → true
console.log(neighbor.test("neighbor"));
// → true

To indicate that a pattern should occur a precise number of times, use
braces. Putting {4} after an element, for example, requires it to occur
exactly four times. It is also possible to specify a range this way: {2,4}

means the element must occur at least twice and at most four times.
Here is another version of the date and time pattern that allows both

single- and double-digit days, months, and hours. It is also slightly
easier to decipher.

let dateTime = /\d{1,2}-\d{1,2}-\d{4} \d{1,2}:\d{2}/;
console.log(dateTime.test("1-30-2003 8:45"));
// → true

You can also specify open-ended ranges when using braces by omitting
the number after the comma. For example, {5,} means five or more
times.

Grouping subexpressions

To use an operator like * or + on more than one element at a time, you
must use parentheses. A part of a regular expression that is enclosed in

221

parentheses counts as a single element as far as the operators following
it are concerned.

let cartoonCrying = /boo+(hoo+)+/i;
console.log(cartoonCrying.test("Boohoooohoohooo"));
// → true

The first and second + characters apply only to the second o in boo

and hoo, respectively. The third + applies to the whole group (hoo+),
matching one or more sequences like that.

The i at the end of the expression in the example makes this regular
expression case insensitive, allowing it to match the uppercase B in the
input string, even though the pattern is itself all lowercase.

Matches and groups

The test method is the absolute simplest way to match a regular ex-
pression. It tells you only whether it matched and nothing else. Regular
expressions also have an exec (execute) method that will return null if
no match was found and return an object with information about the
match otherwise.

let match = /\d+/.exec("one two 100");
console.log(match);
// → ["100"]
console.log(match.index);
// → 8

An object returned from exec has an index property that tells us where

222

in the string the successful match begins. Other than that, the object
looks like (and in fact is) an array of strings, whose first element is the
string that was matched. In the previous example, this is the sequence
of digits that we were looking for.

String values have a match method that behaves similarly.

console.log("one two 100".match(/\d+/));
// → ["100"]

When the regular expression contains subexpressions grouped with paren-
theses, the text that matched those groups will also show up in the ar-
ray. The whole match is always the first element. The next element is
the part matched by the first group (the one whose opening parenthesis
comes first in the expression), then the second group, and so on.

let quotedText = /'([^']*)'/;
console.log(quotedText.exec("she said 'hello'"));
// → ["'hello'", "hello"]

When a group does not end up being matched at all (for example, when
followed by a question mark), its position in the output array will hold
undefined. When a group is matched multiple times (for example, when
followed by a +), only the last match ends up in the array.

console.log(/bad(ly)?/.exec("bad"));
// → ["bad", undefined]
console.log(/(\d)+/.exec("123"));
// → ["123", "3"]

If you want to use parentheses purely for grouping, without having

223

them show up in the array of matches, you can put ?: after the opening
parenthesis.

console.log(/(?:na)+/.exec("banana"));
// → ["nana"]

Groups can be useful for extracting parts of a string. If we don’t just
want to verify whether a string contains a date but also extract it and
construct an object that represents it, we can wrap parentheses around
the digit patterns and directly pick the date out of the result of exec.

But first we’ll take a brief detour to discuss the built-in way to rep-
resent date and time values in JavaScript.

The Date class

JavaScript has a standard Date class for representing dates, or rather,
points in time. If you simply create a date object using new, you get the
current date and time.

console.log(new Date());
// → Fri Feb 02 2024 18:03:06 GMT+0100 (CET)

You can also create an object for a specific time.

console.log(new Date(2009, 11, 9));
// → Wed Dec 09 2009 00:00:00 GMT+0100 (CET)
console.log(new Date(2009, 11, 9, 12, 59, 59, 999));
// → Wed Dec 09 2009 12:59:59 GMT+0100 (CET)

JavaScript uses a convention where month numbers start at zero (so

224

December is 11), yet day numbers start at one. This is confusing and
silly. Be careful.

The last four arguments (hours, minutes, seconds, and milliseconds)
are optional and taken to be zero when not given.

Timestamps are stored as the number of milliseconds since the start
of 1970, in the UTC time zone. This follows a convention set by “Unix
time”, which was invented around that time. You can use negative
numbers for times before 1970. The getTime method on a date object
returns this number. It is big, as you can imagine.

console.log(new Date(2013, 11, 19).getTime());
// → 1387407600000
console.log(new Date(1387407600000));
// → Thu Dec 19 2013 00:00:00 GMT+0100 (CET)

If you give the Date constructor a single argument, that argument is
treated as such a millisecond count. You can get the current millisecond
count by creating a new Date object and calling getTime on it or by
calling the Date.now function.

Date objects provide methods such as getFullYear, getMonth, getDate
, getHours, getMinutes, and getSeconds to extract their components.
Besides getFullYear there’s also getYear, which gives you the year minus
1900 (such as 98 or 125) and is mostly useless.

Putting parentheses around the parts of the expression that we are
interested in, we can now create a date object from a string.

function getDate(string) {
let [_, month, day, year] =

/(\d{1,2})-(\d{1,2})-(\d{4})/.exec(string);

225

return new Date(year, month - 1, day);
}
console.log(getDate("1-30-2003"));
// → Thu Jan 30 2003 00:00:00 GMT+0100 (CET)

The underscore (_) binding is ignored and used only to skip the full
match element in the array returned by exec.

Boundaries and look-ahead

Unfortunately, getDate will also happily extract a date from the string
"100-1-30000". A match may happen anywhere in the string, so in this
case, it’ll just start at the second character and end at the second-to-last
character.

If we want to enforce that the match must span the whole string,
we can add the markers ^ and $. The caret matches the start of the
input string, whereas the dollar sign matches the end. Thus /^\d+$/

matches a string consisting entirely of one or more digits, /^!/ matches
any string that starts with an exclamation mark, and /x^/ does not
match any string (there cannot be an x before the start of the string).

There is also a \b marker that matches word boundaries, positions
that have a word character on one side, and a nonword character on
the other. Unfortunately, these use the same simplistic concept of word
characters as \w and are therefore not very reliable.

Note that these boundary markers don’t match any actual characters.
They just enforce that a given condition holds at the place where it
appears in the pattern.

226

Look-ahead tests do something similar. They provide a pattern and
will make the match fail if the input doesn’t match that pattern, but
don’t actually move the match position forward. They are written
between (?= and).

console.log(/a(?=e)/.exec("braeburn"));
// → ["a"]
console.log(/a(?!)/.exec("a b"));
// → null

The e in the first example is necessary to match, but is not part of the
matched string. The (?!) notation expresses a negative look-ahead.
This matches only if the pattern in the parentheses doesn’t match,
causing the second example to match only a characters that don’t have
a space after them.

Choice patterns

Say we want to know whether a piece of text contains not only a number
but a number followed by one of the words pig, cow, or chicken, or any
of their plural forms.

We could write three regular expressions and test them in turn, but
there is a nicer way. The pipe character (|) denotes a choice between
the pattern to its left and the pattern to its right. We can use it in
expressions like this:

let animalCount = /\d+ (pig|cow|chicken)s?/;
console.log(animalCount.test("15 pigs"));

227

// → true
console.log(animalCount.test("15 pugs"));
// → false

Parentheses can be used to limit the part of the pattern to which the
pipe operator applies, and you can put multiple such operators next to
each other to express a choice between more than two alternatives.

The mechanics of matching

Conceptually, when you use exec or test, the regular expression engine
looks for a match in your string by trying to match the expression first
from the start of the string, then from the second character, and so on
until it finds a match or reaches the end of the string. It’ll either return
the first match that can be found or fail to find any match at all.

To do the actual matching, the engine treats a regular expression
something like a flow diagram. This is the diagram for the livestock
expression in the previous example:

digit “”

group #1

“pig”

“cow”

“chicken”

“s”

228

If we can find a path from the left side of the diagram to the right
side, our expression matches. We keep a current position in the string,
and every time we move through a box, we verify that the part of the
string after our current position matches that box.

Backtracking

The regular expression /^([01]+b|[\da-f]+h|\d+)$/ matches either a bi-
nary number followed by a b, a hexadecimal number (that is, base 16,
with the letters a to f standing for the digits 10 to 15) followed by an
h, or a regular decimal number with no suffix character. This is the
corresponding diagram:

Start of line

group #1

One of:

“0”

“1”
“b”

One of:

digit

-“a” “f”
“h”

digit

End of line

229

When matching this expression, the top (binary) branch will often
be entered even though the input does not actually contain a binary
number. When matching the string "103", for example, it becomes clear
only at the 3 that we are in the wrong branch. The string does match
the expression, just not the branch we are currently in.

So the matcher backtracks. When entering a branch, it remembers
its current position (in this case, at the start of the string, just past
the first boundary box in the diagram) so that it can go back and try
another branch if the current one does not work out. For the string
"103", after encountering the 3 character, the matcher starts trying the
branch for hexadecimal numbers, which fails again because there is no
h after the number. It then tries the decimal number branch. This one
fits, and a match is reported after all.

The matcher stops as soon as it finds a full match. This means that
if multiple branches could potentially match a string, only the first one
(ordered by where the branches appear in the regular expression) is
used.

Backtracking also happens for repetition operators like + and *. If
you match /^.*x/ against "abcxe", the .* part will first try to consume
the whole string. The engine will then realize that it needs an x to
match the pattern. Since there is no x past the end of the string,
the star operator tries to match one character less. But the matcher
doesn’t find an x after abcx either, so it backtracks again, matching the
star operator to just abc. Now it finds an x where it needs it and reports
a successful match from positions 0 to 4.

It is possible to write regular expressions that will do a lot of back-

230

tracking. This problem occurs when a pattern can match a piece of
input in many different ways. For example, if we get confused while
writing a binary-number regular expression, we might accidentally write
something like /([01]+)+b/.

"b"

Group #1

One of:

"1"

"0"

If that tries to match some long series of zeros and ones with no
trailing b character, the matcher first goes through the inner loop until
it runs out of digits. Then it notices there is no b, so it backtracks one
position, goes through the outer loop once, and gives up again, trying
to backtrack out of the inner loop once more. It will continue to try
every possible route through these two loops. This means the amount
of work doubles with each additional character. For even just a few
dozen characters, the resulting match will take practically forever.

231

The replace method

String values have a replace method that can be used to replace part
of the string with another string.

console.log("papa".replace("p", "m"));
// → mapa

The first argument can also be a regular expression, in which case the
first match of the regular expression is replaced. When a g option (for
global) is added after the regular expression, all matches in the string
will be replaced, not just the first.

console.log("Borobudur".replace(/[ou]/, "a"));
// → Barobudur
console.log("Borobudur".replace(/[ou]/g, "a"));
// → Barabadar

The real power of using regular expressions with replace comes from
the fact that we can refer to matched groups in the replacement string.
For example, say we have a big string containing the names of people,
one name per line, in the format Lastname, Firstname. If we want to
swap these names and remove the comma to get a Firstname Lastname

format, we can use the following code:

console.log(
"Liskov, Barbara\nMcCarthy, John\nMilner, Robin"

.replace(/(\p{L}+), (\p{L}+)/gu, "$2 $1"));
// → Barbara Liskov
// John McCarthy

232

// Robin Milner

The $1 and $2 in the replacement string refer to the parenthesized
groups in the pattern. $1 is replaced by the text that matched against
the first group, $2 by the second, and so on, up to $9. The whole match
can be referred to with $&.

It is possible to pass a function—rather than a string—as the second
argument to replace. For each replacement, the function will be called
with the matched groups (as well as the whole match) as arguments,
and its return value will be inserted into the new string.

Here’s an example:

let stock = "1 lemon, 2 cabbages, and 101 eggs";
function minusOne(match, amount, unit) {

amount = Number(amount) - 1;
if (amount == 1) { // only one left, remove the 's'

unit = unit.slice(0, unit.length - 1);
} else if (amount == 0) {

amount = "no";
}
return amount + " " + unit;

}
console.log(stock.replace(/(\d+) (\p{L}+)/gu, minusOne));
// → no lemon, 1 cabbage, and 100 eggs

This code takes a string, finds all occurrences of a number followed by
an alphanumeric word, and returns a string that has one less of every
such quantity.

The (\d+) group ends up as the amount argument to the function, and

233

the (\p{L}+) group gets bound to unit. The function converts amount

to a number—which always works, since it matched \d+ earlier—and
makes some adjustments in case there is only one or zero left.

Greed

We can use replace to write a function that removes all comments from
a piece of JavaScript code. Here is a first attempt:

function stripComments(code) {
return code.replace(/\/\/.*|\/*[^]**\//g, "");

}
console.log(stripComments("1 + /* 2 */3"));
// → 1 + 3
console.log(stripComments("x = 10;// ten!"));
// → x = 10;
console.log(stripComments("1 /* a */+/* b */ 1"));
// → 1 1

The part before the | operator matches two slash characters followed by
any number of non-newline characters. The part for multiline comments
is more involved. We use [^] (any character that is not in the empty
set of characters) as a way to match any character. We cannot just use
a period here because block comments can continue on a new line, and
the period character does not match newline characters.

But the output for the last line appears to have gone wrong. Why?
The [^]* part of the expression, as I described in the section on

backtracking, will first match as much as it can. If that causes the next

234

part of the pattern to fail, the matcher moves back one character and
tries again from there. In the example, the matcher first tries to match
the whole rest of the string and then moves back from there. It will
find an occurrence of */ after going back four characters and match
that. This is not what we wanted—the intention was to match a single
comment, not to go all the way to the end of the code and find the end
of the last block comment.

Because of this behavior, we say the repetition operators (+, *, ?, and
{}) are greedy, meaning they match as much as they can and backtrack
from there. If you put a question mark after them (+?, *?, ??, {}?), they
become nongreedy and start by matching as little as possible, matching
more only when the remaining pattern does not fit the smaller match.

And that is exactly what we want in this case. By having the star
match the smallest stretch of characters that brings us to a */, we
consume one block comment and nothing more.

function stripComments(code) {
return code.replace(/\/\/.*|\/*[^]*?*\//g, "");

}
console.log(stripComments("1 /* a */+/* b */ 1"));
// → 1 + 1

A lot of bugs in regular expression programs can be traced to unin-
tentionally using a greedy operator where a nongreedy one would work
better. When using a repetition operator, prefer the nongreedy variant.

235

Dynamically creating RegExp objects

In some cases you may not know the exact pattern you need to match
against when you are writing your code. Say you want to test for the
user’s name in a piece of text. You can build up a string and use the
RegExp constructor on that.

let name = "harry";
let regexp = new RegExp("(^|\\s)" + name + "($|\\s)", "gi");
console.log(regexp.test("Harry is a dodgy character."));
// → true

When creating the \s part of the string, we have to use two backslashes
because we are writing them in a normal string, not a slash-enclosed
regular expression. The second argument to the RegExp constructor
contains the options for the regular expression—in this case, "gi" for
global and case insensitive.

But what if the name is "dea+hl[]rd" because our user is a nerdy
teenager? That would result in a nonsensical regular expression that
won’t actually match the user’s name.

To work around this, we can add backslashes before any character
that has a special meaning.

let name = "dea+hl[]rd";
let escaped = name.replace(/[\\[.+*?(){|^$]/g, "\\$&");
let regexp = new RegExp("(^|\\s)" + escaped + "($|\\s)",

"gi");
let text = "This dea+hl[]rd guy is super annoying.";
console.log(regexp.test(text));

236

// → true

The search method

While the indexOf method on strings cannot be called with a regular
expression, there is another method, search, that does expect a reg-
ular expression. Like indexOf, it returns the first index on which the
expression was found, or -1 when it wasn’t found.

console.log(" word".search(/\S/));
// → 2
console.log(" ".search(/\S/));
// → -1

Unfortunately, there is no way to indicate that the match should start
at a given offset (like we can with the second argument to indexOf),
which would often be useful.

The lastIndex property

The exec method similarly does not provide a convenient way to start
searching from a given position in the string. But it does provide an
inconvenient way.

Regular expression objects have properties. One such property is
source, which contains the string that expression was created from.
Another property is lastIndex, which controls, in some limited circum-
stances, where the next match will start.

237

Those circumstances are that the regular expression must have the
global (g) or sticky (y) option enabled, and the match must happen
through the exec method. Again, a less confusing solution would have
been to just allow an extra argument to be passed to exec, but confusion
is an essential feature of JavaScript’s regular expression interface.

let pattern = /y/g;
pattern.lastIndex = 3;
let match = pattern.exec("xyzzy");
console.log(match.index);
// → 4
console.log(pattern.lastIndex);
// → 5

If the match was successful, the call to exec automatically updates the
lastIndex property to point after the match. If no match was found,
lastIndex is set back to 0, which is also the value it has in a newly
constructed regular expression object.

The difference between the global and the sticky options is that when
sticky is enabled, the match will succeed only if it starts directly at
lastIndex, whereas with global, it will search ahead for a position where
a match can start.

let global = /abc/g;
console.log(global.exec("xyz abc"));
// → ["abc"]
let sticky = /abc/y;
console.log(sticky.exec("xyz abc"));
// → null

238

When using a shared regular expression value for multiple exec calls,
these automatic updates to the lastIndex property can cause problems.
Your regular expression might be accidentally starting at an index left
over from a previous call.

let digit = /\d/g;
console.log(digit.exec("here it is: 1"));
// → ["1"]
console.log(digit.exec("and now: 1"));
// → null

Another interesting effect of the global option is that it changes the
way the match method on strings works. When called with a global
expression, instead of returning an array similar to that returned by
exec, match will find all matches of the pattern in the string and return
an array containing the matched strings.

console.log("Banana".match(/an/g));
// → ["an", "an"]

So be cautious with global regular expressions. The cases where they
are necessary—calls to replace and places where you want to explicitly
use lastIndex—are typically the situations where you want to use them.

A common thing to do is to find all the matches of a regular expression
in a string. We can do this by using the matchAll method.

let input = "A string with 3 numbers in it... 42 and 88.";
let matches = input.matchAll(/\d+/g);
for (let match of matches) {

console.log("Found", match[0], "at", match.index);

239

}
// → Found 3 at 14
// Found 42 at 33
// Found 88 at 40

This method returns an array of match arrays. The regular expression
given to matchAll must have g enabled.

Parsing an INI file

To conclude the chapter, we’ll look at a problem that calls for regular
expressions. Imagine we are writing a program to automatically collect
information about our enemies from the internet. (We will not actually
write that program here, just the part that reads the configuration file.
Sorry.) The configuration file looks like this:

searchengine=https://duckduckgo.com/?q=$1
spitefulness=9.7

; comments are preceded by a semicolon...
; each section concerns an individual enemy
[larry]
fullname=Larry Doe
type=kindergarten bully
website=http://www.geocities.com/CapeCanaveral/11451

[davaeorn]
fullname=Davaeorn
type=evil wizard

240

outputdir=/home/marijn/enemies/davaeorn

The exact rules for this format—which is a widely used file format,
usually called an INI file—are as follows:

• Blank lines and lines starting with semicolons are ignored.

• Lines wrapped in [and] start a new section.

• Lines containing an alphanumeric identifier followed by an = char-
acter add a setting to the current section.

• Anything else is invalid.

Our task is to convert a string like this into an object whose prop-
erties hold strings for settings written before the first section header
and subobjects for sections, with those subobjects holding the section’s
settings.

Since the format has to be processed line by line, splitting up the file
into separate lines is a good start. We saw the split method in Chapter
4. Some operating systems, however, use not just a newline character
to separate lines but a carriage return character followed by a newline
("\r\n"). Given that the split method also allows a regular expression
as its argument, we can use a regular expression like /\r?\n/ to split in
a way that allows both "\n" and "\r\n" between lines.

function parseINI(string) {
// Start with an object to hold the top-level fields
let result = {};

241

let section = result;
for (let line of string.split(/\r?\n/)) {

let match;
if (match = line.match(/^(\w+)=(.*)$/)) {

section[match[1]] = match[2];
} else if (match = line.match(/^\[(.*)\]$/)) {

section = result[match[1]] = {};
} else if (!/^\s*(;|$)/.test(line)) {

throw new Error("Line '" + line + "' is not valid.");
}

};
return result;

}

console.log(parseINI(`
name=Vasilis
[address]
city=Tessaloniki`));
// → {name: "Vasilis", address: {city: "Tessaloniki"}}

The code goes over the file’s lines and builds up an object. Properties
at the top are stored directly into that object, whereas properties found
in sections are stored in a separate section object. The section binding
points at the object for the current section.

There are two kinds of significant lines—section headers or property
lines. When a line is a regular property, it is stored in the current
section. When it is a section header, a new section object is created,
and section is set to point at it.

Note the recurring use of ^ and $ to make sure the expression matches

242

the whole line, not just part of it. Leaving these out results in code
that mostly works but behaves strangely for some input, which can be
a difficult bug to track down.

The pattern if (match = string.match(...)) makes use of the fact
that the value of an assignment expression (=) is the assigned value.
You often aren’t sure that your call to match will succeed, so you can
access the resulting object only inside an if statement that tests for
this. To not break the pleasant chain of else if forms, we assign the
result of the match to a binding and immediately use that assignment
as the test for the if statement.

If a line is not a section header or a property, the function checks
whether it is a comment or an empty line using the expression /^\s*(;|

$)/ to match lines that either contain only whitespace, or whitespace
followed by a semicolon (making the rest of the line a comment). When
a line doesn’t match any of the expected forms, the function throws an
exception.

Code units and characters

Another design mistake that’s been standardized in JavaScript regu-
lar expressions is that by default, operators like . or ? work on code
units (as discussed in Chapter 5), not actual characters. This means
characters that are composed of two code units behave strangely.

console.log(/🍎{3}/.test("🍎🍎🍎"));
// → false

console.log(/<.>/.test("<🌹>"));

243

// → false

console.log(/<.>/u.test("<🌹>"));
// → true

The problem is that the🍎 in the first line is treated as two code units,
and {3} is applied only to the second unit. Similarly, the dot matches
a single code unit, not the two that make up the rose emoji.

You must add the u (Unicode) option to your regular expression to
make it treat such characters properly.

console.log(/🍎{3}/u.test("🍎🍎🍎"));
// → true

Summary

Regular expressions are objects that represent patterns in strings. They
use their own language to express these patterns.

244

/abc/ A sequence of characters
/[abc]/ Any character from a set of characters
/[^abc]/ Any character not in a set of characters
/[0-9]/ Any character in a range of characters
/x+/ One or more occurrences of the pattern x

/x+?/ One or more occurrences, nongreedy
/x*/ Zero or more occurrences
/x?/ Zero or one occurrence
/x{2,4}/ Two to four occurrences
/(abc)/ A group
/a|b|c/ Any one of several patterns
/\d/ Any digit character
/\w/ An alphanumeric character (“word character”)
/\s/ Any whitespace character
/./ Any character except newlines
/\p{L}/u Any letter character
/^/ Start of input
/$/ End of input
/(?=a)/ A look-ahead test
A regular expression has a method test to test whether a given string

matches it. It also has a method exec that, when a match is found,
returns an array containing all matched groups. Such an array has an
index property that indicates where the match started.

Strings have a match method to match them against a regular expres-
sion and a search method to search for one, returning only the starting
position of the match. Their replace method can replace matches of a
pattern with a replacement string or function.

245

Regular expressions can have options, which are written after the
closing slash. The i option makes the match case insensitive. The g

option makes the expression global, which, among other things, causes
the replace method to replace all instances instead of just the first.
The y option makes and expression sticky, which means that it will not
search ahead and skip part of the string when looking for a match. The
u option turns on Unicode mode, which enables \p syntax and fixes a
number of problems around the handling of characters that take up two
code units.

Regular expressions are a sharp tool with an awkward handle. They
simplify some tasks tremendously but can quickly become unmanage-
able when applied to complex problems. Part of knowing how to use
them is resisting the urge to try to shoehorn things into them that they
cannot cleanly express.

Exercises

It is almost unavoidable that, in the course of working on these exer-
cises, you will get confused and frustrated by some regular expression’s
inexplicable behavior. Sometimes it helps to enter your expression into
an online tool like debuggex.com to see whether its visualization cor-
responds to what you intended and to experiment with the way it re-
sponds to various input strings.

246

https://www.debuggex.com

Regexp golf

Code golf is a term used for the game of trying to express a particular
program in as few characters as possible. Similarly, regexp golf is the
practice of writing as tiny a regular expression as possible to match a
given pattern and only that pattern.

For each of the following items, write a regular expression to test
whether the given pattern occurs in a string. The regular expression
should match only strings containing the pattern. When your expres-
sion works, see whether you can make it any smaller.

1. car and cat

2. pop and prop

3. ferret, ferry, and ferrari

4. Any word ending in ious

5. A whitespace character followed by a period, comma, colon, or
semicolon

6. A word longer than six letters

7. A word without the letter e (or E)

Refer to the table in the chapter summary for help. Test each solution
with a few test strings.

247

Quoting style

Imagine you have written a story and used single quotation marks
throughout to mark pieces of dialogue. Now you want to replace all
the dialogue quotes with double quotes, while keeping the single quotes
used in contractions like aren’t.

Think of a pattern that distinguishes these two kinds of quote usage
and craft a call to the replacemethod that does the proper replacement.

Numbers again

Write an expression that matches only JavaScript-style numbers. It
must support an optional minus or plus sign in front of the number,
the decimal dot, and exponent notation—5e-3 or 1E10—again with an
optional sign in front of the exponent. Also note that it is not necessary
for there to be digits in front of or after the dot, but the number cannot
be a dot alone. That is, .5 and 5. are valid JavaScript numbers, but a
lone dot isn’t.

248

“Write code that is easy to delete, not easy to extend.”
—Tef, programming is terrible

Chapter 10

Modules

Ideally, a program has a clear, straightforward structure. The way it
works is easy to explain, and each part plays a well-defined role.

In practice, programs grow organically. Pieces of functionality are
added as the programmer identifies new needs. Keeping such a program
well structured requires constant attention and work. This is work that
will pay off only in the future, the next time someone works on the
program, so it’s tempting to neglect it and allow the various parts of
the program to become deeply entangled.

This causes two practical issues. First, understanding an entangled
system is hard. If everything can touch everything else, it is difficult to
look at any given piece in isolation. You are forced to build up a holistic
understanding of the entire thing. Second, if you want to use any of
the functionality from such a program in another situation, rewriting
it may be easier than trying to disentangle it from its context.

The phrase “big ball of mud” is often used for such large, structureless
programs. Everything sticks together, and when you try to pick out a
piece, the whole thing comes apart, and you succeed only in making a

249

mess.

Modular programs

Modules are an attempt to avoid these problems. A module is a piece
of program that specifies which other pieces it relies on and which func-
tionality it provides for other modules to use (its interface).

Module interfaces have a lot in common with object interfaces, as we
saw them in Chapter 6. They make part of the module available to the
outside world and keep the rest private.

But the interface that a module provides for others to use is only
half the story. A good module system also requires modules to specify
which code they use from other modules. These relations are called
dependencies. If module A uses functionality from module B, it is said
to depend on that module. When these are clearly specified in the
module itself, they can be used to figure out which other modules need
to be present to be able to use a given module and to automatically
load dependencies.

When the ways in which modules interact with each other are explicit,
a system becomes more like LEGO, where pieces interact through well-
defined connectors, and less like mud, where everything mixes with
everything else.

250

ES modules

The original JavaScript language did not have any concept of a module.
All scripts ran in the same scope, and accessing a function defined in
another script was done by referencing the global bindings created by
that script. This actively encouraged accidental, hard-to-see entangle-
ment of code and invited problems like unrelated scripts trying to use
the same binding name.

Since ECMAScript 2015, JavaScript supports two different types of
programs. Scripts behave in the old way: their bindings are defined
in the global scope, and they have no way to directly reference other
scripts. Modules get their own separate scope and support the import

and export keywords, which aren’t available in scripts, to declare their
dependencies and interface. This module system is usually called ES
modules (where ES stands for ECMAScript).

A modular program is composed of a number of such modules, wired
together via their imports and exports.

The following example module converts between day names and num-
bers (as returned by Date’s getDay method). It defines a constant that
is not part of its interface, and two functions that are. It has no depen-
dencies.

const names = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"];

export function dayName(number) {
return names[number];

}

251

export function dayNumber(name) {
return names.indexOf(name);

}

The export keyword can be put in front of a function, class, or binding
definition to indicate that that binding is part of the module’s inter-
face. This makes it possible for other modules to use that binding by
importing it.

import {dayName} from "./dayname.js";
let now = new Date();
console.log(`Today is ${dayName(now.getDay())}`);
// → Today is Monday

The import keyword, followed by a list of binding names in braces,
makes bindings from another module available in the current module.
Modules are identified by quoted strings.

How such a module name is resolved to an actual program differs by
platform. The browser treats them as web addresses, whereas Node.js
resolves them to files. When you run a module, all the other modules
it depends on—and the modules those depend on—are loaded, and the
exported bindings are made available to the modules that import them.

Import and export declarations cannot appear inside of functions,
loops, or other blocks. They are immediately resolved when the module
is loaded, regardless of how the code in the module executes. To reflect
this, they must appear only in the outer module body.

A module’s interface thus consists of a collection of named bindings,
which other modules that depend on the module can access. Imported
bindings can be renamed to give them a new local name using as after

252

their name.

import {dayName as nomDeJour} from "./dayname.js";
console.log(nomDeJour(3));
// → Wednesday

A module may also have a special export named default, which is often
used for modules that only export a single binding. To define a de-
fault export, you write export default before an expression, a function
declaration, or a class declaration.

export default ["Winter", "Spring", "Summer", "Autumn"];

Such a binding is imported by omitting the braces around the name of
the import.

import seasonNames from "./seasonname.js";

To import all bindings from a module at the same time, you can use
import *. You provide a name, and that name will be bound to an
object holding all the module’s exports. This can be useful when you
are using a lot of different exports.

import * as dayName from "./dayname.js";
console.log(dayName.dayName(3));
// → Wednesday

253

Packages

One of the advantages of building a program out of separate pieces and
being able to run some of those pieces on their own is that you might
be able to use the same piece in different programs.

But how do you set this up? Say I want to use the parseINI function
from Chapter 9 in another program. If it is clear what the function
depends on (in this case, nothing), I can just copy that module into my
new project and use it. But then, if I find a mistake in the code, I’ll
probably fix it in whichever program I’m working with at the time and
forget to also fix it in the other program.

Once you start duplicating code, you’ll quickly find yourself wasting
time and energy moving copies around and keeping them up to date.
That’s where packages come in. A package is a chunk of code that
can be distributed (copied and installed). It may contain one or more
modules and has information about which other packages it depends
on. A package also usually comes with documentation explaining what
it does so that people who didn’t write it might still be able to use it.

When a problem is found in a package or a new feature is added, the
package is updated. Now the programs that depend on it (which may
also be packages) can copy the new version to get the improvements
that were made to the code.

Working in this way requires infrastructure. We need a place to
store and find packages and a convenient way to install and upgrade
them. In the JavaScript world, this infrastructure is provided by NPM
(https://npmjs.com).

NPM is two things: an online service where you can download (and

254

https://npmjs.com

upload) packages, and a program (bundled with Node.js) that helps
you install and manage them.

At the time of writing, there are more than three million different
packages available on NPM. A large portion of those are rubbish, to
be fair. But almost every useful, publicly available JavaScript package
can be found on NPM. For example, an INI file parser, similar to the
one we built in Chapter 9, is available under the package name ini.

Chapter 20 will show how to install such packages locally using the
npm command line program.

Having quality packages available for download is extremely valuable.
It means that we can often avoid reinventing a program that 100 people
have written before and get a solid, well-tested implementation at the
press of a few keys.

Software is cheap to copy, so once someone has written it, distributing
it to other people is an efficient process. Writing it in the first place is
work, though, and responding to people who have found problems in
the code or who want to propose new features is even more work.

By default, you own the copyright to the code you write, and other
people may use it only with your permission. But because some people
are just nice and because publishing good software can help make you
a little bit famous among programmers, many packages are published
under a license that explicitly allows other people to use it.

Most code on NPM is licensed this way. Some licenses require you
to also publish code that you build on top of the package under the
same license. Others are less demanding, requiring only that you keep
the license with the code as you distribute it. The JavaScript commu-

255

nity mostly uses the latter type of license. When using other people’s
packages, make sure you are aware of their licenses.

Now, instead of writing our own INI file parser, we can use one from
NPM.

import {parse} from "ini";

console.log(parse("x = 10\ny = 20"));
// → {x: "10", y: "20"}

CommonJS modules

Before 2015, when the JavaScript language had no built-in module sys-
tem, people were already building large systems in JavaScript. To make
that workable, they needed modules.

The community designed its own improvised module systems on top
of the language. These use functions to create a local scope for the
modules and regular objects to represent module interfaces.

Initially, people just manually wrapped their entire module in an
“immediately invoked function expression” to create the module’s scope
and assigned their interface objects to a single global variable.

const weekDay = function() {
const names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];
return {

name(number) { return names[number]; },
number(name) { return names.indexOf(name); }

256

};
}();

console.log(weekDay.name(weekDay.number("Sunday")));
// → Sunday

This style of modules provides isolation, to a certain degree, but it does
not declare dependencies. Instead, it just puts its interface into the
global scope and expects its dependencies, if any, to do the same. This
is not ideal.

If we implement our own module loader, we can do better. The
most widely used approach to bolted-on JavaScript modules is called
CommonJS modules. Node.js used this module system from the start
(though it now also knows how to load ES modules), and it is the
module system used by many packages on NPM.

A CommonJS module looks like a regular script, but it has access to
two bindings that it uses to interact with other modules. The first is
a function called require. When you call this with the module name
of your dependency, it makes sure the module is loaded and returns its
interface. The second is an object named exports, which is the interface
object for the module. It starts out empty and you add properties to it
to define exported values.

This CommonJS example module provides a date-formatting func-
tion. It uses two packages from NPM—ordinal to convert numbers to
strings like "1st" and "2nd", and date-names to get the English names for
weekdays and months. It exports a single function, formatDate, which
takes a Date object and a template string.

257

The template string may contain codes that direct the format, such
as YYYY for the full year and Do for the ordinal day of the month. You
could give it a string like "MMMM Do YYYY" to get output like November 22

nd 2017.

const ordinal = require("ordinal");
const {days, months} = require("date-names");

exports.formatDate = function(date, format) {
return format.replace(/YYYY|M(MMM)?|Do?|dddd/g, tag => {

if (tag == "YYYY") return date.getFullYear();
if (tag == "M") return date.getMonth();
if (tag == "MMMM") return months[date.getMonth()];
if (tag == "D") return date.getDate();
if (tag == "Do") return ordinal(date.getDate());
if (tag == "dddd") return days[date.getDay()];

});
};

The interface of ordinal is a single function, whereas date-names exports
an object containing multiple things—days and months are arrays of
names. Destructuring is very convenient when creating bindings for
imported interfaces.

The module adds its interface function to exports so that modules
that depend on it get access to it. We could use the module like this:

const {formatDate} = require("./format-date.js");

console.log(formatDate(new Date(2017, 9, 13),
"dddd the Do"));

258

// → Friday the 13th

CommonJS is implemented with a module loader that, when loading a
module, wraps its code in a function (giving it its own local scope) and
passes the require and exports bindings to that function as arguments.

If we assume we have access to a readFile function that reads a file
by name and gives us its content, we can define a simplified form of
require like this:

function require(name) {
if (!(name in require.cache)) {

let code = readFile(name);
let exports = require.cache[name] = {};
let wrapper = Function("require, exports", code);
wrapper(require, exports);

}
return require.cache[name];

}
require.cache = Object.create(null);

Function is a built-in JavaScript function that takes a list of arguments
(as a comma-separated string) and a string containing the function body
and returns a function value with those arguments and that body. This
is an interesting concept—it allows a program to create new pieces of
program from string data—but also a dangerous one, since if someone
can trick your program into putting a string they provide into Function,
they can make the program do anything they want.

Standard JavaScript provides no such function as readFile, but dif-
ferent JavaScript environments, such as the browser and Node.js, pro-

259

vide their own ways of accessing files. The example just pretends that
readFile exists.

To avoid loading the same module multiple times, require keeps a
store (cache) of already loaded modules. When called, it first checks
whether the requested module has been loaded and, if not, loads it.
This involves reading the module’s code, wrapping it in a function, and
calling it.

By defining require and exports as parameters for the generated
wrapper function (and passing the appropriate values when calling it),
the loader makes sure that these bindings are available in the module’s
scope.

An important difference between this system and ES modules is that
ES module imports happen before a module’s script starts running,
whereas require is a normal function, invoked when the module is al-
ready running. Unlike import declarations, require calls can appear
inside functions, and the name of the dependency can be any expres-
sion that evaluates to a string, whereas import allows only plain quoted
strings.

The transition of the JavaScript community from CommonJS style to
ES modules has been a slow and somewhat rough one. Fortunately we
are now at a point where most of the popular packages on NPM provide
their code as ES modules, and Node.js allows ES modules to import
from CommonJS modules. While CommonJS code is still something
you will run across, there is no real reason to write new programs in
this style anymore.

260

Building and bundling

Many JavaScript packages aren’t technically written in JavaScript. Lan-
guage extensions such as TypeScript, the type checking dialect men-
tioned in Chapter 8, are widely used. People also often start using
planned new language features long before they have been added to the
platforms that actually run JavaScript. To make this possible, they
compile their code, translating it from their chosen JavaScript dialect
to plain old JavaScript—or even to a past version of JavaScript—so
that browsers can run it.

Including a modular program that consists of 200 different files in
a web page produces its own problems. If fetching a single file over
the network takes 50 milliseconds, loading the whole program takes 10
seconds, or maybe half that if you can load several files simultaneously.
That’s a lot of wasted time. Because fetching a single big file tends to
be faster than fetching a lot of tiny ones, web programmers have started
using tools that combine their programs (which they painstakingly split
into modules) into a single big file before they publish it to the web.
Such tools are called bundlers.

And we can go further. Apart from the number of files, the size of the
files also determines how fast they can be transferred over the network.
Thus, the JavaScript community has invented minifiers. These are tools
that take a JavaScript program and make it smaller by automatically
removing comments and whitespace, renaming bindings, and replacing
pieces of code with equivalent code that take up less space.

It is not uncommon for the code that you find in an NPM pack-
age or that runs on a web page to have gone through multiple stages of

261

transformation—converting from modern JavaScript to historic JavaScript,
combining the modules into a single file, and minifying the code. We
won’t go into the details of these tools in this book, since there are
many of them, and which one is popular changes regularly. Just be
aware that such things exist, and look them up when you need them.

Module design

Structuring programs is one of the subtler aspects of programming. Any
nontrivial piece of functionality can be organized in various ways.

Good program design is subjective—there are trade-offs involved, and
matters of taste. The best way to learn the value of well-structured
design is to read or work on a lot of programs and notice what works
and what doesn’t. Don’t assume that a painful mess is “just the way
it is”. You can improve the structure of almost everything by putting
more thought into it.

One aspect of module design is ease of use. If you are designing
something that is intended to be used by multiple people—or even by
yourself, in three months when you no longer remember the specifics of
what you did—it is helpful if your interface is simple and predictable.

That may mean following existing conventions. A good example is
the ini package. This module imitates the standard JSON object by
providing parse and stringify (to write an INI file) functions, and, like
JSON, converts between strings and plain objects. The interface is small
and familiar, and after you’ve worked with it once, you’re likely to
remember how to use it.

262

Even if there’s no standard function or widely used package to imi-
tate, you can keep your modules predictable by using simple data struc-
tures and doing a single, focused thing. Many of the INI-file parsing
modules on NPM provide a function that directly reads such a file from
the hard disk and parses it, for example. This makes it impossible to
use such modules in the browser, where we don’t have direct filesystem
access, and adds complexity that would have been better addressed by
composing the module with some file-reading function.

This points to another helpful aspect of module design—the ease with
which something can be composed with other code. Focused modules
that compute values are applicable in a wider range of programs than
bigger modules that perform complicated actions with side effects. An
INI file reader that insists on reading the file from disk is useless in a
scenario where the file’s content comes from some other source.

Relatedly, stateful objects are sometimes useful or even necessary, but
if something can be done with a function, use a function. Several of the
INI file readers on NPM provide an interface style that requires you to
first create an object, then load the file into your object, and finally use
specialized methods to get at the results. This type of thing is common
in the object-oriented tradition, and it’s terrible. Instead of making a
single function call and moving on, you have to perform the ritual of
moving your object through its various states. And because the data is
now wrapped in a specialized object type, all code that interacts with it
has to know about that type, creating unnecessary interdependencies.

Often, defining new data structures can’t be avoided—only a few
basic ones are provided by the language standard, and many types of

263

data have to be more complex than an array or a map. But when an
array suffices, use an array.

An example of a slightly more complex data structure is the graph
from Chapter 7. There is no single obvious way to represent a graph in
JavaScript. In that chapter, we used an object whose properties hold
arrays of strings—the other nodes reachable from that node.

There are several different pathfinding packages on NPM, but none
of them uses this graph format. They usually allow the graph’s edges
to have a weight, which is the cost or distance associated with it. That
isn’t possible in our representation.

For example, there’s the dijkstrajs package. A well-known approach
to pathfinding, quite similar to our findRoute function, is called Dijk-
stra’s algorithm, after Edsger Dijkstra, who first wrote it down. The
js suffix is often added to package names to indicate the fact that they
are written in JavaScript. This dijkstrajs package uses a graph format
similar to ours, but instead of arrays, it uses objects whose property
values are numbers—the weights of the edges.

If we wanted to use that package, we’d have to make sure that our
graph was stored in the format it expects. All edges get the same
weight, since our simplified model treats each road as having the same
cost (one turn).

const {find_path} = require("dijkstrajs");

let graph = {};
for (let node of Object.keys(roadGraph)) {

let edges = graph[node] = {};
for (let dest of roadGraph[node]) {

264

edges[dest] = 1;
}

}

console.log(find_path(graph, "Post Office", "Cabin"));
// → ["Post Office", "Alice's House", "Cabin"]

This can be a barrier to composition—when various packages are using
different data structures to describe similar things, combining them is
difficult. Therefore, if you want to design for composability, find out
what data structures other people are using and, when possible, follow
their example.

Designing a fitting module structure for a program can be difficult.
In the phase where you are still exploring the problem, trying different
things to see what works, you might want to not worry about it too
much, since keeping everything organized can be a big distraction. Once
you have something that feels solid, that’s a good time to take a step
back and organize it.

Summary

Modules provide structure to bigger programs by separating the code
into pieces with clear interfaces and dependencies. The interface is the
part of the module that’s visible to other modules, and the dependencies
are the other modules it makes use of.

Because JavaScript historically did not provide a module system, the
CommonJS system was built on top of it. Then at some point it did

265

get a built-in system, which now coexists uneasily with the CommonJS
system.

A package is a chunk of code that can be distributed on its own.
NPM is a repository of JavaScript packages. You can download all
kinds of useful (and useless) packages from it.

Exercises

A modular robot

These are the bindings that the project from Chapter 7 creates:

roads
buildGraph
roadGraph
VillageState
runRobot
randomPick
randomRobot
mailRoute
routeRobot
findRoute
goalOrientedRobot

If you were to write that project as a modular program, what modules
would you create? Which module would depend on which other module,
and what would their interfaces look like?

Which pieces are likely to be available prewritten on NPM? Would
you prefer to use an NPM package or write them yourself?

266

Roads module

Write an ES module based on the example from Chapter 7 that contains
the array of roads and exports the graph data structure representing
them as roadGraph. It depends on a module ./graph.js that exports a
function buildGraph, used to build the graph. This function expects an
array of two-element arrays (the start and end points of the roads).

Circular dependencies

A circular dependency is a situation where module A depends on B,
and B also, directly or indirectly, depends on A. Many module systems
simply forbid this because whichever order you choose for loading such
modules, you cannot make sure that each module’s dependencies have
been loaded before it runs.

CommonJS modules allow a limited form of cyclic dependencies. As
long as the modules don’t access each other’s interface until after they
finish loading, cyclic dependencies are okay.

The require function given earlier in this chapter supports this type
of dependency cycle. Can you see how it handles cycles?

267

“Who can wait quietly while the mud settles?
Who can remain still until the moment of action?”

—Laozi, Tao Te Ching

Chapter 11

Asynchronous Programming

The central part of a computer, the part that carries out the individual
steps that make up our programs, is called the processor. The programs
we have seen so far will keep the processor busy until they have finished
their work. The speed at which something like a loop that manipulates
numbers can be executed depends pretty much entirely on the speed of
the computer’s processor and memory.

But many programs interact with things outside of the processor. For
example, they may communicate over a computer network or request
data from the hard disk—which is a lot slower than getting it from
memory.

When such a thing is happening, it would be a shame to let the
processor sit idle—there might be some other work it could do in the
meantime. In part, this is handled by your operating system, which
will switch the processor between multiple running programs. But that
doesn’t help when we want a single program to be able to make progress
while it is waiting for a network request.

268

Asynchronicity

In a synchronous programming model, things happen one at a time.
When you call a function that performs a long-running action, it returns
only when the action has finished and it can return the result. This
stops your program for the time the action takes.

An asynchronous model allows multiple things to happen at the same
time. When you start an action, your program continues to run. When
the action finishes, the program is informed and gets access to the result
(for example, the data read from disk).

We can compare synchronous and asynchronous programming using
a small example: a program that makes two requests over the network
and then combines the results.

In a synchronous environment, where the request function returns
only after it has done its work, the easiest way to perform this task is
to make the requests one after the other. This has the drawback that
the second request will be started only when the first has finished. The
total time taken will be at least the sum of the two response times.

The solution to this problem, in a synchronous system, is to start
additional threads of control. A thread is another running program
whose execution may be interleaved with other programs by the operat-
ing system—since most modern computers contain multiple processors,
multiple threads may even run at the same time, on different processors.
A second thread could start the second request, and then both threads
wait for their results to come back, after which they resynchronize to
combine their results.

In the following diagram, the thick lines represent time the program

269

spends running normally, and the thin lines represent time spent waiting
for the network. In the synchronous model, the time taken by the
network is part of the timeline for a given thread of control. In the
asynchronous model, starting a network action allows the program to
continue running while the network communication happens alongside
it, notifying the program when it is finished.

synchronous, single thread of control

synchronous, two threads of control

asynchronous

Another way to describe the difference is that waiting for actions to
finish is implicit in the synchronous model, while it is explicit—under
our control—in the asynchronous one.

Asynchronicity cuts both ways. It makes expressing programs that
do not fit the straight-line model of control easier, but it can also make
expressing programs that do follow a straight line more awkward. We’ll
see some ways to reduce this awkwardness later in the chapter.

Both prominent JavaScript programming platforms—browsers and
Node.js—make operations that might take a while asynchronous, rather
than relying on threads. Since programming with threads is notoriously
hard (understanding what a program does is much more difficult when
it’s doing multiple things at once), this is generally considered a good

270

thing.

Callbacks

One approach to asynchronous programming is to make functions that
need to wait for something take an extra argument, a callback function.
The asynchronous function starts a process, sets things up so that the
callback function is called when the process finishes, and then returns.

As an example, the setTimeout function, available both in Node.js
and in browsers, waits a given number of milliseconds and then calls a
function.

setTimeout(() => console.log("Tick"), 500);

Waiting is not generally important work, but it can be very useful when
you need to arrange for something to happen at a certain time or check
whether some action is taking longer than expected.

Another example of a common asynchronous operation is reading a
file from a device’s storage. Imagine you have a function readTextFile

that reads a file’s content as a string and passes it to a callback function.

readTextFile("shopping_list.txt", content => {
console.log(`Shopping List:\n${content}`);

});
// → Shopping List:
// → Peanut butter
// → Bananas

271

The readTextFile function is not part of standard JavaScript. We will
see how to read files in the browser and in Node.js in later chapters.

Performing multiple asynchronous actions in a row using callbacks
means that you have to keep passing new functions to handle the con-
tinuation of the computation after the actions. An asynchronous func-
tion that compares two files and produces a boolean indicating whether
their content is the same might look like this:

function compareFiles(fileA, fileB, callback) {
readTextFile(fileA, contentA => {

readTextFile(fileB, contentB => {
callback(contentA == contentB);

});
});

}

This style of programming is workable, but the indentation level in-
creases with each asynchronous action because you end up in another
function. Doing more complicated things, such as wrapping asyn-
chronous actions in a loop, can get awkward.

In a way, asynchronicity is contagious. Any function that calls a
function that works asynchronously must itself be asynchronous, using
a callback or similar mechanism to deliver its result. Calling a callback
is somewhat more involved and error prone than simply returning a
value, so needing to structure large parts of your program that way is
not great.

272

Promises

A slightly different way to build an asynchronous program is to have
asynchronous functions return an object that represents its (future)
result instead of passing around callback functions. This way, such
functions actually return something meaningful, and the shape of the
program more closely resembles that of synchronous programs.

This is what the standard class Promise is for. A promise is a receipt
representing a value that may not be available yet. It provides a then

method that allows you to register a function that should be called
when the action for which it is waiting finishes. When the promise
is resolved, meaning its value becomes available, such functions (there
can be multiple) are called with the result value. It is possible to call
then on a promise that has already resolved—your function will still be
called.

The easiest way to create a promise is by calling Promise.resolve.
This function ensures that the value you give it is wrapped in a promise.
If it’s already a promise, it is simply returned. Otherwise, you get a
new promise that immediately resolves with your value as its result.

let fifteen = Promise.resolve(15);
fifteen.then(value => console.log(`Got ${value}`));
// → Got 15

To create a promise that does not immediately resolve, you can use
Promise as a constructor. It has a somewhat odd interface: the con-
structor expects a function as its argument, which it immediately calls,
passing it a function that it can use to resolve the promise.

273

For example, this is how you could create a promise-based interface
for the readTextFile function:

function textFile(filename) {
return new Promise(resolve => {

readTextFile(filename, text => resolve(text));
});

}

textFile("plans.txt").then(console.log);

Note how, in contrast to callback-style functions, this asynchronous
function returns a meaningful value—a promise to give you the contents
of the file at some point in the future.

A useful thing about the then method is that it itself returns another
promise. This one resolves to the value returned by the callback func-
tion or, if that returned value is a promise, to the value that promise
resolves to. Thus, you can “chain” multiple calls to then together to set
up a sequence of asynchronous actions.

This function, which reads a file full of filenames and returns the
content of a random file in that list, shows this kind of asynchronous
promise pipeline:

function randomFile(listFile) {
return textFile(listFile)

.then(content => content.trim().split("\n"))

.then(ls => ls[Math.floor(Math.random() * ls.length)])

.then(filename => textFile(filename));
}

274

The function returns the result of this chain of then calls. The initial
promise fetches the list of files as a string. The first then call transforms
that string into an array of lines, producing a new promise. The second
then call picks a random line from that, producing a third promise that
yields a single filename. The final then call reads this file, so the result
of the function as a whole is a promise that returns the content of a
random file.

In this code, the functions used in the first two then calls return a
regular value that will immediately be passed into the promise returned
by then when the function returns. The last then call returns a promise
(textFile(filename)), making it an actual asynchronous step.

It would also have been possible to perform all these steps inside a
single then callback, since only the last step is actually asynchronous.
But the kind of then wrappers that only do some synchronous data
transformation are often useful, such as when you want to return a
promise that produces a processed version of some asynchronous result.

function jsonFile(filename) {
return textFile(filename).then(JSON.parse);

}

jsonFile("package.json").then(console.log);

Generally, it is useful to think of a promise as a device that lets code
ignore the question of when a value is going to arrive. A normal value
has to actually exist before we can reference it. A promised value is
a value that might already be there or might appear at some point in
the future. Computations defined in terms of promises, by wiring them

275

together with then calls, are executed asynchronously as their inputs
become available.

Failure

Regular JavaScript computations can fail by throwing an exception.
Asynchronous computations often need something like that. A network
request may fail, a file may not exist, or some code that is part of the
asynchronous computation may throw an exception.

One of the most pressing problems with the callback style of asyn-
chronous programming is that it makes it extremely difficult to ensure
failures are properly reported to the callbacks.

A common convention is to use the first argument to the callback
to indicate that the action failed, and the second to pass the value
produced by the action when it was successful.

someAsyncFunction((error, value) => {
if (error) handleError(error);
else processValue(value);

});

Such callback functions must always check whether they received an
exception and make sure that any problems they cause, including ex-
ceptions thrown by functions they call, are caught and given to the
right function.

Promises make this easier. They can be either resolved (the action
finished successfully) or rejected (it failed). Resolve handlers (as reg-
istered with then) are called only when the action is successful, and

276

rejections are propagated to the new promise returned by then. When
a handler throws an exception, this automatically causes the promise
produced by its then call to be rejected. If any element in a chain of
asynchronous actions fails, the outcome of the whole chain is marked
as rejected, and no success handlers are called beyond the point where
it failed.

Much like resolving a promise provides a value, rejecting one also
provides a value, usually called the reason of the rejection. When an
exception in a handler function causes the rejection, the exception value
is used as the reason. Similarly, when a handler returns a promise that
is rejected, that rejection flows into the next promise. There’s a Promise

.reject function that creates a new, immediately rejected promise.
To explicitly handle such rejections, promises have a catch method

that registers a handler to be called when the promise is rejected, similar
to how then handlers handle normal resolution. It’s also very much like
then in that it returns a new promise, which resolves to the original
promise’s value when that resolves normally and to the result of the
catch handler otherwise. If a catch handler throws an error, the new
promise is also rejected.

As a shorthand, then also accepts a rejection handler as a second
argument, so you can install both types of handlers in a single method
call: .then(acceptHandler, rejectHandler).

A function passed to the Promise constructor receives a second argu-
ment, alongside the resolve function, which it can use to reject the new
promise.

When our readTextFile function encounters a problem, it passes the

277

error to its callback function as a second argument. Our textFile wrap-
per should actually check that argument so that a failure causes the
promise it returns to be rejected.

function textFile(filename) {
return new Promise((resolve, reject) => {

readTextFile(filename, (text, error) => {
if (error) reject(error);
else resolve(text);

});
});

}

The chains of promise values created by calls to then and catch thus
form a pipeline through which asynchronous values or failures move.
Since such chains are created by registering handlers, each link has
a success handler or a rejection handler (or both) associated with it.
Handlers that don’t match the type of outcome (success or failure)
are ignored. Handlers that do match are called, and their outcome
determines what kind of value comes next—success when they return
a non-promise value, rejection when they throw an exception, and the
outcome of the promise when they return a promise.

new Promise((_, reject) => reject(new Error("Fail")))
.then(value => console.log("Handler 1:", value))
.catch(reason => {

console.log("Caught failure " + reason);
return "nothing";

})
.then(value => console.log("Handler 2:", value));

278

// → Caught failure Error: Fail
// → Handler 2: nothing

The first then handler function isn’t called because at that point of the
pipeline the promise holds a rejection. The catch handler handles that
rejection and returns a value, which is given to the second then handler
function.

Much like an uncaught exception is handled by the environment,
JavaScript environments can detect when a promise rejection isn’t han-
dled and will report this as an error.

Carla

It’s a sunny day in Berlin. The runway of the old, decommissioned
airport is teeming with cyclists and inline skaters. In the grass near a
garbage container, a flock of crows noisily mills about, trying to con-
vince a group of tourists to part with their sandwiches.

One of the crows stands out—a large scruffy female with a few white
feathers in her right wing. She is baiting people with a skill and con-
fidence that suggest she’s been doing this for a long time. When an
elderly man is distracted by the antics of another crow, she casually
swoops in, snatches his half-eaten bun from his hand, and sails away.

Contrary to the rest of the group, who look like they are happy
to spend the day goofing around here, the large crow looks purpose-
ful. Carrying her loot, she flies straight toward the roof of the hangar
building, disappearing into an air vent.

Inside the building, you can hear an odd tapping sound—soft, but

279

persistent. It comes from a narrow space under the roof of an unfinished
stairwell. The crow is sitting there, surrounded by her stolen snacks,
half a dozen smartphones (several of which are turned on), and a mess
of cables. She rapidly taps the screen of one of the phones with her
beak. Words are appearing on it. If you didn’t know better, you’d
think she was typing.

This crow is known to her peers as “cāāw-krö”. But since those sounds
are poorly suited for human vocal chords, we’ll refer to her as Carla.

Carla is a somewhat peculiar crow. In her youth, she was fascinated
by human language, eavesdropping on people until she had a good grasp
of what they were saying. Later in life, her interest shifted to human
technology, and she started stealing phones to study them. Her current
project is learning to program. The text she is typing in her hidden lab
is, in fact, a piece of asynchronous JavaScript code.

Breaking In

Carla loves the internet. Annoyingly, the phone she is working on is
about to run out of prepaid data. The building has a wireless network,
but it requires a code to access.

Fortunately, the wireless routers in the building are 20 years old and
poorly secured. Doing some research, Carla finds out that the network
authentication mechanism has a flaw she can use. When joining the
network, a device must send along the correct six-digit passcode. The
access point will reply with a success or failure message depending on
whether the right code is provided. However, when sending a partial

280

code (say, only three digits), the response is different based on whether
those digits are the correct start of the code or not. Sending incorrect
numbers immediately returns a failure message. When sending the
correct ones, the access point waits for more digits.

This makes it possible to greatly speed up the guessing of the number.
Carla can find the first digit by trying each number in turn, until she
finds one that doesn’t immediately return failure. Having one digit, she
can find the second digit in the same way, and so on, until she knows
the entire passcode.

Assume Carla has a joinWifi function. Given the network name and
the passcode (as a string), the function tries to join the network, return-
ing a promise that resolves if successful and rejects if the authentication
failed. The first thing she needs is a way to wrap a promise so that it
automatically rejects after it takes too much time, to allow the program
to quickly move on if the access point doesn’t respond.

function withTimeout(promise, time) {
return new Promise((resolve, reject) => {

promise.then(resolve, reject);
setTimeout(() => reject("Timed out"), time);

});
}

This makes use of the fact that a promise can be resolved or rejected
only once. If the promise given as its argument resolves or rejects first,
that result will be the result of the promise returned by withTimeout.
If, on the other hand, the setTimeout fires first, rejecting the promise,
any further resolve or reject calls are ignored.

281

To find the whole passcode, the program needs to repeatedly look for
the next digit by trying each digit. If authentication succeeds, we know
we have found what we are looking for. If it immediately fails, we know
that digit was wrong and must try the next digit. If the request times
out, we have found another correct digit and must continue by adding
another digit.

Because you cannot wait for a promise inside a for loop, Carla uses a
recursive function to drive this process. On each call, this function gets
the code as we know it so far, as well as the next digit to try. Depending
on what happens, it may return a finished code or call through to itself,
to either start cracking the next position in the code or to try again
with another digit.

function crackPasscode(networkID) {
function nextDigit(code, digit) {

let newCode = code + digit;
return withTimeout(joinWifi(networkID, newCode), 50)

.then(() => newCode)

.catch(failure => {
if (failure == "Timed out") {

return nextDigit(newCode, 0);
} else if (digit < 9) {

return nextDigit(code, digit + 1);
} else {

throw failure;
}

});
}
return nextDigit("", 0);

282

}

The access point tends to respond to bad authentication requests in
about 20 milliseconds, so to be safe, this function waits for 50 millisec-
onds before timing out a request.

crackPasscode("HANGAR 2").then(console.log);
// → 555555

Carla tilts her head and sighs. This would have been more satisfying if
the code had been a bit harder to guess.

Async functions

Even with promises, this kind of asynchronous code is annoying to write.
Promises often need to be tied together in verbose, arbitrary-looking
ways. To create an asynchronous loop, Carla was forced to introduce a
recursive function.

The thing the cracking function actually does is completely linear—
it always waits for the previous action to complete before starting the
next one. In a synchronous programming model, it’d be more straight-
forward to express.

The good news is that JavaScript allows you to write pseudosyn-
chronous code to describe asynchronous computation. An async func-
tion implicitly returns a promise and can, in its body, await other
promises in a way that looks synchronous.

We can rewrite crackPasscode like this:

283

async function crackPasscode(networkID) {
for (let code = "";;) {

for (let digit = 0;; digit++) {
let newCode = code + digit;
try {

await withTimeout(joinWifi(networkID, newCode), 50);
return newCode;

} catch (failure) {
if (failure == "Timed out") {

code = newCode;
break;

} else if (digit == 9) {
throw failure;

}
}

}
}

}

This version more clearly shows the double loop structure of the func-
tion (the inner loop tries digit 0 to 9 and the outer loop adds digits to
the passcode).

An async function is marked by the word async before the function

keyword. Methods can also be made async by writing async before their
name. When such a function or method is called, it returns a promise.
As soon as the function returns something, that promise is resolved. If
the body throws an exception, the promise is rejected.

Inside an async function, the word await can be put in front of an
expression to wait for a promise to resolve and only then continue the

284

execution of the function. If the promise rejects, an exception is raised
at the point of the await.

Such a function no longer runs from start to completion in one go like
a regular JavaScript function. Instead, it can be frozen at any point
that has an await and can be resumed at a later time.

For most asynchronous code, this notation is more convenient than
directly using promises. You do still need an understanding of promises,
since in many cases you’ll still interact with them directly. But when
wiring them together, async functions are generally more pleasant to
write than chains of then calls.

Generators

This ability of functions to be paused and then resumed again is not ex-
clusive to async functions. JavaScript also has a feature called generator
functions. These are similar, but without the promises.

When you define a function with function* (placing an asterisk after
the word function), it becomes a generator. When you call a generator,
it returns an iterator, which we already saw in Chapter 6.

function* powers(n) {
for (let current = n;; current *= n) {

yield current;
}

}

for (let power of powers(3)) {
if (power > 50) break;

285

console.log(power);
}
// → 3
// → 9
// → 27

Initially, when you call powers, the function is frozen at its start. Every
time you call next on the iterator, the function runs until it hits a yield

expression, which pauses it and causes the yielded value to become the
next value produced by the iterator. When the function returns (the
one in the example never does), the iterator is done.

Writing iterators is often much easier when you use generator func-
tions. The iterator for the Group class (from the exercise in Chapter 6)
can be written with this generator:

Group.prototype[Symbol.iterator] = function*() {
for (let i = 0; i < this.members.length; i++) {

yield this.members[i];
}

};

There’s no longer a need to create an object to hold the iteration state—
generators automatically save their local state every time they yield.

Such yield expressions may occur only directly in the generator func-
tion itself and not in an inner function you define inside of it. The state
a generator saves, when yielding, is only its local environment and the
position where it yielded.

An async function is a special type of generator. It produces a promise
when called, which is resolved when it returns (finishes) and rejected

286

when it throws an exception. Whenever it yields (awaits) a promise,
the result of that promise (value or thrown exception) is the result of
the await expression.

A Corvid Art Project

One morning, Carla wakes up to unfamiliar noise from the tarmac out-
side of her hangar. Hopping onto the edge of the roof, she sees the
humans are setting up for something. There’s a lot of electric cabling,
a stage, and some kind of big black wall being built up.

Being a curious crow, Carla takes a closer look at the wall. It appears
to consist of a number of large glass-fronted devices wired up to cables.
On the back, the devices say “LedTec SIG-5030”.

A quick internet search turns up a user manual for these devices.
They appear to be traffic signs, with a programmable matrix of amber
LED lights. The intent of the humans is probably to display some kind
of information on them during their event. Interestingly, the screens can
be programmed over a wireless network. Could it be they are connected
to the building’s local network?

Each device on a network gets an IP address, which other devices can
use to send it messages. We talk more about that in Chapter 13. Carla
notices that her own phones all get addresses like 10.0.0.20 or 10.0.0.33
. It might be worth trying to send messages to all such addresses and
see if any one of them responds to the interface described in the manual
for the signs.

Chapter 18 shows how to make real requests on real networks. In

287

this chapter, we’ll use a simplified dummy function called request for
network communication. This function takes two arguments—a net-
work address and a message, which may be anything that can be sent
as JSON—and returns a promise that either resolves to a response from
the machine at the given address, or rejects if there was a problem.

According to the manual, you can change what is displayed on a
SIG-5030 sign by sending it a message with content like {"command":

"display", "data": [0, 0, 3, …]}, where data holds one number per
LED dot, providing its brightness—0 means off, 3 means maximum
brightness. Each sign is 50 lights wide and 30 lights high, so an update
command should send 1,500 numbers.

This code sends a display update message to all addresses on the
local network, to see what sticks. Each of the numbers in an IP address
can go from 0 to 255. In the data it sends, it activates a number of
lights corresponding to the network address’s last number.

for (let addr = 1; addr < 256; addr++) {
let data = [];
for (let n = 0; n < 1500; n++) {

data.push(n < addr ? 3 : 0);
}
let ip = `10.0.0.${addr}`;
request(ip, {command: "display", data})

.then(() => console.log(`Request to ${ip} accepted`))

.catch(() => {});
}

Since most of these addresses won’t exist or will not accept such mes-
sages, the catch call makes sure network errors don’t crash the program.

288

The requests are all sent out immediately, without waiting for other re-
quests to finish, in order to not waste time when some of the machines
don’t answer.

Having fired off her network scan, Carla heads back outside to see
the result. To her delight, all of the screens are now showing a stripe
of light in their upper-left corners. They are on the local network, and
they do accept commands. She quickly notes the numbers shown on
each screen. There are nine screens, arranged three high and three wide.
They have the following network addresses:

const screenAddresses = [
"10.0.0.44", "10.0.0.45", "10.0.0.41",
"10.0.0.31", "10.0.0.40", "10.0.0.42",
"10.0.0.48", "10.0.0.47", "10.0.0.46"

];

Now this opens up possibilities for all kinds of shenanigans. She could
show “crows rule, humans drool” on the wall in giant letters. But that
feels a bit crude. Instead, she plans to show a video of a flying crow
covering all of the screens at night.

Carla finds a fitting video clip, in which a second and a half of footage
can be repeated to create a looping video showing a crow’s wingbeat.
To fit the nine screens (each of which can show 50×30 pixels), Carla
cuts and resizes the videos to get a series of 150×90 images, 10 per
second. Those are then each cut into nine rectangles, and processed
so that the dark spots on the video (where the crow is) show a bright
light, and the light spots (no crow) are left dark, which should create
the effect of an amber crow flying against a black background.

289

She has set up the clipImages variable to hold an array of frames,
where each frame is represented with an array of nine sets of pixels—
one for each screen—in the format that the signs expect.

To display a single frame of the video, Carla needs to send a request
to all the screens at once. But she also needs to wait for the result of
these requests, both in order to not start sending the next frame before
the current one has been properly sent and in order to notice when
requests are failing.

Promise has a static method all that can be used to convert an array
of promises into a single promise that resolves to an array of results.
This provides a convenient way to have some asynchronous actions
happen alongside each other, wait for them all to finish, and then do
something with their results (or at least wait for them to make sure
they don’t fail).

function displayFrame(frame) {
return Promise.all(frame.map((data, i) => {

return request(screenAddresses[i], {
command: "display",
data

});
}));

}

This maps over the images in frame (which is an array of display data
arrays) to create an array of request promises. It then returns a promise
that combines all of those.

In order to be able to stop a playing video, the process is wrapped

290

in a class. This class has an asynchronous play method that returns a
promise that resolves only when the playback is stopped again via the
stop method.

function wait(time) {
return new Promise(accept => setTimeout(accept, time));

}

class VideoPlayer {
constructor(frames, frameTime) {

this.frames = frames;
this.frameTime = frameTime;
this.stopped = true;

}

async play() {
this.stopped = false;
for (let i = 0; !this.stopped; i++) {

let nextFrame = wait(this.frameTime);
await displayFrame(this.frames[i % this.frames.length]);
await nextFrame;

}
}

stop() {
this.stopped = true;

}
}

The wait function wraps setTimeout in a promise that resolves after the

291

given number of milliseconds. This is useful for controlling the speed
of the playback.

let video = new VideoPlayer(clipImages, 100);
video.play().catch(e => {

console.log("Playback failed: " + e);
});
setTimeout(() => video.stop(), 15000);

For the entire week that the screen wall stands, every evening, when it
is dark, a huge glowing orange bird mysteriously appears on it.

The event loop

An asynchronous program starts by running its main script, which will
often set up callbacks to be called later. That main script, as well as the
callbacks, run to completion in one piece, uninterrupted. But between
them, the program may sit idle, waiting for something to happen.

So callbacks are not directly called by the code that scheduled them.
If I call setTimeout from within a function, that function will have re-
turned by the time the callback function is called. And when the call-
back returns, control does not go back to the function that scheduled
it.

Asynchronous behavior happens on its own empty function call stack.
This is one of the reasons that, without promises, managing exceptions
across asynchronous code is so hard. Since each callback starts with a
mostly empty stack, your catch handlers won’t be on the stack when
they throw an exception.

292

try {
setTimeout(() => {

throw new Error("Woosh");
}, 20);

} catch (e) {
// This will not run
console.log("Caught", e);

}

No matter how closely together events—such as timeouts or incoming
requests—happen, a JavaScript environment will run only one program
at a time. You can think of this as it running a big loop around your
program, called the event loop. When there’s nothing to be done, that
loop is paused. But as events come in, they are added to a queue, and
their code is executed one after the other. Because no two things run
at the same time, slow-running code can delay the handling of other
events.

This example sets a timeout but then dallies until after the timeout’s
intended point of time, causing the timeout to be late.

let start = Date.now();
setTimeout(() => {

console.log("Timeout ran at", Date.now() - start);
}, 20);
while (Date.now() < start + 50) {}
console.log("Wasted time until", Date.now() - start);
// → Wasted time until 50
// → Timeout ran at 55

Promises always resolve or reject as a new event. Even if a promise is

293

already resolved, waiting for it will cause your callback to run after the
current script finishes, rather than right away.

Promise.resolve("Done").then(console.log);
console.log("Me first!");
// → Me first!
// → Done

In later chapters we’ll see various other types of events that run on the
event loop.

Asynchronous bugs

When your program runs synchronously, in a single go, there are no
state changes happening except those that the program itself makes.
For asynchronous programs this is different—they may have gaps in
their execution during which other code can run.

Let’s look at an example. This is a function that tries to report the
size of each file in an array of files, making sure to read them all at the
same time rather than in sequence.

async function fileSizes(files) {
let list = "";
await Promise.all(files.map(async fileName => {

list += fileName + ": " +
(await textFile(fileName)).length + "\n";

}));
return list;

}

294

The async fileName => part shows how arrow functions can also be made
async by putting the word async in front of them.

The code doesn’t immediately look suspicious... it maps the async

arrow function over the array of names, creating an array of promises,
and then uses Promise.all to wait for all of these before returning the
list they build up.

But this program is entirely broken. It’ll always return only a single
line of output, listing the file that took the longest to read.

Can you work out why?
The problem lies in the += operator, which takes the current value

of list at the time the statement starts executing and then, when the
await finishes, sets the list binding to be that value plus the added
string.

But between the time the statement starts executing and the time it
finishes, there’s an asynchronous gap. The map expression runs before
anything has been added to the list, so each of the += operators starts
from an empty string and ends up, when its storage retrieval finishes,
setting list to the result of adding its line to the empty string.

This could have easily been avoided by returning the lines from the
mapped promises and calling join on the result of Promise.all, instead
of building up the list by changing a binding. As usual, computing new
values is less error prone than changing existing values.

async function fileSizes(files) {
let lines = files.map(async fileName => {

return fileName + ": " +
(await textFile(fileName)).length;

295

});
return (await Promise.all(lines)).join("\n");

}

Mistakes like this are easy to make, especially when using await, and
you should be aware of where the gaps in your code occur. An advan-
tage of JavaScript’s explicit asynchronicity (whether through callbacks,
promises, or await) is that spotting these gaps is relatively easy.

Summary

Asynchronous programming makes it possible to express waiting for
long-running actions without freezing the whole program. JavaScript
environments typically implement this style of programming using call-
backs, functions that are called when the actions complete. An event
loop schedules such callbacks to be called when appropriate, one after
the other, so that their execution does not overlap.

Programming asynchronously is made easier by promises, objects
that represent actions that might complete in the future, and async

functions, which allow you to write an asynchronous program as if it
were synchronous.

296

Exercises

Quiet Times

There’s a security camera near Carla’s lab that’s activated by a motion
sensor. It is connected to the network and starts sending out a video
stream when it is active. Because she’d rather not be discovered, Carla
has set up a system that notices this kind of wireless network traffic
and turns on a light in her lair whenever there is activity outside, so
she knows when to keep quiet.

She’s also been logging the times at which the camera is tripped for
a while and wants to use this information to visualize which times, in
an average week, tend to be quiet and which tend to be busy. The
log is stored in files holding one time stamp number (as returned by
Date.now()) per line.

1695709940692
1695701068331
1695701189163

The "camera_logs.txt" file holds a list of logfiles. Write an asynchronous
function activityTable(day) that for a given day of the week returns an
array of 24 numbers, one for each hour of the day, that hold the number
of camera network traffic observations seen in that hour of the day. Days
are identified by number using the system used by Date.getDay, where
Sunday is 0 and Saturday is 6.

The activityGraph function, provided by the sandbox, summarizes
such a table into a string.

297

To read the files, use the textFile function defined earlier—given a
filename, it returns a promise that resolves to the file’s content. Re-
member that new Date(timestamp) creates a Date object for that time,
which has getDay and getHours methods returning the day of the week
and the hour of the day.

Both types of files—the list of logfiles and the logfiles themselves—
have each piece of data on its own line, separated by newline ("\n")
characters.

Real Promises

Rewrite the function from the previous exercise without async/await,
using plain Promise methods.

In this style, using Promise.all will be more convenient than trying
to model a loop over the logfiles. In the async function, just using await

in a loop is simpler. If reading a file takes some time, which of these
two approaches will take the least time to run?

If one of the files listed in the file list has a typo, and reading it fails,
how does that failure end up in the Promise object that your function
returns?

Building Promise.all

As we saw, given an array of promises, Promise.all returns a promise
that waits for all of the promises in the array to finish. It then succeeds,
yielding an array of result values. If a promise in the array fails, the
promise returned by all fails too, passing on the failure reason from

298

the failing promise.
Implement something like this yourself as a regular function called

Promise_all.
Remember that after a promise has succeeded or failed, it can’t suc-

ceed or fail again, and further calls to the functions that resolve it
are ignored. This can simplify the way you handle a failure of your
promise.

299

“The evaluator, which determines the meaning of expressions
in a programming language, is just another program.”

—Hal Abelson and Gerald Sussman, Structure and
Interpretation of Computer Programs

Chapter 12

Project: A Programming Language

Building your own programming language is surprisingly easy (as long
as you do not aim too high) and very enlightening.

The main thing I want to show in this chapter is that there’s no
magic involved in building a programming language. I’ve often felt
that some human inventions were so immensely clever and complicated
that I’d never be able to understand them. But with a little reading
and experimenting, they often turn out to be quite mundane.

We will build a programming language called Egg. It will be a tiny,
simple language—but one that is powerful enough to express any com-
putation you can think of. It will allow simple abstraction based on
functions.

Parsing

The most immediately visible part of a programming language is its
syntax, or notation. A parser is a program that reads a piece of text
and produces a data structure that reflects the structure of the program

300

contained in that text. If the text does not form a valid program, the
parser should point out the error.

Our language will have a simple and uniform syntax. Everything in
Egg is an expression. An expression can be the name of a binding, a
number, a string, or an application. Applications are used for function
calls but also for constructs such as if or while.

To keep the parser simple, strings in Egg do not support anything
like backslash escapes. A string is simply a sequence of characters
that are not double quotes, wrapped in double quotes. A number is a
sequence of digits. Binding names can consist of any character that is
not whitespace and that does not have a special meaning in the syntax.

Applications are written the way they are in JavaScript, by putting
parentheses after an expression and having any number of arguments
between those parentheses, separated by commas.

do(define(x, 10),
if(>(x, 5),

print("large"),
print("small")))

The uniformity of the Egg language means that things that are oper-
ators in JavaScript (such as >) are normal bindings in this language,
applied just like other functions. Since the syntax has no concept of
a block, we need a do construct to represent doing multiple things in
sequence.

The data structure that the parser will use to describe a program
consists of expression objects, each of which has a type property indi-
cating the kind of expression it is and other properties to describe its

301

content.
Expressions of type "value" represent literal strings or numbers. Their

value property contains the string or number value that they represent.
Expressions of type "word" are used for identifiers (names). Such objects
have a name property that holds the identifier’s name as a string. Finally,
"apply" expressions represent applications. They have an operator prop-
erty that refers to the expression that is being applied, as well as an
args property that holds an array of argument expressions.

The >(x, 5) part of the previous program would be represented like
this:

{
type: "apply",
operator: {type: "word", name: ">"},
args: [

{type: "word", name: "x"},
{type: "value", value: 5}

]
}

Such a data structure is called a syntax tree. If you imagine the objects
as dots and the links between them as lines between those dots, as
shown in the following diagram, the structure has a treelike shape. The
fact that expressions contain other expressions, which in turn might
contain more expressions, is similar to the way tree branches split and
split again.

302

do
define

x
10

if
>

x
5

print
"large"

print
"small"

Contrast this to the parser we wrote for the configuration file format
in Chapter 9, which had a simple structure: it split the input into lines
and handled those lines one at a time. There were only a few simple
forms that a line was allowed to have.

Here we must find a different approach. Expressions are not separated
into lines, and they have a recursive structure. Application expressions
contain other expressions.

Fortunately, this problem can be solved very well by writing a parser
function that is recursive in a way that reflects the recursive nature of
the language.

We define a function parseExpression that takes a string as input.
It returns an object containing the data structure for the expression
at the start of the string, along with the part of the string left after

303

parsing this expression. When parsing subexpressions (the argument to
an application, for example), this function can be called again, yielding
the argument expression as well as the text that remains. This text
may in turn contain more arguments or may be the closing parenthesis
that ends the list of arguments.

This is the first part of the parser:

function parseExpression(program) {
program = skipSpace(program);
let match, expr;
if (match = /^"([^"]*)"/.exec(program)) {

expr = {type: "value", value: match[1]};
} else if (match = /^\d+\b/.exec(program)) {

expr = {type: "value", value: Number(match[0])};
} else if (match = /^[^\s(),#"]+/.exec(program)) {

expr = {type: "word", name: match[0]};
} else {

throw new SyntaxError("Unexpected syntax: " + program);
}

return parseApply(expr, program.slice(match[0].length));
}

function skipSpace(string) {
let first = string.search(/\S/);
if (first == -1) return "";
return string.slice(first);

}

Because Egg, like JavaScript, allows any amount of whitespace between

304

its elements, we have to repeatedly cut the whitespace off the start of
the program string. The skipSpace function helps with this.

After skipping any leading space, parseExpression uses three regu-
lar expressions to spot the three atomic elements that Egg supports:
strings, numbers, and words. The parser constructs a different kind of
data structure depending on which expression matches. If the input
does not match one of these three forms, it is not a valid expression,
and the parser throws an error. We use the SyntaxError constructor
here. This is an exception class defined by the standard, like Error, but
more specific.

We then cut off the part that was matched from the program string
and pass that, along with the object for the expression, to parseApply,
which checks whether the expression is an application. If so, it parses
a parenthesized list of arguments.

function parseApply(expr, program) {
program = skipSpace(program);
if (program[0] != "(") {

return {expr: expr, rest: program};
}

program = skipSpace(program.slice(1));
expr = {type: "apply", operator: expr, args: []};
while (program[0] != ")") {

let arg = parseExpression(program);
expr.args.push(arg.expr);
program = skipSpace(arg.rest);
if (program[0] == ",") {

program = skipSpace(program.slice(1));

305

} else if (program[0] != ")") {
throw new SyntaxError("Expected ',' or ')'");

}
}
return parseApply(expr, program.slice(1));

}

If the next character in the program is not an opening parenthesis,
this is not an application, and parseApply returns the expression it
was given. Otherwise, it skips the opening parenthesis and creates the
syntax tree object for this application expression. It then recursively
calls parseExpression to parse each argument until a closing paren-
thesis is found. The recursion is indirect, through parseApply and
parseExpression calling each other.

Because an application expression can itself be applied (such as in
multiplier(2)(1)), parseApply must, after it has parsed an application,
call itself again to check whether another pair of parentheses follows.

This is all we need to parse Egg. We wrap it in a convenient parse

function that verifies that it has reached the end of the input string
after parsing the expression (an Egg program is a single expression),
and that gives us the program’s data structure.

function parse(program) {
let {expr, rest} = parseExpression(program);
if (skipSpace(rest).length > 0) {

throw new SyntaxError("Unexpected text after program");
}
return expr;

}

306

console.log(parse("+(a, 10)"));
// → {type: "apply",
// operator: {type: "word", name: "+"},
// args: [{type: "word", name: "a"},
// {type: "value", value: 10}]}

It works! It doesn’t give us very helpful information when it fails and
doesn’t store the line and column on which each expression starts, which
might be helpful when reporting errors later, but it’s good enough for
our purposes.

The evaluator

What can we do with the syntax tree for a program? Run it, of course!
And that is what the evaluator does. You give it a syntax tree and
a scope object that associates names with values, and it will evaluate
the expression that the tree represents and return the value that this
produces.

const specialForms = Object.create(null);

function evaluate(expr, scope) {
if (expr.type == "value") {

return expr.value;
} else if (expr.type == "word") {

if (expr.name in scope) {
return scope[expr.name];

} else {

307

throw new ReferenceError(
`Undefined binding: ${expr.name}`);

}
} else if (expr.type == "apply") {

let {operator, args} = expr;
if (operator.type == "word" &&

operator.name in specialForms) {
return specialForms[operator.name](expr.args, scope);

} else {
let op = evaluate(operator, scope);
if (typeof op == "function") {

return op(...args.map(arg => evaluate(arg, scope)));
} else {

throw new TypeError("Applying a non-function.");
}

}
}

}

The evaluator has code for each of the expression types. A literal value
expression produces its value. (For example, the expression 100 evalu-
ates to the number 100.) For a binding, we must check whether it is
actually defined in the scope and, if it is, fetch the binding’s value.

Applications are more involved. If they are a special form, like if, we
do not evaluate anything—we just and pass the argument expressions,
along with the scope, to the function that handles this form. If it is a
normal call, we evaluate the operator, verify that it is a function, and
call it with the evaluated arguments.

We use plain JavaScript function values to represent Egg’s function

308

values. We will come back to this later, when the special form fun is
defined.

The recursive structure of evaluate resembles the structure of the
parser, and both mirror the structure of the language itself. It would
also be possible to combine the parser and the evaluator into one func-
tion and evaluate during parsing, but splitting them up this way makes
the program clearer and more flexible.

This is really all that’s needed to interpret Egg. It’s that simple. But
without defining a few special forms and adding some useful values to
the environment, you can’t do much with this language yet.

Special forms

The specialForms object is used to define special syntax in Egg. It
associates words with functions that evaluate such forms. It is currently
empty. Let’s add if.

specialForms.if = (args, scope) => {
if (args.length != 3) {

throw new SyntaxError("Wrong number of args to if");
} else if (evaluate(args[0], scope) !== false) {

return evaluate(args[1], scope);
} else {

return evaluate(args[2], scope);
}

};

Egg’s if construct expects exactly three arguments. It will evaluate

309

the first, and if the result isn’t the value false, it will evaluate the
second. Otherwise, the third gets evaluated. This if form is more
similar to JavaScript’s ternary ?: operator than to JavaScript’s if. It
is an expression, not a statement, and it produces a value—namely, the
result of the second or third argument.

Egg also differs from JavaScript in how it handles the condition value
to if. It will treat only the value false as false, not things like zero or
the empty string.

The reason we need to represent if as a special form rather than a
regular function is that all arguments to functions are evaluated before
the function is called, whereas if should evaluate only either its second
or its third argument, depending on the value of the first.

The while form is similar.

specialForms.while = (args, scope) => {
if (args.length != 2) {

throw new SyntaxError("Wrong number of args to while");
}
while (evaluate(args[0], scope) !== false) {

evaluate(args[1], scope);
}

// Since undefined does not exist in Egg, we return false,
// for lack of a meaningful result
return false;

};

Another basic building block is do, which executes all its arguments from
top to bottom. Its value is the value produced by the last argument.

310

specialForms.do = (args, scope) => {
let value = false;
for (let arg of args) {

value = evaluate(arg, scope);
}
return value;

};

To be able to create bindings and give them new values, we also create
a form called define. It expects a word as its first argument and an
expression producing the value to assign to that word as its second
argument. Since define, like everything, is an expression, it must return
a value. We’ll make it return the value that was assigned (just like
JavaScript’s = operator).

specialForms.define = (args, scope) => {
if (args.length != 2 || args[0].type != "word") {

throw new SyntaxError("Incorrect use of define");
}
let value = evaluate(args[1], scope);
scope[args[0].name] = value;
return value;

};

The environment

The scope accepted by evaluate is an object with properties whose
names correspond to binding names and whose values correspond to the

311

values those bindings are bound to. Let’s define an object to represent
the global scope.

To be able to use the if construct we just defined, we must have
access to Boolean values. Since there are only two Boolean values, we
do not need special syntax for them. We simply bind two names to the
values true and false and use them.

const topScope = Object.create(null);

topScope.true = true;
topScope.false = false;

We can now evaluate a simple expression that negates a Boolean value.

let prog = parse(`if(true, false, true)`);
console.log(evaluate(prog, topScope));
// → false

To supply basic arithmetic and comparison operators, we will also add
some function values to the scope. In the interest of keeping the code
short, we’ll use Function to synthesize a bunch of operator functions in
a loop instead of defining them individually.

for (let op of ["+", "-", "*", "/", "==", "<", ">"]) {
topScope[op] = Function("a, b", `return a ${op} b;`);

}

It is also useful to have a way to output values, so we’ll wrap console.log

in a function and call it print.

topScope.print = value => {

312

console.log(value);
return value;

};

That gives us enough elementary tools to write simple programs. The
following function provides a convenient way to parse a program and
run it in a fresh scope:

function run(program) {
return evaluate(parse(program), Object.create(topScope));

}

We’ll use object prototype chains to represent nested scopes so that
the program can add bindings to its local scope without changing the
top-level scope.

run(`
do(define(total, 0),

define(count, 1),
while(<(count, 11),

do(define(total, +(total, count)),
define(count, +(count, 1)))),

print(total))
`);
// → 55

This is the program we’ve seen several times before that computes the
sum of the numbers 1 to 10, expressed in Egg. It is clearly uglier
than the equivalent JavaScript program—but not bad for a language
implemented in fewer than 150 lines of code.

313

Functions

A programming language without functions is a poor programming lan-
guage indeed. Fortunately, it isn’t hard to add a fun construct, which
treats its last argument as the function’s body and uses all arguments
before that as the names of the function’s parameters.

specialForms.fun = (args, scope) => {
if (!args.length) {

throw new SyntaxError("Functions need a body");
}
let body = args[args.length - 1];
let params = args.slice(0, args.length - 1).map(expr => {

if (expr.type != "word") {
throw new SyntaxError("Parameter names must be words");

}
return expr.name;

});

return function(...args) {
if (args.length != params.length) {

throw new TypeError("Wrong number of arguments");
}
let localScope = Object.create(scope);
for (let i = 0; i < args.length; i++) {

localScope[params[i]] = args[i];
}
return evaluate(body, localScope);

};
};

314

Functions in Egg get their own local scope. The function produced by
the fun form creates this local scope and adds the argument bindings
to it. It then evaluates the function body in this scope and returns the
result.

run(`
do(define(plusOne, fun(a, +(a, 1))),

print(plusOne(10)))
`);
// → 11

run(`
do(define(pow, fun(base, exp,

if(==(exp, 0),
1,
*(base, pow(base, -(exp, 1)))))),

print(pow(2, 10)))
`);
// → 1024

Compilation

What we have built is an interpreter. During evaluation, it acts directly
on the representation of the program produced by the parser.

Compilation is the process of adding another step between the pars-
ing and the running of a program, which transforms the program into
something that can be evaluated more efficiently by doing as much
work as possible in advance. For example, in well-designed languages it

315

is obvious, for each use of a binding, which binding is being referred to,
without actually running the program. This can be used to avoid look-
ing up the binding by name every time it is accessed, instead directly
fetching it from some predetermined memory location.

Traditionally, compilation involves converting the program to ma-
chine code, the raw format that a computer’s processor can execute.
But any process that converts a program to a different representation
can be thought of as compilation.

It would be possible to write an alternative evaluation strategy for
Egg, one that first converts the program to a JavaScript program, uses
Function to invoke the JavaScript compiler on it, and runs the result.
When done right, this would make Egg run very fast while still being
quite simple to implement.

If you are interested in this topic and willing to spend some time on
it, I encourage you to try to implement such a compiler as an exercise.

Cheating

When we defined if and while, you probably noticed that they were
more or less trivial wrappers around JavaScript’s own if and while

. Similarly, the values in Egg are just regular old JavaScript values.
Bridging the gap to a more primitive system, such as the machine code
the processor understands, takes more effort—but the way it works
resembles what we are doing here.

Though the toy language in this chapter doesn’t do anything that
couldn’t be done better in JavaScript, there are situations where writing

316

small languages helps get real work done.
Such a language does not have to resemble a typical programming

language. If JavaScript didn’t come equipped with regular expressions,
for example, you could write your own parser and evaluator for regular
expressions.

Or imagine you are building a program that makes it possible to
quickly create parsers by providing a logical description of the language
they need to parse. You could define a specific notation for that, and a
compiler that compiles it to a parser program.

expr = number | string | name | application

number = digit+

name = letter+

string = '"' (! '"')* '"'

application = expr '(' (expr (',' expr)*)? ')'

This is what is usually called a domain-specific language, a language
tailored to express a narrow domain of knowledge. Such a language
can be more expressive than a general-purpose language because it is
designed to describe exactly the things that need to be described in its
domain and nothing else.

317

Exercises

Arrays

Add support for arrays to Egg by adding the following three functions
to the top scope: array(...values) to construct an array containing the
argument values, length(array) to get an array’s length, and element(

array, n) to fetch the nth element from an array.

Closure

The way we have defined fun allows functions in Egg to reference the
surrounding scope, allowing the function’s body to use local values that
were visible at the time the function was defined, just like JavaScript
functions do.

The following program illustrates this: function f returns a function
that adds its argument to f’s argument, meaning that it needs access
to the local scope inside f to be able to use binding a.

run(`
do(define(f, fun(a, fun(b, +(a, b)))),

print(f(4)(5)))
`);
// → 9

Go back to the definition of the fun form and explain which mechanism
causes this to work.

318

Comments

It would be nice if we could write comments in Egg. For example,
whenever we find a hash sign (#), we could treat the rest of the line as
a comment and ignore it, similar to // in JavaScript.

We do not have to make any big changes to the parser to support
this. We can simply change skipSpace to skip comments as if they are
whitespace so that all the points where skipSpace is called will now also
skip comments. Make this change.

Fixing scope

Currently, the only way to assign a binding a value is define. This
construct acts as a way both to define new bindings and to give existing
ones a new value.

This ambiguity causes a problem. When you try to give a nonlocal
binding a new value, you will end up defining a local one with the same
name instead. Some languages work like this by design, but I’ve always
found it an awkward way to handle scope.

Add a special form set, similar to define, which gives a binding a
new value, updating the binding in an outer scope if it doesn’t already
exist in the inner scope. If the binding is not defined at all, throw a
ReferenceError (another standard error type).

The technique of representing scopes as simple objects, which has
made things convenient so far, will get in your way a little at this
point. You might want to use the Object.getPrototypeOf function, which
returns the prototype of an object. Also remember that you can use

319

Object.hasOwn to find out if a given object has a property.

320

“The dream behind the web is of a common information space
in which we communicate by sharing information. Its
universality is essential: the fact that a hypertext link can
point to anything, be it personal, local or global, be it draft or
highly polished.”

—Tim Berners-Lee, The World Wide Web: A Very Short
Personal History

Chapter 13

JavaScript and the Browser

The next chapters of this book will discuss web browsers. Without
browsers, there would be no JavaScript—or if there were, no one would
ever have paid any attention to it.

Web technology has been decentralized from the start, not just tech-
nically but also in terms of the way it evolved. Various browser vendors
have added new functionality in ad hoc and sometimes poorly thought-
out ways, which were then—sometimes—adopted by others, and finally
set down in standards.

This is both a blessing and a curse. On the one hand, it is empower-
ing to not have a central party control a system but have it be improved
by various parties working in loose collaboration (or occasionally, open
hostility). On the other hand, the haphazard way in which the web was
developed means that the resulting system is not exactly a shining ex-
ample of internal consistency. Some parts of it are downright confusing
and badly designed.

321

Networks and the Internet

Computer networks have been around since the 1950s. If you put cables
between two or more computers and allow them to send data back and
forth through these cables, you can do all kinds of wonderful things.

If connecting two machines in the same building allows us to do won-
derful things, connecting machines all over the planet should be even
better. The technology to start implementing this vision was developed
in the 1980s, and the resulting network is called the internet. It has
lived up to its promise.

A computer can use this network to shoot bits at another computer.
For any effective communication to arise out of this bit-shooting, the
computers on both ends must know what the bits are supposed to rep-
resent. The meaning of any given sequence of bits depends entirely
on the kind of thing that it is trying to express and on the encoding
mechanism used.

A network protocol describes a style of communication over a network.
There are protocols for sending email, for fetching email, for sharing
files, and even for controlling computers that happen to be infected by
malicious software.

The HyperText Transfer Protocol (HTTP) is a protocol for retrieving
named resources (chunks of information, such as web pages or pictures).
It specifies that the side making the request should start with a line like
this, naming the resource and the version of the protocol that it is trying
to use:

GET /index.html HTTP/1.1

322

There are many more rules about the way the requester can include
more information in the request and the way the other side, which
returns the resource, packages up its content. We’ll look at HTTP in a
little more detail in Chapter 18.

Most protocols are built on top of other protocols. HTTP treats the
network as a streamlike device into which you can put bits and have
them arrive at the correct destination in the correct order. Providing
those guarantees on top of the primitive data-sending that the network
gives you is already a rather tricky problem.

The Transmission Control Protocol (TCP) is a protocol that ad-
dresses this problem. All internet-connected devices “speak” it, and
most communication on the internet is built on top of it.

A TCP connection works as follows: one computer must be waiting,
or listening, for other computers to start talking to it. To be able to
listen for different kinds of communication at the same time on a single
machine, each listener has a number (called a port) associated with
it. Most protocols specify which port should be used by default. For
example, when we want to send an email using the SMTP protocol, the
machine through which we send it is expected to be listening on port
25.

Another computer can then establish a connection by connecting to
the target machine using the correct port number. If the target ma-
chine can be reached and is listening on that port, the connection is
successfully created. The listening computer is called the server, and
the connecting computer is called the client.

Such a connection acts as a two-way pipe through which bits can

323

flow—the machines on both ends can put data into it. Once the bits
are successfully transmitted, they can be read out again by the machine
on the other side. This is a convenient model. You could say that TCP
provides an abstraction of the network.

The Web

The World Wide Web (not to be confused with the internet as a whole)
is a set of protocols and formats that allow us to visit web pages in a
browser. The word Web refers to the fact that such pages can easily
link to each other, thus connecting into a huge mesh that users can
move through.

To become part of the web, all you need to do is connect a machine
to the internet and have it listen on port 80 with the HTTP protocol
so that other computers can ask it for documents.

Each document on the web is named by a uniform resource locator
(URL), which looks something like this:

http://eloquentjavascript.net/13_browser.html
| | | |
protocol server path

The first part tells us that this URL uses the HTTP protocol (as op-
posed to, for example, encrypted HTTP, which would be https://).
Then comes the part that identifies which server we are requesting the
document from. Last is a path string that identifies the document (or
resource) we are interested in.

324

Machines connected to the internet get an IP address, a number that
can be used to send messages to that machine, and looks something
like 149.210.142.219 or 2001:4860:4860::8888. Since lists of more or
less random numbers are hard to remember and awkward to type, you
can instead register a domain name for an address or set of addresses. I
registered eloquentjavascript.net to point at the IP address of a machine
I control and can thus use that domain name to serve web pages.

If you type this URL into your browser’s address bar, the browser
will try to retrieve and display the document at that URL. First, your
browser has to find out what address eloquentjavascript.net refers to.
Then, using the HTTP protocol, it will make a connection to the server
at that address and ask for the resource /13_browser.html. If all goes
well, the server sends back a document, which your browser then dis-
plays on your screen.

HTML

HTML, which stands for HyperText Markup Language, is the document
format used for web pages. An HTML document contains text, as well
as tags that give structure to the text, describing things such as links,
paragraphs, and headings.

A short HTML document might look like this:

<!doctype html>
<html>

<head>
<meta charset="utf-8">

325

<title>My home page</title>
</head>
<body>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.</p>
<p>I also wrote a book! Read it

here.</p>
</body>

</html>

This is what such a document would look like in the browser:

The tags, wrapped in angle brackets (< and >, the symbols for less
than and greater than), provide information about the structure of the
document. The other text is just plain text.

The document starts with <!doctype html>, which tells the browser
to interpret the page as modern HTML, as opposed to obsolete styles
used in the past.

HTML documents have a head and a body. The head contains in-
formation about the document, and the body contains the document
itself. In this case, the head declares that the title of this document
is “My home page” and that it uses the UTF-8 encoding, which is a
way to encode Unicode text as binary data. The document’s body

326

contains a heading (<h1>, meaning “heading 1”—<h2> to <h6> produce
subheadings) and two paragraphs (<p>).

Tags come in several forms. An element, such as the body, a para-
graph, or a link, is started by an opening tag like <p> and ended by
a closing tag like </p>. Some opening tags, such as the one for the
link (<a>), contain extra information in the form of name="value" pairs.
These are called attributes. In this case, the destination of the link is in-
dicated with href="http://eloquentjavascript.net", where href stands
for “hypertext reference”.

Some kinds of tags do not enclose anything and thus do not need to
be closed. The metadata tag <meta charset="utf-8"> is an example of
this.

To be able to include angle brackets in the text of a document even
though they have a special meaning in HTML, yet another form of
special notation has to be introduced. A plain opening angle bracket is
written as < (“less than”), and a closing bracket is written as >

(“greater than”). In HTML, an ampersand (&) character followed by a
name or character code and a semicolon (;) is called an entity and will
be replaced by the character it encodes.

This is analogous to the way backslashes are used in JavaScript
strings. Since this mechanism gives ampersand characters a special
meaning too, they need to be escaped as &. Inside attribute values,
which are wrapped in double quotes, " can be used to insert a
literal quote character.

HTML is parsed in a remarkably error-tolerant way. When tags that
should be there are missing, the browser automatically adds them. The

327

way this is done has been standardized, and you can rely on all modern
browsers to do it in the same way.

The following document will be treated just like the one shown pre-
viously:

<!doctype html>

<meta charset=utf-8>
<title>My home page</title>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.
<p>I also wrote a book! Read it

here.

The <html>, <head>, and <body> tags are completely gone. The browser
knows that <meta> and <title> belong in the head and that <h1> means
the body has started. Furthermore, I am no longer explicitly closing
the paragraphs, since opening a new paragraph or ending the document
will close them implicitly. The quotes around the attribute values are
also gone.

This book will usually omit the <html>, <head>, and <body> tags from
examples to keep them short and free of clutter. I will close tags and
include quotes around attributes, though.

I will also usually omit the doctype and charset declaration. Don’t
take this as encouragement to drop these from HTML documents.
Browsers will often do ridiculous things when you forget them. Con-
sider the doctype and the charset metadata to be implicitly present in

328

examples, even when they are not actually shown in the text.

HTML and JavaScript

In the context of this book, the most important HTML tag is <script>,
which allows us to include a piece of JavaScript in a document.

<h1>Testing alert</h1>
<script>alert("hello!");</script>

Such a script will run as soon as its <script> tag is encountered while
the browser reads the HTML. This page will pop up a dialog when
opened—the alert function resembles prompt, in that it pops up a little
window, but only shows a message without asking for input.

Including large programs directly in HTML documents is often im-
practical. The <script> tag can be given an src attribute to fetch a
script file (a text file containing a JavaScript program) from a URL.

<h1>Testing alert</h1>
<script src="code/hello.js"></script>

The code/hello.js file included here contains the same program—alert

("hello!"). When an HTML page references other URLs as part of
itself, such as an image file or a script, web browsers will retrieve them
immediately and include them in the page.

A script tag must always be closed with </script>, even if it refers
to a script file and doesn’t contain any code. If you forget this, the rest
of the page will be interpreted as part of the script.

329

You can load ES modules (see Chapter 10) in the browser by giving
your script tag a type="module" attribute. Such modules can depend on
other modules by using URLs relative to themselves as module names
in import declarations.

Some attributes can also contain a JavaScript program. The <button>
tag (which shows up as a button) supports an onclick attribute. The
attribute’s value will be run whenever the button is clicked.

<button onclick="alert('Boom!');">DO NOT PRESS</button>

Note that I had to use single quotes for the string in the onclick at-
tribute because double quotes are already used to quote the whole at-
tribute. I could also have used " to escape the inner quotes.

In the sandbox

Running programs downloaded from the internet is potentially danger-
ous. You don’t know much about the people behind most sites you
visit, and they do not necessarily mean well. Running programs by
malicious actors is how you get your computer infected by viruses, your
data stolen, and your accounts hacked.

Yet the attraction of the web is that you can browse it without nec-
essarily trusting all the pages you visit. This is why browsers severely
limit the things a JavaScript program may do: it can’t look at the files
on your computer or modify anything not related to the web page it
was embedded in.

Isolating a programming environment in this way is called sandboxing,

330

the idea being that the program is harmlessly playing in a sandbox. But
you should imagine this particular kind of sandbox as having a cage of
thick steel bars over it so that the programs playing in it can’t actually
get out.

The hard part of sandboxing is allowing programs enough room to
be useful while restricting them from doing anything dangerous. Lots
of useful functionality, such as communicating with other servers or
reading the content of the copy-paste clipboard, can also be used for
problematic, privacy-invading purposes.

Every now and then, someone comes up with a new way to circumvent
the limitations of a browser and do something harmful, ranging from
leaking minor private information to taking over the whole machine on
which the browser is running. The browser developers respond by fixing
the hole, and all is well again—until the next problem is discovered, and
hopefully publicized rather than secretly exploited by some government
agency or criminal organization.

Compatibility and the browser wars

In the early stages of the web, a browser called Mosaic dominated the
market. After a few years, the balance shifted to Netscape, which was,
in turn, largely supplanted by Microsoft’s Internet Explorer. At any
point where a single browser was dominant, that browser’s vendor would
feel entitled to unilaterally invent new features for the web. Since most
users used the most popular browser, websites would simply start using
those features—never mind the other browsers.

331

This was the dark age of compatibility, often called the browser wars.
Web developers were left with not one unified web but two or three
incompatible platforms. To make things worse, the browsers in use
around 2003 were all full of bugs, and of course the bugs were different
for each browser. Life was hard for people writing web pages.

Mozilla Firefox, a not-for-profit offshoot of Netscape, challenged In-
ternet Explorer’s position in the late 2000s. Because Microsoft was
not particularly interested in staying competitive at the time, Firefox
took a lot of market share away from it. Around the same time, Google
introduced its Chrome browser and Apple’s Safari browser gained popu-
larity, leading to a situation where there were four major players, rather
than one.

The new players had a more serious attitude toward standards and
better engineering practices, giving us less incompatibility and fewer
bugs. Microsoft, seeing its market share crumble, came around and
adopted these attitudes in its Edge browser, which replaced Internet
Explorer. If you are starting to learn web development today, consider
yourself lucky. The latest versions of the major browsers behave quite
uniformly and have relatively few bugs.

Unfortunately, with Firefox’s market share getting ever smaller, and
Edge becoming just a wrapper around Chrome’s core in 2018, this uni-
formity might once again take the form of a single vendor—Google, this
time—having enough control over the browser market to push its idea
of what the web should look like onto the rest of the world.

For what it is worth, this long chain of historical events and acci-
dents has produced the web platform that we have today. In the next

332

chapters, we are going to write programs for it.

333

“Too bad! Same old story! Once you’ve finished building your
house you notice you’ve accidentally learned something that
you really should have known—before you started.”

—Friedrich Nietzsche, Beyond Good and Evil

Chapter 14

The Document Object Model

When you open a web page, your browser retrieves the page’s HTML
text and parses it, much like our parser from Chapter 12 parsed pro-
grams. The browser builds up a model of the document’s structure and
uses this model to draw the page on the screen.

This representation of the document is one of the toys that a JavaScript
program has available in its sandbox. It is a data structure that you
can read or modify. It acts as a live data structure: when it’s modified,
the page on the screen is updated to reflect the changes.

Document structure

You can imagine an HTML document as a nested set of boxes. Tags
such as <body> and </body> enclose other tags, which in turn contain
other tags or text. Here’s the example document from the previous
chapter:

<!doctype html>
<html>

334

<head>
<title>My home page</title>

</head>
<body>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.</p>
<p>I also wrote a book! Read it

here.</p>
</body>

</html>

This page has the following structure:

here

a

.I also wrote a book! Read it

p

Hello, I am Marijn and this is...

p

My home page

h1

body

My home page

title

head

html

335

The data structure the browser uses to represent the document fol-
lows this shape. For each box, there is an object, which we can interact
with to find out things such as what HTML tag it represents and which
boxes and text it contains. This representation is called the Document
Object Model, or DOM for short.

The global binding document gives us access to these objects. Its
documentElement property refers to the object representing the <html>

tag. Since every HTML document has a head and a body, it also has
head and body properties pointing at those elements.

Trees

Think back to the syntax trees from Chapter 12 for a moment. Their
structures are strikingly similar to the structure of a browser’s docu-
ment. Each node may refer to other nodes, children, which in turn
may have their own children. This shape is typical of nested structures,
where elements can contain subelements that are similar to themselves.

We call a data structure a tree when it has a branching structure, no
cycles (a node may not contain itself, directly or indirectly), and a sin-
gle, well-defined root. In the case of the DOM, document.documentElement
serves as the root.

Trees come up a lot in computer science. In addition to representing
recursive structures such as HTML documents or programs, they are
often used to maintain sorted sets of data because elements can usually
be found or inserted more efficiently in a tree than in a flat array.

A typical tree has different kinds of nodes. The syntax tree for the

336

Egg language had identifiers, values, and application nodes. Applica-
tion nodes may have children, whereas identifiers and values are leaves,
or nodes without children.

The same goes for the DOM. Nodes for elements, which represent
HTML tags, determine the structure of the document. These can have
child nodes. An example of such a node is document.body. Some of these
children can be leaf nodes, such as pieces of text or comment nodes.

Each DOM node object has a nodeType property, which contains a
code (number) that identifies the type of node. Elements have code
1, which is also defined as the constant property Node.ELEMENT_NODE.
Text nodes, representing a section of text in the document, get code 3
(Node.TEXT_NODE). Comments have code 8 (Node.COMMENT_NODE).

Another way to visualize our document tree is as follows:

html head title My home page

body h1 My home page

p Hello! I am...

p I also wrote...

herea

.

The leaves are text nodes, and the arrows indicate parent-child rela-
tionships between nodes.

337

The standard

Using cryptic numeric codes to represent node types is not a very
JavaScript-like thing to do. Later in this chapter, we’ll see that other
parts of the DOM interface also feel cumbersome and alien. This is be-
cause the DOM interface wasn’t designed for JavaScript alone. Rather,
it tries to be a language-neutral interface that can be used in other sys-
tems as well—not just for HTML but also for XML, which is a generic
data format with an HTML-like syntax.

This is unfortunate. Standards are often useful. But in this case,
the advantage (cross-language consistency) isn’t all that compelling.
Having an interface that is properly integrated with the language you’re
using will save you more time than having a familiar interface across
languages.

As an example of this poor integration, consider the childNodes prop-
erty that element nodes in the DOM have. This property holds an
array-like object with a length property and properties labeled by num-
bers to access the child nodes. But it is an instance of the NodeList

type, not a real array, so it does not have methods such as slice and
map.

Then there are issues that are simply caused by poor design. For
example, there is no way to create a new node and immediately add
children or attributes to it. Instead, you have to first create it and then
add the children and attributes one by one, using side effects. Code
that interacts heavily with the DOM tends to get long, repetitive, and
ugly.

But these flaws aren’t fatal. Since JavaScript allows us to create

338

our own abstractions, it is possible to design improved ways to express
the operations we are performing. Many libraries intended for browser
programming come with such tools.

Moving through the tree

DOM nodes contain a wealth of links to other nearby nodes. The
following diagram illustrates these:

I also wrote a book! ...
p

Hello, I am Marijn...
p

My home page
h1

body

0

1

2

childNodes firstChild

lastChild

previousSibling

nextSibling

parentNode

Although the diagram shows only one link of each type, every node
has a parentNode property that points to the node it is part of, if any.
Likewise, every element node (node type 1) has a childNodes property
that points to an array-like object holding its children.

In theory, you could move anywhere in the tree using just these par-
ent and child links. But JavaScript also gives you access to a number
of additional convenience links. The firstChild and lastChild prop-

339

erties point to the first and last child elements or have the value null

for nodes without children. Similarly, previousSibling and nextSibling

point to adjacent nodes, which are nodes with the same parent that
appear immediately before or after the node itself. For a first child,
previousSibling will be null, and for a last child, nextSibling will be
null.

There’s also the children property, which is like childNodes but con-
tains only element (type 1) children, not other types of child nodes.
This can be useful when you aren’t interested in text nodes.

When dealing with a nested data structure like this one, recursive
functions are often useful. The following function scans a document for
text nodes containing a given string and returns true when it has found
one:

function talksAbout(node, string) {
if (node.nodeType == Node.ELEMENT_NODE) {

for (let child of node.childNodes) {
if (talksAbout(child, string)) {

return true;
}

}
return false;

} else if (node.nodeType == Node.TEXT_NODE) {
return node.nodeValue.indexOf(string) > -1;

}
}

console.log(talksAbout(document.body, "book"));
// → true

340

The nodeValue property of a text node holds the string of text that it
represents.

Finding elements

Navigating these links among parents, children, and siblings is often
useful. But if we want to find a specific node in the document, reaching
it by starting at document.body and following a fixed path of properties
is a bad idea. Doing so bakes assumptions into our program about
the precise structure of the document—a structure you might want to
change later. Another complicating factor is that text nodes are created
even for the whitespace between nodes. The example document’s <body
> tag has not just three children (<h1> and two <p> elements), but seven:
those three, plus the spaces before, after, and between them.

If we want to get the href attribute of the link in that document,
we don’t want to say something like “Get the second child of the sixth
child of the document body”. It’d be better if we could say “Get the
first link in the document”. And we can.

let link = document.body.getElementsByTagName("a")[0];
console.log(link.href);

All element nodes have a getElementsByTagName method, which collects
all elements with the given tag name that are descendants (direct or
indirect children) of that node and returns them as an array-like object.

To find a specific single node, you can give it an id attribute and use
document.getElementById instead.

341

<p>My ostrich Gertrude:</p>
<p></p>

<script>
let ostrich = document.getElementById("gertrude");
console.log(ostrich.src);

</script>

A third, similar method is getElementsByClassName, which, like getElementsByTagName
, searches through the contents of an element node and retrieves all
elements that have the given string in their class attribute.

Changing the document

Almost everything about the DOM data structure can be changed. The
shape of the document tree can be modified by changing parent-child
relationships. Nodes have a remove method to remove them from their
current parent node. To add a child node to an element node, we can
use appendChild, which puts it at the end of the list of children, or
insertBefore, which inserts the node given as the first argument before
the node given as the second argument.

<p>One</p>
<p>Two</p>
<p>Three</p>

<script>
let paragraphs = document.body.getElementsByTagName("p");
document.body.insertBefore(paragraphs[2], paragraphs[0]);

342

</script>

A node can exist in the document in only one place. Thus, inserting
paragraph Three in front of paragraph One will first remove it from
the end of the document and then insert it at the front, resulting in
Three/One/Two. All operations that insert a node somewhere will, as
a side effect, cause it to be removed from its current position (if it has
one).

The replaceChild method is used to replace a child node with another
one. It takes as arguments two nodes: a new node and the node to be
replaced. The replaced node must be a child of the element the method
is called on. Note that both replaceChild and insertBefore expect the
new node as their first argument.

Creating nodes

Say we want to write a script that replaces all images (tags) in
the document with the text held in their alt attributes, which specifies
an alternative textual representation of the image. This involves not
only removing the images but also adding a new text node to replace
them.

<p>The in the
.</p>

<p><button onclick="replaceImages()">Replace</button></p>

<script>

343

function replaceImages() {
let images = document.body.getElementsByTagName("img");
for (let i = images.length - 1; i >= 0; i--) {

let image = images[i];
if (image.alt) {

let text = document.createTextNode(image.alt);
image.parentNode.replaceChild(text, image);

}
}

}
</script>

Given a string, createTextNode gives us a text node that we can insert
into the document to make it show up on the screen.

The loop that goes over the images starts at the end of the list.
This is necessary because the node list returned by a method like
getElementsByTagName (or a property like childNodes) is live. That is,
it is updated as the document changes. If we started from the front,
removing the first image would cause the list to lose its first element
so that the second time the loop repeats, where i is 1, it would stop
because the length of the collection is now also 1.

If you want a solid collection of nodes, as opposed to a live one, you
can convert the collection to a real array by calling Array.from.

let arrayish = {0: "one", 1: "two", length: 2};
let array = Array.from(arrayish);
console.log(array.map(s => s.toUpperCase()));
// → ["ONE", "TWO"]

To create element nodes, you can use the document.createElementmethod.

344

This method takes a tag name and returns a new empty node of the
given type.

The following example defines a utility elt, which creates an element
node and treats the rest of its arguments as children to that node. This
function is then used to add an attribution to a quote.

<blockquote id="quote">
No book can ever be finished. While working on it we learn
just enough to find it immature the moment we turn away
from it.

</blockquote>

<script>
function elt(type, ...children) {

let node = document.createElement(type);
for (let child of children) {

if (typeof child != "string") node.appendChild(child);
else node.appendChild(document.createTextNode(child));

}
return node;

}

document.getElementById("quote").appendChild(
elt("footer", "—",

elt("strong", "Karl Popper"),
", preface to the second edition of ",
elt("em", "The Open Society and Its Enemies"),
", 1950"));

</script>

345

This is what the resulting document looks like:

Attributes

Some element attributes, such as href for links, can be accessed through
a property of the same name on the element’s DOM object. This is the
case for most commonly used standard attributes.

HTML allows you to set any attribute you want on nodes. This can
be useful because it allows you to store extra information in a document.
To read or change custom attributes, which aren’t available as regular
object properties, you have to use the getAttribute and setAttribute

methods.

<p data-classified="secret">The launch code is 00000000.</p>
<p data-classified="unclassified">I have two feet.</p>

<script>
let paras = document.body.getElementsByTagName("p");
for (let para of Array.from(paras)) {

if (para.getAttribute("data-classified") == "secret") {
para.remove();

}
}

346

</script>

It is recommended to prefix the names of such made-up attributes with
data- to ensure they do not conflict with any other attributes.

There is a commonly used attribute, class, which is a keyword in the
JavaScript language. For historical reasons—some old JavaScript im-
plementations could not handle property names that matched keywords—
the property used to access this attribute is called className. You can
also access it under its real name, "class", with the getAttribute and
setAttribute methods.

Layout

You may have noticed that different types of elements are laid out
differently. Some, such as paragraphs (<p>) or headings (<h1>), take up
the whole width of the document and are rendered on separate lines.
These are called block elements. Others, such as links (<a>) or the <

strong> element, are rendered on the same line with their surrounding
text. Such elements are called inline elements.

For any given document, browsers are able to compute a layout, which
gives each element a size and position based on its type and content.
This layout is then used to actually draw the document.

The size and position of an element can be accessed from JavaScript.
The offsetWidth and offsetHeight properties give you the space the
element takes up in pixels. A pixel is the basic unit of measurement in
the browser. It traditionally corresponds to the smallest dot that the
screen can draw, but on modern displays, which can draw very small

347

dots, that may no longer be the case, and a browser pixel may span
multiple display dots.

Similarly, clientWidth and clientHeight give you the size of the space
inside the element, ignoring border width.

<p style="border: 3px solid red">
I'm boxed in

</p>

<script>
let para = document.body.getElementsByTagName("p")[0];
console.log("clientHeight:", para.clientHeight);
// → 19
console.log("offsetHeight:", para.offsetHeight);
// → 25

</script>

Giving a paragraph a border causes a rectangle to be drawn around it.

The most effective way to find the precise position of an element on
the screen is the getBoundingClientRect method. It returns an object
with top, bottom, left, and right properties, indicating the pixel posi-
tions of the sides of the element relative to the upper left of the screen.
If you want pixel positions relative to the whole document, you must
add the current scroll position, which you can find in the pageXOffset

and pageYOffset bindings.
Laying out a document can be quite a lot of work. In the interest

348

of speed, browser engines do not immediately re-layout a document
every time you change it but wait as long as they can before doing
so. When a JavaScript program that changed the document finishes
running, the browser will have to compute a new layout to draw the
changed document to the screen. When a program asks for the posi-
tion or size of something by reading properties such as offsetHeight or
calling getBoundingClientRect, providing that information also requires
computing a layout.

A program that repeatedly alternates between reading DOM layout
information and changing the DOM forces a lot of layout computations
to happen and will consequently run very slowly. The following code is
an example of this. It contains two different programs that build up a
line of X characters 2,000 pixels wide and measures the time each one
takes.

<p></p>
<p></p>

<script>
function time(name, action) {

let start = Date.now(); // Current time in milliseconds
action();
console.log(name, "took", Date.now() - start, "ms");

}

time("naive", () => {
let target = document.getElementById("one");
while (target.offsetWidth < 2000) {

target.appendChild(document.createTextNode("X"));

349

}
});
// → naive took 32 ms

time("clever", function() {
let target = document.getElementById("two");
target.appendChild(document.createTextNode("XXXXX"));
let total = Math.ceil(2000 / (target.offsetWidth / 5));
target.firstChild.nodeValue = "X".repeat(total);

});
// → clever took 1 ms

</script>

Styling

We have seen that different HTML elements are drawn differently.
Some are displayed as blocks, others inline. Some add styling—

makes its content bold, and <a> makes it blue and underlines it.
The way an tag shows an image or an <a> tag causes a link to

be followed when it is clicked is strongly tied to the element type. But
we can change the styling associated with an element, such as the text
color or underline. Here is an example that uses the style property:

<p>Normal link</p>
<p>Green link</p>

The second link will be green instead of the default link color:

350

A style attribute may contain one or more declarations, which are a
property (such as color) followed by a colon and a value (such as green).
When there is more than one declaration, they must be separated by
semicolons, as in "color: red; border: none".

A lot of aspects of the document can be influenced by styling. For
example, the display property controls whether an element is displayed
as a block or an inline element.

This text is displayed inline,
<strong style="display: block">as a block, and
<strong style="display: none">not at all.

The block tag will end up on its own line, since block elements are
not displayed inline with the text around them. The last tag is not
displayed at all—display: none prevents an element from showing up
on the screen. This is a way to hide elements. It is often preferable to
removing them from the document entirely because it makes it easy to
reveal them again later.

JavaScript code can directly manipulate the style of an element through
the element’s style property. This property holds an object that has
properties for all possible style properties. The values of these proper-

351

ties are strings, which we can write to in order to change a particular
aspect of the element’s style.

<p id="para" style="color: purple">
Nice text

</p>

<script>
let para = document.getElementById("para");
console.log(para.style.color);
para.style.color = "magenta";

</script>

Some style property names contain hyphens, such as font-family. Be-
cause such property names are awkward to work with in JavaScript
(you’d have to say style["font-family"]), the property names in the
style object for such properties have their hyphens removed and the
letters after them capitalized (style.fontFamily).

Cascading styles

The styling system for HTML is called CSS, for Cascading Style Sheets.
A style sheet is a set of rules for how to style elements in a document.
It can be given inside a <style> tag.

<style>
strong {

font-style: italic;
color: gray;

352

}
</style>
<p>Now strong text is italic and gray.</p>

The cascading in the name refers to the fact that multiple such rules are
combined to produce the final style for an element. In the example, the
default styling for tags, which gives them font-weight: bold,
is overlaid by the rule in the <style> tag, which adds font-style and
color.

When multiple rules define a value for the same property, the most
recently read rule gets a higher precedence and wins. For example, if the
rule in the <style> tag included font-weight: normal, contradicting the
default font-weight rule, the text would be normal, not bold. Styles in a
style attribute applied directly to the node have the highest precedence
and always win.

It is possible to target things other than tag names in CSS rules. A
rule for .abc applies to all elements with "abc" in their class attribute.
A rule for #xyz applies to the element with an id attribute of "xyz"

(which should be unique within the document).

.subtle {
color: gray;
font-size: 80%;

}
#header {

background: blue;
color: white;

}
/* p elements with id main and with classes a and b */

353

p#main.a.b {
margin-bottom: 20px;

}

The precedence rule favoring the most recently defined rule applies only
when the rules have the same specificity. A rule’s specificity is a mea-
sure of how precisely it describes matching elements, determined by the
number and kind (tag, class, or ID) of element aspects it requires. For
example, a rule that targets p.a is more specific than rules that target
p or just .a and would thus take precedence over them.

The notation p > a …{} applies the given styles to all <a> tags that
are direct children of <p> tags. Similarly, p a …{} applies to all <a> tags
inside <p> tags, whether they are direct or indirect children.

Query selectors

We won’t be using style sheets very much in this book. Understand-
ing them is helpful when programming in the browser, but they are
complicated enough to warrant a separate book. The main reason I
introduced selector syntax—the notation used in style sheets to deter-
mine which elements a set of styles apply to—is that we can use this
same mini-language as an effective way to find DOM elements.

The querySelectorAll method, which is defined both on the document

object and on element nodes, takes a selector string and returns a
NodeList containing all the elements that it matches.

<p>And if you go chasing
rabbits</p>

354

<p>And you know you're going to fall</p>
<p>Tell 'em a hookah smoking

caterpillar</p>
<p>Has given you the call</p>

<script>
function count(selector) {

return document.querySelectorAll(selector).length;
}
console.log(count("p")); // All <p> elements
// → 4
console.log(count(".animal")); // Class animal
// → 2
console.log(count("p .animal")); // Animal inside of <p>
// → 2
console.log(count("p > .animal")); // Direct child of <p>
// → 1

</script>

Unlike methods such as getElementsByTagName, the object returned by
querySelectorAll is not live. It won’t change when you change the
document. It is still not a real array, though, so you need to call Array
.from if you want to treat it like one.

The querySelector method (without the All part) works in a simi-
lar way. This one is useful if you want a specific single element. It
will return only the first matching element, or null when no element
matches.

355

Positioning and animating

The position style property influences layout in a powerful way. It has
a default value of static, meaning the element sits in its normal place
in the document. When it is set to relative, the element still takes up
space in the document, but now the top and left style properties can be
used to move it relative to that normal place. When position is set to
absolute, the element is removed from the normal document flow—that
is, it no longer takes up space and may overlap with other elements. Its
top and left properties can be used to absolutely position it relative to
the upper-left corner of the nearest enclosing element whose position

property isn’t static, or relative to the document if no such enclosing
element exists.

We can use this to create an animation. The following document
displays a picture of a cat that moves around in an ellipse:

<p style="text-align: center">

</p>
<script>

let cat = document.querySelector("img");
let angle = Math.PI / 2;
function animate(time, lastTime) {

if (lastTime != null) {
angle += (time - lastTime) * 0.001;

}
cat.style.top = (Math.sin(angle) * 20) + "px";
cat.style.left = (Math.cos(angle) * 200) + "px";
requestAnimationFrame(newTime => animate(newTime, time));

356

}
requestAnimationFrame(animate);

</script>

The gray arrow shows the path along which the image moves.

Our picture is centered on the page and given a position of relative.
We’ll repeatedly update that picture’s top and left styles to move it.

The script uses requestAnimationFrame to schedule the animate func-
tion to run whenever the browser is ready to repaint the screen. The
animate function itself again calls requestAnimationFrame to schedule the
next update. When the browser window (or tab) is active, this will
cause updates to happen at a rate of about 60 per second, which tends
to produce a good-looking animation.

If we just updated the DOM in a loop, the page would freeze, and
nothing would show up on the screen. Browsers do not update their
display while a JavaScript program is running, nor do they allow any
interaction with the page. This is why we need requestAnimationFrame

—it lets the browser know that we are done for now, and it can go
ahead and do the things that browsers do, such as updating the screen
and responding to user actions.

The animation function is passed the current time as an argument.

357

To ensure that the motion of the cat per millisecond is stable, it bases
the speed at which the angle changes on the difference between the
current time and the last time the function ran. If it just moved the
angle by a fixed amount per step, the motion would stutter when, for
example, another heavy task running on the same computer prevented
the function from running for a fraction of a second.

Moving in circles is done using the trigonometry functions Math.cos

and Math.sin. For those who aren’t familiar with these, I’ll briefly
introduce them, since we will occasionally use them in this book.

Math.cos and Math.sin are useful for finding points that lie on a circle
around point (0, 0) with a radius of 1. Both functions interpret their
argument as the position on this circle, with 0 denoting the point on the
far right of the circle, going clockwise until 2π (about 6.28) has taken
us around the whole circle. Math.cos tells you the x-coordinate of the
point that corresponds to the given position, and Math.sin yields the
y-coordinate. Positions (or angles) greater than 2π or less than 0 are
valid—the rotation repeats so that a+2π refers to the same angle as a.

This unit for measuring angles is called radians—a full circle is 2π
radians, similar to how it is 360 degrees when measuring in degrees.
The constant π is available as Math.PI in JavaScript.

358

cos(¼π)

sin(¼π)

cos(-⅔π)

sin(-⅔π)sin(-⅔π)

The cat animation code keeps a counter, angle, for the current angle
of the animation and increments it every time the animate function is
called. It can then use this angle to compute the current position of the
image element. The top style is computed with Math.sin and multiplied
by 20, which is the vertical radius of our ellipse. The left style is based
on Math.cos and multiplied by 200 so that the ellipse is much wider than
it is high.

Note that styles usually need units. In this case, we have to append
"px" to the number to tell the browser that we are counting in pixels (as
opposed to centimeters, “ems”, or other units). This is easy to forget.
Using numbers without units will result in your style being ignored—
unless the number is 0, which always means the same thing, regardless
of its unit.

Summary

JavaScript programs may inspect and interfere with the document that
the browser is displaying through a data structure called the DOM. This

359

data structure represents the browser’s model of the document, and a
JavaScript program can modify it to change the visible document.

The DOM is organized like a tree, where elements are arranged hier-
archically according to the structure of the document. The objects rep-
resenting elements have properties such as parentNode and childNodes,
which can be used to navigate through this tree.

The way a document is displayed can be influenced by styling, both
by attaching styles to nodes directly and by defining rules that match
certain nodes. There are many different style properties, such as color

or display. JavaScript code can manipulate an element’s style directly
through its style property.

Exercises

Build a table

An HTML table is built with the following tag structure:

<table>
<tr>

<th>name</th>
<th>height</th>
<th>place</th>

</tr>
<tr>

<td>Kilimanjaro</td>
<td>5895</td>
<td>Tanzania</td>

360

</tr>
</table>

For each row, the <table> tag contains a <tr> tag. Inside of these <tr>

tags, we can put cell elements: either heading cells (<th>) or regular
cells (<td>).

Given a dataset of mountains, an array of objects with name, height
, and place properties, generate the DOM structure for a table that
enumerates the objects. It has one column per key and one row per
object, plus a header row with <th> elements at the top, listing the
column names.

Write this so that the columns are automatically derived from the
objects, by taking the property names of the first object in the data.

Show the resulting table in the document by appending it to the
element that has an id attribute of "mountains".

Once you have this working, right-align cells that contain number
values by setting their style.textAlign property to "right".

Elements by tag name

The document.getElementsByTagName method returns all child elements
with a given tag name. Implement your own version of this as a function
that takes a node and a string (the tag name) as arguments and returns
an array containing all descendant element nodes with the given tag
name. Your function should go through the document itself. It may
not use a method like querySelectorAll to do the work.

To find the tag name of an element, use its nodeName property. But

361

note that this will return the tag name in all uppercase. Use the
toLowerCase or toUpperCase string methods to compensate for this.

The cat's hat

Extend the cat animation defined earlier so that both the cat and his
hat () orbit at opposite sides of the ellipse.

Or make the hat circle around the cat. Or alter the animation in
some other interesting way.

To make positioning multiple objects easier, you’ll probably want
to switch to absolute positioning. This means that top and left are
counted relative to the upper left of the document. To avoid using
negative coordinates, which would cause the image to move outside of
the visible page, you can add a fixed number of pixels to the position
values.

362

“You have power over your mind—not outside events. Realize
this, and you will find strength.”

—Marcus Aurelius, Meditations

Chapter 15

Handling Events

Some programs work with direct user input, such as mouse and key-
board actions. That kind of input isn’t available ahead of time, as a
well-organized data structure—it comes in piece by piece, in real time,
and the program must respond to it as it happens.

Event handlers

Imagine an interface where the only way to find out whether a key on
the keyboard is being pressed is to read the current state of that key.
To be able to react to keypresses, you would have to constantly read the
key’s state to catch it before it is released again. It would be dangerous
to perform other time-intensive computations, since you might miss a
keypress.

Some primitive machines handle input like this. A step up from this
is for the hardware or operating system to notice the keypress and put
it in a queue. A program can then periodically check the queue for new
events and react to what it finds there.

363

Of course, the program has to remember to look at the queue, and
to do it often because any time between the key being pressed and the
program noticing the event will cause the software to feel unresponsive.
This approach is called polling. Most programmers prefer to avoid it.

A better mechanism is for the system to actively notify the code when
an event occurs. Browsers do this by allowing us to register functions
as handlers for specific events.

<p>Click this document to activate the handler.</p>
<script>

window.addEventListener("click", () => {
console.log("You knocked?");

});
</script>

The window binding refers to a built-in object provided by the browser.
It represents the browser window that contains the document. Calling
its addEventListener method registers the second argument to be called
whenever the event described by its first argument occurs.

Events and DOMnodes

Each browser event handler is registered in a context. In the previous
example, we called addEventListener on the window object to register a
handler for the whole window. Such a method can also be found on
DOM elements and some other types of objects. Event listeners are
called only when the event happens in the context of the object on
which they are registered.

364

<button>Click me</button>
<p>No handler here.</p>
<script>

let button = document.querySelector("button");
button.addEventListener("click", () => {

console.log("Button clicked.");
});

</script>

That example attaches a handler to the button node. Clicks on the
button cause that handler to run, but clicks on the rest of the document
do not.

Giving a node an onclick attribute has a similar effect. This works for
most types of events—you can attach a handler through the attribute
whose name is the event name with on in front of it.

But a node can have only one onclick attribute, so you can register
only one handler per node that way. The addEventListener method
allows you to add any number of handlers meaning it’s safe to add
handlers even if there is already another handler on the element.

The removeEventListener method, called with arguments similar to
addEventListener, removes a handler.

<button>Act-once button</button>
<script>

let button = document.querySelector("button");
function once() {

console.log("Done.");
button.removeEventListener("click", once);

}

365

button.addEventListener("click", once);
</script>

The function given to removeEventListener has to be the same func-
tion value given to addEventListener. When you need to unregister a
handler, you’ll want to give the handler function a name (once, in the
example) to be able to pass the same function value to both methods.

Event objects

Though we have ignored it so far, event handler functions are passed an
argument: the event object. This object holds additional information
about the event. For example, if we want to know which mouse button
was pressed, we can look at the event object’s button property.

<button>Click me any way you want</button>
<script>

let button = document.querySelector("button");
button.addEventListener("mousedown", event => {

if (event.button == 0) {
console.log("Left button");

} else if (event.button == 1) {
console.log("Middle button");

} else if (event.button == 2) {
console.log("Right button");

}
});

</script>

366

The information stored in an event object differs per type of event.
(We’ll discuss different types later in the chapter.) The object’s type

property always holds a string identifying the event (such as "click" or
"mousedown").

Propagation

For most event types, handlers registered on nodes with children will
also receive events that happen in the children. If a button inside a
paragraph is clicked, event handlers on the paragraph will also see the
click event.

But if both the paragraph and the button have a handler, the more
specific handler—the one on the button—gets to go first. The event
is said to propagate outward from the node where it happened to that
node’s parent node and on to the root of the document. Finally, after
all handlers registered on a specific node have had their turn, handlers
registered on the whole window get a chance to respond to the event.

At any point, an event handler can call the stopPropagation method
on the event object to prevent handlers further up from receiving the
event. This can be useful when, for example, you have a button inside
another clickable element and you don’t want clicks on the button to
activate the outer element’s click behavior.

The following example registers "mousedown" handlers on both a but-
ton and the paragraph around it. When clicked with the right mouse
button, the handler for the button calls stopPropagation, which will
prevent the handler on the paragraph from running. When the button

367

is clicked with another mouse button, both handlers will run.

<p>A paragraph with a <button>button</button>.</p>
<script>

let para = document.querySelector("p");
let button = document.querySelector("button");
para.addEventListener("mousedown", () => {

console.log("Handler for paragraph.");
});
button.addEventListener("mousedown", event => {

console.log("Handler for button.");
if (event.button == 2) event.stopPropagation();

});
</script>

Most event objects have a target property that refers to the node where
they originated. You can use this property to ensure that you’re not
accidentally handling something that propagated up from a node you
do not want to handle.

It is also possible to use the target property to cast a wide net for
a specific type of event. For example, if you have a node containing a
long list of buttons, it may be more convenient to register a single click
handler on the outer node and have it use the target property to figure
out whether a button was clicked, rather than registering individual
handlers on all of the buttons.

<button>A</button>
<button>B</button>
<button>C</button>
<script>

368

document.body.addEventListener("click", event => {
if (event.target.nodeName == "BUTTON") {

console.log("Clicked", event.target.textContent);
}

});
</script>

Default actions

Many events have a default action. If you click a link, you will be taken
to the link’s target. If you press the down arrow, the browser will scroll
the page down. If you right-click, you’ll get a context menu. And so
on.

For most types of events, the JavaScript event handlers are called
before the default behavior takes place. If the handler doesn’t want
this normal behavior to happen, typically because it has already taken
care of handling the event, it can call the preventDefault method on the
event object.

This can be used to implement your own keyboard shortcuts or con-
text menu. It can also be used to obnoxiously interfere with the be-
havior that users expect. For example, here is a link that cannot be
followed:

MDN
<script>

let link = document.querySelector("a");
link.addEventListener("click", event => {

369

console.log("Nope.");
event.preventDefault();

});
</script>

Try not to do such things without a really good reason. It’ll be unpleas-
ant for people who use your page when expected behavior is broken.

Depending on the browser, some events can’t be intercepted at all.
On Chrome, for example, the keyboard shortcut to close the current
tab (ctrl-W or command-W) cannot be handled by JavaScript.

Key events

When a key on the keyboard is pressed, your browser fires a "keydown"

event. When it is released, you get a "keyup" event.

<p>This page turns violet when you hold the V key.</p>
<script>

window.addEventListener("keydown", event => {
if (event.key == "v") {

document.body.style.background = "violet";
}

});
window.addEventListener("keyup", event => {

if (event.key == "v") {
document.body.style.background = "";

}
});

</script>

370

Despite its name, "keydown" fires not only when the key is physically
pushed down. When a key is pressed and held, the event fires again
every time the key repeats. Sometimes you have to be careful about this.
For example, if you add a button to the DOM when a key is pressed
and remove it again when the key is released, you might accidentally
add hundreds of buttons when the key is held down longer.

The previous example looks at the key property of the event object
to see which key the event is about. This property holds a string that,
for most keys, corresponds to the thing that pressing that key would
type. For special keys such as enter, it holds a string that names
the key ("Enter", in this case). If you hold shift while pressing a key,
that might also influence the name of the key—"v" becomes "V", and
"1" may become "!", if that is what pressing shift-1 produces on your
keyboard.

Modifier keys such as shift, ctrl, alt, and meta (command on
Mac) generate key events just like normal keys. When looking for key
combinations, you can also find out whether these keys are held down
by looking at the shiftKey, ctrlKey, altKey, and metaKey properties of
keyboard and mouse events.

<p>Press Control-Space to continue.</p>
<script>

window.addEventListener("keydown", event => {
if (event.key == " " && event.ctrlKey) {

console.log("Continuing!");
}

});
</script>

371

The DOM node where a key event originates depends on the element
that has focus when the key is pressed. Most nodes cannot have focus
unless you give them a tabindex attribute, but things like links, buttons,
and form fields can. We’ll come back to form fields in Chapter 18. When
nothing in particular has focus, document.body acts as the target node
of key events.

When the user is typing text, using key events to figure out what is
being typed is problematic. Some platforms, most notably the virtual
keyboard on Android phones, don’t fire key events. But even when you
have an old-fashioned keyboard, some types of text input don’t match
keypresses in a straightforward way, such as input method editor (IME)
software used by people whose scripts don’t fit on a keyboard, where
multiple keystrokes are combined to create characters.

To notice when something was typed, elements that you can type into,
such as the <input> and <textarea> tags, fire "input" events whenever
the user changes their content. To get the actual content that was
typed, it is best to directly read it from the focused field, which we
discuss in Chapter 18.

Pointer events

There are currently two widely used ways to point at things on a screen:
mice (including devices that act like mice, such as touchpads and track-
balls) and touchscreens. These produce different kinds of events.

372

Mouse clicks

Pressing a mouse button causes a number of events to fire. The "

mousedown" and "mouseup" events are similar to "keydown" and "keyup"

and fire when the button is pressed and released. These happen on the
DOM nodes that are immediately below the mouse pointer when the
event occurs.

After the "mouseup" event, a "click" event fires on the most spe-
cific node that contained both the press and the release of the button.
For example, if I press down the mouse button on one paragraph and
then move the pointer to another paragraph and release the button,
the "click" event will happen on the element that contains both those
paragraphs.

If two clicks happen close together, a "dblclick" (double-click) event
also fires, after the second click event.

To get precise information about the place where a mouse event hap-
pened, you can look at its clientX and clientY properties, which contain
the event’s coordinates (in pixels) relative to the upper-left corner of the
window, or pageX and pageY, which are relative to the upper-left corner
of the whole document (which may be different when the window has
been scrolled).

The following program implements a primitive drawing application.
Every time you click the document, it adds a dot under your mouse
pointer.

<style>
body {

height: 200px;

373

background: beige;
}
.dot {

height: 8px; width: 8px;
border-radius: 4px; /* rounds corners */
background: teal;
position: absolute;

}
</style>
<script>

window.addEventListener("click", event => {
let dot = document.createElement("div");
dot.className = "dot";
dot.style.left = (event.pageX - 4) + "px";
dot.style.top = (event.pageY - 4) + "px";
document.body.appendChild(dot);

});
</script>

We’ll create a less primitive drawing application in Chapter 19.

Mouse motion

Every time the mouse pointer moves, a "mousemove" event fires. This
event can be used to track the position of the mouse. A common situa-
tion in which this is useful is when implementing some form of mouse-
dragging functionality.

As an example, the following program displays a bar and sets up
event handlers so that dragging to the left or right on this bar makes it

374

narrower or wider:

<p>Drag the bar to change its width:</p>
<div style="background: orange; width: 60px; height: 20px">
</div>
<script>

let lastX; // Tracks the last observed mouse X position
let bar = document.querySelector("div");
bar.addEventListener("mousedown", event => {

if (event.button == 0) {
lastX = event.clientX;
window.addEventListener("mousemove", moved);
event.preventDefault(); // Prevent selection

}
});

function moved(event) {
if (event.buttons == 0) {

window.removeEventListener("mousemove", moved);
} else {

let dist = event.clientX - lastX;
let newWidth = Math.max(10, bar.offsetWidth + dist);
bar.style.width = newWidth + "px";
lastX = event.clientX;

}
}

</script>

The resulting page looks like this:

375

Note that the "mousemove" handler is registered on the whole window.
Even if the mouse goes outside of the bar during resizing, as long as
the button is held, we still want to update its size.

We must stop resizing the bar when the mouse button is released.
For that, we can use the buttons property (note the plural), which tells
us about the buttons that are currently held down. When it is 0, no
buttons are down. When buttons are held, the value of the buttons

property is the sum of the codes for those buttons—the left button has
code 1, the right button 2, and the middle one 4. With the left and
right buttons held, for example, the value of buttons will be 3.

Note that the order of these codes is different from the one used by
button, where the middle button came before the right one. As men-
tioned, consistency isn’t a strong point of the browser’s programming
interface.

Touch events

The style of graphical browser that we use was designed with mouse
interfaces in mind, at a time where touchscreens were rare. To make
the web “work” on early touchscreen phones, browsers for those devices
pretended, to a certain extent, that touch events were mouse events.
If you tap your screen, you’ll get "mousedown", "mouseup", and "click"

events.

376

But this illusion isn’t very robust. A touchscreen doesn’t work like a
mouse: it doesn’t have multiple buttons, you can’t track the finger when
it isn’t on the screen (to simulate "mousemove"), and it allows multiple
fingers to be on the screen at the same time.

Mouse events cover touch interaction only in straightforward cases—
if you add a "click" handler to a button, touch users will still be able
to use it. But something like the resizeable bar in the previous example
does not work on a touchscreen.

There are specific event types fired by touch interaction. When a
finger starts touching the screen, you get a "touchstart" event. When
it is moved while touching, "touchmove" events fire. Finally, when it
stops touching the screen, you’ll see a "touchend" event.

Because many touchscreens can detect multiple fingers at the same
time, these events don’t have a single set of coordinates associated with
them. Rather, their event objects have a touches property, which holds
an array-like object of points, each of which has its own clientX, clientY,
pageX, and pageY properties.

You could do something like this to show red circles around every
touching finger:

<style>
dot { position: absolute; display: block;

border: 2px solid red; border-radius: 50px;
height: 100px; width: 100px; }

</style>
<p>Touch this page</p>
<script>

function update(event) {

377

for (let dot; dot = document.querySelector("dot");) {
dot.remove();

}
for (let i = 0; i < event.touches.length; i++) {

let {pageX, pageY} = event.touches[i];
let dot = document.createElement("dot");
dot.style.left = (pageX - 50) + "px";
dot.style.top = (pageY - 50) + "px";
document.body.appendChild(dot);

}
}
window.addEventListener("touchstart", update);
window.addEventListener("touchmove", update);
window.addEventListener("touchend", update);

</script>

You’ll often want to call preventDefault in touch event handlers to over-
ride the browser’s default behavior (which may include scrolling the
page on swiping) and to prevent the mouse events from being fired, for
which you may also have a handler.

Scroll events

Whenever an element is scrolled, a "scroll" event is fired on it. This
has various uses, such as knowing what the user is currently looking at
(for disabling off-screen animations or sending spy reports to your evil
headquarters) or showing some indication of progress (by highlighting
part of a table of contents or showing a page number).

The following example draws a progress bar above the document and

378

updates it to fill up as you scroll down:

<style>
#progress {

border-bottom: 2px solid blue;
width: 0;
position: fixed;
top: 0; left: 0;

}
</style>
<div id="progress"></div>
<script>

// Create some content
document.body.appendChild(document.createTextNode(
"supercalifragilisticexpialidocious ".repeat(1000)));

let bar = document.querySelector("#progress");
window.addEventListener("scroll", () => {

let max = document.body.scrollHeight - innerHeight;
bar.style.width = `${(pageYOffset / max) * 100}%`;

});
</script>

Giving an element a position of fixed acts much like an absolute po-
sition but also prevents it from scrolling along with the rest of the
document. The effect is to make our progress bar stay at the top. Its
width is changed to indicate the current progress. We use %, rather
than px, as a unit when setting the width so that the element is sized
relative to the page width.

The global innerHeight binding gives us the height of the window,

379

which we must subtract from the total scrollable height—you can’t keep
scrolling when you hit the bottom of the document. There’s also an
innerWidth for the window width. By dividing pageYOffset, the current
scroll position, by the maximum scroll position and multiplying by 100,
we get the percentage for the progress bar.

Calling preventDefault on a scroll event does not prevent the scrolling
from happening. In fact, the event handler is called only after the
scrolling takes place.

Focus events

When an element gains focus, the browser fires a "focus" event on it.
When it loses focus, the element gets a "blur" event.

Unlike the events discussed earlier, these two events do not propagate.
A handler on a parent element is not notified when a child element gains
or loses focus.

The following example displays help text for the text field that cur-
rently has focus:

<p>Name: <input type="text" data-help="Your full name"></p>
<p>Age: <input type="text" data-help="Your age in years"></p>
<p id="help"></p>

<script>
let help = document.querySelector("#help");
let fields = document.querySelectorAll("input");
for (let field of Array.from(fields)) {

field.addEventListener("focus", event => {

380

let text = event.target.getAttribute("data-help");
help.textContent = text;

});
field.addEventListener("blur", event => {

help.textContent = "";
});

}
</script>

This screenshot shows the help text for the age field:

The window object will receive "focus" and "blur" events when the
user moves from or to the browser tab or window in which the document
is shown.

Load event

When a page finishes loading, the "load" event fires on the window and
the document body objects. This is often used to schedule initialization
actions that require the whole document to have been built. Remember
that the content of <script> tags is run immediately when the tag is
encountered. This may be too soon, for example when the script needs
to do something with parts of the document that appear after the <

381

script> tag.
Elements such as images and script tags that load an external file also

have a "load" event that indicates the files they reference were loaded.
Like the focus-related events, loading events do not propagate.

When you close page or navigate away from it (for example, by fol-
lowing a link), a "beforeunload" event fires. The main use of this event
is to prevent the user from accidentally losing work by closing a doc-
ument. If you prevent the default behavior on this event and set the
returnValue property on the event object to a string, the browser will
show the user a dialog asking if they really want to leave the page. That
dialog might include your string, but because some malicious sites try
to use these dialogs to confuse people into staying on their page to look
at dodgy weight-loss ads, most browsers no longer display them.

Events and the event loop

In the context of the event loop, as discussed in Chapter 11, browser
event handlers behave like other asynchronous notifications. They are
scheduled when the event occurs but must wait for other scripts that
are running to finish before they get a chance to run.

The fact that events can be processed only when nothing else is run-
ning means that if the event loop is tied up with other work, any inter-
action with the page (which happens through events) will be delayed
until there’s time to process it. So if you schedule too much work, either
with long-running event handlers or with lots of short-running ones, the
page will become slow and cumbersome to use.

382

For cases where you really do want to do some time-consuming thing
in the background without freezing the page, browsers provide some-
thing called web workers. A worker is a JavaScript process that runs
alongside the main script, on its own timeline.

Imagine that squaring a number is a heavy, long-running computation
that we want to perform in a separate thread. We could write a file
called code/squareworker.js that responds to messages by computing a
square and sending a message back.

addEventListener("message", event => {
postMessage(event.data * event.data);

});

To avoid the problems of having multiple threads touching the same
data, workers do not share their global scope or any other data with
the main script’s environment. Instead, you have to communicate with
them by sending messages back and forth.

This code spawns a worker running that script, sends it a few mes-
sages, and outputs the responses.

let squareWorker = new Worker("code/squareworker.js");
squareWorker.addEventListener("message", event => {

console.log("The worker responded:", event.data);
});
squareWorker.postMessage(10);
squareWorker.postMessage(24);

The postMessage function sends a message, which will cause a "message"

event to fire in the receiver. The script that created the worker sends

383

and receives messages through the Worker object, whereas the worker
talks to the script that created it by sending and listening directly on its
global scope. Only values that can be represented as JSON can be sent
as messages—the other side will receive a copy of them, rather than the
value itself.

Timers

The setTimeout function we saw in Chapter 11 schedules another func-
tion to be called later, after a given number of milliseconds. Sometimes
you need to cancel a function you have scheduled. You can do this by
storing the value returned by setTimeout and calling clearTimeout on it.

let bombTimer = setTimeout(() => {
console.log("BOOM!");

}, 500);

if (Math.random() < 0.5) { // 50% chance
console.log("Defused.");
clearTimeout(bombTimer);

}

The cancelAnimationFrame function works in the same way as clearTimeout
. Calling it on a value returned by requestAnimationFrame will cancel
that frame (assuming it hasn’t already been called).

A similar set of functions, setInterval and clearInterval, are used
to set timers that should repeat every X milliseconds.

let ticks = 0;

384

let clock = setInterval(() => {
console.log("tick", ticks++);
if (ticks == 10) {

clearInterval(clock);
console.log("stop.");

}
}, 200);

Debouncing

Some types of events have the potential to fire rapidly many times in a
row, such as the "mousemove" and "scroll" events. When handling such
events, you must be careful not to do anything too time-consuming
or your handler will take up so much time that interaction with the
document starts to feel slow.

If you do need to do something nontrivial in such a handler, you can
use setTimeout to make sure you are not doing it too often. This is
usually called debouncing the event. There are several slightly different
approaches to this.

For example, suppose we want to react when the user has typed
something, but we don’t want to do it immediately for every input
event. When they are typing quickly, we just want to wait until a
pause occurs. Instead of immediately performing an action in the event
handler, we set a timeout. We also clear the previous timeout (if any) so
that when events occur close together (closer than our timeout delay),
the timeout from the previous event will be canceled.

385

<textarea>Type something here...</textarea>
<script>

let textarea = document.querySelector("textarea");
let timeout;
textarea.addEventListener("input", () => {

clearTimeout(timeout);
timeout = setTimeout(() => console.log("Typed!"), 500);

});
</script>

Giving an undefined value to clearTimeout or calling it on a timeout
that has already fired has no effect. Thus, we don’t have to be careful
about when to call it, and we simply do so for every event.

We can use a slightly different pattern if we want to space responses
so that they’re separated by at least a certain length of time but want
to fire them during a series of events, not just afterward. For example,
we might want to respond to "mousemove" events by showing the current
coordinates of the mouse, but only every 250 milliseconds.

<script>
let scheduled = null;
window.addEventListener("mousemove", event => {

if (!scheduled) {
setTimeout(() => {

document.body.textContent =
`Mouse at ${scheduled.pageX}, ${scheduled.pageY}`;

scheduled = null;
}, 250);

}
scheduled = event;

386

});
</script>

Summary

Event handlers make it possible to detect and react to events happening
in our web page. The addEventListener method is used to register such
a handler.

Each event has a type ("keydown", "focus", and so on) that identifies
it. Most events are called on a specific DOM element and then prop-
agate to that element’s ancestors, allowing handlers associated with
those elements to handle them.

When an event handler is called, it’s passed an event object with
additional information about the event. This object also has methods
that allow us to stop further propagation (stopPropagation) and prevent
the browser’s default handling of the event (preventDefault).

Pressing a key fires "keydown" and "keyup" events. Pressing a mouse
button fires "mousedown", "mouseup", and "click" events. Moving the
mouse fires "mousemove" events. Touchscreen interaction will result in
"touchstart", "touchmove", and "touchend" events.

Scrolling can be detected with the "scroll" event, and focus changes
can be detected with the "focus" and "blur" events. When the docu-
ment finishes loading, a "load" event fires on the window.

387

Exercises

Balloon

Write a page that displays a balloon (using the balloon emoji,🎈). When
you press the up arrow, it should inflate (grow) 10 percent. When you
press the down arrow, it should deflate (shrink) 10 percent.

You can control the size of text (emoji are text) by setting the font-

size CSS property (style.fontSize) on its parent element. Remember
to include a unit in the value—for example, pixels (10px).

The key names of the arrow keys are "ArrowUp" and "ArrowDown".
Make sure the keys change only the balloon, without scrolling the page.

Once you have that working, add a feature where if you blow up the
balloon past a certain size, it “explodes”. In this case, exploding means
that it is replaced with an💥 emoji, and the event handler is removed
(so that you can’t inflate or deflate the explosion).

Mouse trail

In JavaScript’s early days, which was the high time of gaudy home
pages with lots of animated images, people came up with some truly
inspiring ways to use the language. One of these was the mouse trail—a
series of elements that would follow the mouse pointer as you moved it
across the page.

In this exercise, I want you to implement a mouse trail. Use abso-
lutely positioned <div> elements with a fixed size and background color
(refer to the code in the “Mouse Clicks” section for an example). Create

388

a bunch of these elements and, when the mouse moves, display them in
the wake of the mouse pointer.

There are various possible approaches here. You can make your trail
as simple or as complex as you want. A simple solution to start with is
to keep a fixed number of trail elements and cycle through them, moving
the next one to the mouse’s current position every time a "mousemove"

event occurs.

Tabs

Tabbed panels are common in user interfaces. They allow you to select
an interface panel by choosing from a number of tabs “sticking out”
above an element.

Implement a simple tabbed interface. Write a function, asTabs, that
takes a DOM node and creates a tabbed interface showing the child
elements of that node. It should insert a list of <button> elements at
the top of the node, one for each child element, containing text retrieved
from the data-tabname attribute of the child. All but one of the original
children should be hidden (given a display style of none). The currently
visible node can be selected by clicking the buttons.

When that works, extend it to style the button for the currently
selected tab differently so that it is obvious which tab is selected.

389

“All reality is a game.”
—Iain Banks, The Player of Games

Chapter 16

Project: A Platform Game

Much of my initial fascination with computers, like that of many nerdy
kids, had to do with computer games. I was drawn into the tiny sim-
ulated worlds that I could manipulate and in which stories (sort of)
unfolded—more, I suppose, because of the way I projected my imagi-
nation into them than because of the possibilities they actually offered.

I don’t wish a career in game programming on anyone. As with the
music industry, the discrepancy between the number of eager young
people wanting to work in it and the actual demand for such people
creates a rather unhealthy environment. But writing games for fun is
amusing.

This chapter will walk through the implementation of a small plat-
form game. Platform games (or “jump and run” games) are games that
expect the player to move a figure through a world, which is usually
two-dimensional and viewed from the side, while jumping over and onto
things.

390

The game

Our game will be roughly based on Dark Blue (www.lessmilk.com/
games/10) by Thomas Palef. I chose that game because it is both
entertaining and minimalist and because it can be built without too
much code. It looks like this:

The dark box represents the player, whose task is to collect the yellow
boxes (coins) while avoiding the red stuff (lava). A level is completed
when all coins have been collected.

The player can walk around with the left and right arrow keys and
can jump with the up arrow. Jumping is this game character’s specialty.
It can reach several times its own height and can change direction in
midair. This may not be entirely realistic, but it helps give the player
the feeling of being in direct control of the on-screen avatar.

The game consists of a static background, laid out like a grid, with
the moving elements overlaid on that background. Each field on the
grid is either empty, solid, or lava. The moving elements are the player,

391

http://www.lessmilk.com/games/10

coins, and certain pieces of lava. The positions of these elements are not
constrained to the grid—their coordinates may be fractional, allowing
smooth motion.

The technology

We will use the browser DOM to display the game, and we’ll read user
input by handling key events.

The screen- and keyboard-related code is only a small part of the
work we need to do to build this game. Since everything looks like
colored boxes, drawing is uncomplicated: we create DOM elements and
use styling to give them a background color, size, and position.

We can represent the background as a table, since it is an unchang-
ing grid of squares. The free-moving elements can be overlaid using
absolutely positioned elements.

In games and other programs that should animate graphics and re-
spond to user input without noticeable delay, efficiency is important.
Although the DOM was not originally designed for high-performance
graphics, it is actually better at this than you would expect. You saw
some animations in Chapter 14. On a modern machine, a simple game
like this performs well, even if we don’t worry about optimization very
much.

In the next chapter, we will explore another browser technology, the
<canvas> tag, which provides a more traditional way to draw graphics,
working in terms of shapes and pixels rather than DOM elements.

392

Levels

We’ll want a human-readable, human-editable way to specify levels.
Since it is okay for everything to start out on a grid, we could use big
strings in which each character represents an element—either a part of
the background grid or a moving element.

The plan for a small level might look like this:

let simpleLevelPlan = `
......................
..#................#..
..#..............=.#..
..#.........o.o....#..
..#.@......#####...#..
..#####............#..
......#++++++++++++#..
......##############..
......................`;

Periods are empty space, hash (#) characters are walls, and plus signs
are lava. The player’s starting position is the at sign (@). Every O
character is a coin, and the equal sign (=) at the top is a block of lava
that moves back and forth horizontally.

We’ll support two additional kinds of moving lava: the pipe charac-
ter (|) creates vertically moving blobs, and v indicates dripping lava—
vertically moving lava that doesn’t bounce back and forth but only
moves down, jumping back to its start position when it hits the floor.

A whole game consists of multiple levels that the player must com-
plete. A level is completed when all coins have been collected. If the

393

player touches lava, the current level is restored to its starting position,
and the player may try again.

Reading a level

The following class stores a level object. Its argument should be the
string that defines the level.

class Level {
constructor(plan) {

let rows = plan.trim().split("\n").map(l => [...l]);
this.height = rows.length;
this.width = rows[0].length;
this.startActors = [];

this.rows = rows.map((row, y) => {
return row.map((ch, x) => {

let type = levelChars[ch];
if (typeof type != "string") {

let pos = new Vec(x, y);
this.startActors.push(type.create(pos, ch));
type = "empty";

}
return type;

});
});

}
}

The trim method is used to remove whitespace at the start and end of

394

the plan string. This allows our example plan to start with a newline so
that all lines are directly below each other. The remaining string is split
on newline characters, and each line is spread into an array, producing
arrays of characters.

So rows holds an array of arrays of characters, the rows of the plan.
We can derive the level’s width and height from these. But we must
still separate the moving elements from the background grid. We’ll call
moving elements actors. They’ll be stored in an array of objects. The
background will be an array of arrays of strings, holding field types such
as "empty", "wall", or "lava".

To create these arrays, we map over the rows and then over their
content. Remember that map passes the array index as a second argu-
ment to the mapping function, which tells us the x- and y-coordinates
of a given character. Positions in the game will be stored as pairs of
coordinates, with the upper left being 0,0 and each background square
being 1 unit high and wide.

To interpret the characters in the plan, the Level constructor uses the
levelChars object, which, for each character used in the level descrip-
tions, holds a string if it is a background type, and a class if it produces
an actor. When type is an actor class, its static create method is used
to create an object, which is added to startActors, and the mapping
function returns "empty" for this background square.

The position of the actor is stored as a Vec object. This is a two-
dimensional vector, an object with x and y properties, as seen in the
exercises of Chapter 6.

As the game runs, actors will end up in different places or even dis-

395

appear entirely (as coins do when collected). We’ll use a State class to
track the state of a running game.

class State {
constructor(level, actors, status) {

this.level = level;
this.actors = actors;
this.status = status;

}

static start(level) {
return new State(level, level.startActors, "playing");

}

get player() {
return this.actors.find(a => a.type == "player");

}
}

The status property will switch to "lost" or "won" when the game has
ended.

This is again a persistent data structure—updating the game state
creates a new state and leaves the old one intact.

Actors

Actor objects represent the current position and state of a given moving
element (player, coin, or mobile lava) in our game. All actor objects
conform to the same interface. They have size and pos properties hold-

396

ing the size and the coordinates of the upper-left corner of the rectangle
representing this actor, and an update method.

This update method is used to compute their new state and position
after a given time step. It simulates the thing the actor does—moving
in response to the arrow keys for the player and bouncing back and
forth for the lava—and returns a new, updated actor object.

A type property contains a string that identifies the type of the
actor—"player", "coin", or "lava". This is useful when drawing the
game—the look of the rectangle drawn for an actor is based on its
type.

Actor classes have a static create method that is used by the Level

constructor to create an actor from a character in the level plan. It is
given the coordinates of the character and the character itself, which is
necessary because the Lava class handles several different characters.

This is the Vec class that we’ll use for our two-dimensional values,
such as the position and size of actors.

class Vec {
constructor(x, y) {

this.x = x; this.y = y;
}
plus(other) {

return new Vec(this.x + other.x, this.y + other.y);
}
times(factor) {

return new Vec(this.x * factor, this.y * factor);
}

}

397

The times method scales a vector by a given number. It will be useful
when we need to multiply a speed vector by a time interval to get the
distance traveled during that time.

The different types of actors get their own classes, since their behavior
is very different. Let’s define these classes. We’ll get to their update

methods later.
The player class has a speed property that stores its current speed to

simulate momentum and gravity.

class Player {
constructor(pos, speed) {

this.pos = pos;
this.speed = speed;

}

get type() { return "player"; }

static create(pos) {
return new Player(pos.plus(new Vec(0, -0.5)),

new Vec(0, 0));
}

}

Player.prototype.size = new Vec(0.8, 1.5);

Because a player is one-and-a-half squares high, its initial position is set
to be half a square above the position where the @ character appeared.
This way, its bottom aligns with the bottom of the square where it
appeared.

398

The size property is the same for all instances of Player, so we store
it on the prototype rather than on the instances themselves. We could
have used a getter like type, but that would create and return a new
Vec object every time the property is read, which would be wasteful.
(Strings, being immutable, don’t have to be re-created every time they
are evaluated.)

When constructing a Lava actor, we need to initialize the object dif-
ferently depending on the character it is based on. Dynamic lava moves
along at its current speed until it hits an obstacle. At that point, if it
has a reset property, it will jump back to its start position (dripping).
If it does not, it will invert its speed and continue in the other direction
(bouncing).

The create method looks at the character that the Level constructor
passes and creates the appropriate lava actor.

class Lava {
constructor(pos, speed, reset) {

this.pos = pos;
this.speed = speed;
this.reset = reset;

}

get type() { return "lava"; }

static create(pos, ch) {
if (ch == "=") {

return new Lava(pos, new Vec(2, 0));
} else if (ch == "|") {

return new Lava(pos, new Vec(0, 2));

399

} else if (ch == "v") {
return new Lava(pos, new Vec(0, 3), pos);

}
}

}

Lava.prototype.size = new Vec(1, 1);

Coin actors are relatively simple. They mostly just sit in their place.
But to liven up the game a little, they are given a “wobble”, a slight
vertical back-and-forth motion. To track this, a coin object stores a
base position as well as a wobble property that tracks the phase of the
bouncing motion. Together, these determine the coin’s actual position
(stored in the pos property).

class Coin {
constructor(pos, basePos, wobble) {

this.pos = pos;
this.basePos = basePos;
this.wobble = wobble;

}

get type() { return "coin"; }

static create(pos) {
let basePos = pos.plus(new Vec(0.2, 0.1));
return new Coin(basePos, basePos,

Math.random() * Math.PI * 2);
}

}

400

Coin.prototype.size = new Vec(0.6, 0.6);

In Chapter 14, we saw that Math.sin gives us the y-coordinate of a point
on a circle. That coordinate goes back and forth in a smooth waveform
as we move along the circle, which makes the sine function useful for
modeling a wavy motion.

To avoid a situation where all coins move up and down synchronously,
the starting phase of each coin is randomized. The period of Math.sin’s
wave, the width of a wave it produces, is 2π. We multiply the value
returned by Math.random by that number to give the coin a random
starting position on the wave.

We can now define the levelChars object that maps plan characters
to either background grid types or actor classes.

const levelChars = {
".": "empty", "#": "wall", "+": "lava",
"@": Player, "o": Coin,
"=": Lava, "|": Lava, "v": Lava

};

That gives us all the parts needed to create a Level instance.

let simpleLevel = new Level(simpleLevelPlan);
console.log(`${simpleLevel.width} by ${simpleLevel.height}`);
// → 22 by 9

The task ahead is to display such levels on the screen and to model
time and motion inside them.

401

Drawing

In the next chapter, we’ll display the same game in a different way. To
make that possible, we put the drawing logic behind an interface and
pass it to the game as an argument. That way, we can use the same
game program with different new display modules.

A game display object draws a given level and state. We pass its
constructor to the game to allow it to be replaced. The display class we
define in this chapter is called DOMDisplay because it uses DOM elements
to show the level.

We’ll be using a style sheet to set the actual colors and other fixed
properties of the elements that make up the game. It would also be
possible to directly assign to the elements’ style property when we
create them, but that would produce more verbose programs.

The following helper function provides a succinct way to create an
element and give it some attributes and child nodes:

function elt(name, attrs, ...children) {
let dom = document.createElement(name);
for (let attr of Object.keys(attrs)) {

dom.setAttribute(attr, attrs[attr]);
}
for (let child of children) {

dom.appendChild(child);
}
return dom;

}

A display is created by giving it a parent element to which it should

402

append itself and a level object.

class DOMDisplay {
constructor(parent, level) {

this.dom = elt("div", {class: "game"}, drawGrid(level));
this.actorLayer = null;
parent.appendChild(this.dom);

}

clear() { this.dom.remove(); }
}

The level’s background grid, which never changes, is drawn once. Actors
are redrawn every time the display is updated with a given state. The
actorLayer property will be used to track the element that holds the
actors so that they can be easily removed and replaced.

Our coordinates and sizes are tracked in grid units, where a size or
distance of 1 means one grid block. When setting pixel sizes, we will
have to scale these coordinates up—everything in the game would be
ridiculously small at a single pixel per square. The scale constant gives
the number of pixels that a single unit takes up on the screen.

const scale = 20;

function drawGrid(level) {
return elt("table", {

class: "background",
style: `width: ${level.width * scale}px`

}, ...level.rows.map(row =>
elt("tr", {style: `height: ${scale}px`},

403

...row.map(type => elt("td", {class: type})))
));

}

The <table> element’s form nicely corresponds to the structure of the
rows property of the level—each row of the grid is turned into a table
row (<tr> element). The strings in the grid are used as class names for
the table cell (<td>) elements. The code uses the spread (triple dot)
operator to pass arrays of child nodes to elt as separate arguments.

The following CSS makes the table look like the background we want:

.background { background: rgb(52, 166, 251);
table-layout: fixed;
border-spacing: 0; }

.background td { padding: 0; }

.lava { background: rgb(255, 100, 100); }

.wall { background: white; }

Some of these (table-layout, border-spacing, and padding) are used to
suppress unwanted default behavior. We don’t want the layout of the
table to depend upon the contents of its cells, and we don’t want space
between the table cells or padding inside them.

The background rule sets the background color. CSS allows colors
to be specified both as words (white) or with a format such as rgb(R

, G, B), where the red, green, and blue components of the color are
separated into three numbers from 0 to 255. In rgb(52, 166, 251),
the red component is 52, green is 166, and blue is 251. Since the blue
component is the largest, the resulting color will be bluish. In the .lava

rule, the first number (red) is the largest.

404

We draw each actor by creating a DOM element for it and setting
that element’s position and size based on the actor’s properties. The
values must be multiplied by scale to go from game units to pixels.

function drawActors(actors) {
return elt("div", {}, ...actors.map(actor => {

let rect = elt("div", {class: `actor ${actor.type}`});
rect.style.width = `${actor.size.x * scale}px`;
rect.style.height = `${actor.size.y * scale}px`;
rect.style.left = `${actor.pos.x * scale}px`;
rect.style.top = `${actor.pos.y * scale}px`;
return rect;

}));
}

To give an element more than one class, we separate the class names
by spaces. In the following CSS code, the actor class gives the actors
their absolute position. Their type name is used as an extra class to
give them a color. We don’t have to define the lava class again because
we’re reusing the class for the lava grid squares we defined earlier.

.actor { position: absolute; }

.coin { background: rgb(241, 229, 89); }

.player { background: rgb(64, 64, 64); }

The syncState method is used to make the display show a given state.
It first removes the old actor graphics, if any, and then redraws the
actors in their new positions. It may be tempting to try to reuse the
DOM elements for actors, but to make that work, we would need a lot
of additional bookkeeping to associate actors with DOM elements and

405

to make sure we remove elements when their actors vanish. Since there
will typically be only a handful of actors in the game, redrawing all of
them is not expensive.

DOMDisplay.prototype.syncState = function(state) {
if (this.actorLayer) this.actorLayer.remove();
this.actorLayer = drawActors(state.actors);
this.dom.appendChild(this.actorLayer);
this.dom.className = `game ${state.status}`;
this.scrollPlayerIntoView(state);

};

By adding the level’s current status as a class name to the wrapper, we
can style the player actor slightly differently when the game is won or
lost by adding a CSS rule that takes effect only when the player has an
ancestor element with a given class.

.lost .player {
background: rgb(160, 64, 64);

}
.won .player {

box-shadow: -4px -7px 8px white, 4px -7px 8px white;
}

After touching lava, the player turns dark red, suggesting scorching.
When the last coin has been collected, we add two blurred white shadows—
one to the upper left and one to the upper right—to create a white halo
effect.

We can’t assume that the level always fits in the viewport, the element
into which we draw the game. That is why we need the scrollPlayerIntoView

406

call: it ensures that if the level is protruding outside the viewport, we
scroll that viewport to make sure the player is near its center. The
following CSS gives the game’s wrapping DOM element a maximum
size and ensures that anything that sticks out of the element’s box is
not visible. We also give it a relative position so that the actors inside
it are positioned relative to the level’s upper-left corner.

.game {
overflow: hidden;
max-width: 600px;
max-height: 450px;
position: relative;

}

In the scrollPlayerIntoView method, we find the player’s position and
update the wrapping element’s scroll position. We change the scroll po-
sition by manipulating that element’s scrollLeft and scrollTop prop-
erties when the player is too close to the edge.

DOMDisplay.prototype.scrollPlayerIntoView = function(state) {
let width = this.dom.clientWidth;
let height = this.dom.clientHeight;
let margin = width / 3;

// The viewport
let left = this.dom.scrollLeft, right = left + width;
let top = this.dom.scrollTop, bottom = top + height;

let player = state.player;
let center = player.pos.plus(player.size.times(0.5))

407

.times(scale);

if (center.x < left + margin) {
this.dom.scrollLeft = center.x - margin;

} else if (center.x > right - margin) {
this.dom.scrollLeft = center.x + margin - width;

}
if (center.y < top + margin) {

this.dom.scrollTop = center.y - margin;
} else if (center.y > bottom - margin) {

this.dom.scrollTop = center.y + margin - height;
}

};

The way the player’s center is found shows how the methods on our
Vec type allow computations with objects to be written in a relatively
readable way. To find the actor’s center, we add its position (its upper-
left corner) and half its size. That is the center in level coordinates,
but we need it in pixel coordinates, so we then multiply the resulting
vector by our display scale.

Next, a series of checks verifies that the player position isn’t out-
side of the allowed range. Note that sometimes this will set nonsense
scroll coordinates that are below zero or beyond the element’s scrollable
area. This is okay—the DOM will constrain them to acceptable values.
Setting scrollLeft to -10 will cause it to become 0.

While it would have been slightly simpler to always try to scroll the
player to the center of the viewport, this creates a rather jarring effect.
As you are jumping, the view will constantly shift up and down. It’s

408

more pleasant to have a “neutral” area in the middle of the screen where
you can move around without causing any scrolling.

We are now able to display our tiny level.

<link rel="stylesheet" href="css/game.css">

<script>
let simpleLevel = new Level(simpleLevelPlan);
let display = new DOMDisplay(document.body, simpleLevel);
display.syncState(State.start(simpleLevel));

</script>

The <link> tag, when used with rel="stylesheet", is a way to load a
CSS file into a page. The file game.css contains the styles necessary for
our game.

Motion and collision

Now we’re at the point where we can start adding motion. The basic
approach taken by most games like this is to split time into small steps
and, for each step, move the actors by a distance corresponding to their

409

speed multiplied by the size of the time step. We’ll measure time in
seconds, so speeds are expressed in units per second.

Moving things is easy. The difficult part is dealing with the interac-
tions between the elements. When the player hits a wall or floor, they
should not simply move through it. The game must notice when a given
motion causes an object to hit another object and respond accordingly.
For walls, the motion must be stopped. When hitting a coin, that coin
must be collected. When touching lava, the game should be lost.

Solving this for the general case is a major task. You can find libraries,
usually called physics engines, that simulate interaction between phys-
ical objects in two or three dimensions. We’ll take a more modest
approach in this chapter, handling only collisions between rectangular
objects and handling them in a rather simplistic way.

Before moving the player or a block of lava, we test whether the
motion would take it inside of a wall. If it does, we simply cancel the
motion altogether. The response to such a collision depends on the type
of actor—the player will stop, whereas a lava block will bounce back.

This approach requires our time steps to be rather small, since it
will cause motion to stop before the objects actually touch. If the time
steps (and thus the motion steps) are too big, the player would end up
hovering a noticeable distance above the ground. Another approach,
arguably better but more complicated, would be to find the exact col-
lision spot and move there. We will take the simple approach and hide
its problems by ensuring the animation proceeds in small steps.

This method tells us whether a rectangle (specified by a position and
a size) touches a grid element of the given type.

410

Level.prototype.touches = function(pos, size, type) {
let xStart = Math.floor(pos.x);
let xEnd = Math.ceil(pos.x + size.x);
let yStart = Math.floor(pos.y);
let yEnd = Math.ceil(pos.y + size.y);

for (let y = yStart; y < yEnd; y++) {
for (let x = xStart; x < xEnd; x++) {

let isOutside = x < 0 || x >= this.width ||
y < 0 || y >= this.height;

let here = isOutside ? "wall" : this.rows[y][x];
if (here == type) return true;

}
}
return false;

};

The method computes the set of grid squares that the body overlaps
with by using Math.floor and Math.ceil on its coordinates. Remember
that grid squares are 1 by 1 units in size. By rounding the sides of a
box up and down, we get the range of background squares that the box
touches.

We loop over the block of grid squares found by rounding the coordi-

411

nates and return true when a matching square is found. Squares outside
of the level are always treated as "wall" to ensure that the player can’t
leave the world and that we won’t accidentally try to read outside of
the bounds of our rows array.

The state updatemethod uses touches to figure out whether the player
is touching lava.

State.prototype.update = function(time, keys) {
let actors = this.actors

.map(actor => actor.update(time, this, keys));
let newState = new State(this.level, actors, this.status);

if (newState.status != "playing") return newState;

let player = newState.player;
if (this.level.touches(player.pos, player.size, "lava")) {

return new State(this.level, actors, "lost");
}

for (let actor of actors) {
if (actor != player && overlap(actor, player)) {

newState = actor.collide(newState);
}

}
return newState;

};

The method is passed a time step and a data structure that tells it
which keys are being held down. The first thing it does is call the
update method on all actors, producing an array of updated actors.

412

The actors also get the time step, the keys, and the state so that they
can base their update on those. Only the player will actually read keys,
since that’s the only actor that’s controlled by the keyboard.

If the game is already over, no further processing has to be done
(the game can’t be won after being lost, or vice versa). Otherwise, the
method tests whether the player is touching background lava. If so, the
game is lost and we’re done. Finally, if the game really is still going on,
it sees whether any other actors overlap the player.

Overlap between actors is detected with the overlap function. It takes
two actor objects and returns true when they touch—which is the case
when they overlap both along the x-axis and along the y-axis.

function overlap(actor1, actor2) {
return actor1.pos.x + actor1.size.x > actor2.pos.x &&

actor1.pos.x < actor2.pos.x + actor2.size.x &&
actor1.pos.y + actor1.size.y > actor2.pos.y &&
actor1.pos.y < actor2.pos.y + actor2.size.y;

}

If any actor does overlap, its collide method gets a chance to update
the state. Touching a lava actor sets the game status to "lost". Coins
vanish when you touch them and set the status to "won" when they are
the last coin of the level.

Lava.prototype.collide = function(state) {
return new State(state.level, state.actors, "lost");

};

Coin.prototype.collide = function(state) {

413

let filtered = state.actors.filter(a => a != this);
let status = state.status;
if (!filtered.some(a => a.type == "coin")) status = "won";
return new State(state.level, filtered, status);

};

Actor updates

Actor objects’ update methods take as arguments the time step, the
state object, and a keys object. The one for the Lava actor type ignores
the keys object.

Lava.prototype.update = function(time, state) {
let newPos = this.pos.plus(this.speed.times(time));
if (!state.level.touches(newPos, this.size, "wall")) {

return new Lava(newPos, this.speed, this.reset);
} else if (this.reset) {

return new Lava(this.reset, this.speed, this.reset);
} else {

return new Lava(this.pos, this.speed.times(-1));
}

};

This update method computes a new position by adding the product of
the time step and the current speed to its old position. If no obstacle
blocks that new position, it moves there. If there is an obstacle, the
behavior depends on the type of the lava block—dripping lava has a
reset position, to which it jumps back when it hits something. Bouncing

414

lava inverts its speed by multiplying it by -1 so that it starts moving in
the opposite direction.

Coins use their update method to wobble. They ignore collisions
with the grid, since they are simply wobbling around inside of their
own square.

const wobbleSpeed = 8, wobbleDist = 0.07;

Coin.prototype.update = function(time) {
let wobble = this.wobble + time * wobbleSpeed;
let wobblePos = Math.sin(wobble) * wobbleDist;
return new Coin(this.basePos.plus(new Vec(0, wobblePos)),

this.basePos, wobble);
};

The wobble property is incremented to track time and then used as an
argument to Math.sin to find the new position on the wave. The coin’s
current position is then computed from its base position and an offset
based on this wave.

That leaves the player itself. Player motion is handled separately per
axis because hitting the floor should not prevent horizontal motion, and
hitting a wall should not stop falling or jumping motion.

const playerXSpeed = 7;
const gravity = 30;
const jumpSpeed = 17;

Player.prototype.update = function(time, state, keys) {
let xSpeed = 0;
if (keys.ArrowLeft) xSpeed -= playerXSpeed;

415

if (keys.ArrowRight) xSpeed += playerXSpeed;
let pos = this.pos;
let movedX = pos.plus(new Vec(xSpeed * time, 0));
if (!state.level.touches(movedX, this.size, "wall")) {

pos = movedX;
}

let ySpeed = this.speed.y + time * gravity;
let movedY = pos.plus(new Vec(0, ySpeed * time));
if (!state.level.touches(movedY, this.size, "wall")) {

pos = movedY;
} else if (keys.ArrowUp && ySpeed > 0) {

ySpeed = -jumpSpeed;
} else {

ySpeed = 0;
}
return new Player(pos, new Vec(xSpeed, ySpeed));

};

The horizontal motion is computed based on the state of the left and
right arrow keys. When there’s no wall blocking the new position cre-
ated by this motion, it is used. Otherwise, the old position is kept.

Vertical motion works in a similar way but has to simulate jumping
and gravity. The player’s vertical speed (ySpeed) is first accelerated to
account for gravity.

We check for walls again. If we don’t hit any, the new position is
used. If there is a wall, there are two possible outcomes. When the up
arrow is pressed and we are moving down (meaning the thing we hit is
below us), the speed is set to a relatively large, negative value. This

416

causes the player to jump. If that is not the case, the player simply
bumped into something, and the speed is set to zero.

The gravity strength, jumping speed, and other constants in the game
were determined by simply trying out some numbers and seeing which
ones felt right. You can try experimenting with them.

Tracking keys

For a game like this, we do not want keys to take effect once per key-
press. Rather, we want their effect (moving the player figure) to stay
active as long as they are held.

We need to set up a key handler that stores the current state of the
left, right, and up arrow keys. We will also want to call preventDefault
for those keys so that they don’t end up scrolling the page.

The following function, when given an array of key names, will return
an object that tracks the current position of those keys. It registers
event handlers for "keydown" and "keyup" events and, when the key code
in the event is present in the set of codes that it is tracking, updates
the object.

function trackKeys(keys) {
let down = Object.create(null);
function track(event) {

if (keys.includes(event.key)) {
down[event.key] = event.type == "keydown";
event.preventDefault();

}
}

417

window.addEventListener("keydown", track);
window.addEventListener("keyup", track);
return down;

}

const arrowKeys =
trackKeys(["ArrowLeft", "ArrowRight", "ArrowUp"]);

The same handler function is used for both event types. It looks at the
event object’s type property to determine whether the key state should
be updated to true ("keydown") or false ("keyup").

Running the game

The requestAnimationFrame function, which we saw in Chapter 14, pro-
vides a good way to animate a game. But its interface is quite primitive—
using it requires us to track the time at which our function was called
the last time around and call requestAnimationFrame again after every
frame.

Let’s define a helper function that wraps all that in a convenient
interface and allows us to simply call runAnimation, giving it a function
that expects a time difference as an argument and draws a single frame.
When the frame function returns the value false, the animation stops.

function runAnimation(frameFunc) {
let lastTime = null;
function frame(time) {

if (lastTime != null) {

418

let timeStep = Math.min(time - lastTime, 100) / 1000;
if (frameFunc(timeStep) === false) return;

}
lastTime = time;
requestAnimationFrame(frame);

}
requestAnimationFrame(frame);

}

I have set a maximum frame step of 100 milliseconds (one-tenth of a
second). When the browser tab or window with our page is hidden,
requestAnimationFrame calls will be suspended until the tab or window
is shown again. In this case, the difference between lastTime and time

will be the entire time in which the page was hidden. Advancing the
game by that much in a single step would look silly and might cause
weird side effects, such as the player falling through the floor.

The function also converts the time steps to seconds, which are an
easier quantity to think about than milliseconds.

The runLevel function takes a Level object and a display constructor
and returns a promise. It displays the level (in document.body) and
lets the user play through it. When the level is finished (lost or won),
runLevel waits one more second (to let the user see what happens) and
then clears the display, stops the animation, and resolves the promise
to the game’s end status.

function runLevel(level, Display) {
let display = new Display(document.body, level);
let state = State.start(level);
let ending = 1;

419

return new Promise(resolve => {
runAnimation(time => {

state = state.update(time, arrowKeys);
display.syncState(state);
if (state.status == "playing") {

return true;
} else if (ending > 0) {

ending -= time;
return true;

} else {
display.clear();
resolve(state.status);
return false;

}
});

});
}

A game is a sequence of levels. Whenever the player dies, the current
level is restarted. When a level is completed, we move on to the next
level. This can be expressed by the following function, which takes an
array of level plans (strings) and a display constructor:

async function runGame(plans, Display) {
for (let level = 0; level < plans.length;) {

let status = await runLevel(new Level(plans[level]),
Display);

if (status == "won") level++;
}
console.log("You've won!");

420

}

Because we made runLevel return a promise, runGame can be written
using an async function, as shown in Chapter 11. It returns another
promise, which resolves when the player finishes the game.

There is a set of level plans available in the GAME_LEVELS binding in
this chapter’s sandbox (https://eloquentjavascript.net/code#16). This
page feeds them to runGame, starting an actual game.

<link rel="stylesheet" href="css/game.css">

<body>
<script>

runGame(GAME_LEVELS, DOMDisplay);
</script>

</body>

Exercises

Game over

It’s traditional for platform games to have the player start with a limited
number of lives and subtract one life each time they die. When the
player is out of lives, the game restarts from the beginning.

Adjust runGame to implement lives. Have the player start with three.
Output the current number of lives (using console.log) every time a
level starts.

421

https://eloquentjavascript.net/code#16
https://eloquentjavascript.net/code#16

Pausing the game

Make it possible to pause (suspend) and unpause the game by pressing
esc. You can do this by changing the runLevel function to set up
a keyboard event handler that interrupts or resumes the animation
whenever esc is hit.

The runAnimation interface may not look like it is suitable for this at
first glance, but it is if you rearrange the way runLevel calls it.

When you have that working, there’s something else you can try.
The way we’ve been registering keyboard event handlers is somewhat
problematic. The arrowKeys object is currently a global binding, and
its event handlers are kept around even when no game is running. You
could say they leak out of our system. Extend trackKeys to provide
a way to unregister its handlers, then change runLevel to register its
handlers when it starts and unregister them again when it is finished.

A monster

It is traditional for platform games to have enemies that you can defeat
by jumping on top of them. This exercise asks you to add such an actor
type to the game.

We’ll call this actor a monster. Monsters move only horizontally.
You can make them move in the direction of the player, bounce back
and forth like horizontal lava, or have any other movement pattern you
want. The class doesn’t have to handle falling, but it should make sure
the monster doesn’t walk through walls.

When a monster touches the player, the effect depends on whether

422

the player is jumping on top of them or not. You can approximate this
by checking whether the player’s bottom is near the monster’s top. If
this is the case, the monster disappears. If not, the game is lost.

423

“Drawing is deception.”
—M.C. Escher, cited by Bruno Ernst in The Magic Mirror of

M.C. Escher

Chapter 17

Drawing on Canvas

Browsers give us several ways to display graphics. The simplest way is
to use styles to position and color regular DOM elements. This can get
us quite far, as the game in the previous chapter showed. By adding
partially transparent background images to the nodes, we can make
them look exactly the way we want. It is even possible to rotate or
skew nodes with the transform style.

But we’d be using the DOM for something that it wasn’t originally
designed for. Some tasks, such as drawing a line between arbitrary
points, are extremely awkward to do with regular HTML elements.

There are two alternatives. The first is DOM based but utilizes Scal-
able Vector Graphics (SVG) rather than HTML. Think of SVG as a
document-markup dialect that focuses on shapes rather than text. You
can embed an SVG document directly in an HTML document or include
it with an tag.

The second alternative is called a canvas. A canvas is a single DOM
element that encapsulates a picture. It provides a programming in-
terface for drawing shapes onto the space taken up by the node. The

424

main difference between a canvas and an SVG picture is that in SVG
the original description of the shapes is preserved so that they can be
moved or resized at any time. A canvas, on the other hand, converts the
shapes to pixels (colored dots on a raster) as soon as they are drawn and
does not remember what these pixels represent. The only way to move
a shape on a canvas is to clear the canvas (or the part of the canvas
around the shape) and redraw it with the shape in a new position.

SVG

This book won’t go into SVG in detail, but I’ll briefly explain how
it works. At the end of the chapter, I’ll come back to the trade-offs
that you must consider when deciding which drawing mechanism is
appropriate for a given application.

This is an HTML document with a simple SVG picture in it:

<p>Normal HTML here.</p>
<svg xmlns="http://www.w3.org/2000/svg">

<circle r="50" cx="50" cy="50" fill="red"/>
<rect x="120" y="5" width="90" height="90"

stroke="blue" fill="none"/>
</svg>

The xmlns attribute changes an element (and its children) to a different
XML namespace. This namespace, identified by a URL, specifies the
dialect that we are currently speaking. The <circle> and <rect> tags,
which do not exist in HTML, do have a meaning in SVG—they draw
shapes using the style and position specified by their attributes.

425

The document is displayed like this:

These tags create DOM elements, just like HTML tags, that scripts
can interact with. For example, this changes the <circle> element to
be colored cyan instead:

let circle = document.querySelector("circle");
circle.setAttribute("fill", "cyan");

The canvas element

Canvas graphics can be drawn onto a <canvas> element. You can give
such an element width and height attributes to determine its size in
pixels.

A new canvas is empty, meaning it is entirely transparent and thus
shows up as empty space in the document.

The <canvas> tag is intended to allow different styles of drawing. To
get access to an actual drawing interface, we first need to create a con-
text, an object whose methods provide the drawing interface. There
are currently three widely supported drawing styles: "2d" for two-
dimensional graphics, "webgl" for three-dimensional graphics through

426

the OpenGL interface, and "webgpu", a more modern and flexible alter-
native to WebGL.

This book won’t discuss WebGL or WebGPU—we’ll stick to two
dimensions. But if you are interested in three-dimensional graphics, I
do encourage you to look into WebGPU. It provides a direct interface
to graphics hardware and allows you to render even complicated scenes
efficiently, using JavaScript.

You create a context with the getContext method on the <canvas>

DOM element.

<p>Before canvas.</p>
<canvas width="120" height="60"></canvas>
<p>After canvas.</p>
<script>

let canvas = document.querySelector("canvas");
let context = canvas.getContext("2d");
context.fillStyle = "red";
context.fillRect(10, 10, 100, 50);

</script>

After creating the context object, the example draws a red rectangle
that is 100 pixels wide and 50 pixels high, with its upper-left corner at
coordinates (10, 10).

427

Just like in HTML (and SVG), the coordinate system that the canvas
uses puts (0, 0) at the upper-left corner, and the positive y-axis goes
down from there. This means (10, 10) is 10 pixels below and to the
right of the upper-left corner.

Lines and surfaces

In the canvas interface, a shape can be filled, meaning its area is given
a certain color or pattern, or it can be stroked, which means a line is
drawn along its edge. SVG uses the same terminology.

The fillRect method fills a rectangle. It takes first the x- and y-
coordinates of the rectangle’s upper-left corner, then its width, and
then its height. A similar method called strokeRect draws the outline
of a rectangle.

Neither method takes any further parameters. The color of the fill,
thickness of the stroke, and so on, are not determined by an argument to
the method, as you might reasonably expect, but rather by properties
of the context object.

The fillStyle property controls the way shapes are filled. It can be
set to a string that specifies a color, using the color notation used by

428

CSS.
The strokeStyle property works similarly but determines the color

used for a stroked line. The width of that line is determined by the
lineWidth property, which may contain any positive number.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.strokeStyle = "blue";
cx.strokeRect(5, 5, 50, 50);
cx.lineWidth = 5;
cx.strokeRect(135, 5, 50, 50);

</script>

This code draws two blue squares, using a thicker line for the second
one.

When no width or height attribute is specified, as in the example,
a canvas element gets a default width of 300 pixels and height of 150
pixels.

Paths

A path is a sequence of lines. The 2D canvas interface takes a peculiar
approach to describing such a path. It is done entirely through side

429

effects. Paths are not values that can be stored and passed around.
Instead, if you want to do something with a path, you make a sequence
of method calls to describe its shape.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
for (let y = 10; y < 100; y += 10) {

cx.moveTo(10, y);
cx.lineTo(90, y);

}
cx.stroke();

</script>

This example creates a path with a number of horizontal line segments
and then strokes it using the strokemethod. Each segment created with
lineTo starts at the path’s current position. That position is usually
the end of the last segment, unless moveTo was called. In that case, the
next segment would start at the position passed to moveTo.

The path described by the previous program looks like this:

When filling a path (using the fill method), each shape is filled
separately. A path can contain multiple shapes—each moveTo motion

430

starts a new one. But the path needs to be closed (meaning its start
and end are in the same position) before it can be filled. If the path
is not already closed, a line is added from its end to its start, and the
shape enclosed by the completed path is filled.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(50, 10);
cx.lineTo(10, 70);
cx.lineTo(90, 70);
cx.fill();

</script>

This example draws a filled triangle. Note that only two of the triangle’s
sides are explicitly drawn. The third, from the lower-right corner back
to the top, is implied and wouldn’t be there if you stroked the path.

You could also use the closePath method to explicitly close a path by
adding an actual line segment back to the path’s start. This segment
is drawn when stroking the path.

431

Curves

A path may also contain curved lines. These are unfortunately a bit
more involved to draw.

The quadraticCurveTo method draws a curve to a given point. To
determine the curvature of the line, the method is given a control point
as well as a destination point. Imagine this control point as attracting
the line, giving it its curve. The line won’t go through the control
point, but its direction at the start and end points will be such that
a straight line in that direction would point toward the control point.
The following example illustrates this:

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(10, 90);
// control=(60, 10) goal=(90, 90)
cx.quadraticCurveTo(60, 10, 90, 90);
cx.lineTo(60, 10);
cx.closePath();
cx.stroke();

</script>

It produces a path that looks like this:

432

We draw a quadratic curve from the left to the right, with (60, 10) as
the control point, and then draw two line segments going through that
control point and back to the start of the line. The result somewhat
resembles a Star Trek insignia. You can see the effect of the control
point: the lines leaving the lower corners start off in the direction of
the control point and then curve toward their target.

The bezierCurveTo method draws a similar kind of curve. Instead of
a single control point, this method has two—one for each of the line’s
end points. Here is a similar sketch to illustrate the behavior of such a
curve:

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(10, 90);
// control1=(10, 10) control2=(90, 10) goal=(50, 90)
cx.bezierCurveTo(10, 10, 90, 10, 50, 90);
cx.lineTo(90, 10);
cx.lineTo(10, 10);
cx.closePath();
cx.stroke();

</script>

433

The two control points specify the direction at both ends of the curve.
The farther they are away from their corresponding point, the more the
curve will “bulge” in that direction.

Such curves can be hard to work with—it’s not always clear how
to find the control points that provide the shape you are looking for.
Sometimes you can compute them, and sometimes you’ll just have to
find a suitable value by trial and error.

The arc method is a way to draw a line that curves along the edge
of a circle. It takes a pair of coordinates for the arc’s center, a radius,
and then a start angle and end angle.

Those last two parameters make it possible to draw only part of the
circle. The angles are measured in radians, not degrees. This means a
full circle has an angle of 2π, or 2 * Math.PI, which is about 6.28. The
angle starts counting at the point to the right of the circle’s center and
goes clockwise from there. You can use a start of 0 and an end bigger
than 2π (say, 7) to draw a full circle.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
// center=(50, 50) radius=40 angle=0 to 7

434

cx.arc(50, 50, 40, 0, 7);
// center=(150, 50) radius=40 angle=0 to π½
cx.arc(150, 50, 40, 0, 0.5 * Math.PI);
cx.stroke();

</script>

The resulting picture contains a line from the right of the full circle
(first call to arc) to the right of the quarter-circle (second call).

Like other path-drawing methods, a line drawn with arc is connected
to the previous path segment.You can call moveTo or start a new path
to avoid this.

Drawing a pie chart

Imagine you’ve just taken a job at EconomiCorp, Inc. Your first assign-
ment is to draw a pie chart of its customer satisfaction survey results.

The results binding contains an array of objects that represent the
survey responses.

const results = [
{name: "Satisfied", count: 1043, color: "lightblue"},
{name: "Neutral", count: 563, color: "lightgreen"},

435

{name: "Unsatisfied", count: 510, color: "pink"},
{name: "No comment", count: 175, color: "silver"}

];

To draw a pie chart, we draw a number of pie slices, each made up of
an arc and a pair of lines to the center of that arc. We can compute
the angle taken up by each arc by dividing a full circle (2π) by the total
number of responses and then multiplying that number (the angle per
response) by the number of people who picked a given choice.

<canvas width="200" height="200"></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let total = results

.reduce((sum, {count}) => sum + count, 0);
// Start at the top
let currentAngle = -0.5 * Math.PI;
for (let result of results) {

let sliceAngle = (result.count / total) * 2 * Math.PI;
cx.beginPath();
// center=100,100, radius=100
// from current angle, clockwise by slice's angle
cx.arc(100, 100, 100,

currentAngle, currentAngle + sliceAngle);
currentAngle += sliceAngle;
cx.lineTo(100, 100);
cx.fillStyle = result.color;
cx.fill();

}
</script>

436

This draws the following chart:

But a chart that doesn’t tell us what the slices mean isn’t very helpful.
We need a way to draw text to the canvas.

Text

A 2D canvas drawing context provides the methods fillText and strokeText

. The latter can be useful for outlining letters, but usually fillText is
what you need. It will fill the outline of the given text with the current
fillStyle.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.font = "28px Georgia";
cx.fillStyle = "fuchsia";
cx.fillText("I can draw text, too!", 10, 50);

437

</script>

You can specify the size, style, and font of the text with the font prop-
erty. This example just gives a font size and family name. It is also
possible to add italic or bold to the start of the string to select a style.

The last two arguments to fillText and strokeText provide the posi-
tion at which the font is drawn. By default, they indicate the position of
the start of the text’s alphabetic baseline, which is the line that letters
“stand” on, not counting hanging parts in letters such as j or p. You
can change the horizontal position by setting the textAlign property to
"end" or "center" and the vertical position by setting textBaseline to
"top", "middle", or "bottom".

We’ll come back to our pie chart, and the problem of labeling the
slices, in the exercises at the end of the chapter.

Images

In computer graphics, a distinction is often made between vector graph-
ics and bitmap graphics. The first is what we have been doing so far
in this chapter—specifying a picture by giving a logical description of
shapes. Bitmap graphics, on the other hand, don’t specify actual shapes
but rather work with pixel data (rasters of colored dots).

The drawImage method allows us to draw pixel data onto a canvas.
This pixel data can originate from an element or from another
canvas. The following example creates a detached element and
loads an image file into it. But the method cannot immediately start
drawing from this picture because the browser may not have loaded it

438

yet. To deal with this, we register a "load" event handler and do the
drawing after the image has loaded.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/hat.png";
img.addEventListener("load", () => {

for (let x = 10; x < 200; x += 30) {
cx.drawImage(img, x, 10);

}
});

</script>

By default, drawImage will draw the image at its original size. You can
also give it two additional arguments to specify the width and height
of the drawn image, when those aren’t the same as the origin image.

When drawImage is given nine arguments, it can be used to draw only
a fragment of an image. The second through fifth arguments indicate
the rectangle (x, y, width, and height) in the source image that should
be copied, and the sixth to ninth arguments give the rectangle (on the
canvas) into which it should be copied.

This can be used to pack multiple sprites (image elements) into a
single image file and then draw only the part you need. For example,
this picture contains a game character in multiple poses:

439

By alternating which pose we draw, we can show an animation that
looks like a walking character.

To animate a picture on a canvas, the clearRect method is useful.
It resembles fillRect, but instead of coloring the rectangle, it makes it
transparent, removing the previously drawn pixels.

We know that each sprite, each subpicture, is 24 pixels wide and 30
pixels high. The following code loads the image and then sets up an
interval (repeated timer) to draw the next frame:

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/player.png";
let spriteW = 24, spriteH = 30;
img.addEventListener("load", () => {

let cycle = 0;
setInterval(() => {

cx.clearRect(0, 0, spriteW, spriteH);
cx.drawImage(img,

// source rectangle
cycle * spriteW, 0, spriteW, spriteH,
// destination rectangle
0, 0, spriteW, spriteH);

cycle = (cycle + 1) % 8;
}, 120);

});
</script>

The cycle binding tracks our position in the animation. For each frame,

440

it is incremented and then clipped back to the 0 to 7 range by using
the remainder operator. This binding is then used to compute the x-
coordinate that the sprite for the current pose has in the picture.

Transformation

What if we want our character to walk to the left instead of to the
right? We could draw another set of sprites, of course. But we could
also instruct the canvas to draw the picture the other way round.

Calling the scale method will cause anything drawn after it to be
scaled. This method takes two parameters, one to set a horizontal scale
and one to set a vertical scale.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.scale(3, .5);
cx.beginPath();
cx.arc(50, 50, 40, 0, 7);
cx.lineWidth = 3;
cx.stroke();

</script>

Because of the call to scale, the circle is drawn three times as wide and
half as high.

441

Scaling will cause everything about the drawn image, including the
line width, to be stretched out or squeezed together as specified. Scaling
by a negative amount will flip the picture around. The flipping happens
around point (0, 0), which means it will also flip the direction of the
coordinate system. When a horizontal scaling of -1 is applied, a shape
drawn at x position 100 will end up at what used to be position -100.

To turn a picture around, we can’t simply add cx.scale(-1, 1) before
the call to drawImage. That would move our picture outside of the
canvas, where it won’t be visible. We could adjust the coordinates
given to drawImage to compensate for this by drawing the image at x
position -50 instead of 0. Another solution, which doesn’t require the
code doing the drawing to know about the scale change, is to adjust
the axis around which the scaling happens.

There are several other methods besides scale that influence the coor-
dinate system for a canvas. You can rotate subsequently drawn shapes
with the rotate method and move them with the translate method.
The interesting—and confusing—thing is that these transformations
stack, meaning that each one happens relative to the previous transfor-
mations.

If we translate by 10 horizontal pixels twice, everything will be drawn
20 pixels to the right. If we first move the center of the coordinate
system to (50, 50) and then rotate by 20 degrees (about 0.1π radians),
that rotation will happen around point (50, 50).

442

translate(50, 50)

rotate(0.1*Math.PI)

rotate(0.1*Math.PI)

translate(50, 50)

But if we first rotate by 20 degrees and then translate by (50, 50),
the translation will happen in the rotated coordinate system and thus
produce a different orientation. The order in which transformations are
applied matters.

To flip a picture around the vertical line at a given x position, we can
do the following:

function flipHorizontally(context, around) {
context.translate(around, 0);
context.scale(-1, 1);
context.translate(-around, 0);

}

We move the y-axis to where we want our mirror to be, apply the
mirroring, and finally move the y-axis back to its proper place in the
mirrored universe. The following picture explains why this works:

443

mirror

1 23 4

This shows the coordinate systems before and after mirroring across
the central line. The triangles are numbered to illustrate each step. If
we draw a triangle at a positive x position, it would, by default, be
in the place where triangle 1 is. A call to flipHorizontally first does
a translation to the right, which gets us to triangle 2. It then scales,
flipping the triangle over to position 3. This is not where it should be,
if it were mirrored in the given line. The second translate call fixes
this—it “cancels” the initial translation and makes triangle 4 appear
exactly where it should.

We can now draw a mirrored character at position (100, 0) by flipping
the world around the character’s vertical center.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/player.png";
let spriteW = 24, spriteH = 30;
img.addEventListener("load", () => {

flipHorizontally(cx, 100 + spriteW / 2);

444

cx.drawImage(img, 0, 0, spriteW, spriteH,
100, 0, spriteW, spriteH);

});
</script>

Storing and clearing transformations

Transformations stick around. Everything else we draw after drawing
that mirrored character would also be mirrored. That might be incon-
venient.

It is possible to save the current transformation, do some drawing and
transforming, and then restore the old transformation. This is usually
the proper thing to do for a function that needs to temporarily trans-
form the coordinate system. First, we save whatever transformation
the code that called the function was using. Then the function does its
thing, adding more transformations on top of the current transforma-
tion. Finally, we revert to the transformation we started with.

The save and restore methods on the 2D canvas context do this
transformation management. They conceptually keep a stack of trans-
formation states. When you call save, the current state is pushed onto
the stack, and when you call restore, the state on top of the stack is
taken off and used as the context’s current transformation. You can
also call resetTransform to fully reset the transformation.

The branch function in the following example illustrates what you
can do with a function that changes the transformation and then calls
a function (in this case itself), which continues drawing with the given

445

transformation.
This function draws a treelike shape by drawing a line, moving the

center of the coordinate system to the end of the line, and calling itself
twice—first rotated to the left and then rotated to the right. Every call
reduces the length of the branch drawn, and the recursion stops when
the length drops below 8.

<canvas width="600" height="300"></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
function branch(length, angle, scale) {

cx.fillRect(0, 0, 1, length);
if (length < 8) return;
cx.save();
cx.translate(0, length);
cx.rotate(-angle);
branch(length * scale, angle, scale);
cx.rotate(2 * angle);
branch(length * scale, angle, scale);
cx.restore();

}
cx.translate(300, 0);
branch(60, 0.5, 0.8);

</script>

The result is a simple fractal.

446

If the calls to save and restore were not there, the second recursive
call to branch would end up with the position and rotation created by
the first call. It would be connected not to the current branch but
rather to the innermost, rightmost branch drawn by the first call. The
resulting shape might also be interesting, but it is definitely not a tree.

Back to the game

We now know enough about canvas drawing to start working on a
canvas-based display system for the game from the previous chapter.
The new display will no longer be showing just colored boxes. Instead,
we’ll use drawImage to draw pictures that represent the game’s elements.

We define another display object type called CanvasDisplay, support-
ing the same interface as DOMDisplay from Chapter 16—namely, the
methods syncState and clear.

This object keeps a little more information than DOMDisplay. Rather
than using the scroll position of its DOM element, it tracks its own
viewport, which tells us which part of the level we are currently looking
at. Finally, it keeps a flipPlayer property so that even when the player

447

is standing still, it keeps facing the direction in which it last moved.

class CanvasDisplay {
constructor(parent, level) {

this.canvas = document.createElement("canvas");
this.canvas.width = Math.min(600, level.width * scale);
this.canvas.height = Math.min(450, level.height * scale);
parent.appendChild(this.canvas);
this.cx = this.canvas.getContext("2d");

this.flipPlayer = false;

this.viewport = {
left: 0,
top: 0,
width: this.canvas.width / scale,
height: this.canvas.height / scale

};
}

clear() {
this.canvas.remove();

}
}

The syncState method first computes a new viewport and then draws
the game scene at the appropriate position.

CanvasDisplay.prototype.syncState = function(state) {
this.updateViewport(state);
this.clearDisplay(state.status);

448

this.drawBackground(state.level);
this.drawActors(state.actors);

};

Contrary to DOMDisplay, this display style does have to redraw the back-
ground on every update. Because shapes on a canvas are just pixels,
after we draw them there is no good way to move them (or remove
them). The only way to update the canvas display is to clear it and
redraw the scene. We may also have scrolled, which requires the back-
ground to be in a different position.

The updateViewportmethod is similar to DOMDisplay’s scrollPlayerIntoView
method. It checks whether the player is too close to the edge of the
screen and moves the viewport when this is the case.

CanvasDisplay.prototype.updateViewport = function(state) {
let view = this.viewport, margin = view.width / 3;
let player = state.player;
let center = player.pos.plus(player.size.times(0.5));

if (center.x < view.left + margin) {
view.left = Math.max(center.x - margin, 0);

} else if (center.x > view.left + view.width - margin) {
view.left = Math.min(center.x + margin - view.width,

state.level.width - view.width);
}
if (center.y < view.top + margin) {

view.top = Math.max(center.y - margin, 0);
} else if (center.y > view.top + view.height - margin) {

view.top = Math.min(center.y + margin - view.height,
state.level.height - view.height);

449

}
};

The calls to Math.max and Math.min ensure that the viewport does not
end up showing space outside of the level. Math.max(x, 0) makes sure
the resulting number is not less than zero. Math.min similarly guarantees
that a value stays below a given bound.

When clearing the display, we’ll use a slightly different color depend-
ing on whether the game is won (brighter) or lost (darker).

CanvasDisplay.prototype.clearDisplay = function(status) {
if (status == "won") {

this.cx.fillStyle = "rgb(68, 191, 255)";
} else if (status == "lost") {

this.cx.fillStyle = "rgb(44, 136, 214)";
} else {

this.cx.fillStyle = "rgb(52, 166, 251)";
}
this.cx.fillRect(0, 0,

this.canvas.width, this.canvas.height);
};

To draw the background, we run through the tiles that are visible in
the current viewport, using the same trick used in the touches method
from the previous chapter.

let otherSprites = document.createElement("img");
otherSprites.src = "img/sprites.png";

CanvasDisplay.prototype.drawBackground = function(level) {

450

let {left, top, width, height} = this.viewport;
let xStart = Math.floor(left);
let xEnd = Math.ceil(left + width);
let yStart = Math.floor(top);
let yEnd = Math.ceil(top + height);

for (let y = yStart; y < yEnd; y++) {
for (let x = xStart; x < xEnd; x++) {

let tile = level.rows[y][x];
if (tile == "empty") continue;
let screenX = (x - left) * scale;
let screenY = (y - top) * scale;
let tileX = tile == "lava" ? scale : 0;
this.cx.drawImage(otherSprites,

tileX, 0, scale, scale,
screenX, screenY, scale, scale);

}
}

};

Tiles that are not empty are drawn with drawImage. The otherSprites

image contains the pictures used for elements other than the player. It
contains, from left to right, the wall tile, the lava tile, and the sprite
for a coin.

Background tiles are 20 by 20 pixels, since we’ll use the same scale
as in DOMDisplay. Thus, the offset for lava tiles is 20 (the value of the
scale binding), and the offset for walls is 0.

451

We don’t bother waiting for the sprite image to load. Calling drawImage

with an image that hasn’t been loaded yet will simply do nothing.
Thus, we might fail to draw the game properly for the first few frames
while the image is still loading, but that isn’t a serious problem. Since
we keep updating the screen, the correct scene will appear as soon as
the loading finishes.

The walking character shown earlier will be used to represent the
player. The code that draws it needs to pick the right sprite and di-
rection based on the player’s current motion. The first eight sprites
contain a walking animation. When the player is moving along a floor,
we cycle through them based on the current time. We want to switch
frames every 60 milliseconds, so the time is divided by 60 first. When
the player is standing still, we draw the ninth sprite. During jumps,
which are recognized by the fact that the vertical speed is not zero, we
use the tenth, rightmost sprite.

Because the sprites are slightly wider than the player object—24 in-
stead of 16 pixels to allow some space for feet and arms—the method has
to adjust the x-coordinate and width by a given amount (playerXOverlap
).

let playerSprites = document.createElement("img");
playerSprites.src = "img/player.png";
const playerXOverlap = 4;

CanvasDisplay.prototype.drawPlayer = function(player, x, y,
width, height){

width += playerXOverlap * 2;
x -= playerXOverlap;

452

if (player.speed.x != 0) {
this.flipPlayer = player.speed.x < 0;

}

let tile = 8;
if (player.speed.y != 0) {

tile = 9;
} else if (player.speed.x != 0) {

tile = Math.floor(Date.now() / 60) % 8;
}

this.cx.save();
if (this.flipPlayer) {

flipHorizontally(this.cx, x + width / 2);
}
let tileX = tile * width;
this.cx.drawImage(playerSprites, tileX, 0, width, height,

x, y, width, height);
this.cx.restore();

};

The drawPlayer method is called by drawActors, which is responsible for
drawing all the actors in the game.

CanvasDisplay.prototype.drawActors = function(actors) {
for (let actor of actors) {

let width = actor.size.x * scale;
let height = actor.size.y * scale;
let x = (actor.pos.x - this.viewport.left) * scale;
let y = (actor.pos.y - this.viewport.top) * scale;
if (actor.type == "player") {

453

this.drawPlayer(actor, x, y, width, height);
} else {

let tileX = (actor.type == "coin" ? 2 : 1) * scale;
this.cx.drawImage(otherSprites,

tileX, 0, width, height,
x, y, width, height);

}
}

};

When drawing something that is not the player, we look at its type to
find the offset of the correct sprite. The lava tile is found at offset 20,
and the coin sprite is found at 40 (two times scale).

We have to subtract the viewport’s position when computing the
actor’s position, since (0, 0) on our canvas corresponds to the top left
of the viewport, not the top left of the level. We could also have used
translate for this. Either way works.

That concludes the new display system. The resulting game looks
something like this:

454

Choosing a graphics interface

When you need to generate graphics in the browser, you can choose be-
tween plain HTML, SVG, and canvas. There is no single best approach
that works in all situations. Each option has strengths and weaknesses.

Plain HTML has the advantage of being simple. It also integrates
well with text. Both SVG and canvas allow you to draw text, but they
won’t help you position that text or wrap it when it takes up more than
one line. In an HTML-based picture, it is much easier to include blocks
of text.

SVG can be used to produce crisp graphics that look good at any
zoom level. Unlike HTML, it is designed for drawing and is thus more
suitable for that purpose.

Both SVG and HTML build up a data structure (the DOM) that
represents your picture. This makes it possible to modify elements

455

after they are drawn. If you need to repeatedly change a small part
of a big picture in response to what the user is doing or as part of
an animation, doing it in a canvas can be needlessly expensive. The
DOM also allows us to register mouse event handlers on every element
in the picture (even on shapes drawn with SVG). You can’t do that
with canvas.

But canvas’s pixel-oriented approach can be an advantage when draw-
ing a huge number of tiny elements. The fact that it does not build up
a data structure but only repeatedly draws onto the same pixel surface
gives canvas a lower cost per shape. There are also effects that are only
practical with a canvas element, such as rendering a scene one pixel
at a time (for example, using a ray tracer) or postprocessing an image
with JavaScript (blurring or distorting it).

In some cases, you may want to combine several of these techniques.
For example, you might draw a graph with SVG or canvas but show
textual information by positioning an HTML element on top of the
picture.

For nondemanding applications, it really doesn’t matter much which
interface you choose. The display we built for our game in this chapter
could have been implemented using any of these three graphics tech-
nologies, since it does not need to draw text, handle mouse interaction,
or work with an extraordinarily large number of elements.

456

Summary

In this chapter we discussed techniques for drawing graphics in the
browser, focusing on the <canvas> element.

A canvas node represents an area in a document that our program
may draw on. This drawing is done through a drawing context object,
created with the getContext method.

The 2D drawing interface allows us to fill and stroke various shapes.
The context’s fillStyle property determines how shapes are filled. The
strokeStyle and lineWidth properties control the way lines are drawn.

Rectangles and pieces of text can be drawn with a single method
call. The fillRect and strokeRect methods draw rectangles, and the
fillText and strokeText methods draw text. To create custom shapes,
we must first build up a path.

Calling beginPath starts a new path. A number of other methods add
lines and curves to the current path. For example, lineTo can add a
straight line. When a path is finished, it can be filled with the fill

method or stroked with the stroke method.
Moving pixels from an image or another canvas onto our canvas is

done with the drawImage method. By default, this method draws the
whole source image, but by giving it more parameters, you can copy
a specific area of the image. We used this for our game by copying
individual poses of the game character out of an image that contained
many such poses.

Transformations allow you to draw a shape in multiple orientations.
A 2D drawing context has a current transformation that can be changed
with the translate, scale, and rotate methods. These will affect all

457

subsequent drawing operations. A transformation state can be saved
with the save method and restored with the restore method.

When showing an animation on a canvas, the clearRect method can
be used to clear part of the canvas before redrawing it.

Exercises

Shapes

Write a program that draws the following shapes on a canvas:

1. A trapezoid (a rectangle that is wider on one side)

2. A red diamond (a rectangle rotated 45 degrees or ¼π radians)

3. A zigzagging line

4. A spiral made up of 100 straight line segments

5. A yellow star

When drawing the last two shapes, you may want to refer to the
explanation of Math.cos and Math.sin in Chapter 14, which describes
how to get coordinates on a circle using these functions.

458

I recommend creating a function for each shape. Pass the position,
and optionally other properties such as the size or the number of points,
as parameters. The alternative, which is to hardcode numbers all over
your code, tends to make the code needlessly hard to read and modify.

The pie chart

Earlier in the chapter, we saw an example program that drew a pie
chart. Modify this program so that the name of each category is shown
next to the slice that represents it. Try to find a pleasing-looking way
to automatically position this text that would work for other datasets
as well. You may assume that categories are big enough to leave enough
room for their labels.

You might need Math.sin and Math.cos again, which are described in
Chapter 14.

A bouncing ball

Use the requestAnimationFrame technique that we saw in Chapter 14 and
Chapter 16 to draw a box with a bouncing ball in it. The ball moves
at a constant speed and bounces off the box’s sides when it hits them.

Precomputed mirroring

One unfortunate thing about transformations is that they slow down
the drawing of bitmaps. The position and size of each pixel have to be
transformed, and though it is possible that browsers will get cleverer

459

about transformation in the future, they currently cause a measurable
increase in the time it takes to draw a bitmap.

In a game like ours, where we are drawing only a single transformed
sprite, this is a nonissue. But imagine that we need to draw hundreds
of characters or thousands of rotating particles from an explosion.

Think of a way to draw an inverted character without loading addi-
tional image files and without having to make transformed drawImage

calls every frame.

460

“What was often difficult for people to understand about the
design was that there was nothing else beyond URLs, HTTP
and HTML. There was no central computer ‘controlling’ the
web, no single network on which these protocols worked, not
even an organisation anywhere that ‘ran’ the Web. The Web
was not a physical ‘thing’ that existed in a certain ‘place’. It
was a ‘space’ in which information could exist.”

—Tim Berners-Lee

Chapter 18

HTTP and Forms

The Hypertext Transfer Protocol, introduced in Chapter 13, is the
mechanism through which data is requested and provided on the World
Wide Web. This chapter describes the protocol in more detail and ex-
plains the way browser JavaScript has access to it.

The protocol

If you type eloquentjavascript.net/18_http.html in your browser’s ad-
dress bar, the browser first looks up the address of the server associated
with eloquentjavascript.net and tries to open a TCP connection to it
on port 80, the default port for HTTP traffic. If the server exists and
accepts the connection, the browser might send something like this:

GET /18_http.html HTTP/1.1
Host: eloquentjavascript.net
User-Agent: Your browser's name

Then the server responds, through that same connection.

461

HTTP/1.1 200 OK
Content-Length: 87320
Content-Type: text/html
Last-Modified: Fri, 13 Oct 2023 10:05:41 GMT

<!doctype html>
... the rest of the document

The browser takes the part of the response after the blank line, its body
(not to be confused with the HTML <body> tag), and displays it as an
HTML document.

The information sent by the client is called the request. It starts with
this line:

GET /18_http.html HTTP/1.1

The first word is the method of the request. GET means that we want to
get the specified resource. Other common methods are DELETE to delete
a resource, PUT to create or replace it, and POST to send information to
it. Note that the server is not obliged to carry out every request it gets.
If you walk up to a random website and tell it to DELETE its main page,
it’ll probably refuse.

The part after the method name is the path of the resource the re-
quest applies to. In the simplest case, a resource is simply a file on the
server, but the protocol doesn’t require it to be. A resource may be
anything that can be transferred as if it is a file. Many servers gen-
erate the responses they produce on the fly. For example, if you open
https://github.com/marijnh, the server looks in its database for a user
named “marijnh”, and if it finds one, it will generate a profile page for

462

https://github.com/marijnh

that user.
After the resource path, the first line of the request mentions HTTP/1.1

to indicate the version of the HTTP protocol it is using.
In practice, many sites use HTTP version 2, which supports the same

concepts as version 1.1 but is a lot more complicated so that it can be
faster. Browsers will automatically switch to the appropriate protocol
version when talking to a given server, and the outcome of a request
is the same regardless of which version is used. Because version 1.1 is
more straightforward and easier to play around with, we’ll use that to
illustrate the protocol.

The server’s response will start with a version as well, followed by
the status of the response, first as a three-digit status code and then as
a human-readable string.

HTTP/1.1 200 OK

Status codes starting with a 2 indicate that the request succeeded.
Codes starting with 4 mean there was something wrong with the re-
quest. The most famous HTTP status code is probably 404, which
means that the resource could not be found. Codes that start with 5
mean an error happened on the server and the request is not to blame.

The first line of a request or response may be followed by any number
of headers. These are lines in the form name: value that specify extra
information about the request or response. These headers were part of
the example response:

Content-Length: 87320
Content-Type: text/html

463

Last-Modified: Fri, 13 Oct 2023 10:05:41 GMT

This tells us the size and type of the response document. In this case,
it is an HTML document of 87,320 bytes. It also tells us when that
document was last modified.

The client and server are free to decide what headers to include in
their requests or responses. But some of them are necessary for things
to work. For example, without a Content-Type header in the response,
the browser won’t know how to display the document.

After the headers, both requests and responses may include a blank
line followed by a body, which contains the actual document being sent.
GET and DELETE requests don’t send along any data, but PUT and POST

requests do. Some response types, such as error responses, also don’t
require a body.

Browsers and HTTP

As we saw, a browser will make a request when we enter a URL in
its address bar. When the resulting HTML page references other files,
such as images and JavaScript files, it will retrieve those as well.

A moderately complicated website can easily include anywhere from
10 to 200 resources. To be able to fetch those quickly, browsers will
make several GET requests simultaneously, rather than waiting for the
responses one at a time.

HTML pages may include forms, which allow the user to fill out
information and send it to the server. This is an example of a form:

464

<form method="GET" action="example/message.html">
<p>Name: <input type="text" name="name"></p>
<p>Message:
<textarea name="message"></textarea></p>
<p><button type="submit">Send</button></p>

</form>

This code describes a form with two fields: a small one asking for a
name and a larger one to write a message in. When you click the Send
button, the form is submitted, meaning that the content of its fields is
packed into an HTTP request and the browser navigates to the result
of that request.

When the <form> element’s method attribute is GET (or is omitted),
the information in the form is added to the end of the action URL as
a query string. The browser might make a request to this URL:

GET /example/message.html?name=Jean&message=Yes%3F HTTP/1.1

The question mark indicates the end of the path part of the URL and
the start of the query. It is followed by pairs of names and values,
corresponding to the name attribute on the form field elements and the
content of those elements, respectively. An ampersand character (&) is
used to separate the pairs.

The actual message encoded in the URL is “Yes?” but the question
mark is replaced by a strange code. Some characters in query strings
must be escaped. The question mark, represented as %3F, is one of
those. There seems to be an unwritten rule that every format needs
its own way of escaping characters. This one, called URL encoding,
uses a percent sign followed by two hexadecimal (base 16) digits that

465

encode the character code. In this case, 3F, which is 63 in decimal
notation, is the code of a question mark character. JavaScript provides
the encodeURIComponent and decodeURIComponent functions to encode and
decode this format.

console.log(encodeURIComponent("Yes?"));
// → Yes%3F
console.log(decodeURIComponent("Yes%3F"));
// → Yes?

If we change the method attribute of the HTML form in the example we
saw earlier to POST, the HTTP request made to submit the form will use
the POST method and put the query string in the body of the request
rather than adding it to the URL.

POST /example/message.html HTTP/1.1
Content-length: 24
Content-type: application/x-www-form-urlencoded

name=Jean&message=Yes%3F

GET requests should be used for requests that do not have side effects
but simply ask for information. Requests that change something on the
server, for example creating a new account or posting a message, should
be expressed with other methods, such as POST. Client-side software
such as a browser knows that it shouldn’t blindly make POST requests
but will often implicitly make GET requests—to prefetch a resource it
believes the user will soon need, for example.

We’ll come back to forms and how to interact with them from JavaScript

466

later in the chapter.

Fetch

The interface through which browser JavaScript can make HTTP re-
quests is called fetch.

fetch("example/data.txt").then(response => {
console.log(response.status);
// → 200
console.log(response.headers.get("Content-Type"));
// → text/plain

});

Calling fetch returns a promise that resolves to a Response object hold-
ing information about the server’s response, such as its status code and
its headers. The headers are wrapped in a Map-like object that treats its
keys (the header names) as case insensitive because header names are
not supposed to be case sensitive. This means headers.get("Content-

Type") and headers.get("content-TYPE") will return the same value.
Note that the promise returned by fetch resolves successfully even if

the server responded with an error code. It can also be rejected if there
is a network error or if the server to which that the request is addressed
can’t be found.

The first argument to fetch is the URL that should be requested.
When that URL doesn’t start with a protocol name (such as http:), it is
treated as relative, which means it is interpreted relative to the current
document. When it starts with a slash (/), it replaces the current path,

467

which is the part after the server name. When it does not, the part of
the current path up to and including its last slash character is put in
front of the relative URL.

To get at the actual content of a response, you can use its text

method. Because the initial promise is resolved as soon as the re-
sponse’s headers have been received and because reading the response
body might take a while longer, this again returns a promise.

fetch("example/data.txt")
.then(resp => resp.text())
.then(text => console.log(text));

// → This is the content of data.txt

A similar method, called json, returns a promise that resolves to the
value you get when parsing the body as JSON or rejects if it’s not valid
JSON.

By default, fetch uses the GET method to make its request and does
not include a request body. You can configure it differently by passing
an object with extra options as a second argument. For example, this
request tries to delete example/data.txt:

fetch("example/data.txt", {method: "DELETE"}).then(resp => {
console.log(resp.status);
// → 405

});

The 405 status code means “method not allowed”, an HTTP server’s
way of saying “I’m afraid I can’t do that”.

To add a request body for a PUT or POST request, you can include a

468

body option. To set headers, there’s the headers option. For example,
this request includes a Range header, which instructs the server to return
only part of a document.

fetch("example/data.txt", {headers: {Range: "bytes=8-19"}})
.then(resp => resp.text())
.then(console.log);

// → the content

The browser will automatically add some request headers, such as
“Host” and those needed for the server to figure out the size of the
body. But adding your own headers is often useful to include things
such as authentication information or to tell the server which file format
you’d like to receive.

HTTP sandboxing

Making HTTP requests in web page scripts once again raises concerns
about security. The person who controls the script might not have the
same interests as the person on whose computer it is running. More
specifically, if I visit themafia.org, I do not want its scripts to be able
to make a request to mybank.com, using identifying information from
my browser, with instructions to transfer away all my money.

For this reason, browsers protect us by disallowing scripts to make
HTTP requests to other domains (names such as themafia.org and my-
bank.com).

This can be an annoying problem when building systems that want to
access several domains for legitimate reasons. Fortunately, servers can

469

include a header like this in their response to explicitly indicate to the
browser that it is okay for the request to come from another domain:

Access-Control-Allow-Origin: *

Appreciating HTTP

When building a system that requires communication between a JavaScript
program running in the browser (client-side) and a program on a server
(server-side), there are several different ways to model this communi-
cation.

A commonly used model is that of remote procedure calls. In this
model, communication follows the patterns of normal function calls, ex-
cept that the function is actually running on another machine. Calling
it involves making a request to the server that includes the function’s
name and arguments. The response to that request contains the re-
turned value.

When thinking in terms of remote procedure calls, HTTP is just a
vehicle for communication, and you will most likely write an abstraction
layer that hides it entirely.

Another approach is to build your communication around the concept
of resources and HTTP methods. Instead of a remote procedure called
addUser, you use a PUT request to /users/larry. Instead of encoding that
user’s properties in function arguments, you define a JSON document
format (or use an existing format) that represents a user. The body of
the PUT request to create a new resource is then such a document. A

470

resource is fetched by making a GET request to the resource’s URL (for
example, /users/larry), which again returns the document representing
the resource.

This second approach makes it easier to use some of the features that
HTTP provides, such as support for caching resources (keeping a copy
of a resource on the client for fast access). The concepts used in HTTP,
which are well designed, can provide a helpful set of principles to design
your server interface around.

Security and HTTPS

Data traveling over the internet tends to follow a long, dangerous road.
To get to its destination, it must hop through anything from coffee shop
Wi-Fi hotspots to networks controlled by various companies and states.
At any point along its route, it may be inspected or even modified.

If it is important that something remain secret, such as the password
to your email account, or that it arrive at its destination unmodified,
such as the account number you transfer money to via your bank’s
website, plain HTTP is not good enough.

The secure HTTP protocol, used for URLs starting with https://,
wraps HTTP traffic in a way that makes it harder to read and tamper
with. Before exchanging data, the client verifies that the server is who it
claims to be by asking it to prove that it has a cryptographic certificate
issued by a certificate authority that the browser recognizes. Next,
all data going over the connection is encrypted in a way that should
prevent eavesdropping and tampering.

471

Thus, when it works right, HTTPS prevents other people from im-
personating the website you are trying to talk to and from snooping
on your communication. It’s not perfect, and there have been various
incidents where HTTPS failed because of forged or stolen certificates
and broken software, but it is a lot safer than plain HTTP.

Form fields

Forms were originally designed for the pre-JavaScript web to allow web-
sites to send user-submitted information in an HTTP request. This
design assumes that interaction with the server always happens by nav-
igating to a new page.

However, the form elements are part of the DOM, like the rest of
the page, and the DOM elements that represent form fields support a
number of properties and events that are not present on other elements.
These make it possible to inspect and control such input fields with
JavaScript programs and do things such as adding new functionality
to a form or using forms and fields as building blocks in a JavaScript
application.

A web form consists of any number of input fields grouped in a <form>

tag. HTML allows several different styles of fields, ranging from simple
on/off checkboxes to drop-down menus and fields for text input. This
book won’t try to comprehensively discuss all field types, but we’ll start
with a rough overview.

A lot of field types use the <input> tag. This tag’s type attribute is
used to select the field’s style. These are some commonly used <input>

472

types:
text A single-line text field
password Same as text but hides the text that is typed
checkbox An on/off switch
color A color
date A calendar date
radio (Part of) a multiple-choice field
file Allows the user to choose a file from their computer
Form fields do not necessarily have to appear in a <form> tag. You

can put them anywhere in a page. Such form-less fields cannot be
submitted (only a form as a whole can), but when responding to input
with JavaScript, we often don’t want to submit our fields normally
anyway.

<p><input type="text" value="abc"> (text)</p>
<p><input type="password" value="abc"> (password)</p>
<p><input type="checkbox" checked> (checkbox)</p>
<p><input type="color" value="orange"> (color)</p>
<p><input type="date" value="2023-10-13"> (date)</p>
<p><input type="radio" value="A" name="choice">

<input type="radio" value="B" name="choice" checked>
<input type="radio" value="C" name="choice"> (radio)</p>

<p><input type="file"> (file)</p>

The fields created with this HTML code look like this:

473

The JavaScript interface for such elements differs with the type of
the element.

Multiline text fields have their own tag, <textarea>, mostly because
using an attribute to specify a multiline starting value would be awk-
ward. The <textarea> tag requires a matching </textarea> closing tag
and uses the text between those two, instead of the value attribute, as
starting text.

<textarea>
one
two
three
</textarea>

Finally, the <select> tag is used to create a field that allows the user
to select from a number of predefined options.

<select>
<option>Pancakes</option>
<option>Pudding</option>
<option>Ice cream</option>

</select>

474

Such a field looks like this:

Whenever the value of a form field changes, it will fire a "change"

event.

Focus

Unlike most elements in HTML documents, form fields can get keyboard
focus. When clicked, moved to with tab, or activated in some other
way, they become the currently active element and the recipient of
keyboard input.

Thus, you can type into a text field only when it is focused. Other
fields respond differently to keyboard events. For example, a <select>

menu tries to move to the option that contains the text the user typed
and responds to the arrow keys by moving its selection up and down.

We can control focus from JavaScript with the focus and blur meth-
ods. The first moves focus to the DOM element it is called on, and the
second removes focus. The value in document.activeElement corresponds
to the currently focused element.

<input type="text">
<script>

document.querySelector("input").focus();
console.log(document.activeElement.tagName);
// → INPUT

475

document.querySelector("input").blur();
console.log(document.activeElement.tagName);
// → BODY

</script>

For some pages, the user is expected to want to interact with a form
field immediately. JavaScript can be used to focus this field when the
document is loaded, but HTML also provides the autofocus attribute,
which produces the same effect while letting the browser know what we
are trying to achieve. This gives the browser the option to disable the
behavior when it is not appropriate, such as when the user has put the
focus on something else.

Browsers allow the user to move the focus through the document by
pressing tab to move to the next focusable element, and shift-tab to
move back to the previous element. By default, elements are visited
in the order in which they appear in the document. It is possible to
use the tabindex attribute to change this order. The following example
document will let the focus jump from the text input to the OK button,
rather than going through the help link first:

<input type="text" tabindex=1> (help)
<button onclick="console.log('ok')" tabindex=2>OK</button>

By default, most types of HTML elements cannot be focused. You
can add a tabindex attribute to any element to make it focusable. A
tabindex of 0 makes an element focusable without affecting the focus
order.

476

Disabled fields

All form fields can be disabled through their disabled attribute. It is an
attribute that can be specified without value—the fact that it is present
at all disables the element.

<button>I'm all right</button>
<button disabled>I'm out</button>

Disabled fields cannot be focused or changed, and browsers make them
look gray and faded.

When a program is in the process of handling an action caused by
some button or other control that might require communication with
the server and thus take a while, it can be a good idea to disable the
control until the action finishes. That way, when the user gets impatient
and clicks it again, they don’t accidentally repeat their action.

The form as a whole

When a field is contained in a <form> element, its DOM element will
have a form property linking back to the form’s DOM element. The
<form> element, in turn, has a property called elements that contains an
array-like collection of the fields inside it.

The name attribute of a form field determines the way its value will be
identified when the form is submitted. It can also be used as a property

477

name when accessing the form’s elements property, which acts both as
an array-like object (accessible by number) and a map (accessible by
name).

<form action="example/submit.html">
Name: <input type="text" name="name">

Password: <input type="password" name="password">

<button type="submit">Log in</button>

</form>
<script>

let form = document.querySelector("form");
console.log(form.elements[1].type);
// → password
console.log(form.elements.password.type);
// → password
console.log(form.elements.name.form == form);
// → true

</script>

A button with a type attribute of submit will, when pressed, cause the
form to be submitted. Pressing enter when a form field is focused has
the same effect.

Submitting a form normally means that the browser navigates to the
page indicated by the form’s action attribute, using either a GET or a
POST request. But before that happens, a "submit" event is fired. You
can handle this event with JavaScript and prevent this default behavior
by calling preventDefault on the event object.

<form>
Value: <input type="text" name="value">

478

<button type="submit">Save</button>
</form>
<script>

let form = document.querySelector("form");
form.addEventListener("submit", event => {

console.log("Saving value", form.elements.value.value);
event.preventDefault();

});
</script>

Intercepting "submit" events in JavaScript has various uses. We can
write code to verify that the values the user entered make sense and
immediately show an error message instead of submitting the form. Or
we can disable the regular way of submitting the form entirely, as in the
example, and have our program handle the input, possibly using fetch

to send it to a server without reloading the page.

Text fields

Fields created by <textarea> tags, or <input> tags with a type of text or
password, share a common interface. Their DOM elements have a value

property that holds their current content as a string value. Setting this
property to another string changes the field’s content.

The selectionStart and selectionEnd properties of text fields give us
information about the cursor and selection in the text. When nothing
is selected, these two properties hold the same number, indicating the
position of the cursor. For example, 0 indicates the start of the text,
and 10 indicates the cursor is after the 10th character. When part of

479

the field is selected, the two properties will differ, giving us the start
and end of the selected text. Like value, these properties may also be
written to.

Imagine you are writing an article about Khasekhemwy, last pharaoh
of the Second Dynasty, but have some trouble spelling his name. The
following code wires up a <textarea> tag with an event handler that,
when you press F2, inserts the string “Khasekhemwy” for you.

<textarea></textarea>
<script>

let textarea = document.querySelector("textarea");
textarea.addEventListener("keydown", event => {

if (event.key == "F2") {
replaceSelection(textarea, "Khasekhemwy");
event.preventDefault();

}
});
function replaceSelection(field, word) {

let from = field.selectionStart, to = field.selectionEnd;
field.value = field.value.slice(0, from) + word +

field.value.slice(to);
// Put the cursor after the word
field.selectionStart = from + word.length;
field.selectionEnd = from + word.length;

}
</script>

The replaceSelection function replaces the currently selected part of a
text field’s content with the given word and then moves the cursor after
that word so that the user can continue typing.

480

The "change" event for a text field does not fire every time something
is typed. Rather, it fires when the field loses focus after its content was
changed. To respond immediately to changes in a text field, you should
register a handler for the "input" event instead, which fires every time
the user types a character, deletes text, or otherwise manipulates the
field’s content.

The following example shows a text field and a counter displaying
the current length of the text in the field:

<input type="text"> length: 0
<script>

let text = document.querySelector("input");
let output = document.querySelector("#length");
text.addEventListener("input", () => {

output.textContent = text.value.length;
});

</script>

Checkboxes and radio buttons

A checkbox field is a binary toggle. Its value can be extracted or
changed through its checked property, which holds a Boolean value.

<label>
<input type="checkbox" id="purple"> Make this page purple

</label>
<script>

let checkbox = document.querySelector("#purple");

481

checkbox.addEventListener("change", () => {
document.body.style.background =

checkbox.checked ? "mediumpurple" : "";
});

</script>

The <label> tag associates a piece of document with an input field.
Clicking anywhere on the label will activate the field, which focuses it
and toggles its value when it is a checkbox or radio button.

A radio button is similar to a checkbox, but it’s implicitly linked to
other radio buttons with the same name attribute so that only one of
them can be active at any time.

Color:
<label>

<input type="radio" name="color" value="orange"> Orange
</label>
<label>

<input type="radio" name="color" value="lightgreen"> Green
</label>
<label>

<input type="radio" name="color" value="lightblue"> Blue
</label>
<script>

let buttons = document.querySelectorAll("[name=color]");
for (let button of Array.from(buttons)) {

button.addEventListener("change", () => {
document.body.style.background = button.value;

});
}

482

</script>

The square brackets in the CSS query given to querySelectorAll are
used to match attributes. It selects elements whose name attribute is
"color".

Select fields

Select fields are conceptually similar to radio buttons—they also allow
the user to choose from a set of options. But where a radio button
puts the layout of the options under our control, the appearance of a
<select> tag is determined by the browser.

Select fields also have a variant more akin to a list of checkboxes
rather than radio boxes. When given the multiple attribute, a <select>

tag will allow the user to select any number of options, rather than
just a single option. Whereas a regular select field is drawn as a drop-
down control, which shows the inactive options only when you open it,
a field with multiple enabled shows multiple options at the same time,
allowing the user to enable or disable them individually.

Each <option> tag has a value. This value can be defined with a
value attribute. When that is not given, the text inside the option will
count as its value. The value property of a <select> element reflects
the currently selected option. For a multiple field, though, this prop-
erty doesn’t mean much, since it will give the value of only one of the
currently selected options.

The <option> tags for a <select> field can be accessed as an array-like
object through the field’s options property. Each option has a prop-

483

erty called selected, which indicates whether that option is currently
selected. The property can also be written to select or deselect an
option.

This example extracts the selected values from a multiple select field
and uses them to compose a binary number from individual bits. Hold
ctrl (or command on a Mac) to select multiple options.

<select multiple>
<option value="1">0001</option>
<option value="2">0010</option>
<option value="4">0100</option>
<option value="8">1000</option>

</select> = 0
<script>

let select = document.querySelector("select");
let output = document.querySelector("#output");
select.addEventListener("change", () => {

let number = 0;
for (let option of Array.from(select.options)) {

if (option.selected) {
number += Number(option.value);

}
}
output.textContent = number;

});
</script>

484

File fields

File fields were originally designed as a way to upload files from the
user’s machine through a form. In modern browsers, they also provide
a way to read such files from JavaScript programs. The field acts as a
kind of gatekeeper. The script cannot simply start reading private files
from the user’s computer, but if the user selects a file in such a field,
the browser interprets that action to mean that the script may read the
file.

A file field usually looks like a button labeled with something like
“choose file” or “browse”, with information about the chosen file next
to it.

<input type="file">
<script>

let input = document.querySelector("input");
input.addEventListener("change", () => {

if (input.files.length > 0) {
let file = input.files[0];
console.log("You chose", file.name);
if (file.type) console.log("It has type", file.type);

}
});

</script>

The files property of a file field element is an array-like object (once
again, not a real array) containing the files chosen in the field. It is
initially empty. The reason there isn’t simply a file property is that
file fields also support a multiple attribute, which makes it possible to

485

select multiple files at the same time.
The objects in files have properties such as name (the filename), size

(the file’s size in bytes, which are chunks of 8 bits), and type (the media
type of the file, such as text/plain or image/jpeg).

What it does not have is a property that contains the content of the
file. Getting at that is a little more involved. Since reading a file from
disk can take time, the interface is asynchronous to avoid freezing the
window.

<input type="file" multiple>
<script>

let input = document.querySelector("input");
input.addEventListener("change", () => {

for (let file of Array.from(input.files)) {
let reader = new FileReader();
reader.addEventListener("load", () => {

console.log("File", file.name, "starts with",
reader.result.slice(0, 20));

});
reader.readAsText(file);

}
});

</script>

Reading a file is done by creating a FileReader object, registering a
"load" event handler for it, and calling its readAsText method, giving
it the file we want to read. Once loading finishes, the reader’s result

property contains the file’s content.
FileReaders also fire an "error" event when reading the file fails for

486

any reason. The error object itself will end up in the reader’s error

property. This interface was designed before promises became part of
the language. You could wrap it in a promise like this:

function readFileText(file) {
return new Promise((resolve, reject) => {

let reader = new FileReader();
reader.addEventListener(
"load", () => resolve(reader.result));

reader.addEventListener(
"error", () => reject(reader.error));

reader.readAsText(file);
});

}

Storing data client-side

Simple HTML pages with a bit of JavaScript can be a great format
for “mini applications”—small helper programs that automate basic
tasks. By connecting a few form fields with event handlers, you can do
anything from converting between centimeters and inches to computing
passwords from a master password and a website name.

When such an application needs to remember something between
sessions, you cannot use JavaScript bindings—those are thrown away
every time the page is closed. You could set up a server, connect it
to the internet, and have your application store something there (we’ll
see how to do that in Chapter 20). But that’s a lot of extra work and

487

complexity. Sometimes it’s enough to just keep the data in the browser.
The localStorage object can be used to store data in a way that

survives page reloads. This object allows you to file string values under
names.

localStorage.setItem("username", "marijn");
console.log(localStorage.getItem("username"));
// → marijn
localStorage.removeItem("username");

A value in localStorage sticks around until it is overwritten or is re-
moved with removeItem, or the user clears their local data.

Sites from different domains get different storage compartments. That
means data stored in localStorage by a given website can, in principle,
be read (and overwritten) only by scripts on that same site.

Browsers do enforce a limit on the size of the data a site can store
in localStorage. That restriction, along with the fact that filling up
people’s hard drives with junk is not really profitable, prevents the
feature from eating up too much space.

The following code implements a crude note-taking application. It
keeps a set of named notes and allows the user to edit notes and create
new ones.

Notes: <select></select> <button>Add</button>

<textarea style="width: 100%"></textarea>

<script>
let list = document.querySelector("select");
let note = document.querySelector("textarea");

488

let state;
function setState(newState) {

list.textContent = "";
for (let name of Object.keys(newState.notes)) {

let option = document.createElement("option");
option.textContent = name;
if (newState.selected == name) option.selected = true;
list.appendChild(option);

}
note.value = newState.notes[newState.selected];

localStorage.setItem("Notes", JSON.stringify(newState));
state = newState;

}
setState(JSON.parse(localStorage.getItem("Notes")) ?? {

notes: {"shopping list": "Carrots\nRaisins"},
selected: "shopping list"

});

list.addEventListener("change", () => {
setState({notes: state.notes, selected: list.value});

});
note.addEventListener("change", () => {

let {selected} = state;
setState({

notes: {...state.notes, [selected]: note.value},
selected

});
});

489

document.querySelector("button")
.addEventListener("click", () => {

let name = prompt("Note name");
if (name) setState({

notes: {...state.notes, [name]: ""},
selected: name

});
});

</script>

The script gets its starting state from the "Notes" value stored in
localStorage or, if that’s missing, creates an example state that has
only a shopping list in it. Reading a field that does not exist from
localStorage will yield null. Passing null to JSON.parse will make it
parse the string "null" and return null. Thus, the ?? operator can be
used to provide a default value in a situation like this.

The setState method makes sure the DOM is showing a given state
and stores the new state to localStorage. Event handlers call this func-
tion to move to a new state.

The ... syntax in the example is used to create a new object that
is a clone of the old state.notes, but with one property added or over-
written. It uses spread syntax to first add the properties from the old
object and then set a new property. The square brackets notation in
the object literal is used to create a property whose name is based on
some dynamic value.

There is another object, similar to localStorage, called sessionStorage

. The difference between the two is that the content of sessionStorage
is forgotten at the end of each session, which for most browsers means

490

whenever the browser is closed.

Summary

In this chapter, we discussed how the HTTP protocol works. A client
sends a request, which contains a method (usually GET) and a path
that identifies a resource. The server then decides what to do with the
request and responds with a status code and a response body. Both
requests and responses may contain headers that provide additional
information.

The interface through which browser JavaScript can make HTTP
requests is called fetch. Making a request looks like this:

fetch("/18_http.html").then(r => r.text()).then(text => {
console.log(`The page starts with ${text.slice(0, 15)}`);

});

Browsers make GET requests to fetch the resources needed to display
a web page. A page may also contain forms, which allow information
entered by the user to be sent as a request for a new page when the
form is submitted.

HTML can represent various types of form fields, such as text fields,
checkboxes, multiple-choice fields, and file pickers. Such fields can be
inspected and manipulated with JavaScript. They fire the "change"

event when changed, fire the "input" event when text is typed, and
receive keyboard events when they have keyboard focus. Properties
like value (for text and select fields) or checked (for checkboxes and

491

radio buttons) are used to read or set the field’s content.
When a form is submitted, a "submit" event is fired on it. A JavaScript

handler can call preventDefault on that event to disable the browser’s
default behavior. Form field elements may also occur outside of a form
tag.

When the user has selected a file from their local filesystem in a file
picker field, the FileReader interface can be used to access the content
of this file from a JavaScript program.

The localStorage and sessionStorage objects can be used to save
information in a way that survives page reloads. The first object saves
the data forever (or until the user decides to clear it), and the second
saves it until the browser is closed.

Exercises

Content negotiation

One of the things HTTP can do is called content negotiation. The
Accept request header is used to tell the server what type of document
the client would like to get. Many servers ignore this header, but when
a server knows of various ways to encode a resource, it can look at this
header and send the one that the client prefers.

The URL https://eloquentjavascript.net/author is configured to re-
spond with either plaintext, HTML, or JSON, depending on what the
client asks for. These formats are identified by the standardized media
types text/plain, text/html, and application/json.

Send requests to fetch all three formats of this resource. Use the

492

https://eloquentjavascript.net/author

headers property in the options object passed to fetch to set the header
named Accept to the desired media type.

Finally, try asking for the media type application/rainbows+unicorns

and see which status code that produces.

A JavaScript workbench

Build an interface that allows users to type and run pieces of JavaScript
code.

Put a button next to a <textarea> field that, when pressed, uses
the Function constructor we saw in Chapter 10 to wrap the text in a
function and call it. Convert the return value of the function, or any
error it raises, to a string and display it below the text field.

Conway's Game of Life

Conway’s Game of Life is a simple simulation that creates artificial “life”
on a grid, each cell of which is either alive or not. In each generation
(turn), the following rules are applied:

• Any live cell with fewer than two or more than three live neighbors
dies.

• Any live cell with two or three live neighbors lives on to the next
generation.

• Any dead cell with exactly three live neighbors becomes a live
cell.

493

A neighbor is defined as any adjacent cell, including diagonally adja-
cent ones.

Note that these rules are applied to the whole grid at once, not one
square at a time. That means the counting of neighbors is based on
the situation at the start of the generation, and changes happening to
neighbor cells during this generation should not influence the new state
of a given cell.

Implement this game using whichever data structure you find appro-
priate. Use Math.random to populate the grid with a random pattern
initially. Display it as a grid of checkbox fields, with a button next to
it to advance to the next generation. When the user checks or unchecks
the checkboxes, their changes should be included when computing the
next generation.

494

“I look at the many colors before me. I look at my blank
canvas. Then, I try to apply colors like words that shape
poems, like notes that shape music.”

—Joan Miró

Chapter 19

Project: A Pixel Art Editor

The material from the previous chapters gives you all the elements you
need to build a basic web application. In this chapter, we will do just
that.

Our application will be a pixel-drawing program that allows you to
modify a picture pixel by pixel by manipulating a zoomed-in view of it,
shown as a grid of colored squares. You can use the program to open
image files, scribble on them with your mouse or other pointer device,
and save them. This is what it will look like:

Painting on a computer is great. You don’t need to worry about

495

materials, skill, or talent. You just start smearing and see where you
end up.

Components

The interface for the application shows a big <canvas> element on top,
with a number of form fields below it. The user draws on the picture
by selecting a tool from a <select> field and then clicking, touching, or
dragging across the canvas. There are tools for drawing single pixels or
rectangles, for filling an area, and for picking a color from the picture.

We will structure the editor interface as a number of components, ob-
jects that are responsible for a piece of the DOM and that may contain
other components inside them.

The state of the application consists of the current picture, the se-
lected tool, and the selected color. We’ll set things up so that the state
lives in a single value and the interface components always base the way
they look on the current state.

To see why this is important, let’s consider the alternative—distributing
pieces of state throughout the interface. Up to a certain point, this is
easier to program. We can just put in a color field and read its value
when we need to know the current color.

But then we add the color picker—a tool that lets you click the picture
to select the color of a given pixel. To keep the color field showing the
correct color, that tool would have to know that the color field exists and
update it whenever it picks a new color. If you ever add another place
that makes the color visible (maybe the mouse cursor could show it),

496

you have to update your color-changing code to keep that synchronized
as well.

In effect, this creates a problem where each part of the interface needs
to know about all other parts, which is not very modular. For small
applications like the one in this chapter, that may not be a problem.
For bigger projects, it can turn into a real nightmare.

To avoid this nightmare on principle, we’re going to be strict about
data flow. There is a state, and the interface is drawn based on that
state. An interface component may respond to user actions by updating
the state, at which point the components get a chance to synchronize
themselves with this new state.

In practice, each component is set up so that when it is given a new
state, it also notifies its child components, insofar as those need to be
updated. Setting this up is a bit of a hassle. Making this more conve-
nient is the main selling point of many browser programming libraries.
But for a small application like this, we can do it without such infras-
tructure.

Updates to the state are represented as objects, which we’ll call ac-
tions. Components may create such actions and dispatch them—give
them to a central state management function. That function computes
the next state, after which the interface components update themselves
to this new state.

We’re taking the messy task of running a user interface and applying
structure to it. Though the DOM-related pieces are still full of side
effects, they are held up by a conceptually simple backbone: the state
update cycle. The state determines what the DOM looks like, and the

497

only way DOM events can change the state is by dispatching actions to
the state.

There are many variants of this approach, each with its own benefits
and problems, but their central idea is the same: state changes should
go through a single well-defined channel, not happen all over the place.

Our components will be classes conforming to an interface. Their
constructor is given a state—which may be the whole application state
or some smaller value if it doesn’t need access to everything—and uses
that to build up a dom property. This is the DOM element that rep-
resents the component. Most constructors will also take some other
values that won’t change over time, such as the function they can use
to dispatch an action.

Each component has a syncState method that is used to synchronize
it to a new state value. The method takes one argument, the state,
which is of the same type as the first argument to its constructor.

The state

The application state will be an object with picture, tool, and color

properties. The picture is itself an object that stores the width, height,
and pixel content of the picture. The pixels are stored in a single array,
row by row, from top to bottom.

class Picture {
constructor(width, height, pixels) {

this.width = width;
this.height = height;

498

this.pixels = pixels;
}
static empty(width, height, color) {

let pixels = new Array(width * height).fill(color);
return new Picture(width, height, pixels);

}
pixel(x, y) {

return this.pixels[x + y * this.width];
}
draw(pixels) {

let copy = this.pixels.slice();
for (let {x, y, color} of pixels) {

copy[x + y * this.width] = color;
}
return new Picture(this.width, this.height, copy);

}
}

We want to be able to treat a picture as an immutable value, for reasons
we’ll get back to later in the chapter. But we also sometimes need to
update a whole bunch of pixels at a time. To be able to do that,
the class has a draw method that expects an array of updated pixels—
objects with x, y, and color properties—and creates a new picture with
those pixels overwritten. This method uses slice without arguments to
copy the entire pixel array—the start of the slice defaults to 0, and the
end defaults to the array’s length.

The empty method uses two pieces of array functionality that we
haven’t seen before. The Array constructor can be called with a number
to create an empty array of the given length. The fill method can then

499

be used to fill this array with a given value. These are used to create
an array in which all pixels have the same color.

Colors are stored as strings containing traditional CSS color codes
made up of a hash sign (#) followed by six hexadecimal (base-16)
digits—two for the red component, two for the green component, and
two for the blue component. This is a somewhat cryptic and inconve-
nient way to write colors, but it is the format the HTML color input
field uses, and it can be used in the fillStyle property of a canvas
drawing context, so for the ways we’ll use colors in this program, it is
practical enough.

Black, where all components are zero, is written "#000000", and bright
pink looks like "#ff00ff", where the red and blue components have the
maximum value of 255, written ff in hexadecimal digits (which use a
to f to represent digits 10 to 15).

We’ll allow the interface to dispatch actions as objects whose proper-
ties overwrite the properties of the previous state. The color field, when
the user changes it, could dispatch an object like {color: field.value},
from which this update function can compute a new state.

function updateState(state, action) {
return {...state, ...action};

}

This pattern, in which object spread is used to first add the properties
of an existing object and then override some of those, is common in
JavaScript code that uses immutable objects.

500

DOM building

One of the main things that interface components do is create DOM
structure. We again don’t want to directly use the verbose DOM meth-
ods for that, so here’s a slightly expanded version of the elt function:

function elt(type, props, ...children) {
let dom = document.createElement(type);
if (props) Object.assign(dom, props);
for (let child of children) {

if (typeof child != "string") dom.appendChild(child);
else dom.appendChild(document.createTextNode(child));

}
return dom;

}

The main difference between this version and the one we used in Chap-
ter 16 is that it assigns properties to DOM nodes, not attributes. This
means we can’t use it to set arbitrary attributes, but we can use it to
set properties whose value isn’t a string, such as onclick, which can be
set to a function to register a click event handler.

This allows this convenient style for registering event handlers:

<body>
<script>

document.body.appendChild(elt("button", {
onclick: () => console.log("click")

}, "The button"));
</script>

</body>

501

The canvas

The first component we’ll define is the part of the interface that displays
the picture as a grid of colored boxes. This component is responsible
for two things: showing a picture and communicating pointer events on
that picture to the rest of the application.

Therefore, we can define it as a component that only knows about
the current picture, not the whole application state. Because it doesn’t
know how the application as a whole works, it cannot directly dispatch
actions. Rather, when responding to pointer events, it calls a callback
function provided by the code that created it, which will handle the
application-specific parts.

const scale = 10;

class PictureCanvas {
constructor(picture, pointerDown) {

this.dom = elt("canvas", {
onmousedown: event => this.mouse(event, pointerDown),
ontouchstart: event => this.touch(event, pointerDown)

});
this.syncState(picture);

}
syncState(picture) {

if (this.picture == picture) return;
this.picture = picture;
drawPicture(this.picture, this.dom, scale);

}
}

502

We draw each pixel as a 10-by-10 square, as determined by the scale

constant. To avoid unnecessary work, the component keeps track of its
current picture and does a redraw only when syncState is given a new
picture.

The actual drawing function sets the size of the canvas based on the
scale and picture size and fills it with a series of squares, one for each
pixel.

function drawPicture(picture, canvas, scale) {
canvas.width = picture.width * scale;
canvas.height = picture.height * scale;
let cx = canvas.getContext("2d");

for (let y = 0; y < picture.height; y++) {
for (let x = 0; x < picture.width; x++) {

cx.fillStyle = picture.pixel(x, y);
cx.fillRect(x * scale, y * scale, scale, scale);

}
}

}

When the left mouse button is pressed while the mouse is over the
picture canvas, the component calls the pointerDown callback, giving it
the position of the pixel that was clicked—in picture coordinates. This
will be used to implement mouse interaction with the picture. The
callback may return another callback function to be notified when the
pointer is moved to a different pixel while the button is held down.

PictureCanvas.prototype.mouse = function(downEvent, onDown) {

503

if (downEvent.button != 0) return;
let pos = pointerPosition(downEvent, this.dom);
let onMove = onDown(pos);
if (!onMove) return;
let move = moveEvent => {

if (moveEvent.buttons == 0) {
this.dom.removeEventListener("mousemove", move);

} else {
let newPos = pointerPosition(moveEvent, this.dom);
if (newPos.x == pos.x && newPos.y == pos.y) return;
pos = newPos;
onMove(newPos);

}
};
this.dom.addEventListener("mousemove", move);

};

function pointerPosition(pos, domNode) {
let rect = domNode.getBoundingClientRect();
return {x: Math.floor((pos.clientX - rect.left) / scale),

y: Math.floor((pos.clientY - rect.top) / scale)};
}

Since we know the size of the pixels and we can use getBoundingClientRect
to find the position of the canvas on the screen, it is possible to go from
mouse event coordinates (clientX and clientY) to picture coordinates.
These are always rounded down so that they refer to a specific pixel.

With touch events, we have to do something similar, but using differ-
ent events and making sure we call preventDefault on the "touchstart"

event to prevent panning.

504

PictureCanvas.prototype.touch = function(startEvent,
onDown) {

let pos = pointerPosition(startEvent.touches[0], this.dom);
let onMove = onDown(pos);
startEvent.preventDefault();
if (!onMove) return;
let move = moveEvent => {

let newPos = pointerPosition(moveEvent.touches[0],
this.dom);

if (newPos.x == pos.x && newPos.y == pos.y) return;
pos = newPos;
onMove(newPos);

};
let end = () => {

this.dom.removeEventListener("touchmove", move);
this.dom.removeEventListener("touchend", end);

};
this.dom.addEventListener("touchmove", move);
this.dom.addEventListener("touchend", end);

};

For touch events, clientX and clientY aren’t available directly on the
event object, but we can use the coordinates of the first touch object in
the touches property.

The application

To make it possible to build the application piece by piece, we’ll im-
plement the main component as a shell around a picture canvas and a

505

dynamic set of tools and controls that we pass to its constructor.
The controls are the interface elements that appear below the picture.

They’ll be provided as an array of component constructors.
The tools do things like drawing pixels or filling in an area. The

application shows the set of available tools as a <select> field. The
currently selected tool determines what happens when the user interacts
with the picture with a pointer device. The set of available tools is
provided as an object that maps the names that appear in the drop-
down field to functions that implement the tools. Such functions get a
picture position, a current application state, and a dispatch function as
arguments. They may return a move handler function that gets called
with a new position and a current state when the pointer moves to a
different pixel.

class PixelEditor {
constructor(state, config) {

let {tools, controls, dispatch} = config;
this.state = state;

this.canvas = new PictureCanvas(state.picture, pos => {
let tool = tools[this.state.tool];
let onMove = tool(pos, this.state, dispatch);
if (onMove) return pos => onMove(pos, this.state);

});
this.controls = controls.map(

Control => new Control(state, config));
this.dom = elt("div", {}, this.canvas.dom, elt("br"),

...this.controls.reduce(
(a, c) => a.concat(" ", c.dom), []));

506

}
syncState(state) {

this.state = state;
this.canvas.syncState(state.picture);
for (let ctrl of this.controls) ctrl.syncState(state);

}
}

The pointer handler given to PictureCanvas calls the currently selected
tool with the appropriate arguments and, if that returns a move handler,
adapts it to also receive the state.

All controls are constructed and stored in this.controls so that they
can be updated when the application state changes. The call to reduce

introduces spaces between the controls’ DOM elements. That way, they
don’t look so pressed together.

The first control is the tool selection menu. It creates a <select> ele-
ment with an option for each tool and sets up a "change" event handler
that updates the application state when the user selects a different tool.

class ToolSelect {
constructor(state, {tools, dispatch}) {

this.select = elt("select", {
onchange: () => dispatch({tool: this.select.value})

}, ...Object.keys(tools).map(name => elt("option", {
selected: name == state.tool

}, name)));

this.dom = elt("label", null, "🖌 Tool: ", this.select);
}
syncState(state) { this.select.value = state.tool; }

507

}

By wrapping the label text and the field in a <label> element, we tell
the browser that the label belongs to that field so that you can, for
example, click the label to focus the field.

We also need to be able to change the color, so let’s add a control for
that. An HTML <input> element with a type attribute of color gives us
a form field that is specialized for selecting colors. Such a field’s value
is always a CSS color code in "#RRGGBB" format (red, green, and blue
components, two digits per color). The browser will show a color picker
interface when the user interacts with it.

Depending on the browser, the color picker might look like this:

This control creates such a field and wires it up to stay synchronized
with the application state’s color property.

508

class ColorSelect {
constructor(state, {dispatch}) {

this.input = elt("input", {
type: "color",
value: state.color,
onchange: () => dispatch({color: this.input.value})

});

this.dom = elt("label", null, "🎨 Color: ", this.input);
}
syncState(state) { this.input.value = state.color; }

}

Drawing tools

Before we can draw anything, we need to implement the tools that will
control the functionality of mouse or touch events on the canvas.

The most basic tool is the draw tool, which changes any pixel you
click or tap to the currently selected color. It dispatches an action that
updates the picture to a version in which the pointed-at pixel is given
the currently selected color.

function draw(pos, state, dispatch) {
function drawPixel({x, y}, state) {

let drawn = {x, y, color: state.color};
dispatch({picture: state.picture.draw([drawn])});

}
drawPixel(pos, state);
return drawPixel;

509

}

The function immediately calls the drawPixel function but then also
returns it so that it’s called again for newly touched pixels when the
user drags or swipes over the picture.

To draw larger shapes, it can be useful to quickly create rectangles.
The rectangle tool draws a rectangle between the point where you start
dragging and the point that you drag to.

function rectangle(start, state, dispatch) {
function drawRectangle(pos) {

let xStart = Math.min(start.x, pos.x);
let yStart = Math.min(start.y, pos.y);
let xEnd = Math.max(start.x, pos.x);
let yEnd = Math.max(start.y, pos.y);
let drawn = [];
for (let y = yStart; y <= yEnd; y++) {

for (let x = xStart; x <= xEnd; x++) {
drawn.push({x, y, color: state.color});

}
}
dispatch({picture: state.picture.draw(drawn)});

}
drawRectangle(start);
return drawRectangle;

}

An important detail in this implementation is that when dragging, the
rectangle is redrawn on the picture from the original state. That way,
you can make the rectangle larger and smaller again while creating it,

510

without the intermediate rectangles sticking around in the final picture.
This is one of the reasons why immutable picture objects are useful—
we’ll see another reason later.

Implementing flood fill is somewhat more involved. This is a tool
that fills the pixel under the pointer and all adjacent pixels that have
the same color. “Adjacent” means directly horizontally or vertically
adjacent, not diagonally. This picture illustrates the set of pixels colored
when the flood fill tool is used at the marked pixel:

Interestingly, the way we’ll do this looks a bit like the pathfinding
code from Chapter 7. Whereas that code searched through a graph to
find a route, this code searches through a grid to find all “connected”
pixels. The problem of keeping track of a branching set of possible
routes is similar.

const around = [{dx: -1, dy: 0}, {dx: 1, dy: 0},
{dx: 0, dy: -1}, {dx: 0, dy: 1}];

function fill({x, y}, state, dispatch) {
let targetColor = state.picture.pixel(x, y);
let drawn = [{x, y, color: state.color}];
let visited = new Set();
for (let done = 0; done < drawn.length; done++) {

511

for (let {dx, dy} of around) {
let x = drawn[done].x + dx, y = drawn[done].y + dy;
if (x >= 0 && x < state.picture.width &&

y >= 0 && y < state.picture.height &&
!visited.has(x + "," + y) &&
state.picture.pixel(x, y) == targetColor) {

drawn.push({x, y, color: state.color});
visited.add(x + "," + y);

}
}

}
dispatch({picture: state.picture.draw(drawn)});

}

The array of drawn pixels doubles as the function’s work list. For each
pixel reached, we have to see whether any adjacent pixels have the
same color and haven’t already been painted over. The loop counter
lags behind the length of the drawn array as new pixels are added. Any
pixels ahead of it still need to be explored. When it catches up with
the length, no unexplored pixels remain, and the function is done.

The final tool is a color picker, which allows you to point at a color
in the picture to use it as the current drawing color.

function pick(pos, state, dispatch) {
dispatch({color: state.picture.pixel(pos.x, pos.y)});

}

512

Saving and loading

When we’ve drawn our masterpiece, we’ll want to save it for later. We
should add a button for downloading the current picture as an image
file. This control provides that button:

class SaveButton {
constructor(state) {

this.picture = state.picture;
this.dom = elt("button", {

onclick: () => this.save()

}, "💾 Save");
}
save() {

let canvas = elt("canvas");
drawPicture(this.picture, canvas, 1);
let link = elt("a", {

href: canvas.toDataURL(),
download: "pixelart.png"

});
document.body.appendChild(link);
link.click();
link.remove();

}
syncState(state) { this.picture = state.picture; }

}

The component keeps track of the current picture so that it can access
it when saving. To create the image file, it uses a <canvas> element on
which it draws the picture (at a scale of one pixel per pixel).

513

The toDataURL method on a canvas element creates a URL that uses
the data: scheme. Unlike http: and https: URLs, data URLs contain
the whole resource in the URL. They are usually very long, but they
allow us to create working links to arbitrary pictures, right here in the
browser.

To actually get the browser to download the picture, we then create
a link element that points at this URL and has a download attribute.
Such links, when clicked, make the browser show a file save dialog. We
add that link to the document, simulate a click on it, and remove it
again. You can do a lot with browser technology, but sometimes the
way to do it is rather odd.

And it gets worse. We’ll also want to be able to load existing im-
age files into our application. To do that, we again define a button
component.

class LoadButton {
constructor(_, {dispatch}) {

this.dom = elt("button", {
onclick: () => startLoad(dispatch)

}, "📁 Load");
}
syncState() {}

}

function startLoad(dispatch) {
let input = elt("input", {

type: "file",
onchange: () => finishLoad(input.files[0], dispatch)

514

});
document.body.appendChild(input);
input.click();
input.remove();

}

To get access to a file on the user’s computer, we need the user to select
the file through a file input field. But we don’t want the load button to
look like a file input field, so we create the file input when the button
is clicked and then pretend that this file input itself was clicked.

When the user has selected a file, we can use FileReader to get access
to its contents, again as a data URL. That URL can be used to create
an element, but because we can’t get direct access to the pixels
in such an image, we can’t create a Picture object from that.

function finishLoad(file, dispatch) {
if (file == null) return;
let reader = new FileReader();
reader.addEventListener("load", () => {

let image = elt("img", {
onload: () => dispatch({

picture: pictureFromImage(image)
}),
src: reader.result

});
});
reader.readAsDataURL(file);

}

To get access to the pixels, we must first draw the picture to a <canvas>

515

element. The canvas context has a getImageData method that allows a
script to read its pixels. So once the picture is on the canvas, we can
access it and construct a Picture object.

function pictureFromImage(image) {
let width = Math.min(100, image.width);
let height = Math.min(100, image.height);
let canvas = elt("canvas", {width, height});
let cx = canvas.getContext("2d");
cx.drawImage(image, 0, 0);
let pixels = [];
let {data} = cx.getImageData(0, 0, width, height);

function hex(n) {
return n.toString(16).padStart(2, "0");

}
for (let i = 0; i < data.length; i += 4) {

let [r, g, b] = data.slice(i, i + 3);
pixels.push("#" + hex(r) + hex(g) + hex(b));

}
return new Picture(width, height, pixels);

}

We’ll limit the size of images to 100 by 100 pixels, since anything bigger
will look huge on our display and might slow down the interface.

The data property of the object returned by getImageData is an array
of color components. For each pixel in the rectangle specified by the
arguments, it contains four values that represent the red, green, blue,
and alpha components of the pixel’s color, as numbers between 0 and
255. The alpha part represents opacity—when it is 0, the pixel is fully

516

transparent, and when it is 255, it is fully opaque. For our purpose, we
can ignore it.

The two hexadecimal digits per component, as used in our color nota-
tion, correspond precisely to the 0 to 255 range—two base-16 digits can
express 162 = 256 different numbers. The toString method of numbers
can be given a base as an argument, so n.toString(16) will produce a
string representation in base 16. We have to make sure that each num-
ber takes up two digits, so the hex helper function calls padStart to add
a leading 0 when necessary.

We can load and save now! That leaves just one more feature before
we’re done.

Undo history

Because half the process of editing is making little mistakes and cor-
recting them, an important feature in a drawing program is an undo
history.

To be able to undo changes, we need to store previous versions of the
picture. Since pictures are immutable values, that’s easy. But it does
require an additional field in the application state.

We’ll add a done array to keep previous versions of the picture. Main-
taining this property requires a more complicated state update function
that adds pictures to the array.

We don’t want to store every change, though—just changes that are
a certain amount of time apart. To be able to do that, we’ll need a
second property, doneAt, to track the time at which we last stored a

517

picture in the history.

function historyUpdateState(state, action) {
if (action.undo == true) {

if (state.done.length == 0) return state;
return {

...state,
picture: state.done[0],
done: state.done.slice(1),
doneAt: 0

};
} else if (action.picture &&

state.doneAt < Date.now() - 1000) {
return {

...state,

...action,
done: [state.picture, ...state.done],
doneAt: Date.now()

};
} else {

return {...state, ...action};
}

}

When the action is an undo action, the function takes the most recent
picture from the history and makes that the current picture. It sets
doneAt to zero so that the next change is guaranteed to store the picture
back in the history, allowing you to revert to it another time if you want.

Otherwise, if the action contains a new picture and the last time we
stored something is more than a second (1000 milliseconds) ago, the

518

done and doneAt properties are updated to store the previous picture.
The undo button component doesn’t do much. It dispatches undo

actions when clicked and disables itself when there is nothing to undo.

class UndoButton {
constructor(state, {dispatch}) {

this.dom = elt("button", {
onclick: () => dispatch({undo: true}),
disabled: state.done.length == 0

}, "⮪ Undo");
}
syncState(state) {

this.dom.disabled = state.done.length == 0;
}

}

Let's draw

To set up the application, we need to create a state, a set of tools, a set of
controls, and a dispatch function. We can pass them to the PixelEditor

constructor to create the main component. Since we’ll need to create
several editors in the exercises, we first define some bindings.

const startState = {
tool: "draw",
color: "#000000",
picture: Picture.empty(60, 30, "#f0f0f0"),
done: [],
doneAt: 0

519

};

const baseTools = {draw, fill, rectangle, pick};

const baseControls = [
ToolSelect, ColorSelect, SaveButton, LoadButton, UndoButton

];

function startPixelEditor({state = startState,
tools = baseTools,
controls = baseControls}) {

let app = new PixelEditor(state, {
tools,
controls,
dispatch(action) {

state = historyUpdateState(state, action);
app.syncState(state);

}
});
return app.dom;

}

When destructuring an object or array, you can use = after a binding
name to give the binding a default value, which is used when the prop-
erty is missing or holds undefined. The startPixelEditor function makes
use of this to accept an object with a number of optional properties as
an argument. If you don’t provide a tools property, for example, tools
will be bound to baseTools.

This is how we get an actual editor on the screen:

520

<div></div>
<script>

document.querySelector("div")
.appendChild(startPixelEditor({}));

</script>

Why is this so hard?

Browser technology is amazing. It provides a powerful set of interface
building blocks, ways to style and manipulate them, and tools to inspect
and debug your applications. The software you write for the browser
can be run on almost every computer and phone on the planet.

At the same time, browser technology is ridiculous. You have to
learn a large number of silly tricks and obscure facts to master it, and
the default programming model it provides is so problematic that most
programmers prefer to cover it in several layers of abstraction rather
than deal with it directly.

While the situation is definitely improving, it mostly does so in the
form of more elements being added to address shortcomings—creating
even more complexity. A feature used by a million websites can’t really
be replaced. Even if it could, it would be hard to decide what it should
be replaced with.

Technology never exists in a vacuum—we’re constrained by our tools
and the social, economic, and historical factors that produced them.
This can be annoying, but it is generally more productive to try to build
a good understanding of how the existing technical reality works—and

521

why it is the way it is—than to rage against it or hold out for another
reality.

New abstractions can be helpful. The component model and data
flow convention I used in this chapter is a crude form of that. As men-
tioned, there are libraries that try to make user interface programming
more pleasant. At the time of writing, React and Svelte are popu-
lar choices, but there’s a whole cottage industry of such frameworks. If
you’re interested in programming web applications, I recommend inves-
tigating a few of them to understand how they work and what benefits
they provide.

Exercises

There is still room for improvement in our program. Let’s add a few
more features as exercises.

Keyboard bindings

Add keyboard shortcuts to the application. The first letter of a tool’s
name selects the tool, and ctrl-Z or command-Z activates undo.

Do this by modifying the PixelEditor component. Add a tabIndex

property of 0 to the wrapping <div> element so that it can receive
keyboard focus. Note that the property corresponding to the tabindex

attribute is called tabIndex, with a capital I, and our elt function ex-
pects property names. Register the key event handlers directly on that
element. This means you have to click, touch, or tab to the application
before you can interact with it with the keyboard.

522

https://reactjs.org/
https://svelte.dev/

Remember that keyboard events have ctrlKey and metaKey (for com-
mand on Mac) properties that you can use to see whether those keys
are held down.

Efficient drawing

During drawing, the majority of work that our application does happens
in drawPicture. Creating a new state and updating the rest of the DOM
isn’t very expensive, but repainting all the pixels on the canvas is quite
a bit of work.

Find a way to make the syncState method of PictureCanvas faster by
redrawing only the pixels that actually changed.

Remember that drawPicture is also used by the save button, so if
you change it, either make sure the changes don’t break the old use or
create a new version with a different name.

Also note that changing the size of a <canvas> element, by setting
its width or height properties, clears it, making it entirely transparent
again.

Circles

Define a tool called circle that draws a filled circle when you drag. The
center of the circle lies at the point where the drag or touch gesture
starts, and its radius is determined by the distance dragged.

523

Proper lines

This is a more advanced exercise than the preceding three, and it will
require you to design a solution to a nontrivial problem. Make sure
you have plenty of time and patience before starting to work on this
exercise, and don’t get discouraged by initial failures.

On most browsers, when you select the draw tool and quickly drag
across the picture, you don’t get a closed line. Rather, you get dots
with gaps between them because the "mousemove" or "touchmove" events
did not fire quickly enough to hit every pixel.

Improve the draw tool to make it draw a full line. This means you have
to make the motion handler function remember the previous position
and connect that to the current one.

To do this, since the pixels can be an arbitrary distance apart, you’ll
have to write a general line drawing function.

A line between two pixels is a connected chain of pixels, as straight
as possible, going from the start to the end. Diagonally adjacent pixels
count as connected. A slanted line should look like the picture on the
left, not the picture on the right.

Finally, if we have code that draws a line between two arbitrary
points, we might as well use it to also define a line tool, which draws a

524

straight line between the start and end of a drag.

525

“A student asked, ‘The programmers of old used only simple
machines and no programming languages, yet they made
beautiful programs. Why do we use complicated machines and
programming languages?’ Fu-Tzu replied, ‘The builders of old
used only sticks and clay, yet they made beautiful huts.”’

—Master Yuan-Ma, The Book of Programming

Chapter 20

Node.js

So far, we’ve used the JavaScript language in a single environment: the
browser. This chapter and the next one will briefly introduce Node.js,
a program that allows you to apply your JavaScript skills outside of
the browser. With it, you can build anything from small command line
tools to HTTP servers that power dynamic websites.

These chapters aim to teach you the main concepts that Node.js uses
and to give you enough information to write useful programs for it.
They do not try to be a complete, or even a thorough, treatment of the
platform.

If you want to follow along and run the code in this chapter, you’ll
need to install Node.js version 18 or higher. To do so, go to https://nodejs.org
and follow the installation instructions for your operating system. You
can also find further documentation for Node.js there.

526

https://nodejs.org

Background

When building systems that communicate over the network, the way
you manage input and output—that is, the reading and writing of data
to and from the network and hard drive—can make a big difference in
how quickly a system responds to the user or to network requests.

In such programs, asynchronous programming is often helpful. It
allows the program to send and receive data from and to multiple de-
vices at the same time without complicated thread management and
synchronization.

Node was initially conceived for the purpose of making asynchronous
programming easy and convenient. JavaScript lends itself well to a sys-
tem like Node. It is one of the few programming languages that does
not have a built-in way to do input and output. Thus, JavaScript could
be fit onto Node’s rather eccentric approach to network and filesys-
tem programming without ending up with two inconsistent interfaces.
In 2009, when Node was being designed, people were already doing
callback-based programming in the browser, so the community around
the language was used to an asynchronous programming style.

The node command

When Node.js is installed on a system, it provides a program called
node, which is used to run JavaScript files. Say you have a file hello.js,
containing this code:

let message = "Hello world";

527

console.log(message);

You can then run node from the command line like this to execute the
program:

$ node hello.js
Hello world

The console.log method in Node does something similar to what it does
in the browser. It prints out a piece of text. But in Node, the text will
go to the process’s standard output stream rather than to a browser’s
JavaScript console. When running node from the command line, that
means you see the logged values in your terminal.

If you run node without giving it a file, it provides you with a prompt
at which you can type JavaScript code and immediately see the result.

$ node
> 1 + 1
2
> [-1, -2, -3].map(Math.abs)
[1, 2, 3]
> process.exit(0)
$

The process binding, just like the console binding, is available globally
in Node. It provides various ways to inspect and manipulate the current
program. The exit method ends the process and can be given an exit
status code, which tells the program that started node (in this case, the
command line shell) whether the program completed successfully (code
zero) or encountered an error (any other code).

528

To find the command line arguments given to your script, you can
read process.argv, which is an array of strings. Note that it also in-
cludes the name of the node command and your script name, so the
actual arguments start at index 2. If showargv.js contains the state-
ment console.log(process.argv), you could run it like this:

$ node showargv.js one --and two
["node", "/tmp/showargv.js", "one", "--and", "two"]

All the standard JavaScript global bindings, such as Array, Math, and
JSON, are also present in Node’s environment. Browser-related function-
ality, such as document or prompt, is not.

Modules

Beyond the bindings I mentioned, such as console and process, Node
puts few additional bindings in the global scope. If you want to access
built-in functionality, you have to ask the module system for it.

Node started out using the CommonJS module system, based on the
require function, which we saw in Chapter 10. It will still use this
system by default when you load a .js file.

But today, Node also supports the more modern ES module system.
When a script’s filename ends in .mjs, it is considered to be such a
module, and you can use import and export in it (but not require). We
will use ES modules in this chapter.

When importing a module—whether with require or import—Node
has to resolve the given string to an actual file that it can load. Names

529

that start with /, ./, or ../ are resolved as files, relative to the current
module’s path. Here, . stands for the current directory, ../ for one
directory up, and / for the root of the filesystem. If you ask for "./

graph.mjs" from the file /tmp/robot/robot.mjs, Node will try to load the
file /tmp/robot/graph.mjs.

When a string that does not look like a relative or absolute path is
imported, it is assumed to refer to either a built-in module or a module
installed in a node_modules directory. For example, importing from "

node:fs" will give you Node’s built-in filesystem module. Importing
"robot" might try to load the library found in node_modules/robot/. It’s
common to install such libraries using NPM, which we’ll return to in a
moment.

Let’s set up a small project consisting of two files. The first one,
called main.mjs, defines a script that can be called from the command
line to reverse a string.

import {reverse} from "./reverse.mjs";

// Index 2 holds the first actual command line argument
let argument = process.argv[2];

console.log(reverse(argument));

The file reverse.mjs defines a library for reversing strings, which can
be used both by this command line tool and by other scripts that need
direct access to a string-reversing function.

export function reverse(string) {
return Array.from(string).reverse().join("");

530

}

Remember that export is used to declare that a binding is part of the
module’s interface. That allows main.mjs to import and use the func-
tion.

We can now call our tool like this:

$ node main.mjs JavaScript
tpircSavaJ

Installing with NPM

NPM, introduced in Chapter 10, is an online repository of JavaScript
modules, many of which are specifically written for Node. When you
install Node on your computer, you also get the npm command, which
you can use to interact with this repository.

NPM’s main use is downloading packages. We saw the ini package
in Chapter 10. We can use NPM to fetch and install that package on
our computer.

$ npm install ini
added 1 package in 723ms

$ node
> const {parse} = require("ini");
> parse("x = 1\ny = 2");
{ x: '1', y: '2' }

531

After running npm install, NPM will have created a directory called
node_modules. Inside that directory will be an ini directory that con-
tains the library. You can open it and look at the code. When we
import "ini", this library is loaded, and we can call its parse property
to parse a configuration file.

By default, NPM installs packages under the current directory rather
than in a central place. If you are used to other package managers, this
may seem unusual, but it has advantages—it puts each application in
full control of the packages it installs and makes it easier to manage
versions and clean up when removing an application.

Package files

After running npm install to install some package, you will find not
only a node_modules directory but also a file called package.json in your
current directory. It is recommended to have such a file for each project.
You can create it manually or run npm init. This file contains infor-
mation about the project, such as its name and version, and lists its
dependencies.

The robot simulation from Chapter 7, as modularized in the exercise
in Chapter 10, might have a package.json file like this:

{
"author": "Marijn Haverbeke",
"name": "eloquent-javascript-robot",
"description": "Simulation of a package-delivery robot",
"version": "1.0.0",
"main": "run.mjs",

532

"dependencies": {
"dijkstrajs": "^1.0.1",
"random-item": "^1.0.0"

},
"license": "ISC"

}

When you run npm install without naming a package to install, NPM
will install the dependencies listed in package.json. When you install a
specific package that is not already listed as a dependency, NPM will
add it to package.json.

Versions

A package.json file lists both the program’s own version and versions
for its dependencies. Versions are a way to deal with the fact that
packages evolve separately, and code written to work with a package as
it existed at one point may not work with a later, modified version of
the package.

NPM demands that its packages follow a schema called semantic
versioning, which encodes some information about which versions are
compatible (don’t break the old interface) in the version number. A
semantic version consists of three numbers separated by periods, such
as 2.3.0. Every time new functionality is added, the middle number has
to be incremented. Every time compatibility is broken, so that existing
code that uses the package might not work with the new version, the
first number has to be incremented.

A caret character (^) in front of the version number for a dependency

533

in package.json indicates that any version compatible with the given
number may be installed. For example, "^2.3.0" would mean that any
version greater than or equal to 2.3.0 and less than 3.0.0 is allowed.

The npm command is also used to publish new packages or new ver-
sions of packages. If you run npm publish in a directory that has a
package.json file, it will publish a package with the name and version
listed in the JSON file to the registry. Anyone can publish packages to
NPM—though only under a package name that isn’t in use yet, since
it wouldn’t be good if random people could update existing packages.

This book won’t delve further into the details of NPM usage. Refer
to https://npmjs.com for further documentation and a way to search
for packages.

The filesystem module

One of the most commonly used built-in modules in Node is the node:fs

module, which stands for filesystem. It exports functions for working
with files and directories.

For example, the function called readFile reads a file and then calls
a callback with the file’s contents.

import {readFile} from "node:fs";
readFile("file.txt", "utf8", (error, text) => {

if (error) throw error;
console.log("The file contains:", text);

});

The second argument to readFile indicates the character encoding used

534

https://npmjs.com

to decode the file into a string. There are several ways in which text
can be encoded to binary data, but most modern systems use UTF-8.
Unless you have reasons to believe another encoding is used, pass "utf8
" when reading a text file. If you do not pass an encoding, Node will
assume you are interested in the binary data and will give you a Buffer

object instead of a string. This is an array-like object that contains
numbers representing the bytes (8-bit chunks of data) in the files.

import {readFile} from "node:fs";
readFile("file.txt", (error, buffer) => {

if (error) throw error;
console.log("The file contained", buffer.length, "bytes.",

"The first byte is:", buffer[0]);
});

A similar function, writeFile, is used to write a file to disk.

import {writeFile} from "node:fs";
writeFile("graffiti.txt", "Node was here", err => {

if (err) console.log(`Failed to write file: ${err}`);
else console.log("File written.");

});

Here it was not necessary to specify the encoding—writeFile will as-
sume that when it is given a string to write, rather than a Buffer object,
it should write it out as text using its default character encoding, which
is UTF-8.

The node:fs module contains many other useful functions: readdir

will give you the files in a directory as an array of strings, stat will
retrieve information about a file, rename will rename a file, unlink will

535

remove one, and so on. See the documentation at https://nodejs.org for
specifics.

Most of these take a callback function as the last parameter, which
they call either with an error (the first argument) or with a successful
result (the second). As we saw in Chapter 11, there are downsides to
this style of programming—the biggest one being that error handling
becomes verbose and error prone.

The node:fs/promises module exports most of the same functions as
the old node:fs module but uses promises rather than callback func-
tions.

import {readFile} from "node:fs/promises";
readFile("file.txt", "utf8")

.then(text => console.log("The file contains:", text));

Sometimes you don’t need asynchronicity and it just gets in the way.
Many of the functions in node:fs also have a synchronous variant, which
has the same name with Sync added to the end. For example, the
synchronous version of readFile is called readFileSync.

import {readFileSync} from "node:fs";
console.log("The file contains:",

readFileSync("file.txt", "utf8"));

Note that while such a synchronous operation is being performed, your
program is stopped entirely. If it should be responding to the user or
to other machines on the network, being stuck on a synchronous action
might produce annoying delays.

536

https://nodejs.org

The HTTP module

Another central module is called node:http. It provides functionality
for running an HTTP server.

This is all it takes to start an HTTP server:

import {createServer} from "node:http";
let server = createServer((request, response) => {

response.writeHead(200, {"Content-Type": "text/html"});
response.write(`

<h1>Hello!</h1>
<p>You asked for <code>${request.url}</code></p>`);

response.end();
});
server.listen(8000);
console.log("Listening! (port 8000)");

If you run this script on your own machine, you can point your web
browser at http://localhost:8000/hello to make a request to your server.
It will respond with a small HTML page.

The function passed as the argument to createServer is called every
time a client connects to the server. The request and response bindings
are objects representing the incoming and outgoing data. The first
contains information about the request, such as its url property, which
tells us to what URL the request was made.

When you open that page in your browser, it sends a request to your
own computer. This causes the server function to run and send back a
response, which you can then see in the browser.

To send something to the client, you call methods on the response

537

http://localhost:8000/hello

object. The first, writeHead, will write out the response headers (see
Chapter 18). You give it the status code (200 for “OK” in this case) and
an object that contains header values. The example sets the Content-

Type header to inform the client that we’ll be sending back an HTML
document.

Next, the actual response body (the document itself) is sent with
response.write. You’re allowed to call this method multiple times if
you want to send the response piece by piece—for example, to stream
data to the client as it becomes available. Finally, response.end signals
the end of the response.

The call to server.listen causes the server to start waiting for con-
nections on port 8000. This is why you have to connect to localhost:8000
to speak to this server, rather than just localhost, which would use the
default port 80.

When you run this script, the process just sits there and waits. When
a script is listening for events—in this case, network connections—node

will not automatically exit when it reaches the end of the script. To
close it, press ctrl-C.

A real web server usually does more than the one in the example—it
looks at the request’s method (the method property) to see what action
the client is trying to perform and looks at the request’s URL to find
out on which resource this action is being performed. We’ll see a more
advanced server later in this chapter.

The node:http module also provides a request function that can be
used to make HTTP requests. However, it is a lot more cumbersome to
use than fetch, which we saw in Chapter 18. Fortunately, fetch is also

538

available in Node as a global binding. Unless you want to do something
very specific, such as processing the response document piece by piece
as the data comes in over the network, I recommend sticking to fetch.

Streams

The response object that the HTTP server could write to is an example
of a writable stream object, which is a widely used concept in Node.
Such objects have a write method that can be passed a string or a
Buffer object to write something to the stream. Their end method
closes the stream and optionally takes a value to write to the stream
before closing. Both of these methods can also be given a callback as an
additional argument, which they will call when the writing or closing
has finished.

It is possible to create a writable stream that points at a file with the
createWriteStream function from the node:fs module. You can then use
the write method on the resulting object to write the file one piece at
a time rather than in one shot, as with writeFile.

Readable streams are a little more involved. The request argument
to the HTTP server’s callback is a readable stream. Reading from a
stream is done using event handlers rather than methods.

Objects that emit events in Node have a method called on that is
similar to the addEventListener method in the browser. You give it an
event name and then a function, and it will register that function to be
called whenever the given event occurs.

Readable streams have "data" and "end" events. The first is fired ev-

539

ery time data comes in, and the second is called whenever the stream is
at its end. This model is most suited for streaming data that can be im-
mediately processed, even when the whole document isn’t available yet.
A file can be read as a readable stream by using the createReadStream

function from node:fs.
This code creates a server that reads request bodies and streams them

back to the client as all-uppercase text:

import {createServer} from "node:http";
createServer((request, response) => {

response.writeHead(200, {"Content-Type": "text/plain"});
request.on("data", chunk =>

response.write(chunk.toString().toUpperCase()));
request.on("end", () => response.end());

}).listen(8000);

The chunk value passed to the data handler will be a binary Buffer. We
can convert this to a string by decoding it as UTF-8 encoded characters
with its toString method.

The following piece of code, when run with the uppercasing server
active, will send a request to that server and write out the response it
gets:

fetch("http://localhost:8000/", {
method: "POST",
body: "Hello server"

}).then(resp => resp.text()).then(console.log);
// → HELLO SERVER

540

A file server

Let’s combine our newfound knowledge about HTTP servers and work-
ing with the filesystem to create a bridge between the two: an HTTP
server that allows remote access to a filesystem. Such a server has all
kinds of uses—it allows web applications to store and share data, or it
can give a group of people shared access to a bunch of files.

When we treat files as HTTP resources, the HTTP methods GET, PUT,
and DELETE can be used to read, write, and delete the files, respectively.
We will interpret the path in the request as the path of the file that the
request refers to.

We probably don’t want to share our whole filesystem, so we’ll in-
terpret these paths as starting in the server’s working directory, which
is the directory in which it was started. If I ran the server from /tmp/

public/ (or C:\tmp\public\ on Windows), then a request for /file.txt

should refer to /tmp/public/file.txt (or C:\tmp\public\file.txt).
We’ll build the program piece by piece, using an object called methods

to store the functions that handle the various HTTP methods. Method
handlers are async functions that get the request object as their argu-
ment and return a promise that resolves to an object that describes the
response.

import {createServer} from "node:http";

const methods = Object.create(null);

createServer((request, response) => {
let handler = methods[request.method] || notAllowed;

541

handler(request).catch(error => {
if (error.status != null) return error;
return {body: String(error), status: 500};

}).then(({body, status = 200, type = "text/plain"}) => {
response.writeHead(status, {"Content-Type": type});
if (body?.pipe) body.pipe(response);
else response.end(body);

});
}).listen(8000);

async function notAllowed(request) {
return {

status: 405,
body: `Method ${request.method} not allowed.`

};
}

This starts a server that just returns 405 error responses, which is the
code used to indicate that the server refuses to handle a given method.

When a request handler’s promise is rejected, the catch call translates
the error into a response object, if it isn’t one already, so that the server
can send back an error response to inform the client that it failed to
handle the request.

The status field of the response description may be omitted, in which
case it defaults to 200 (OK). The content type, in the type property,
can also be left off, in which case the response is assumed to be plain
text.

When the value of body is a readable stream, it will have a pipe

method that we can use to forward all content from a readable stream

542

to a writable stream. If not, it is assumed to be either null (no body),
a string, or a buffer, and it is passed directly to the response’s end

method.
To figure out which file path corresponds to a request URL, the

urlPath function uses the built-in URL class (which also exists in the
browser) to parse the URL. This constructor expects a full URL, not
just the part starting with the slash that we get from request.url, so
we give it a dummy domain name to fill in. It extracts its pathname,
which will be something like "/file.txt", decodes that to get rid of the
%20-style escape codes, and resolves it relative to the program’s working
directory.

import {resolve, sep} from "node:path";

const baseDirectory = process.cwd();

function urlPath(url) {
let {pathname} = new URL(url, "http://d");
let path = resolve(decodeURIComponent(pathname).slice(1));
if (path != baseDirectory &&

!path.startsWith(baseDirectory + sep)) {
throw {status: 403, body: "Forbidden"};

}
return path;

}

As soon as you set up a program to accept network requests, you have
to start worrying about security. In this case, if we aren’t careful, it is
likely that we’ll accidentally expose our whole filesystem to the network.

543

File paths are strings in Node. To map such a string to an actual file,
there’s a nontrivial amount of interpretation going on. Paths may, for
example, include ../ to refer to a parent directory. One obvious source
of problems would be requests for paths like /../secret_file.

To avoid such problems, urlPath uses the resolve function from the
node:path module, which resolves relative paths. It then verifies that
the result is below the working directory. The process.cwd function
(where cwd stands for current working directory) can be used to find
this working directory. The sep binding from the node:path package is
the system’s path separator—a backslash on Windows and a forward
slash on most other systems. When the path doesn’t start with the
base directory, the function throws an error response object, using the
HTTP status code indicating that access to the resource is forbidden.

We’ll set up the GET method to return a list of files when reading a
directory and to return the file’s content when reading a regular file.

One tricky question is what kind of Content-Type header we should set
when returning a file’s content. Since these files could be anything, our
server can’t simply return the same content type for all of them. NPM
can help us again here. The mime-types package (content type indicators
like text/plain are also called MIME types) knows the correct type for
a large number of file extensions.

The following npm command, in the directory where the server script
lives, installs a specific version of mime:

$ npm install mime-types@2.1.0

When a requested file does not exist, the correct HTTP status code to

544

return is 404. We’ll use the stat function, which looks up information
about a file, to find out both whether the file exists and whether it is a
directory.

import {createReadStream} from "node:fs";
import {stat, readdir} from "node:fs/promises";
import {lookup} from "mime-types";

methods.GET = async function(request) {
let path = urlPath(request.url);
let stats;
try {

stats = await stat(path);
} catch (error) {

if (error.code != "ENOENT") throw error;
else return {status: 404, body: "File not found"};

}
if (stats.isDirectory()) {

return {body: (await readdir(path)).join("\n")};
} else {

return {body: createReadStream(path),
type: lookup(path)};

}
};

Because it has to touch the disk and thus might take a while, stat is
asynchronous. Since we’re using promises rather than callback style,
it has to be imported from node:fs/promises instead of directly from
node:fs.

When the file does not exist, stat will throw an error object with

545

a code property of "ENOENT". These somewhat obscure, Unix-inspired
codes are how you recognize error types in Node.

The stats object returned by stat tells us a number of things about
a file, such as its size (size property) and its modification date (mtime
property). Here we are interested in the question of whether it is a
directory or a regular file, which the isDirectory method tells us.

We use readdir to read the array of files in a directory and return
it to the client. For normal files, we create a readable stream with
createReadStream and return that as the body, along with the content
type that the mime package gives us for the file’s name.

The code to handle DELETE requests is slightly simpler.

import {rmdir, unlink} from "node:fs/promises";

methods.DELETE = async function(request) {
let path = urlPath(request.url);
let stats;
try {

stats = await stat(path);
} catch (error) {

if (error.code != "ENOENT") throw error;
else return {status: 204};

}
if (stats.isDirectory()) await rmdir(path);
else await unlink(path);
return {status: 204};

};

When an HTTP response does not contain any data, the status code

546

204 (“no content”) can be used to indicate this. Since the response to
deletion doesn’t need to transmit any information beyond whether the
operation succeeded, that is a sensible thing to return here.

You may be wondering why trying to delete a nonexistent file returns
a success status code rather than an error. When the file being deleted is
not there, you could say that the request’s objective is already fulfilled.
The HTTP standard encourages us to make requests idempotent, which
means that making the same request multiple times produces the same
result as making it once. In a way, if you try to delete something that’s
already gone, the effect you were trying to create has been achieved—
the thing is no longer there.

This is the handler for PUT requests:

import {createWriteStream} from "node:fs";

function pipeStream(from, to) {
return new Promise((resolve, reject) => {

from.on("error", reject);
to.on("error", reject);
to.on("finish", resolve);
from.pipe(to);

});
}

methods.PUT = async function(request) {
let path = urlPath(request.url);
await pipeStream(request, createWriteStream(path));
return {status: 204};

};

547

We don’t need to check whether the file exists this time—if it does,
we’ll just overwrite it. We again use pipe to move data from a readable
stream to a writable one, in this case from the request to the file. But
since pipe isn’t written to return a promise, we have to write a wrapper,
pipeStream, that creates a promise around the outcome of calling pipe.

When something goes wrong when opening the file, createWriteStream
will still return a stream, but that stream will fire an "error" event.
The stream from the request may also fail—for example, if the network
goes down. So we wire up both streams’ "error" events to reject the
promise. When pipe is done, it will close the output stream, which
causes it to fire a "finish" event. That’s the point at which we can
successfully resolve the promise (returning nothing).

The full script for the server is available at https://eloquentjavascript.net/
code/file_server.mjs. You can download that and, after installing its
dependencies, run it with Node to start your own file server. And, of
course, you can modify and extend it to solve this chapter’s exercises
or to experiment.

The command line tool curl, widely available on Unix-like systems
(such as macOS and Linux), can be used to make HTTP requests. The
following session briefly tests our server. The -X option is used to set
the request’s method, and -d is used to include a request body.

$ curl http://localhost:8000/file.txt
File not found
$ curl -X PUT -d CONTENT http://localhost:8000/file.txt
$ curl http://localhost:8000/file.txt
CONTENT
$ curl -X DELETE http://localhost:8000/file.txt

548

https://eloquentjavascript.net/code/file_server.mjs
https://eloquentjavascript.net/code/file_server.mjs

$ curl http://localhost:8000/file.txt
File not found

The first request for file.txt fails since the file does not exist yet. The
PUT request creates the file, and behold, the next request successfully
retrieves it. After deleting it with a DELETE request, the file is again
missing.

Summary

Node is a nice, small system that lets us run JavaScript in a nonbrowser
context. It was originally designed for network tasks to play the role of
a node in a network, but it lends itself to all kinds of scripting tasks. If
writing JavaScript is something you enjoy, automating tasks with Node
may work well for you.

NPM provides packages for everything you can think of (and quite a
few things you’d probably never think of), and it allows you to fetch and
install those packages with the npm program. Node comes with a number
of built-in modules, including the node:fs module for working with the
filesystem and the node:http module for running HTTP servers.

All input and output in Node is done asynchronously, unless you
explicitly use a synchronous variant of a function, such as readFileSync

. Node originally used callbacks for asynchronous functionality, but
the node:fs/promises package provides a promise-based interface to the
filesystem.

549

Exercises

Search tool

On Unix systems, there is a command line tool called grep that can be
used to quickly search files for a regular expression.

Write a Node script that can be run from the command line and
acts somewhat like grep. It treats its first command line argument as a
regular expression and treats any further arguments as files to search.
It outputs the names of any file whose content matches the regular
expression.

When that works, extend it so that when one of the arguments is a
directory, it searches through all files in that directory and its subdi-
rectories.

Use asynchronous or synchronous filesystem functions as you see fit.
Setting things up so that multiple asynchronous actions are requested
at the same time might speed things up a little, but not a huge amount,
since most filesystems can read only one thing at a time.

Directory creation

Though the DELETE method in our file server is able to delete directories
(using rmdir), the server currently does not provide any way to create
a directory.

Add support for the MKCOL method (“make collection”), which should
create a directory by calling mkdir from the node:fs module. MKCOL is not
a widely used HTTP method, but it does exist for this same purpose

550

in the WebDAV standard, which specifies a set of conventions on top
of HTTP that make it suitable for creating documents.

A public space on the web

Since the file server serves up any kind of file and even includes the right
Content-Type header, you can use it to serve a website. Given that this
server allows everybody to delete and replace files, this would make for
an interesting kind of website: one that can be modified, improved, and
vandalized by everybody who takes the time to make the right HTTP
request.

Write a basic HTML page that includes a simple JavaScript file. Put
the files in a directory served by the file server and open them in your
browser.

Next, as an advanced exercise or even a weekend project, combine all
the knowledge you gained from this book to build a more user-friendly
interface for modifying the website—from inside the website.

Use an HTML form to edit the content of the files that make up the
website, allowing the user to update them on the server by using HTTP
requests, as described in Chapter 18.

Start by making only a single file editable. Then make it so that
the user can select which file to edit. Use the fact that our file server
returns lists of files when reading a directory.

Don’t work directly in the code exposed by the file server, since if
you make a mistake, you are likely to damage the files there. Instead,
keep your work outside of the publicly accessible directory and copy it
there when testing.

551

“If you have knowledge, let others light their candles at it.”
—Margaret Fuller

Chapter 21

Project: Skill-Sharing Website

A skill-sharing meeting is an event where people with a shared interest
come together and give small, informal presentations about things they
know. At a gardening skill-sharing meeting, someone might explain
how to cultivate celery. Or in a programming skill-sharing group, you
could drop by and tell people about Node.js.

In this final project chapter, our goal is to set up a website for man-
aging talks given at a skill-sharing meeting. Imagine a small group of
people meeting up regularly in the office of one of the members to talk
about unicycling. The previous organizer of the meetings moved to
another town, and nobody stepped forward to take over this task. We
want a system that will let the participants propose and discuss talks
among themselves without an active organizer.

The full code for the project can be downloaded from https://eloquentjavascript.net/
code/skillsharing.zip.

552

https://eloquentjavascript.net/code/skillsharing.zip
https://eloquentjavascript.net/code/skillsharing.zip

Design

There is a server part to this project, written for Node.js, and a client
part, written for the browser. The server stores the system’s data and
provides it to the client. It also serves the files that implement the
client-side system.

The server keeps the list of talks proposed for the next meeting, and
the client shows this list. Each talk has a presenter name, a title, a sum-
mary, and an array of comments associated with it. The client allows
users to propose new talks (adding them to the list), delete talks, and
comment on existing talks. Whenever the user makes such a change,
the client makes an HTTP request to tell the server about it.

553

The application will be set up to show a live view of the current
proposed talks and their comments. Whenever someone, somewhere,
submits a new talk or adds a comment, all people who have the page
open in their browsers should immediately see the change. This poses a
bit of a challenge—there is no way for a web server to open a connection
to a client, nor is there a good way to know which clients are currently
looking at a given website.

A common solution to this problem is called long polling, which hap-

554

pens to be one of the motivations for Node’s design.

Long polling

To be able to immediately notify a client that something changed, we
need a connection to that client. Since web browsers do not traditionally
accept connections and clients are often behind routers that would block
such connections anyway, having the server initiate this connection is
not practical.

We can arrange for the client to open the connection and keep it
around so that the server can use it to send information when it needs
to do so. But an HTTP request allows only a simple flow of information:
the client sends a request, the server comes back with a single response,
and that’s it. A technology called WebSockets makes it possible to
open connections for arbitrary data exchange, but using such sockets
properly is somewhat tricky.

In this chapter, we use a simpler technique, long polling, where clients
continuously ask the server for new information using regular HTTP
requests, and the server stalls its answer when it has nothing new to
report.

As long as the client makes sure it constantly has a polling request
open, it will receive information from the server quickly after it becomes
available. For example, if Fatma has our skill-sharing application open
in her browser, that browser will have made a request for updates and
will be waiting for a response to that request. When Iman submits a
talk on Extreme Downhill Unicycling, the server will notice that Fatma

555

is waiting for updates and send a response containing the new talk to
her pending request. Fatma’s browser will receive the data and update
the screen to show the talk.

To prevent connections from timing out (being aborted because of a
lack of activity), long polling techniques usually set a maximum time for
each request, after which the server will respond anyway, even though
it has nothing to report. The client can then start a new request. Pe-
riodically restarting the request also makes the technique more robust,
allowing clients to recover from temporary connection failures or server
problems.

A busy server that is using long polling may have thousands of wait-
ing requests, and thus TCP connections, open. Node, which makes it
easy to manage many connections without creating a separate thread
of control for each one, is a good fit for such a system.

HTTP interface

Before we start designing either the server or the client, let’s think
about the point where they touch: the HTTP interface over which they
communicate.

We will use JSON as the format of our request and response body.
Like in the file server from Chapter 20, we’ll try to make good use of
HTTP methods and headers. The interface is centered around the /

talks path. Paths that do not start with /talks will be used for serving
static files—the HTML and JavaScript code for the client-side system.

A GET request to /talks returns a JSON document like this:

556

[{"title": "Unituning",
"presenter": "Jamal",
"summary": "Modifying your cycle for extra style",
"comments": []}]

Creating a new talk is done by making a PUT request to a URL like
/talks/Unituning, where the part after the second slash is the title of
the talk. The PUT request’s body should contain a JSON object that
has presenter and summary properties.

Since talk titles may contain spaces and other characters that may
not appear normally in a URL, title strings must be encoded with the
encodeURIComponent function when building up such a URL.

console.log("/talks/" + encodeURIComponent("How to Idle"));
// → /talks/How%20to%20Idle

A request to create a talk about idling might look something like this:

PUT /talks/How%20to%20Idle HTTP/1.1
Content-Type: application/json
Content-Length: 92

{"presenter": "Maureen",
"summary": "Standing still on a unicycle"}

Such URLs also support GET requests to retrieve the JSON representa-
tion of a talk and DELETE requests to delete a talk.

Adding a comment to a talk is done with a POST request to a URL
like /talks/Unituning/comments, with a JSON body that has author and
message properties.

557

POST /talks/Unituning/comments HTTP/1.1
Content-Type: application/json
Content-Length: 72

{"author": "Iman",
"message": "Will you talk about raising a cycle?"}

To support long polling, GET requests to /talks may include extra head-
ers that inform the server to delay the response if no new information
is available. We’ll use a pair of headers normally intended to manage
caching: ETag and If-None-Match.

Servers may include an ETag (“entity tag”) header in a response.
Its value is a string that identifies the current version of the resource.
Clients, when they later request that resource again, may make a condi-
tional request by including an If-None-Match header whose value holds
that same string. If the resource hasn’t changed, the server will re-
spond with status code 304, which means “not modified”, telling the
client that its cached version is still current. When the tag does not
match, the server responds as normal.

We need something like this, where the client can tell the server which
version of the list of talks it has, and the server responds only when that
list has changed. But instead of immediately returning a 304 response,
the server should stall the response and return only when something
new is available or a given amount of time has elapsed. To distinguish
long polling requests from normal conditional requests, we give them
another header, Prefer: wait=90, which tells the server that the client
is willing to wait up to 90 seconds for the response.

The server will keep a version number that it updates every time

558

the talks change and will use that as the ETag value. Clients can make
requests like this to be notified when the talks change:

GET /talks HTTP/1.1
If-None-Match: "4"
Prefer: wait=90

(time passes)

HTTP/1.1 200 OK
Content-Type: application/json
ETag: "5"
Content-Length: 295

[...]

The protocol described here doesn’t do any access control. Everybody
can comment, modify talks, and even delete them. (Since the inter-
net is full of hooligans, putting such a system online without further
protection probably wouldn’t end well.)

The server

Let’s start by building the server-side part of the program. The code
in this section runs on Node.js.

559

Routing

Our server will use Node’s createServer to start an HTTP server. In the
function that handles a new request, we must distinguish between the
various kinds of requests (as determined by the method and the path)
that we support. This can be done with a long chain of if statements,
but there’s a nicer way.

A router is a component that helps dispatch a request to the function
that can handle it. You can tell the router, for example, that PUT

requests with a path that matches the regular expression /^\/talks

\/([^\/]+)$/ (/talks/ followed by a talk title) can be handled by a
given function. In addition, it can help extract the meaningful parts
of the path (in this case the talk title), wrapped in parentheses in the
regular expression, and pass them to the handler function.

There are a number of good router packages on NPM, but here we’ll
write one ourselves to illustrate the principle.

This is router.mjs, which we will later import from our server module:

export class Router {
constructor() {

this.routes = [];
}
add(method, url, handler) {

this.routes.push({method, url, handler});
}
async resolve(request, context) {

let {pathname} = new URL(request.url, "http://d");
for (let {method, url, handler} of this.routes) {

let match = url.exec(pathname);

560

if (!match || request.method != method) continue;
let parts = match.slice(1).map(decodeURIComponent);
return handler(context, ...parts, request);

}
}

}

The module exports the Router class. A router object allows you to
register handlers for specific methods and URL patterns with its add

method. When a request is resolved with the resolve method, the
router calls the handler whose method and URL match the request and
return its result.

Handler functions are called with the context value given to resolve.
We will use this to give them access to our server state. Additionally,
they receive the match strings for any groups they defined in their
regular expression, and the request object. The strings have to be
URL-decoded, since the raw URL may contain %20-style codes.

Serving files

When a request matches none of the request types defined in our router,
the server must interpret it as a request for a file in the public directory.
It would be possible to use the file server defined in Chapter 20 to serve
such files, but we neither need nor want to support PUT and DELETE

requests on files, and we would like to have advanced features such as
support for caching. Let’s use a solid, well-tested static file server from
NPM instead.

I opted for serve-static. This isn’t the only such server on NPM,

561

but it works well and fits our purposes. The serve-static package
exports a function that can be called with a root directory to produce
a request handler function. The handler function accepts the request

and response arguments provided by the server from "node:http", and a
third argument, a function that it will call if no file matches the request.
We want our server to first check for requests we should handle specially,
as defined in the router, so we wrap it in another function.

import {createServer} from "node:http";
import serveStatic from "serve-static";

function notFound(request, response) {
response.writeHead(404, "Not found");
response.end("<h1>Not found</h1>");

}

class SkillShareServer {
constructor(talks) {

this.talks = talks;
this.version = 0;
this.waiting = [];

let fileServer = serveStatic("./public");
this.server = createServer((request, response) => {

serveFromRouter(this, request, response, () => {
fileServer(request, response,

() => notFound(request, response));
});

});
}

562

start(port) {
this.server.listen(port);

}
stop() {

this.server.close();
}

}

The serveFromRouter function has the same interface as fileServer, tak-
ing (request, response, next) arguments. We can use this to “chain”
several request handlers, allowing each to either handle the request or
pass responsibility for that on to the next handler. The final handler,
notFound, simply responds with a “not found” error.

Our serveFromRouter function uses a similar convention to the file
server from the previous chapter for responses—handlers in the router
return promises that resolve to objects describing the response.

import {Router} from "./router.mjs";

const router = new Router();
const defaultHeaders = {"Content-Type": "text/plain"};

async function serveFromRouter(server, request,
response, next) {

let resolved = await router.resolve(request, server)
.catch(error => {

if (error.status != null) return error;
return {body: String(err), status: 500};

});
if (!resolved) return next();

563

let {body, status = 200, headers = defaultHeaders} =
await resolved;

response.writeHead(status, headers);
response.end(body);

}

Talks as resources

The talks that have been proposed are stored in the talks property of
the server, an object whose property names are the talk titles. We’ll
add some handlers to our router that expose these as HTTP resources
under /talks/<title>.

The handler for requests that GET a single talk must look up the
talk and respond either with the talk’s JSON data or with a 404 error
response.

const talkPath = /^\/talks\/([^\/]+)$/;

router.add("GET", talkPath, async (server, title) => {
if (Object.hasOwn(server.talks, title)) {

return {body: JSON.stringify(server.talks[title]),
headers: {"Content-Type": "application/json"}};

} else {
return {status: 404, body: `No talk '${title}' found`};

}
});

Deleting a talk is done by removing it from the talks object.

564

router.add("DELETE", talkPath, async (server, title) => {
if (Object.hasOwn(server.talks, title)) {

delete server.talks[title];
server.updated();

}
return {status: 204};

});

The updated method, which we will define later, notifies waiting long
polling requests about the change.

One handler that needs to read request bodies is the PUT handler,
which is used to create new talks. It has to check whether the data it
was given has presenter and summary properties, which are strings. Any
data coming from outside the system might be nonsense, and we don’t
want to corrupt our internal data model or crash when bad requests
come in.

If the data looks valid, the handler stores an object that represents
the new talk in the talks object, possibly overwriting an existing talk
with this title, and again calls updated.

To read the body from the request stream, we will use the json func-
tion from "node:stream/consumers", which collects the data in the stream
and then parses it as JSON. There are similar exports called text (to
read the content as a string) and buffer (to read it as binary data) in
this package. Since json is a very generic name, the import renames it
to readJSON to avoid confusion.

import {json as readJSON} from "node:stream/consumers";

565

router.add("PUT", talkPath,
async (server, title, request) => {

let talk = await readJSON(request);
if (!talk ||

typeof talk.presenter != "string" ||
typeof talk.summary != "string") {

return {status: 400, body: "Bad talk data"};
}
server.talks[title] = {

title,
presenter: talk.presenter,
summary: talk.summary,
comments: []

};
server.updated();
return {status: 204};

});

Adding a comment to a talk works similarly. We use readJSON to get
the content of the request, validate the resulting data, and store it as a
comment when it looks valid.

router.add("POST", /^\/talks\/([^\/]+)\/comments$/,
async (server, title, request) => {

let comment = await readJSON(request);
if (!comment ||

typeof comment.author != "string" ||
typeof comment.message != "string") {

return {status: 400, body: "Bad comment data"};
} else if (Object.hasOwn(server.talks, title)) {

566

server.talks[title].comments.push(comment);
server.updated();
return {status: 204};

} else {
return {status: 404, body: `No talk '${title}' found`};

}
});

Trying to add a comment to a nonexistent talk returns a 404 error.

Long polling support

The most interesting aspect of the server is the part that handles long
polling. When a GET request comes in for /talks, it may be either a
regular request or a long polling request.

There will be multiple places in which we have to send an array of
talks to the client, so we first define a helper method that builds up
such an array and includes an ETag header in the response.

SkillShareServer.prototype.talkResponse = function() {
let talks = Object.keys(this.talks)

.map(title => this.talks[title]);
return {

body: JSON.stringify(talks),
headers: {"Content-Type": "application/json",

"ETag": `"${this.version}"`,
"Cache-Control": "no-store"}

};
};

567

The handler itself needs to look at the request headers to see whether
If-None-Match and Prefer headers are present. Node stores headers,
whose names are specified to be case insensitive, under their lowercase
names.

router.add("GET", /^\/talks$/, async (server, request) => {
let tag = /"(.*)"/.exec(request.headers["if-none-match"]);
let wait = /\bwait=(\d+)/.exec(request.headers["prefer"]);
if (!tag || tag[1] != server.version) {

return server.talkResponse();
} else if (!wait) {

return {status: 304};
} else {

return server.waitForChanges(Number(wait[1]));
}

});

If no tag was given or a tag was given that doesn’t match the server’s
current version, the handler responds with the list of talks. If the
request is conditional and the talks did not change, we consult the
Prefer header to see whether we should delay the response or respond
right away.

Callback functions for delayed requests are stored in the server’s
waiting array so that they can be notified when something happens.
The waitForChanges method also immediately sets a timer to respond
with a 304 status when the request has waited long enough.

SkillShareServer.prototype.waitForChanges = function(time) {
return new Promise(resolve => {

568

this.waiting.push(resolve);
setTimeout(() => {

if (!this.waiting.includes(resolve)) return;
this.waiting = this.waiting.filter(r => r != resolve);
resolve({status: 304});

}, time * 1000);
});

};

Registering a change with updated increases the version property and
wakes up all waiting requests.

SkillShareServer.prototype.updated = function() {
this.version++;
let response = this.talkResponse();
this.waiting.forEach(resolve => resolve(response));
this.waiting = [];

};

That concludes the server code. If we create an instance of SkillShareServer
and start it on port 8000, the resulting HTTP server serves files from
the public subdirectory alongside a talk-managing interface under the
/talks URL.

new SkillShareServer({}).start(8000);

569

The client

The client-side part of the skill-sharing website consists of three files: a
tiny HTML page, a style sheet, and a JavaScript file.

HTML

It is a widely used convention for web servers to try to serve a file named
index.html when a request is made directly to a path that corresponds
to a directory. The file server module we use, serve-static, supports
this convention. When a request is made to the path /, the server looks
for the file ./public/index.html (./public being the root we gave it) and
returns that file if found.

Thus, if we want a page to show up when a browser is pointed at our
server, we should put it in public/index.html. This is our index file:

<!doctype html>
<meta charset="utf-8">
<title>Skill Sharing</title>
<link rel="stylesheet" href="skillsharing.css">

<h1>Skill Sharing</h1>

<script src="skillsharing_client.js"></script>

It defines the document title and includes a style sheet, which defines
a few styles to, among other things, make sure there is some space
between talks. It then adds a heading at the top of the page and loads
the script that contains the client-side application.

570

Actions

The application state consists of the list of talks and the name of the
user, and we’ll store it in a {talks, user} object. We don’t allow the
user interface to directly manipulate the state or send off HTTP re-
quests. Rather, it may emit actions that describe what the user is
trying to do.

The handleAction function takes such an action and makes it happen.
Because our state updates are so simple, state changes are handled in
the same function.

function handleAction(state, action) {
if (action.type == "setUser") {

localStorage.setItem("userName", action.user);
return {...state, user: action.user};

} else if (action.type == "setTalks") {
return {...state, talks: action.talks};

} else if (action.type == "newTalk") {
fetchOK(talkURL(action.title), {

method: "PUT",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({

presenter: state.user,
summary: action.summary

})
}).catch(reportError);

} else if (action.type == "deleteTalk") {
fetchOK(talkURL(action.talk), {method: "DELETE"})

.catch(reportError);
} else if (action.type == "newComment") {

571

fetchOK(talkURL(action.talk) + "/comments", {
method: "POST",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({

author: state.user,
message: action.message

})
}).catch(reportError);

}
return state;

}

We’ll store the user’s name in localStorage so that it can be restored
when the page is loaded.

The actions that need to involve the server make network requests,
using fetch, to the HTTP interface described earlier. We use a wrapper
function, fetchOK, which makes sure the returned promise is rejected
when the server returns an error code.

function fetchOK(url, options) {
return fetch(url, options).then(response => {

if (response.status < 400) return response;
else throw new Error(response.statusText);

});
}

This helper function is used to build up a URL for a talk with a given
title.

function talkURL(title) {

572

return "talks/" + encodeURIComponent(title);
}

When the request fails, we don’t want our page to just sit there doing
nothing without explanation. The function called reportError, which
we used as the catch handler, shows the user a crude dialog to tell them
something went wrong.

function reportError(error) {
alert(String(error));

}

Rendering components

We’ll use an approach similar to the one we saw in Chapter 19, splitting
the application into components. However, since some of the compo-
nents either never need to update or are always fully redrawn when
updated, we’ll define those not as classes but as functions that directly
return a DOM node. For example, here is a component that shows the
field where the user can enter their name:

function renderUserField(name, dispatch) {
return elt("label", {}, "Your name: ", elt("input", {

type: "text",
value: name,
onchange(event) {

dispatch({type: "setUser", user: event.target.value});
}

}));

573

}

The elt function used to construct DOM elements is the one we used
in Chapter 19.
A similar function is used to render talks, which include a list of com-
ments and a form for adding a new comment.

function renderTalk(talk, dispatch) {
return elt(
"section", {className: "talk"},
elt("h2", null, talk.title, " ", elt("button", {

type: "button",
onclick() {

dispatch({type: "deleteTalk", talk: talk.title});
}

}, "Delete")),
elt("div", null, "by ",

elt("strong", null, talk.presenter)),
elt("p", null, talk.summary),
...talk.comments.map(renderComment),
elt("form", {

onsubmit(event) {
event.preventDefault();
let form = event.target;
dispatch({type: "newComment",

talk: talk.title,
message: form.elements.comment.value});

form.reset();
}

}, elt("input", {type: "text", name: "comment"}), " ",

574

elt("button", {type: "submit"}, "Add comment")));
}

The "submit" event handler calls form.reset to clear the form’s content
after creating a "newComment" action.

When creating moderately complex pieces of DOM, this style of pro-
gramming starts to look rather messy. To avoid this, people often use
a templating language, which allows you to write your interface as an
HTML file with some special markers to indicate where dynamic el-
ements go. Or they use JSX, a nonstandard JavaScript dialect that
allows you to write something very close to HTML tags in your pro-
gram as if they are JavaScript expressions. Both of these approaches
use additional tools to preprocess the code before it can be run, which
we will avoid in this chapter.

Comments are simple to render.

function renderComment(comment) {
return elt("p", {className: "comment"},

elt("strong", null, comment.author),
": ", comment.message);

}

Finally, the form that the user can use to create a new talk is rendered
like this:

function renderTalkForm(dispatch) {
let title = elt("input", {type: "text"});
let summary = elt("input", {type: "text"});
return elt("form", {

onsubmit(event) {

575

event.preventDefault();
dispatch({type: "newTalk",

title: title.value,
summary: summary.value});

event.target.reset();
}

}, elt("h3", null, "Submit a Talk"),
elt("label", null, "Title: ", title),
elt("label", null, "Summary: ", summary),
elt("button", {type: "submit"}, "Submit"));

}

Polling

To start the app, we need the current list of talks. Since the initial load
is closely related to the long polling process—the ETag from the load
must be used when polling—we’ll write a function that keeps polling
the server for /talks and calls a callback function when a new set of
talks is available.

async function pollTalks(update) {
let tag = undefined;
for (;;) {

let response;
try {

response = await fetchOK("/talks", {
headers: tag && {"If-None-Match": tag,

"Prefer": "wait=90"}
});

576

} catch (e) {
console.log("Request failed: " + e);
await new Promise(resolve => setTimeout(resolve, 500));
continue;

}
if (response.status == 304) continue;
tag = response.headers.get("ETag");
update(await response.json());

}
}

This is an async function so that looping and waiting for the request
is easier. It runs an infinite loop that, on each iteration, retrieves the
list of talks—either normally or, if this isn’t the first request, with the
headers included that make it a long polling request.

When a request fails, the function waits a moment and then tries
again. This way, if your network connection goes away for a while and
then comes back, the application can recover and continue updating.
The promise resolved via setTimeout is a way to force the async function
to wait.

When the server gives back a 304 response, that means a long polling
request timed out, so the function should just immediately start the
next request. If the response is a normal 200 response, its body is read
as JSON and passed to the callback, and its ETag header value is stored
for the next iteration.

577

The application

The following component ties the whole user interface together:

class SkillShareApp {
constructor(state, dispatch) {

this.dispatch = dispatch;
this.talkDOM = elt("div", {className: "talks"});
this.dom = elt("div", null,

renderUserField(state.user, dispatch),
this.talkDOM,
renderTalkForm(dispatch));

this.syncState(state);
}

syncState(state) {
if (state.talks != this.talks) {

this.talkDOM.textContent = "";
for (let talk of state.talks) {

this.talkDOM.appendChild(
renderTalk(talk, this.dispatch));

}
this.talks = state.talks;

}
}

}

When the talks change, this component redraws all of them. This is
simple but also wasteful. We’ll get back to that in the exercises.

We can start the application like this:

578

function runApp() {
let user = localStorage.getItem("userName") || "Anon";
let state, app;
function dispatch(action) {

state = handleAction(state, action);
app.syncState(state);

}

pollTalks(talks => {
if (!app) {

state = {user, talks};
app = new SkillShareApp(state, dispatch);
document.body.appendChild(app.dom);

} else {
dispatch({type: "setTalks", talks});

}
}).catch(reportError);

}

runApp();

If you run the server and open two browser windows for http://localhost:8000
next to each other, you can see that the actions you perform in one win-
dow are immediately visible in the other.

Exercises

The following exercises will involve modifying the system defined in
this chapter. To work on them, make sure you’ve downloaded the code

579

http://localhost:8000/

(https://eloquentjavascript.net/code/skillsharing.zip), installed Node (https://nodejs.org),
and installed the project’s dependency with npm install.

Disk persistence

The skill-sharing server keeps its data purely in memory. This means
that when it crashes or is restarted for any reason, all talks and com-
ments are lost.

Extend the server so that it stores the talk data to disk and au-
tomatically reloads the data when it is restarted. Don’t worry about
efficiency—do the simplest thing that works.

Comment field resets

The wholesale redrawing of talks works pretty well because you usu-
ally can’t tell the difference between a DOM node and its identical
replacement. But there are exceptions. If you start typing something
in the comment field for a talk in one browser window and then, in
another, add a comment to that talk, the field in the first window will
be redrawn, removing both its content and its focus.

When multiple people are adding comments at the same time, this
would be annoying. Can you come up with a way to solve it?

580

https://eloquentjavascript.net/code/skillsharing.zip
https://nodejs.org

Exercise Hints

The hints below might help when you are stuck with one of the exercises
in this book. They don’t give away the entire solution, but rather try
to help you find it yourself.

Program Structure

Looping a triangle

You can start with a program that prints out the numbers 1 to 7,
which you can derive by making a few modifications to the even number
printing example given earlier in the chapter, where the for loop was
introduced.

Now consider the equivalence between numbers and strings of hash
characters. You can go from 1 to 2 by adding 1 (+= 1). You can go
from "#" to "##" by adding a character (+= "#"). Thus, your solution
can closely follow the number-printing program.

581

FizzBuzz

Going over the numbers is clearly a looping job, and selecting what to
print is a matter of conditional execution. Remember the trick of using
the remainder (%) operator for checking whether a number is divisible
by another number (has a remainder of zero).

In the first version, there are three possible outcomes for every num-
ber, so you’ll have to create an if/else if/else chain.

The second version of the program has a straightforward solution and
a clever one. The simple solution is to add another conditional “branch”
to precisely test the given condition. For the clever solution, build up
a string containing the word or words to output and print either this
word or the number if there is no word, potentially by making good use
of the || operator.

Chessboard

You can build the string by starting with an empty one ("") and re-
peatedly adding characters. A newline character is written "\n".

To work with two dimensions, you will need a loop inside of a loop.
Put braces around the bodies of both loops to make it easy to see where
they start and end. Try to properly indent these bodies. The order of
the loops must follow the order in which we build up the string (line by
line, left to right, top to bottom). So the outer loop handles the lines,
and the inner loop handles the characters on a line.

You’ll need two bindings to track your progress. To know whether to
put a space or a hash sign at a given position, you could test whether

582

the sum of the two counters is even (% 2).
Terminating a line by adding a newline character must happen after

the line has been built up, so do this after the inner loop but inside the
outer loop.

Functions

Minimum

If you have trouble putting braces and parentheses in the right place to
get a valid function definition, start by copying one of the examples in
this chapter and modifying it.

A function may contain multiple return statements.

Recursion

Your function will likely look somewhat similar to the inner find func-
tion in the recursive findSolution example in this chapter, with an
if/else if/else chain that tests which of the three cases applies. The
final else, corresponding to the third case, makes the recursive call.
Each of the branches should contain a return statement or in some
other way arrange for a specific value to be returned.

When given a negative number, the function will recurse again and
again, passing itself an ever more negative number, thus getting further
and further away from returning a result. It will eventually run out of
stack space and abort.

583

Bean counting

Your function will need a loop that looks at every character in the
string. It can run an index from zero to one below its length (< string

.length). If the character at the current position is the same as the one
the function is looking for, it adds 1 to a counter variable. Once the
loop has finished, the counter can be returned.

Take care to make all the bindings used in the function local to the
function by properly declaring them with the let or const keyword.

Data Structures: Objects and Arrays

The sum of a range

Building up an array is most easily done by first initializing a binding
to [] (a fresh, empty array) and repeatedly calling its push method to
add a value. Don’t forget to return the array at the end of the function.

Since the end boundary is inclusive, you’ll need to use the <= operator
rather than < to check for the end of your loop.

The step parameter can be an optional parameter that defaults (using
the = operator) to 1.

Having range understand negative step values is probably best done
by writing two separate loops—one for counting up and one for counting
down—because the comparison that checks whether the loop is finished
needs to be >= rather than <= when counting downward.

It might also be worthwhile to use a different default step, namely,
-1, when the end of the range is smaller than the start. That way,

584

range(5, 2) returns something meaningful rather than getting stuck in
an infinite loop. It is possible to refer to previous parameters in the
default value of a parameter.

Reversing an array

There are two obvious ways to implement reverseArray. The first is to
simply go over the input array from front to back and use the unshift

method on the new array to insert each element at its start. The second
is to loop over the input array backward and use the push method.
Iterating over an array backward requires a (somewhat awkward) for

specification, like (let i = array.length - 1; i >= 0; i--).
Reversing the array in place is harder. You have to be careful not

to overwrite elements that you will later need. Using reverseArray or
otherwise copying the whole array (array.slice() is a good way to copy
an array) works but is cheating.

The trick is to swap the first and last elements, then the second and
second-to-last, and so on. You can do this by looping over half the
length of the array (use Math.floor to round down—you don’t need to
touch the middle element in an array with an odd number of elements)
and swapping the element at position i with the one at position array

.length - 1 - i. You can use a local binding to briefly hold onto one
of the elements, overwrite that one with its mirror image, and then put
the value from the local binding in the place where the mirror image
used to be.

585

A list

Building up a list is easier when done back to front. So arrayToList

could iterate over the array backward (see the previous exercise) and,
for each element, add an object to the list. You can use a local binding
to hold the part of the list that was built so far and use an assignment
like list = {value: X, rest: list} to add an element.

To run over a list (in listToArray and nth), a for loop specification
like this can be used:

for (let node = list; node; node = node.rest) {}

Can you see how that works? Every iteration of the loop, node points
to the current sublist, and the body can read its value property to get
the current element. At the end of an iteration, node moves to the next
sublist. When that is null, we have reached the end of the list, and the
loop is finished.

The recursive version of nth will, similarly, look at an ever smaller
part of the “tail” of the list and at the same time count down the index
until it reaches zero, at which point it can return the value property of
the node it is looking at. To get the zeroth element of a list, you simply
take the value property of its head node. To get element N + 1, you
take the Nth element of the list that’s in this list’s rest property.

Deep comparison

Your test for whether you are dealing with a real object will look some-
thing like typeof x == "object" && x != null. Be careful to compare

586

properties only when both arguments are objects. In all other cases you
can just immediately return the result of applying ===.

Use Object.keys to go over the properties. You need to test whether
both objects have the same set of property names and whether those
properties have identical values. One way to do that is to ensure that
both objects have the same number of properties (the lengths of the
property lists are the same). And then, when looping over one of the
object’s properties to compare them, always first make sure the other
actually has a property by that name. If they have the same number
of properties and all properties in one also exist in the other, they have
the same set of property names.

Returning the correct value from the function is best done by imme-
diately returning false when a mismatch is found and returning true

at the end of the function.

Higher-Order Functions

Everything

Like the && operator, the every method can stop evaluating further
elements as soon as it has found one that doesn’t match. So the loop-
based version can jump out of the loop—with break or return—as soon
as it runs into an element for which the predicate function returns false
. If the loop runs to its end without finding such an element, we know
that all elements matched and we should return true.

To build every on top of some, we can apply De Morgan’s laws, which
state that a && b equals !(!a || !b). This can be generalized to arrays,

587

where all elements in the array match if there is no element in the array
that does not match.

Dominant writing direction

Your solution might look a lot like the first half of the textScripts

example. You again have to count characters by a criterion based on
characterScript and then filter out the part of the result that refers to
uninteresting (script-less) characters.

Finding the direction with the highest character count can be done
with reduce. If it’s not clear how, refer to the example earlier in the
chapter, where reduce was used to find the script with the most char-
acters.

The Secret Life of Objects

A vector type

Look back to the Rabbit class example if you’re unsure how class dec-
larations look.

Adding a getter property to the constructor can be done by putting
the word get before the method name. To compute the distance from
(0, 0) to (x, y), you can use the Pythagorean theorem, which says that
the square of the distance we are looking for is equal to the square of
the x-coordinate plus the square of the y-coordinate. Thus,

√
x2 + y2 is

the number you want. Math.sqrt is the way you compute a square root
in JavaScript and x ** 2 can be used to square a number.

588

Groups

The easiest way to do this is to store an array of group members in
an instance property. The includes or indexOf methods can be used to
check whether a given value is in the array.

Your class’s constructor can set the member collection to an empty
array. When add is called, it must check whether the given value is in
the array or add it otherwise, possibly using push.

Deleting an element from an array, in delete, is less straightforward,
but you can use filter to create a new array without the value. Don’t
forget to overwrite the property holding the members with the newly
filtered version of the array.

The from method can use a for/of loop to get the values out of the
iterable object and call add to put them into a newly created group.

Iterable groups

It is probably worthwhile to define a new class GroupIterator. Iterator
instances should have a property that tracks the current position in the
group. Every time next is called, it checks whether it is done and, if
not, moves past the current value and returns it.

The Group class itself gets a method named by Symbol.iterator that,
when called, returns a new instance of the iterator class for that group.

589

Project: A Robot

Measuring a robot

You’ll have to write a variant of the runRobot function that, instead of
logging the events to the console, returns the number of steps the robot
took to complete the task.

Your measurement function can then, in a loop, generate new states
and count the steps each of the robots takes. When it has generated
enough measurements, it can use console.log to output the average for
each robot, which is the total number of steps taken divided by the
number of measurements.

Robot efficiency

The main limitation of goalOrientedRobot is that it considers only one
parcel at a time. It will often walk back and forth across the village
because the parcel it happens to be looking at happens to be at the
other side of the map, even if there are others much closer.

One possible solution would be to compute routes for all packages
and then take the shortest one. Even better results can be obtained,
if there are multiple shortest routes, by preferring the ones that go to
pick up a package instead of delivering a package.

Persistent group

The most convenient way to represent the set of member values is still
as an array, since arrays are easy to copy.

590

When a value is added to the group, you can create a new group
with a copy of the original array that has the value added (for example,
using concat). When a value is deleted, you filter it from the array.

The class’s constructor can take such an array as its argument and
store it as the instance’s (only) property. This array is never updated.

To add the empty property to the constructor, you can declare it as
a static property.

You need only one empty instance because all empty groups are the
same and instances of the class don’t change. You can create many
different groups from that single empty group without affecting it.

Bugs and Errors

Retry

The call to primitiveMultiply should definitely happen in a try block.
The corresponding catch block should rethrow the exception when it
is not an instance of MultiplicatorUnitFailure and ensure the call is
retried when it is.

To do the retrying, you can either use a loop that stops only when
a call succeeds—as in the look example earlier in this chapter—or use
recursion and hope you don’t get a string of failures so long that it
overflows the stack (which is a pretty safe bet).

591

The locked box

This exercise calls for a finally block. Your function should first unlock
the box and then call the argument function from inside a try body.
The finally block after it should lock the box again.

To make sure we don’t lock the box when it wasn’t already locked,
check its lock at the start of the function and unlock and lock it only
when it started out locked.

Regular Expressions

Quoting style

The most obvious solution is to replace only quotes with a nonletter
character on at least one side—something like /\P{L}'|'\P{L}/u. But
you also have to take the start and end of the line into account.

In addition, you must ensure that the replacement also includes the
characters that were matched by the \P{L} pattern so that those are
not dropped. This can be done by wrapping them in parentheses and
including their groups in the replacement string ($1, $2). Groups that
are not matched will be replaced by nothing.

Numbers again

First, do not forget the backslash in front of the period.
Matching the optional sign in front of the number, as well as in front

of the exponent, can be done with [+\-]? or (\+|-|) (plus, minus, or
nothing).

592

The more complicated part of the exercise is the problem of matching
both "5." and ".5" without also matching ".". For this, a good solution
is to use the | operator to separate the two cases—either one or more
digits optionally followed by a dot and zero or more digits or a dot
followed by one or more digits.

Finally, to make the e case insensitive, either add an i option to the
regular expression or use [eE].

Modules

A modular robot

Here’s what I would have done (but again, there is no single right way
to design a given module):

The code used to build the road graph lives in the graph.js module.
Because I’d rather use dijkstrajs from NPM than our own pathfinding
code, we’ll make this build the kind of graph data that dijkstrajs

expects. This module exports a single function, buildGraph. I’d have
buildGraph accept an array of two-element arrays, rather than strings
containing hyphens, to make the module less dependent on the input
format.

The roads.js module contains the raw road data (the roads array)
and the roadGraph binding. This module depends on ./graph.js and
exports the road graph.

The VillageState class lives in the state.js module. It depends on
the ./roads.js module because it needs to be able to verify that a
given road exists. It also needs randomPick. Since that is a three-line

593

function, we could just put it into the state.js module as an internal
helper function. But randomRobot needs it too. So we’d have to either
duplicate it or put it into its own module. Since this function happens
to exist on NPM in the random-item package, a reasonable solution is
to just make both modules depend on that. We can add the runRobot

function to this module as well, since it’s small and closely related to
state management. The module exports both the VillageState class
and the runRobot function.

Finally, the robots, along with the values they depend on, such as
mailRoute, could go into an example-robots.js module, which depends
on ./roads.js and exports the robot functions. To make it possible
for goalOrientedRobot to do route-finding, this module also depends on
dijkstrajs.

By offloading some work to NPM modules, the code became a little
smaller. Each individual module does something rather simple and can
be read on its own. Dividing code into modules also often suggests
further improvements to the program’s design. In this case, it seems
a little odd that the VillageState and the robots depend on a specific
road graph. It might be a better idea to make the graph an argument
to the state’s constructor and make the robots read it from the state
object—this reduces dependencies (which is always good) and makes it
possible to run simulations on different maps (which is even better).

Is it a good idea to use NPM modules for things that we could
have written ourselves? In principle, yes—for nontrivial things like
the pathfinding function you are likely to make mistakes and waste
time writing them yourself. For tiny functions like random-item, writ-

594

ing them yourself is easy enough. But adding them wherever you need
them does tend to clutter your modules.

However, you should also not underestimate the work involved in
finding an appropriate NPM package. And even if you find one, it
might not work well or may be missing some feature you need. On top
of that, depending on NPM packages means you have to make sure they
are installed, you have to distribute them with your program, and you
might have to periodically upgrade them.

So again, this is a trade-off, and you can decide either way depending
on how much a given package actually helps you.

Roads module

Since this is an ES module, you have to use import to access the graph
module. That was described as exporting a buildGraph function, which
you can pick out of its interface object with a destructuring const dec-
laration.

To export roadGraph, you put the keyword export before its definition.
Because buildGraph takes a data structure that doesn’t precisely match
roads, the splitting of the road strings must happen in your module.

Circular dependencies

The trick is that require adds the interface object for a module to its
cache before it starts loading the module. That way, if any require

call made while it is running tries to load it, it is already known, and
the current interface will be returned, rather than starting to load the

595

module once more (which would eventually overflow the stack).

Asynchronous Programming

Quiet Times

You will need to convert the content of these files to an array. The
easiest way to do that is to use the split method on the string produced
by textFile. Note that for the logfiles, that will still give you an array
of strings, which you have to convert to numbers before passing them
to new Date.

Summarizing all the time points into a table of hours can be done by
creating a table (array) that holds a number for each hour in the day.
You can then loop over all the timestamps (over the logfiles and the
numbers in every logfile) and for each one, if it happened on the correct
day, take the hour it occurred in, and add one to the corresponding
number in the table.

Make sure you use await on the result of asynchronous functions
before doing anything with it, or you’ll end up with a Promise where
you expected a string.

Real Promises

The most straightforward approach to writing this function is to use a
chain of then calls. The first promise is produced by reading the list of
logfiles. The first callback can split this list and map textFile over it
to get an array of promises to pass to Promise.all. It can return the

596

object returned by Promise.all, so that whatever that returns becomes
the result of the return value of this first then.

We now have a promise that returns an array of logfiles. We can
call then again on that, and put the timestamp-counting logic in there.
Something like this:

function activityTable(day) {
return textFile("camera_logs.txt").then(files => {

return Promise.all(files.split("\n").map(textFile));
}).then(logs => {

// analyze...
});

}

Or you could, for even better work scheduling, put the analysis of each
file inside of the Promise.all, so that that work can be started for the
first file that comes back from disk, even before the other files come
back.

function activityTable(day) {
let table = []; // init...
return textFile("camera_logs.txt").then(files => {

return Promise.all(files.split("\n").map(name => {
return textFile(name).then(log => {

// analyze...
});

}));
}).then(() => table);

}

597

This shows that the way you structure your promises can have a real
effect on the way the work is scheduled. A simple loop with await in it
will make the process completely linear—it waits for each file to load
before proceeding. Promise.all makes it possible for multiple tasks to
conceptually be worked on at the same time, allowing them to make
progress while files are still being loaded. This can be faster, but it also
makes the order in which things will happen less predictable. In this
case, we’re only going to be incrementing numbers in a table, which
isn’t hard to do in a safe way. For other kinds of problems, it may be
a lot more difficult.

When a file in the list doesn’t exist, the promise returned by textFile

will be rejected. Because Promise.all rejects if any of the promises given
to it fail, the return value of the callback given to the first then will also
be a rejected promise. That makes the promise returned by then fail,
so the callback given to the second then isn’t even called, and a rejected
promise is returned from the function.

Building Promise.all

The function passed to the Promise constructor will have to call then on
each of the promises in the given array. When one of them succeeds,
two things need to happen. The resulting value needs to be stored in
the correct position of a result array, and we must check whether this
was the last pending promise and finish our own promise if it was.

The latter can be done with a counter that is initialized to the length
of the input array and from which we subtract 1 every time a promise
succeeds. When it reaches 0, we are done. Make sure you take into

598

account the situation where the input array is empty (and thus no
promise will ever resolve).

Handling failure requires some thought but turns out to be extremely
simple. Just pass the reject function of the wrapping promise to each
of the promises in the array as a catch handler or as a second argument
to then so that a failure in one of them triggers the rejection of the
whole wrapper promise.

Project: A Programming Language

Arrays

The easiest way to do this is to represent Egg arrays with JavaScript
arrays.

The values added to the top scope must be functions. By using a
rest argument (with triple-dot notation), the definition of array can be
very simple.

Closure

Again, we are riding along on a JavaScript mechanism to get the equiv-
alent feature in Egg. Special forms are passed the local scope in which
they are evaluated so that they can evaluate their subforms in that
scope. The function returned by fun has access to the scope argument
given to its enclosing function and uses that to create the function’s
local scope when it is called.

599

This means that the prototype of the local scope will be the scope
in which the function was created, which makes it possible to access
bindings in that scope from the function. This is all there is to imple-
menting closure (though to compile it in a way that is actually efficient,
you’d need to do some more work).

Comments

Make sure your solution handles multiple comments in a row, with
whitespace potentially between or after them.

A regular expression is probably the easiest way to solve this. Write
something that matches “whitespace or a comment, zero or more times”.
Use the exec or match method and look at the length of the first element
in the returned array (the whole match) to find out how many characters
to slice off.

Fixing scope

You will have to loop through one scope at a time, using Object.

getPrototypeOf to go to the next outer scope. For each scope, use
Object.hasOwn to find out whether the binding, indicated by the name

property of the first argument to set, exists in that scope. If it does,
set it to the result of evaluating the second argument to set and then
return that value.

If the outermost scope is reached (Object.getPrototypeOf returns null
) and we haven’t found the binding yet, it doesn’t exist, and an error
should be thrown.

600

The Document Object Model

Build a table

You can use document.createElement to create new element nodes, document
.createTextNode to create text nodes, and the appendChild method to
put nodes into other nodes.

You’ll want to loop over the key names once to fill in the top row
and then again for each object in the array to construct the data rows.
To get an array of key names from the first object, Object.keys will be
useful.

To add the table to the correct parent node, you can use document.

getElementById or document.querySelector with "#mountains" to find the
node.

Elements by tag name

The solution is most easily expressed with a recursive function, similar
to the talksAbout function defined earlier in this chapter.

You could call byTagname itself recursively, concatenating the resulting
arrays to produce the output. Or you could create an inner function
that calls itself recursively and that has access to an array binding
defined in the outer function, to which it can add the matching elements
it finds. Don’t forget to call the inner function once from the outer
function to start the process.

The recursive function must check the node type. Here we are in-
terested only in node type 1 (Node.ELEMENT_NODE). For such nodes, we

601

must loop over their children and, for each child, see whether the child
matches the query while also doing a recursive call on it to inspect its
own children.

The cat's hat

Math.cos and Math.sin measure angles in radians, where a full circle is
2π. For a given angle, you can get the opposite angle by adding half
of this, which is Math.PI. This can be useful for putting the hat on the
opposite side of the orbit.

Handling Events

Balloon

You’ll want to register a handler for the "keydown" event and look at
event.key to figure out whether the up or down arrow key was pressed.

The current size can be kept in a binding so that you can base the
new size on it. It’ll be helpful to define a function that updates the
size—both the binding and the style of the balloon in the DOM—so
that you can call it from your event handler, and possibly also once
when starting, to set the initial size.

You can change the balloon to an explosion by replacing the text node
with another one (using replaceChild) or by setting the textContent

property of its parent node to a new string.

602

Mouse trail

Creating the elements is best done with a loop. Append them to the
document to make them show up. To be able to access them later to
change their position, you’ll want to store the elements in an array.

Cycling through them can be done by keeping a counter variable and
adding 1 to it every time the "mousemove" event fires. The remainder
operator (% elements.length) can then be used to get a valid array index
to pick the element you want to position during a given event.

Another interesting effect can be achieved by modeling a simple
physics system. Use the "mousemove" event only to update a pair of bind-
ings that track the mouse position. Then use requestAnimationFrame to
simulate the trailing elements being attracted to the position of the
mouse pointer. At every animation step, update their position based
on their position relative to the pointer (and, optionally, a speed that
is stored for each element). Figuring out a good way to do this is up to
you.

Tabs

One pitfall you might run into is that you can’t directly use the node’s
childNodes property as a collection of tab nodes. For one thing, when
you add the buttons, they will also become child nodes and end up
in this object because it is a live data structure. For another, the
text nodes created for the whitespace between the nodes are also in
childNodes but should not get their own tabs. You can use children

instead of childNodes to ignore text nodes.

603

You could start by building up an array of tabs so that you have
easy access to them. To implement the styling of the buttons, you
could store objects that contain both the tab panel and its button.

I recommend writing a separate function for changing tabs. You
can either store the previously selected tab and change only the styles
needed to hide that and show the new one, or you can just update the
style of all tabs every time a new tab is selected.

You might want to call this function immediately to make the inter-
face start with the first tab visible.

Project: A Platform Game

Pausing the game

An animation can be interrupted by returning false from the func-
tion given to runAnimation. It can be continued by calling runAnimation

again.
So we need to communicate the fact that we are pausing the game

to the function given to runAnimation. For that, you can use a binding
that both the event handler and that function have access to.

When finding a way to unregister the handlers registered by trackKeys

, remember that the exact same function value that was passed to
addEventListener must be passed to removeEventListener to successfully
remove a handler. Thus, the handler function value created in trackKeys

must be available to the code that unregisters the handlers.
You can add a property to the object returned by trackKeys, contain-

ing either that function value or a method that handles the unregistering

604

directly.

A monster

If you want to implement a type of motion that is stateful, such as
bouncing, make sure you store the necessary state in the actor object—
include it as a constructor argument and add it as a property.

Remember that update returns a new object rather than changing the
old one.

When handling collision, find the player in state.actors and compare
its position to the monster’s position. To get the bottom of the player,
you have to add its vertical size to its vertical position. The creation of
an updated state will resemble either Coin’s collide method (removing
the actor) or Lava’s (changing the status to "lost"), depending on the
player position.

Drawing on Canvas

Shapes

The trapezoid (1) is easiest to draw using a path. Pick suitable center
coordinates and add each of the four corners around the center.

The diamond (2) can be drawn the straightforward way, with a
path, or the interesting way, with a rotate transformation. To use
rotation, you will have to apply a trick similar to what we did in the
flipHorizontally function. Because you want to rotate around the cen-
ter of your rectangle and not around the point (0, 0), you must first

605

translate to there, then rotate, and then translate back.
Make sure you reset the transformation after drawing any shape that

creates one.
For the zigzag (3) it becomes impractical to write a new call to lineTo

for each line segment. Instead, you should use a loop. You can have
each iteration draw either two line segments (right and then left again)
or one, in which case you must use the evenness (% 2) of the loop index
to determine whether to go left or right.

You’ll also need a loop for the spiral (4). If you draw a series of points,
with each point moving farther along a circle around the spiral’s center,
you get a circle. If, during the loop, you vary the radius of the circle
on which you are putting the current point and go around more than
once, the result is a spiral.

The star (5) depicted is built out of quadraticCurveTo lines. You could
also draw one with straight lines. Divide a circle into eight pieces for
a star with eight points, or however many pieces you want. Draw lines
between these points, making them curve toward the center of the star.
With quadraticCurveTo, you can use the center as the control point.

The pie chart

You will need to call fillText and set the context’s textAlign and
textBaseline properties in such a way that the text ends up where you
want it.

A sensible way to position the labels would be to put the text on the
line going from the center of the pie through the middle of the slice.
You don’t want to put the text directly against the side of the pie but

606

rather move the text out to the side of the pie by a given number of
pixels.

The angle of this line is currentAngle + 0.5 * sliceAngle. The fol-
lowing code finds a position on this line 120 pixels from the center:

let middleAngle = currentAngle + 0.5 * sliceAngle;
let textX = Math.cos(middleAngle) * 120 + centerX;
let textY = Math.sin(middleAngle) * 120 + centerY;

For textBaseline, the value "middle" is probably appropriate when using
this approach. What to use for textAlign depends on which side of the
circle we are on. On the left, it should be "right", and on the right, it
should be "left", so that the text is positioned away from the pie.

If you are not sure how to find out which side of the circle a given
angle is on, look to the explanation of Math.cos in Chapter 14. The
cosine of an angle tells us which x-coordinate it corresponds to, which
in turn tells us exactly which side of the circle we are on.

A bouncing ball

A box is easy to draw with strokeRect. Define a binding that holds
its size, or define two bindings if your box’s width and height differ.
To create a round ball, start a path and call arc(x, y, radius, 0, 7),
which creates an arc going from zero to more than a whole circle. Then
fill the path.

To model the ball’s position and speed, you can use the Vec class
from Chapter 16. Give it a starting speed, preferably one that is not
purely vertical or horizontal, and for every frame multiply that speed

607

by the amount of time that elapsed. When the ball gets too close to a
vertical wall, invert the x component in its speed. Likewise, invert the
y component when it hits a horizontal wall.

After finding the ball’s new position and speed, use clearRect to
delete the scene and redraw it using the new position.

Precomputed mirroring

The key to the solution is the fact that we can use a canvas element as
a source image when using drawImage. It is possible to create an extra
<canvas> element, without adding it to the document, and draw our
inverted sprites to it, once. When drawing an actual frame, we just
copy the already inverted sprites to the main canvas.

Some care would be required because images do not load instantly.
We do the inverted drawing only once, and if we do it before the image
loads, it won’t draw anything. A "load" handler on the image can be
used to draw the inverted images to the extra canvas. This canvas can
be used as a drawing source immediately (it’ll simply be blank until we
draw the character onto it).

HTTP and Forms

Content negotiation

Base your code on the fetch examples earlier in the chapter.
Asking for a bogus media type will return a response with code 406,

“Not acceptable”, which is the code a server should return when it can’t

608

fulfill the Accept header.

A JavaScript workbench

Use document.querySelector or document.getElementById to get access to
the elements defined in your HTML. An event handler for "click" or
"mousedown" events on the button can get the value property of the text
field and call Function on it.

Make sure you wrap both the call to Function and the call to its result
in a try block so you can catch the exceptions it produces. In this case,
we really don’t know what type of exception we are looking for, so catch
everything.

The textContent property of the output element can be used to fill it
with a string message. Or, if you want to keep the old content around,
create a new text node using document.createTextNode and append it to
the element. Remember to add a newline character to the end so that
not all output appears on a single line.

Conway's Game of Life

To solve the problem of having the changes conceptually happen at
the same time, try to see the computation of a generation as a pure
function, which takes one grid and produces a new grid that represents
the next turn.

Representing the matrix can be done with a single array of width ×
height elements, storing values row by row, so, for example, the third
element in the fifth row is (using zero-based indexing) stored at position

609

4 × width + 2. You can count live neighbors with two nested loops,
looping over adjacent coordinates in both dimensions. Take care not
to count cells outside of the field and to ignore the cell in the center,
whose neighbors we are counting.

Ensuring that changes to checkboxes take effect on the next gener-
ation can be done in two ways. An event handler could notice these
changes and update the current grid to reflect them, or you could gen-
erate a fresh grid from the values in the checkboxes before computing
the next turn.

If you choose to go with event handlers, you might want to attach
attributes that identify the position that each checkbox corresponds to
so that it is easy to find out which cell to change.

To draw the grid of checkboxes, you can either use a <table> element
(see Chapter 14) or simply put them all in the same element and put

 (line break) elements between the rows.

Project: A Pixel Art Editor

Keyboard bindings

The key property of events for letter keys will be the lowercase letter
itself, if shift isn’t being held. We’re not interested in key events with
shift here.

A "keydown" handler can inspect its event object to see whether it
matches any of the shortcuts. You can automatically get the list of first
letters from the tools object so that you don’t have to write them out.

610

When the key event matches a shortcut, call preventDefault on it and
dispatch the appropriate action.

Efficient drawing

This exercise is a good example of how immutable data structures can
make code faster. Because we have both the old and the new picture,
we can compare them and redraw only the pixels that changed color,
saving more than 99 percent of the drawing work in most cases.

You can either write a new function updatePicture or have drawPicture
take an extra argument, which may be undefined or the previous pic-
ture. For each pixel, the function checks whether a previous picture was
passed with the same color at this position and skips the pixel when
that is the case.

Because the canvas gets cleared when we change its size, you should
also avoid touching its width and height properties when the old picture
and the new picture have the same size. If they are different, which will
happen when a new picture has been loaded, you can set the binding
holding the old picture to null after changing the canvas size because
you shouldn’t skip any pixels after you’ve changed the canvas size.

Circles

You can take some inspiration from the rectangle tool. As with that
tool, you’ll want to keep drawing on the starting picture, rather than
the current picture, when the pointer moves.

To figure out which pixels to color, you can use the Pythagorean

611

theorem. First figure out the distance between the current pointer
position and the start position by taking the square root (Math.sqrt)
of the sum of the square (x ** 2) of the difference in x-coordinates and
the square of the difference in y-coordinates. Then loop over a square
of pixels around the start position, whose sides are at least twice the
radius, and color those that are within the circle’s radius, again using
the Pythagorean formula to figure out their distance from the center.

Make sure you don’t try to color pixels that are outside of the pic-
ture’s boundaries.

Proper lines

The thing about the problem of drawing a pixelated line is that it is
really four similar but slightly different problems. Drawing a horizontal
line from the left to the right is easy—you loop over the x-coordinates
and color a pixel at every step. If the line has a slight slope (less than
45 degrees or ¼π radians), you can interpolate the y-coordinate along
the slope. You still need one pixel per x position, with the y position
of those pixels determined by the slope.

But as soon as your slope goes across 45 degrees, you need to switch
the way you treat the coordinates. You now need one pixel per y posi-
tion, since the line goes up more than it goes left. And then, when you
cross 135 degrees, you have to go back to looping over the x-coordinates,
but from right to left.

You don’t actually have to write four loops. Since drawing a line
from A to B is the same as drawing a line from B to A, you can swap
the start and end positions for lines going from right to left and treat

612

them as going left to right.
So you need two different loops. The first thing your line draw-

ing function should do is check whether the difference between the x-
coordinates is larger than the difference between the y-coordinates. If
it is, this is a horizontalish line, and if not, a verticalish one.

Make sure you compare the absolute values of the x and y difference,
which you can get with Math.abs.

Once you know along which axis you will be looping, you can check
whether the start point has a higher coordinate along that axis than
the endpoint and swap them if necessary. A succinct way to swap the
values of two bindings in JavaScript uses destructuring assignment like
this:

[start, end] = [end, start];

Then you can compute the slope of the line, which determines the
amount the coordinate on the other axis changes for each step you take
along your main axis. With that, you can run a loop along the main
axis while also tracking the corresponding position on the other axis,
and you can draw pixels on every iteration. Make sure you round the
nonmain axis coordinates, since they are likely to be fractional and the
draw method doesn’t respond well to fractional coordinates.

613

Node.js

Search tool

Your first command line argument, the regular expression, can be found
in process.argv[2]. The input files come after that. You can use the
RegExp constructor to go from a string to a regular expression object.

Doing this synchronously, with readFileSync, is more straightforward,
but if you use node:fs/promises to get promise-returning functions and
write an async function, the code looks similar.

To figure out whether something is a directory, you can again use
stat (or statSync) and the stats object’s isDirectory method.

Exploring a directory is a branching process. You can do it either
by using a recursive function or by keeping an array of work (files that
still need to be explored). To find the files in a directory, you can
call readdir or readdirSync. Note the strange capitalization—Node’s
filesystem function naming is loosely based on standard Unix functions,
such as readdir, that are all lowercase, but then it adds Sync with a
capital letter.

To go from a filename read with readdir to a full path name, you
have to combine it with the name of the directory, either putting sep

from node:path between them or using the join function from that same
package.

614

Directory creation

You can use the function that implements the DELETE method as a
blueprint for the MKCOL method. When no file is found, try to cre-
ate a directory with mkdir. When a directory exists at that path, you
can return a 204 response so that directory creation requests are idem-
potent. If a nondirectory file exists here, return an error code. Code
400 (“bad request”) would be appropriate.

A public space on the web

You can create a <textarea> element to hold the content of the file that
is being edited. A GET request, using fetch, can retrieve the current
content of the file. You can use relative URLs like index.html, instead
of http://localhost:8000/index.html, to refer to files on the same server
as the running script.

Then, when the user clicks a button (you can use a <form> element
and "submit" event), make a PUT request to the same URL, with the
content of the <textarea> as the request body, to save the file.

You can then add a <select> element that contains all the files in the
server’s top directory by adding <option> elements containing the lines
returned by a GET request to the URL /. When the user selects another
file (a "change" event on the field), the script must fetch and display
that file. When saving a file, use the currently selected filename.

615

http://localhost:8000/index.html

Project: Skill-Sharing Website

Disk persistence

The simplest solution I can come up with is to encode the whole talks

object as JSON and dump it to a file with writeFile. There is already
a method (updated) that is called every time the server’s data changes.
It can be extended to write the new data to disk.

Pick a filename, for example ./talks.json. When the server starts, it
can try to read that file with readFile, and if that succeeds, the server
can use the file’s contents as its starting data.

Comment field resets

The best way to do this is probably to make the talk component an
object, with a syncState method, so that they can be updated to show
a modified version of the talk. During normal operation, the only way
a talk can be changed is by adding more comments, so the syncState

method can be relatively simple.
The difficult part is that when a changed list of talks comes in, we

have to reconcile the existing list of DOM components with the talks on
the new list—deleting components whose talk was deleted and updating
components whose talk changed.

To do this, it might be helpful to keep a data structure that stores
the talk components under the talk titles so that you can easily figure
out whether a component exists for a given talk. You can then loop
over the new array of talks, and for each of them, either synchronize

616

an existing component or create a new one. To delete components for
deleted talks, you’ll have to also loop over the components and check
whether the corresponding talks still exist.

617

Index

! operator, 26, 46
!= operator, 25
!== operator, 29
* operator, 19, 28, 220
** operator, 45
*= operator, 50
+ operator, 19, 22, 28, 220
++ operator, 50
+= operator, 50, 295
− operator, 19, 23, 28
−− operator, 50
−= operator, 50
/ operator, 19
/= operator, 50
< operator, 24
<= operator, 25

= operator, 34, 91, 520
as expression, 243
for default value, 69
in Egg, 311

== operator, 25, 28, 95, 121
=== operator, 29, 121, 173, 586
> operator, 24
>= operator, 25
?: operator, 26, 31, 309
?? operator, 30, 75, 490
[] (array), 86, 110
[] (subscript), 86, 87
% operator, 19, 49, 440, 582, 603,

606
&& operator, 25, 30, 142
| | operator, 26, 29, 142, 582

618

{} (block), 42
{} (object), 90, 96, 110
200 (HTTP status code), 463, 537,

542
204 (HTTP status code), 546, 548
2d (canvas context), 426
304 (HTTP status code), 558, 568,

577
400 (HTTP status code), 615
403 (HTTP status code), 544
404 (HTTP status code), 463, 544,

564, 567
405 (HTTP status code), 468, 542
406 (HTTP status code), 608
500 (HTTP status code), 542

a (HTML tag), 327, 347, 350,
476, 514

Abelson, Hal, 300
absolute positioning, 356, 362, 373,

379, 388
absolute value, 113, 613
abstract data type, 144, 150
abstract syntax tree, see syntax

tree
abstraction, 8, 58, 123, 124, 126,

300, 339, 470, 521, 522

in Egg, 300
of the network, 323
with higher-order functions,

123
acceleration, 416
Accept header, 492, 608
access control, 213, 559
Access-Control-Allow-Origin header,

469
action, 497, 500, 502
activeElement property, 475
actor, 396, 405, 414
add method, 173
addEntry function, 96
addEventListener method, 364,

417, 539
addition, 18, 172
address, 116, 461
address bar, 325, 461, 464
adoption, 214
ages example, 157
alert function, 329
alpha, 516
alphanumeric character, 217
alt attribute, 343
alt key, 371

619

altKey property, 371
ambiguity, 319
American English, 220
ampersand character, 327, 465
analysis, 191, 198
ancestor element, 406
Android, 372
angle, 358, 434, 436, 607
angle brackets, 326, 327
animation, 357, 378, 388, 392,

400, 456, 607
bouncing ball, 459
platform game, 409, 410, 416,

418, 419, 439, 440, 452,
604

spinning cat, 356, 362
appendChild method, 342, 601
Apple, 332
appliance, 144
application, 1, 495, 554
arc, 434, 436
arc method, 434, 435, 607
argument, 38, 68, 75, 109, 301
argv property, 528
arithmetic, 18, 28, 312
array, 88–90, 93, 119

as matrix, 395
as table, 99
counting, 139
creation, 86, 135, 499, 584,

590
filtering, 130
flattening, 142
in Egg, 318
indexing, 86, 101, 106, 584,

603
iteration, 101, 124, 128
length of, 88
methods, 105, 119, 128, 130–

132, 136, 141, 142
notation, 116
of rest arguments, 109
random element, 183
RegExp match, 222
representation, 116
searching, 101, 105

Array constructor, 499
Array prototype, 149, 156
array-like object, 160, 338, 339,

341, 377, 477, 485, 535
Array.from function, 530
arrays in egg (exercise), 318, 599

620

arrow function, 65, 147, 295
arrow key, 388
artificial intelligence, 175
artificial life, 391, 493
assert function, 210
assertion, 210
assignment, 34, 50, 243, 319, 600
assumption, 208, 211
asterisk, 19, 220
async function, 283–285, 295, 297,

298, 577, 596
asynchronous programming, 269–

271, 273, 283, 292, 294,
421, 597

in Node.js, 527, 536, 539, 545,
550

reading files, 486
at sign, 393
attribute, 327, 338, 346, 477, 501,

610
autofocus attribute, 476
automatic semicolon insertion, 33
automation, 189, 196
automaton, 175
avatar, 391
average function, 134

await keyword, 283, 284, 286, 295,
298, 596, 597

axis, 415, 428, 442, 443, 613

Babbage, Charles, 84
background, 391, 403, 411
background (CSS), 388, 392, 404
backslash character

as path separator, 544
in regular expressions, 215,

217, 236, 592
in strings, 21, 327

backtick, 20, 22
backtracking, 229, 230, 234
ball, 459, 607
balloon, 388
balloon (exercise), 388, 602
banking example, 204
Banks, Iain, 390
baseControls constant, 519
baseTools constant, 519
bean counting (exercise), 83, 584
beforeunload event, 382
behavior, 246
benchmark, 349
Berners-Lee, Tim, 321
best practices, 4

621

bezierCurveTo method, 433
big ball of mud, 249, 250
binary data, 4, 15, 535
binary number, 15, 17, 99, 198,

229, 484
binary operator, 18, 23, 32
binding, 6, 45, 91

as
state, 45, 48

as state, 95, 487
assignment, 34, 63
compilation of, 600
definition, 34, 59, 63, 315, 319
destructuring, 114
from parameter, 60, 71
global, 60, 193, 251, 422, 528,

529
in Egg, 311
local, 60
model of, 35, 91, 95
naming, 36, 37, 52, 77, 111,

194
scope of, 60
undefined, 207
visibility, 61

bit, 5, 15, 17, 24, 99

bitfield, 376
bitmap graphics, 438, 459
black, 500
block, 42, 46, 59, 61, 65, 91, 203,

205, 301
block comment, 53, 234
block element, 347, 350, 351
blocking, 269, 357, 385, 536
blue, 500
blur event, 380, 381
blur method, 475
body (HTML tag), 326, 328, 336
body (HTTP), 464, 466, 468, 538,

546, 548
body property, 336, 337, 341, 468
bold, 350
Book of Programming, 15, 249,

526
Boolean, 24, 41, 45, 94, 216, 310,

312
conversion to, 29, 40, 46

Boolean function, 40
border (CSS), 347, 351
border-radius (CSS), 373
bouncing, 393, 399, 410, 414, 459
bound, 130

622

boundary, 226, 242, 247, 450, 592
box, 213, 334, 391, 392, 459, 607
box shadow (CSS), 406
br (HTML tag), 506, 610
braces

block, 7, 42, 582
body, 126
class, 151
function body, 59, 65
in regular expression, 221
object, 90, 91, 96, 114

branching, 227, 229
branching recursion, 73, 445
break keyword, 49, 51
breakpoint, 199
British English, 220
browser, 2, 8, 270, 321, 325, 328,

330–332, 364, 392, 459, 461,
464, 470, 478, 488, 514,
521, 553

environment, 37–39, 461
security, 469, 555
storage, 487, 490
window, 364

browser wars, 332
browsers, 12, 261

bubbling, see event propagation
Buffer class, 534, 535, 539, 540
bug, 122, 191, 198, 235, 238, 246,

254, 332
building Promise.all (exercise), 298,

598
bundler, 261
button, 363, 465, 477, 494
button (HTML tag), 330, 365,

372, 389, 478, 488, 493,
501

button property, 366, 376, 503
buttons property, 376, 503

call method, 146, 156
call stack, 66, 67, 70, 75, 90, 202,

203, 207, 292
callback function, 269, 271, 273,

276, 364, 418, 419, 502,
534, 536, 539, 568, 576

camel case, 52, 352
cancelAnimationFrame function,

384
canvas, 392, 424, 428–433, 437,

438, 440–442, 444, 445, 447,
454–456, 458, 608

context, 426, 427

623

path, 429
size, 426, 429

canvas (HTML tag), 426, 496,
502, 513, 515, 523, 611

CanvasDisplay class, 447, 449, 452
capitalization, 52, 152, 222, 352,

361, 540
capture group, 223, 225, 232, 233,

561
career, 390
caret character, 218, 226, 242,

533
Carla the crow, 279, 280, 287,

297
carriage return, 241
cascading, 353
Cascading Style Sheets, see CSS
case conversion, 88
case keyword, 51
case sensitivity, 222, 593
casual computing, 2
cat’s hat (exercise), 362
catch keyword, 202, 203, 207, 208,

212, 292, 591
catch method, 277
CD, 15

celery, 552
cell, 493
Celsius, 162
center, 408
centering, 357
certificate, 471
change event, 475, 480, 507, 610,

615
character, 20, 21, 137, 138, 479
character category, 219
character encoding, 534, 535
characterCount function, 133
characterScript function, 140, 143,

588
charCodeAt method, 137
checkbox, 473, 481, 494, 610
checked attribute, 473, 481
chess board (exercise), 582
chessboard (exercise), 56
child node, 337, 339, 341
childNodes property, 339, 344,

603
children property, 340
Chinese characters, 137, 140
choice, 227
Chrome, 332

624

circle, 358, 434, 435
circle (SVG tag), 425
circles (exercise), 523, 611
circular dependency, 267, 595
class, 145, 150, 151, 172, 178,

394, 498
class attribute, 342, 347, 353, 402,

405, 406
class declaration, 151, 153
class hierarchy, 170
className property, 347
cleaning up, 204
clearing, 424, 440, 449, 450, 608
clearInterval function, 384
clearRect method, 440, 608
clearTimeout function, 384, 385
click event, 364, 365, 367, 373,

376, 501, 609
client, 323, 470, 553, 570
clientHeight property, 347
clientWidth property, 347
clientX property, 373, 377, 504,

505
clientY property, 373, 377, 504,

505
clipboard, 331

clipping, 450
closePath method, 431
closing tag, 327, 329
closure, 71, 318, 599, 601, 604
closure in egg (exercise), 318, 599
code, 11, 234, 391

structure of, 32, 46, 58, 249,
262

code golf, 247
code unit, 137
codePointAt method, 138
coin, 391, 393, 415, 454
Coin class, 400, 415
collaboration, 321
collection, 8, 86, 89, 93, 119, 166
collision detection, 410, 414–416,

605, 607
colon character, 26, 51, 90, 351
color, 426, 428, 450, 496, 516
color (CSS), 351
color code, 500
color component, 500
color field, 496, 500, 508
color picker, 496, 508, 512
color property, 498
ColorSelect class, 508

625

comma character, 301
command key, 371, 522
command line, 255, 526, 528, 530,

550
comment, 53, 116, 234, 240, 319,

337, 553, 557, 566, 574
comment field reset (exercise), 580,

616
COMMENT_NODE code, 337
comments in egg (exercise), 319,

600
CommonJS, 529
CommonJS modules, 257, 259,

267
communication, 322, 470
community, 527
compareRobots function, 189
comparison, 24, 29, 312, 584

deep, 121, 586
of NaN, 25
of numbers, 24, 39
of objects, 95
of strings, 24
of undefined values, 28

compatibility, 9, 193, 321, 332,
523, 533

compilation, 261, 315, 316, 599
complexity, 4, 5, 122, 170, 230,

354, 521
component, 496–498, 506, 519
composability, 8, 134, 262
computed property, 87, 490
computer, 1, 3
concat method, 106, 142, 590,

601
concatenation, 22, 106, 601
conditional execution, 26, 41, 50,

56, 309
conditional operator, 26, 31, 309
conditional request, 558
configuration, 240
connected graph, 188
connection, 323, 461, 471, 554–

556
consistency, 52, 321, 338
console.log, 7, 14, 23, 39, 66, 69,

81, 199, 528
const keyword, 36, 61, 95, 111,

114
constant, 36, 112, 417
constructor, 52, 150–152, 170, 190,

193, 203, 224, 236, 589,

626

591
content negotiation (exercise), 492,

608
Content-Length header, 464
Content-Type header, 464, 537,

542, 544, 551
context, 426, 427
context menu, 369
continuation, 272
continue keyword, 49
control, 506, 508, 513, 514, 519
control flow, 40, 127

asynchronous, 270, 284
conditional, 41
exceptions, 202, 204
functions, 66
loop, 44, 46, 48

control key, 371, 522
control point, 432–434
convention, 52
Conway’s Game of Life, 493
coordinates, 172, 358, 373, 403,

408, 411, 428, 434, 442,
443

copy-paste programming, 78, 254
copyright, 255

correlation, 97, 98, 101, 103, 104
cosine, 111, 358
countBy function, 139, 143
counter variable, 44, 47, 359, 582,

584, 598, 603
CPU, 269
crash, 207, 211, 565, 580
createElement method, 344, 501,

601
createReadStream function, 539,

545
createServer function, 537, 539,

560, 561
createTextNode method, 343, 609
createWriteStream function, 539,

548
crisp, 455
cross-domain request, 469
crying, 222
cryptography, 471
CSS, 351, 352, 354, 402, 404–

407, 409, 424, 429, 500,
570

ctrlKey property, 371, 522
curl program, 548
curly braces, see braces

627

cursor, 479, 480
curve, 432–434
cwd function, 544
cycle, 336

Dark Blue (game), 391
data, 3, 15, 84
data attribute, 346, 389
data event, 539
data flow, 497, 498, 522
data format, 116, 338
data loss, 580
data structure, 84, 263, 265, 334,

494
collection, 86
immutable, 180
list, 119, 166
map, 157
stack, 89
tree, 301, 336, 455

data URL, 513, 515
dataset, 100, 128, 129
date, 217, 221, 224
Date class, 224, 225, 251, 257,

297, 596
date-names package, 257
Date.now function, 225, 297, 517

dblclick event, 373
De Morgan’s laws, 587
debouncing, 385
debugger statement, 199
debugging, 9, 191, 192, 194, 197,

199, 203, 208, 210, 246
decentralization, 321
decimal number, 15, 198, 229
declaration, 351
decodeURIComponent function,

465, 543, 561
deep comparison, 95, 121
deep comparison (exercise), 121,

586
default behavior, 350, 369
default keyword, 51
default value, 30, 69, 429, 490,

520
defineProperty function, 588
degree, 434, 442
DELETEmethod, 462, 464, 468,

541, 546, 564
delete method, 173
delete operator, 91
dependence, 97
dependency, 250, 252, 254, 257,

628

267, 329, 532, 533
deserialization, 117
design, 265
destructuring, 226
destructuring assignment, 613
destructuring binding, 114, 258,

520, 595
developer tools, 11, 39, 199, 200,

207
dialect, 261
dialog, 38
diamond, 458, 605
digit, 15, 17, 198, 216, 217, 220,

221, 223, 500
Dijkstra’s algorithm, 264
Dijkstra, Edsger, 175, 264
dijkstrajs package, 264, 593
dimensions, 172, 347, 390, 393,

410, 426, 582
direct child node, 354
direction (writing), 143
directory, 530, 534, 535, 541, 544–

546, 550, 615
directory creation (exercise), 550,

615
disabled attribute, 477

discretization, 391, 410, 419
dispatch, 50, 497, 498, 500, 506,

519, 560, 611
display, 402, 419, 420, 447, 454,

456
display (CSS), 351, 389
distance, 612
division, 19
division by zero, 20
do loop, 46, 184
doctype, 326, 328
document, 324, 325, 334, 381,

424
document format, 470, 492
Document Object Model, see DOM
documentation, 526
documentElement property, 336
dollar sign, 36, 226, 232, 242
DOM, 336, 346

attributes, 346
components, 496, 497
construction, 338, 342, 345,

501
events, 364, 372
fields, 472, 479
graphics, 392, 402, 404–406,

629

424, 426, 455
interface, 338
modification, 342
querying, 341, 354
tree, 336

dom property, 498
domain, 325, 469, 488
domain-specific language, 123, 197,

214, 317, 354
DOMDisplay class, 402, 403, 447
dominant direction (exercise), 143,

588
done property, 517
doneAt property, 517
dot character, see period charac-

ter
double click, 373
double-quote character, 20, 248,

301, 327
download, 11, 254, 513, 531, 548,

552, 579
download attribute, 514
draggable bar example, 374
dragging, 374, 496, 510, 523
draw function, 509, 524
drawImage method, 438, 439, 442,

447, 451, 608
drawing, 334, 347, 348, 357, 425,

426, 428, 432, 445, 451,
452, 454, 495, 496, 610

drawing program example, 373,
495

drawPicture function, 503, 513,
523, 611

drop-down menu, 474, 483
duplication, 254

ECMAScript, 9, 10, 193
ECMAScript 6, 10
economic factors, 521
editor, 47
efficiency, 72, 119, 135, 315, 348,

392, 405, 427, 503, 523
efficient drawing (exercise), 523,

611
Egg language, 300, 301, 306, 307,

309, 311, 313, 314, 316,
318, 319, 336

electronic life, 391
elegance, 73, 303
element, 327, 337, 340, 344
ELEMENT_NODE code, 337, 601
elements property, 477

630

ellipse, 356, 359
else keyword, 42
elt function, 345, 501, 522, 574
email, 471
emoji, 22, 137, 244, 388
empty set, 234
encapsulation, 145, 158, 170, 365,

402
encodeURIComponent function,

465, 557, 572
encoding, 322
encryption, 471
end event, 539
end method, 538, 539, 542
enemies example, 240
engineering, 332
ENOENT (status code), 545
enter key, 478
entity, 327
enum (reserved word), 37
environment, 37, 309
equality, 25
error, 137, 192–194, 197, 200, 201,

207, 209, 276
error event, 486, 548
error handling, 191, 201, 202, 207,

536, 542, 545, 573, 577
error message, 307, 493
error recovery, 200
error response, 463, 542, 547
error tolerance, 327
Error type, 203, 207, 209, 545
ES modules, 251, 252, 330, 529,

531
escape key, 422
escaping

in HTML, 327, 330
in regexps, 215, 218, 236
in strings, 21, 301
in URLs, 465, 543, 557, 561

Escher, M.C., 424
ETag header, 558, 567, 577
eval, 259
evaluate function, 307, 309, 311
evaluation, 307, 316
even number, 43, 82
event handling, 364, 366, 367, 369,

370, 378, 380, 382, 392,
417, 421, 422, 438, 455,
478, 480, 501, 539, 604,
610

event loop, 292

631

event object, 366, 373, 377
event propagation, 367, 368, 380,

382
event type, 366
every method, 142
everything (exercise), 142, 587
evolution, 214, 521, 533
exception handling, 202–204, 207,

209, 212, 213, 276, 279,
284, 292, 609

exception safety, 206
exec method, 222–224, 237, 239
execution order, 40, 64, 66
exercises, 3, 11, 54, 198
exit method, 528
expectation, 369
experiment, 4, 11, 246
exploit, 331
exponent, 18, 248, 592, 593
exponentiation, 45, 48
export keyword, 531
exports object, 257, 260, 595
expression, 32–34, 40, 45, 48, 63,

301, 308
expressivity, 317
extraction, 224

factorial function, 13
Fahrenheit, 162
fallthrough, 51
false, 24
farm example, 77, 80, 227
fetch function, 467, 492, 538, 572,

576, 615
field, 372, 465, 472, 477, 482, 487,

494, 496, 580
Fielding, Roy, 461
file, 485, 529, 546, 616

access, 259, 261, 515, 534, 535
image, 495, 513, 514
resource, 462, 464, 541, 544
stream, 539

file extension, 544
file field, 473, 485
file format, 240
file reading, 486
file server, 570
file server example, 541, 544, 546–

548, 550, 551, 615
file size, 261
File type, 486
FileReader class, 486, 515
files property, 485

632

fileSizes function, 294, 295
filesystem, 485, 534, 535, 541, 543,

616
fill function, 511
fill method, 430, 499
filling, 428, 430, 437, 457
fillRect method, 428, 440
fillStyle property, 428, 437, 500
fillText method, 437, 438, 606
filter method, 130, 134, 140, 179,

588–590
finally keyword, 205, 213, 592
find method, 140
findInStorage function, 283
findRoute function, 187
finish event, 548
Firefox, 332
firstChild property, 339
fixed positioning, 379
fixing scope (exercise), 319, 600
FizzBuzz (exercise), 56, 582
flattening (exercise), 142
flexibility, 10
flipHorizontally function, 452, 605
flipHorizontally method, 443
flipping, see mirroring

floating-point number, 17, 18
flood fill, 506, 511
flow diagram, 228, 229
focus, 372, 380, 475–477, 481, 482,

522, 580
focus event, 380, 381
focus method, 475
fold, see reduce method
font, 438
font-family (CSS), 352
font-size (CSS), 388
font-weight (CSS), 353
for attribute, 482
for loop, 47, 49, 101, 124, 142,

208, 584, 586
for/of loop, 102, 138, 163, 165,

168, 589
forEach method, 128, 160
form, 464–466, 477, 478, 551
form (HTML tag), 472, 473, 477,

575, 615
form property, 477
formatDate module, 257
fractal example, 445
fractional number, 18, 248, 391
frame, 440, 452, 607

633

framework, 80, 497
frequency table, 97
function, 8, 38, 58, 65, 192, 300,

301, 314
application, 38, 40, 60, 66,

68, 72, 110, 130, 207, 301,
308

as property, 88
as value, 59, 63, 70, 125, 126,

130, 366, 418, 604
body, 59, 65
callback, see callback function
declaration, 64
definition, 59, 64, 76
higher-order, 64, 125, 126, 130–

132, 134, 233, 418
model of, 71
naming, 77, 78
purity, 80
scope, 63, 256, 318

Function constructor, 259, 312,
316, 493, 609

function keyword, 59, 64
Function prototype, 149, 156
future, 10, 37, 64, 460

game, 390–393, 417, 421, 447

screenshot, 409, 454
with canvas, 454

game of life (exercise), 493, 609
GAME_LEVELS dataset, 421
garbage collection, 16
garble example, 530
gardening, 552
gaudy home pages, 388
generation, 493, 494, 609
generator, 285
GETmethod, 462, 464, 465, 468,

478, 541, 544, 556, 564
get method, 158
getAttribute method, 346, 347
getBoundingClientRect method,

348, 504
getContext method, 427
getDate method, 225
getElementById method, 341, 601
getElementsByClassName method,

342
getElementsByTagName method,

341, 344, 361, 601
getFullYear method, 225
getHours method, 225
getImageData method, 515, 516

634

getItem method, 488, 490
getMinutes method, 225
getMonth method, 225
getPrototypeOf function, 149, 152,

319, 600
getSeconds method, 225
getter, 161, 173, 399
getTime method, 225
getYear method, 225
GitHub, 462
global object, 193
global scope, 60, 251, 257, 312,

383, 384, 528, 529, 600
goalOrientedRobot function, 188
Google, 332
grammar, 32, 192, 241
graph, 176, 186, 264, 456
graphics, 392, 402, 405, 424, 426,

427, 438, 455, 456
grave accent, see backtick
gravity, 416
greater than, 24
greed, 234, 235
green, 500
grep, 550
grid, 391, 392, 403, 411, 493, 609

Group class, 173, 174, 190, 286,
589

groupBy function, 143
grouping, 19, 42, 221, 223, 232,

233, 592
groups (exercise), 173, 174, 589

h1 (HTML tag), 326, 347
handleAction function, 571
hard disk, 262, 268
hard drive, 16, 485, 488, 527, 580
hard-coding, 341
hardcoding, 458
has method, 158, 173
hash character, 319
hash sign, 500
hasOwn function, 159, 319, 564,

600
head (HTML tag), 326, 328, 336
head property, 336
header, 463, 464, 469, 470, 538,

556
headers property, 467, 468, 492
height property, 523, 611
help text example, 380
hexadecimal number, 229, 465,

500, 517

635

hidden element, 351, 389
higher-order function, see func-

tion, higher-order
history, 8, 521
historyUpdateState function, 517
hooligan, 559
href attribute, 327, 341, 346
HTML, 325, 334, 462, 487, 551

notation, 326
structure, 334, 337

html (HTML tag), 328, 336
HTTP, 321, 322, 324, 325, 461–

464, 466, 469–471, 537, 546,
547, 551, 555, 556

client, 538, 548, 553
server, 537, 541, 569

HTTPS, 324, 471, 472
human language, 32
HyperText Markup Language, see

HTML
HyperText Transfer Protocol, see

HTTP
hyphen character, 19, 217, 352

id attribute, 341, 353, 482
idempotence, 547
idempotency, 615

identifier, 302
identity, 94
if keyword, 41, 243

chaining, 42, 50, 582, 583
If-None-Match header, 558, 568,

576
image, 343, 382, 424, 464
imagination, 390
IME, 372
img (HTML tag), 327, 343, 350,

382, 424, 438, 440, 515
immediately invoked function ex-

pression, 256
immutable, 94, 180, 399, 499, 500,

511, 517, 611
implements (reserved word), 37
import keyword, 252, 529, 530,

560
in operator, 92, 159
includes method, 101, 102, 589
indentation, 46
index, 86
index property, 222
index.html, 570
indexOf method, 105, 107, 173,

216, 237, 589

636

infinite loop, 49, 67, 208, 585
infinity, 20
infrastructure, 254
inheritance, 149, 168–171, 209,

545
INI file, 240
ini package, 255, 256, 262, 531
initialization, 381
inline element, 347, 350
inner function, 62, 601
inner loop, 231
innerHeight property, 379
innerWidth property, 379
input, 200, 363, 392, 475, 527,

565
input (HTML tag), 380, 472, 479,

481, 482, 485, 508, 515
input event, 480
insertBefore method, 342, 343
installation, 254
instance, 150, 153
instanceof operator, 170, 209
instruction, 5
integer, 18
integration, 214, 338
interface, 153

canvas, 424, 426
design, 79, 214, 224, 237, 338,

429
HTTP, 470, 556
module, 250, 256, 257, 260,

262, 467, 531
object, 145, 158, 160, 161, 174,

190, 396, 447, 479, 498
interface (reserved word), 37
internationalization, 218
internet, 240, 322–324, 330
Internet Explorer, 331, 332
interpolation, 22
interpretation, 11, 307, 309, 315
interview question, 56
inversion, 218
IP address, 325, 461
isDirectory method, 546, 614
isEven (exercise), 82, 583
isolation, 145, 249, 257, 330
iterable interface, 165, 589
iterator, 285
iterator interface, 163, 165, 174

Jacques, 85
Java, 9
JavaScript, 8

637

availability of, 2
flexibility of, 10
history of, 8, 321
in HTML, 329
syntax, 32
uses of, 10
versions of, 10
weaknesses of, 9

JavaScript console, 11, 23, 39,
199, 207, 493, 528

JavaScript Object Notation, see
JSON

job, 435
join method, 141, 156, 530
journal, 85, 90, 93, 96, 102
JOURNAL dataset, 100
journalEvents function, 102
JSON, 116, 262, 468, 490, 556,

557, 565, 577, 616
json method, 468
JSON.parse function, 117, 616
JSON.stringify function, 117
JSX, 575
jump, 6
jump-and-run game, 390
jumping, 391, 416, 417

Kernighan, Brian, 191
key code, 417
key property, 371, 602, 610
keyboard, 37, 363, 369, 370, 391,

392, 416, 417, 422, 475,
476, 480, 522

keyboard bindings (exercise), 522,
610

keyboard focus, see focus
keydown event, 370, 385, 418, 522,

602, 610
keyup event, 370, 418
keyword, 34, 37, 347
Khasekhemwy, 480
kill process, 538
Knuth, Donald, 58

label, 438, 459
label (HTML tag), 482, 508
labeling, 482
landscape example, 62
Laozi, 268
Last-Modified header, 464
lastChild property, 339
lastIndex property, 237–239
lastIndexOf method, 105
latency, 261

638

lava, 391, 393, 394, 406, 410, 414,
454

Lava class, 399, 414
layering, 323
layout, 347, 349, 351
laziness, 348
Le Guin, Ursula K., 3
leaf node, 336, 337
leak, 331, 422
learning, 2, 10, 11
left (CSS), 356, 357, 359, 362
LEGO, 250
length property

for array, 88, 499
for string, 78, 83, 87, 109,

584
LengthList class, 168
less than, 24
let keyword, 34, 35, 61, 95, 111,

114, 193
level, 391, 393, 394, 402, 403,

406, 420, 421
Level class, 394
lexical scoping, 62, 63
library, 338, 497, 531, 532
license, 255

line, 33, 46, 241, 424, 428–433,
435, 436, 458, 606

line break, 20, 241
line comment, 53, 234
line drawing, 524, 612
line width, 429, 442
lines of code, 313
lineTo method, 430
lineWidth property, 429
link, 327, 339, 341, 369, 372, 514
link (HTML tag), 409
linked list, 119, 166, 168, 586
Liskov, Barbara, 144
list (exercise), 119, 586
listen method, 537, 538
listening (TCP), 323, 537
ListIterator class, 167
literal expression, 32, 215, 305,

308
live data structure, 334, 344, 355,

603
live view, 554, 555, 578, 616
lives (exercise), 421
load event, 381, 438, 451, 486,

608
LoadButton class, 514

639

local binding, 70, 319, 584
local scope, 60, 315
localhost, 537
localStorage object, 488, 572
locked box (exercise), 212, 592
logging, 199
logical and, 25
logical operators, 25
logical or, 26
long polling, 554–556, 558, 565,

567, 568, 576
look-ahead, 226
loop, 6, 7, 44, 47, 55, 56, 72, 101,

124, 125, 134, 135, 239,
582, 584, 606

termination of, 49
loop body, 46, 126
lycanthropy, 85, 96

machine code, 4, 316
magic, 300
mailRoute array, 185
maintenance, 255
malicious script, 330
man-in-the-middle, 471
map, 401, 478
map (data structure), 157

Map class, 158, 161
map method, 131, 134, 141, 157,

179, 395, 507
Marcus Aurelius, 363
match method, 223, 239
matching, 216, 226, 237, 247

algorithm, 228–230
Math object, 82, 87, 111
Math.abs function, 113, 613
Math.acos function, 111
Math.asin function, 111
Math.atan function, 111
Math.ceil function, 113, 411, 450
Math.cos function, 111, 358, 359,

607
Math.floor function, 113, 183, 411,

450
Math.max function, 39, 87, 109,

111, 450
Math.min function, 40, 82, 111,

450
Math.PI constant, 111, 434
Math.random function, 112, 183,

401, 494
Math.round function, 113
Math.sin function, 111, 358, 359,

640

401, 415
Math.sqrt function, 100, 111, 588
Math.tan function, 111
mathematics, 72, 126
max example, 109
max-height (CSS), 406
max-width (CSS), 406
maximum, 39, 111, 133, 134
Meadowfield, 175
measuring a robot (exercise), 189,

590
media type, 470, 492, 544
meetup, 552
memory, 5, 15

call
stack, 67

organization, 16, 34, 86, 94,
116

persistence, 580
speed, 268, 315
structure
sharing, 120

mesh, 324
message event, 383
meta key, 371
metaKey property, 371, 522

method, 88, 146, 153, 193, 538
array, 105
HTTP, 462, 470, 538, 548,

556, 560
private, 153

method attribute, 465
method call, 146
method property, 468
methods object, 541
Microsoft, 331, 332
MIME type, 492, 544
mime-types package, 544
mini application, 487
minifier, 261
minimalism, 391
minimum, 40, 82, 111
minimum (exercise), 82, 583
minus, 19, 248
mirror, 443, 459, 608
mirroring, 441, 443
Miró, Joan, 495
mixer example, 144
MKCOL method, 550, 615
mkdir function, 550, 615
modification date, 546
modifier key, 371

641

modular robot (exercise), 266, 593
modularity, 145, 497
module, 250, 256, 266, 402, 530,

531, 560
design, 262
resolution, 252

module loader, 529
module object, 260
module system, 256
modulo operator, 19
Mongolian vowel separator, 219
monster (exercise), 422, 605
Mosaic, 331
motion, 392
mouse, 37
mouse button, 366, 368, 373
mouse cursor, 373
mouse trail (exercise), 388, 603
mousedown event, 367, 373, 376,

502, 503, 609
mousemove event, 374, 376, 385,

386, 389, 503, 524, 603
mouseup event, 373, 376
moveTo method, 430, 435
Mozilla, 332
multiple attribute, 483–485

multiple choice, 474
multiple-choice, 473, 482, 483
multiplication, 18, 398, 414
multiplier function, 71
music, 390
mutability, 91, 94, 180

name attribute, 477, 483
namespace, 111
naming, 6, 9, 36
NaN, 20, 25, 27, 192
negation, 23, 26
neighbor, 493, 610
nerd, 236
nesting

in regexps, 231
of arrays, 99
of expressions, 32, 303
of functions, 62
of loops, 56, 582
of objects, 336, 340
of scope, 62

Netscape, 8, 331, 332
network, 269, 322, 555

abstraction, 470
protocol, 322
security, 471

642

speed, 261, 268, 527
new operator, 151
newline character, 20, 56, 217,

234, 241, 395, 609
next method, 165, 286, 589
nextSibling property, 339
node, 336
node program, 527, 528
Node.js, 11, 12, 39, 257, 270, 526,

527, 529–531, 534, 536–
539, 541, 544, 546–549, 553,
554, 556, 559, 579

node:fs package, 534–536
node:fs/promises package, 536
node:http package, 537, 538
node:path package, 544
node:stream/consumers package,

565
node_modules directory, 530, 531
NodeList type, 338, 354
nodeName property, 361
nodeType property, 337, 601, 603
nodeValue property, 341
nonbreaking space, 219
not a number, 20
note-taking example, 488

notification, 555
NPM, 254–257, 264, 266, 530–

532, 534, 544, 560, 561,
579, 594

npm program, 531, 533, 544
null, 27, 28, 30, 75, 87, 114, 121,

200
number, 17, 94, 216, 248, 592

conversion to, 28, 40
notation, 17, 18
precision of, 18
representation, 17
special values, 20

Number function, 40, 41, 52, 220
number puzzle example, 73
Number.isNaN function, 41

object, 84, 90, 92, 170
as
module, 256

as map, 401
creation, 116, 151, 490
identity, 94
mutability, 94
property, 39, 87, 111, 114,

148
representation, 116

643

Object prototype, 148, 149
object-oriented programming, 144,

150, 159, 160, 168, 178,
263

Object.create function, 149, 158,
313

Object.keys function, 92, 121, 587,
601

Object.prototype, 157
obstacle, 410
offsetHeight property, 347, 348
offsetWidth property, 347
on method, 539
onclick attribute, 330, 365
onclick property, 501
OpenGL, 426
opening tag, 327
operator, 18, 23, 24, 29, 301, 312

application, 19
optimization, 73, 81, 349, 385,

392, 405, 456, 459, 536
option (HTML tag), 474, 475,

483, 615
optional, 220
optional argument, 69, 118
optional chaining, 115

options property, 483
ordering, 323
ordinal package, 257, 260
organic growth, 249
organization, 249
outline, 428
output, 23, 38, 39, 199, 200, 312,

527, 609
overflow, 17
overflow (CSS), 406
overlap, 411
overlay, 353
overriding, 155, 159, 169, 595
overwriting, 548, 551, 565

p (HTML tag), 326, 347
package, 254, 257, 533
package (reserved word), 37
package manager, 254
package.json, 532, 533
padding (CSS), 404
page reload, 382, 478, 488
pageX property, 373, 377
pageXOffset property, 348
pageY property, 373, 377
pageYOffset property, 348, 379
Palef, Thomas, 391

644

panning, 504
paragraph, 327
parallelism, 269, 464
parameter, 38, 59, 60, 65, 68, 69,

109, 114, 146, 194, 260
parent node, 367
parentheses, 19

arguments, 38, 59, 65, 126,
301

expression, 32
in regular expressions, 221,

225, 228, 243, 592
statement, 41, 45, 48

parentNode property, 339
parse function, 306
parseApply function, 305
parseExpression function, 303
parseINI function, 242, 254
parser generator, 317
parsing, 117, 191, 242, 300, 301,

303, 306, 309, 313, 327,
334, 543, 567

password, 471
password field, 473
path

canvas, 435

canvas, 429, 430, 432, 605
closing, 430, 431
filesystem, 529, 541
URL, 462, 467, 541, 543, 556,

560
pathfinding, 186, 264, 511
patience, 524
pattern, 214–216, 218, 236
pausing (exercise), 422, 604
pea soup, 123
peanuts, 104
percent sign, 465
percentage, 141, 379
performance, 230, 261, 270, 298,

315, 348, 392, 456, 536
period character, 39, 87, 109, 115,

217, 234, 248, 500
persistence, 487, 553, 580, 616
persistent data structure, 178, 180,

190, 197, 499, 510, 517,
605

persistent group (exercise), 190
persistent map (exercise), 590
PGroup class, 190, 590
phase, 400, 415
phi coefficient, 97–99

645

phi function, 99, 113
phone, 372
physics, 409, 416, 603
physics engine, 410
pi, 18, 111, 358, 401, 434
PI constant, 111, 358
pick function, 512
picture, 424, 425, 440, 456, 496,

517
Picture class, 498, 515
picture property, 498
PictureCanvas class, 502, 523
pictureFromImage function, 515
pie chart example, 435, 436, 438,

459, 606
pink, 500
pipe, 323
pipe character, 227, 592
pipe method, 542, 548
pipeline, 261
pixel, 347, 359, 373, 392, 403,

425–427, 438, 440, 449, 456,
459, 495, 498, 504, 509,
511, 516, 524, 611

pixel art, 439
PixelEditor class, 506, 519, 522

pizza, 97, 99
platform game, 390, 421
Plauger, P.J., 191
player, 390, 391, 393, 406, 410,

415, 420, 439, 452, 454
Player class, 398, 415
plus character, 19, 220, 248
Poignant Guide, 32
pointer, 339
pointer event, 367, 502
pointerPosition function, 503
polling, 363, 364
pollTalks function, 576
polymorphism, 159
pop method, 89, 105
Popper, Karl, 345
port, 323, 461, 537, 538
pose, 439
position, 348
position (CSS), 356, 362, 379, 392,

405, 406
POSTmethod, 464, 466, 478, 557
postMessage method, 383
power example, 72
precedence, 19, 26, 353, 354
predicate function, 130, 136, 141,

646

142
Prefer header, 558, 568, 576
premature optimization, 73
preventDefault method, 369, 378,

380, 382, 417, 478, 504,
610

previousSibling property, 339
primitiveMultiply (exercise), 212,

591
privacy, 331
private (reserved word), 37
private property, 213
process object, 528, 544
processor, 268
profiling, 73
program, 33, 40

nature of, 3
program size, 122, 247
programming, 1

difficulty of, 2
history of, 5
joy of, 1, 4

programming language, 1, 4, 300,
338, 527

power of, 8
programming style, 4, 33, 46, 52

progress bar, 378
project chapter, 175, 300, 390,

495, 552
promise, 298, 598
Promise class, 273, 277, 283, 292,

293, 298, 467, 468, 486,
536, 541, 577, 596, 598

Promise.all function, 290, 295, 298,
596, 598

Promise.reject function, 277
Promise.resolve function, 273
promptDirection function, 208, 209
promptNumber function, 200
propagation, see event propaga-

tion
proper lines (exercise), 524, 612
property, 490

access, 39, 87, 146, 191, 520
assignment, 91
definition, 90, 96, 161
deletion, 91
inheritance, 148, 150, 155
model of, 91
naming, 158, 163, 164
private, 153
public, 153

647

testing for, 92
protected (reserved word), 37
protocol, 322–324, 461, 463
prototype, 148–151, 155, 158, 169,

313, 319, 600
diagram, 155

prototype property, 151, 152
pseudorandom number, 112
public, 154
public (reserved word), 37
public space (exercise), 551, 615
publishing, 534
punch card, 5
pure function, 79, 80, 119, 130,

263, 494, 609
push method, 89, 102, 105, 589
pushing data, 554
PUTmethod, 462, 464, 541, 547,

557, 565, 615
Pythagoras, 588
Pythagorean theorem, 611

quadratic curve, 433
quadraticCurveTo method, 432,

606
query string, 465, 466, 558, 567
querySelector method, 355, 601

querySelectorAll method, 354, 483
question mark, 26, 220, 235, 465
queue, 293
quiet times (exercise), 297, 596
quotation mark, 20, 248
quoting

in JSON, 116
of object properties, 90

quoting style (exercise), 248, 592

rabbit example, 146, 149, 151
radian, 358, 434, 442
radio button, 473, 482
radius, 523, 612
raising (exception), 202
random number, 112, 401
random-item package, 593
randomPick function, 183
randomRobot function, 183
range, 129, 217, 221
range function, 8, 118, 584
Range header, 468
ray tracer, 456
read-eval-print loop, 528
readability, 6, 8, 53, 72, 79, 201,

249, 309, 408, 458
readable stream, 539, 542, 565

648

readAsDataURL method, 515
readAsText method, 486
readdir function, 535, 546, 614
readdirSync function, 614
readFile function, 259, 534, 616
readFileSync function, 536, 614
reading code, 11, 175
readTextFile function, 271
real promises (exercise), 298, 596
real-time, 363
reasoning, 25
recipe analogy, 123
record, 90
rect (SVG tag), 425
rectangle, 392, 410, 427, 428, 458,

510
rectangle function, 510, 611
recursion, 67, 72, 73, 82, 120,

283, 303, 306, 309, 340,
361, 445, 583, 586, 591,
601

red, 500
reduce method, 132, 134, 141,

142, 507, 588
ReferenceError type, 319
RegExp class, 215, 236, 614

regexp golf (exercise), 247
regular expression, 214, 216, 218,

232, 234, 235, 237, 240,
247, 305, 550, 560, 561,
600, 614

alternatives, 227
backtracking, 229
boundary, 226
creation, 215, 236
escaping, 215, 236, 592
flags, 222, 232, 236, 593
global, 232, 237, 239, 240
grouping, 221, 222, 232
internationalization, 218
matching, 228, 237
methods, 216, 224, 237
repetition, 220

rejecting (a promise), 276, 293,
298, 598

relative path, 329, 529, 541, 615
relative positioning, 356, 357
relative URL, 467
remainder operator, 19, 49, 440,

582, 603, 606
remote access, 541
remote procedure call, 470

649

removeChild method, 342
removeEventListener method, 365,

604
removeItem method, 488
rename function, 535
rendering, 427
renderTalk function, 574
renderTalkForm function, 575
renderUserField function, 573
repeat method, 109, 379
repeating key, 371
repetition, 76, 220, 221, 230, 235,

384
replace method, 232, 248, 592
replaceChild method, 343, 602
replaceSelection function, 480
reportError function, 573
request, 323, 462–464, 478, 537,

548, 553
request function, 538, 539
requestAnimationFrame function,

357, 382, 384, 418, 459,
603

require function, 257, 259, 267,
529, 531

reserved word, 37

resolution, 252, 529
resolve function, 544
resolving (a promise), 273, 276,

293
resource, 322, 324, 462, 464, 470,

541, 564
response, 462–464, 470, 538, 543,

546
Response class, 467
responsiveness, 363, 527
rest parameter, 110
restore method, 445, 447
result property, 486
return keyword, 60, 67, 284, 583,

587
return value, 39, 60, 200, 587
reuse, 80, 170, 249, 254, 530
reverse method, 119
reversing (exercise), 119, 585
rgb (CSS), 404
right-aligning, 361
rmdir function, 546, 550
roadGraph object, 176
roads array, 175
roads module (exercise), 267, 595
robot, 175, 177, 182, 185, 186,

650

189, 266
robot efficiency (exercise), 189,

590
robustness, 556
root, 336
rotate method, 442, 447
rotation, 458, 605
rounding, 113, 199, 411, 450, 613
roundTo example, 59, 69
router, 555, 560
Router class, 560, 561
routeRobot function, 185
row, 361
rule (CSS), 352–354
run function, 313
run-time error, 196, 197, 200, 211,

600
runAnimation function, 418, 422
runGame function, 420, 421
runLevel function, 419, 422
running code, 11
runRobot function, 182, 590

Safari, 332
sandbox, 11, 84, 330, 334, 469
save method, 445, 447
SaveButton class, 513

scale constant, 502
scale method, 441, 444
scaling, 403, 439, 441, 451, 608
scheduling, 292, 597
scientific notation, 18, 248
scope, 60–63, 70, 260, 308, 311,

312, 318, 319, 599, 600
script (HTML tag), 329, 381, 382
SCRIPTS dataset, 129, 132, 136,

139, 143
scroll event, 378, 385
scrolling, 369, 378, 379, 406, 407,

417, 449
search method, 237
search problem, 186, 228, 230,

341, 550
search tool (exercise), 550, 614
section, 241
Secure HTTP, see HTTPS
security, 259, 330, 331, 469, 471,

485, 488, 543, 559
security camera, 297
select (HTML tag), 474, 475, 483,

488, 496, 506, 507, 615
selected attribute, 483
selection, 479

651

selectionEnd property, 479
selectionStart property, 479
selector, 354
self-closing tag, 327
semantic versioning, 533
semicolon, 33, 48, 351
sep binding, 544
sequence, 220
serialization, 116, 117
serve-static package, 561
server, 323, 324, 461–463, 467,

469, 470, 526, 537, 538,
540, 541, 553, 559

session, 490
sessionStorage object, 490
set, 216, 218, 336
set (data structure), 173, 190
Set class, 173, 190, 590
set method, 158
setAttribute method, 346, 347,

501
setInterval function, 384, 440
setItem method, 488
setter, 161
setTimeout function, 271, 292,

384, 385, 568, 577

shape, 424, 430, 434, 438, 458
shapes (exercise), 458, 605
shared property, 150, 155, 156
shift key, 371, 610
shift method, 105
shiftKey property, 371
short-circuit evaluation, 31, 75,

310, 587
SICP, 300
side effect, 33, 34, 39, 50, 60,

80, 94, 119, 130, 238, 262,
295, 338, 342, 343, 349,
429, 445, 466, 497, 499

sign, 17, 248, 592
sign bit, 17
signal, 15
simplicity, 316
simulation, 178, 182, 390, 398,

493, 603
sine, 111, 358, 401, 415
single-quote character, 20, 248,

330
singleton, 190
skill, 496
skill-sharing, 552
skill-sharing project, 552, 553, 556,

652

559, 570
SkillShareApp class, 578
skipSpace function, 304, 319
slash character, 19, 53, 215, 234,

468, 544
slice method, 106, 107, 129, 344,

585, 599
slope, 613
sloppy programming, 386
smooth animation, 357
SMTP, 323
social factors, 521
socket, 555
some method, 136, 142
sorting, 336
source property, 237
special form, 301, 308, 309
special return value, 200, 201
specialForms object, 309
specificity, 354
speed, 1, 3, 459, 607
spiral, 458, 606
split method, 108, 177, 394, 596
spread, 109, 110, 168, 490, 500
spread operator, 404
sprite, 439, 440, 451, 452

spy, 378
square, 40
square bracket, 165
square brackets, 86, 87, 114, 218,

483, 490, 584
square example, 59, 64, 65
square root, 100, 111, 588
src attribute, 327, 329
stack, see call stack, 89
stack overflow, 67, 72, 83, 583
stack trace, 203
standard, 9, 37, 52, 130, 203, 218,

521, 527, 529
standard environment, 37
standard output, 528
standards, 321, 332
star, 458, 606
Star Trek, 433
startPixelEditor function, 519
startState constant, 519
startsWith method, 543
stat function, 535, 544, 546, 614
state, 48, 178

in
binding, 34, 45, 50
iterator, 286

653

objects, 178, 395
in objects, 447
of application, 405, 496, 502,

517, 580
of canvas, 428, 445
persistence, 510
transitions, 294, 497, 500

statement, 33, 34, 40, 45, 48, 59,
91

static (reserved word), 37
static file, 556, 561
static method, 162, 173, 395
static property, 162, 591
Stats type, 546
statSync function, 614
status code, 463, 528
status property, 467, 572
stoicism, 363
stopPropagation method, 367
stream, 323, 538, 539, 542, 548
strict mode, 192, 193
string, 20, 86, 88, 94, 137

indexing, 83, 106, 109, 137,
222

length, 55, 137
methods, 107, 223

notation, 20
properties, 107
representation, 21
searching, 107

String function, 40, 159
stroke method, 430, 431, 433
strokeRect method, 428, 607
strokeStyle property, 429
strokeText method, 437, 438
stroking, 428, 429, 437, 457
strong (HTML tag), 347, 350
structure, 254, 326, 334, 497
structure sharing, 120
style, 350
style (HTML tag), 352, 353
style attribute, 350, 351, 353, 402
style sheet, see CSS
subclass, 169
submit, 473, 477, 478
submit event, 478, 479, 575, 615
substitution, 80
subtraction, 19, 172
sum function, 8, 118
summing (exercise), 118, 584
summing example, 6, 122, 132,

313

654

superclass, 169
survey, 435
Sussman, Gerald, 300
SVG, 424, 425, 428, 455, 456
swapping bindings, 613
swipe, 510
switch keyword, 51
symbol, 163
Symbol function, 163
Symbol.iterator symbol, 165
synchronization, 578, 616
synchronous programming, 269,

283, 536, 550
syncState method, 498, 503, 507,

508, 523, 616
syntax

error, 37, 191, 192
expression, 32
function, 59, 64
identifier, 37
number, 17, 248
object, 90
of Egg, 300, 301
operator, 18
statement, 33, 34, 41, 44, 47,

50, 202

string, 20
syntax tree, 302, 303, 306, 307,

336
SyntaxError type, 305

tab character, 21, 47
tab key, 476
tabbed interface (exercise), 389,

603
tabindex attribute, 372, 476, 522
table, 99, 100, 404
table (HTML tag), 360, 392, 404,

610
table example, 601
tableFor function, 100
tag, 325, 327, 334, 353
talk, 552, 553, 564–566
talkResponse method, 567
talksAbout function, 340
talkURL function, 572
Tamil, 128
tampering, 471
tangent, 111
target property, 368
task management example, 105
TCP, 323, 324, 461, 556
td (HTML tag), 361, 404

655

temperature example, 161
template, 257, 580, 616
template literals, 22
templating language, 575
tentacle (analogy), 35, 91, 95
terminal, 528
ternary operator, 26, 31, 309
test method, 216
test runners, 197
test suite, 196
test suites, 197
testing, 189, 196
text, 20, 325, 326, 334, 337, 437,

455, 456, 459, 479, 483,
535, 609

text field, 380, 473–475, 479–481
text method, 468
text node, 337, 340, 344, 603
text wrapping, 455
text-align (CSS), 361
TEXT_NODE code, 337, 603
textAlign property, 438, 606
textarea (HTML tag), 385, 474,

479, 480, 488, 493, 615
textBaseline property, 438, 606
textContent property, 602, 609

textFile function, 274, 277, 297,
596

textScripts function, 140, 588
th (HTML tag), 361
then method, 273, 274, 276, 277,

596, 598
theory, 199
this binding, 89, 146, 147, 151,

193
thread, 269, 270, 293, 383
throw keyword, 202, 203, 209,

212, 591
tile, 451
time, 217, 221, 224, 357, 386,

409, 410, 414, 419, 452,
517

time zone, 225
timeline, 269, 292, 329, 357, 363,

382
timeout, 384, 556, 558, 568
times method, 398
timestamp, 225, 297
title, 570
title (HTML tag), 326, 328
toDataURL method, 513
toLowerCase method, 88, 361

656

tool, 214, 246, 261, 496, 506, 507,
509–512, 519, 523, 524, 533

tool property, 498
ToolSelect class, 507
top (CSS), 356, 357, 359, 362
top-level scope, see global scope
toString method, 148, 156, 157,

159, 517, 540
touch, 376, 496
touchend event, 377
touches method, 410
touches property, 377, 505
touchmove event, 377, 504, 524
touchstart event, 377, 502, 504
toUpperCase method, 88, 196, 361,

540
tr (HTML tag), 361, 404
trackKeys function, 417, 422
transform (CSS), 424
transformation, 441, 442, 444, 445,

459, 605
translate method, 442, 444
Transmission Control Protocol,

see TCP
transparency, 516
transparent, 426, 440

transpilation, 316
trapezoid, 458, 605
traversal, 228
tree, 302, 336, 337
trial and error, 198, 434
triangle (exercise), 55, 581
trigonometry, 112, 358
trim method, 108, 394
true, 24
trust, 330
try keyword, 203, 205, 591, 592,

609
type, 16, 23, 144, 170
type attribute, 472, 478
type checking, 195, 261
type coercion, 27–29, 40
type property, 301, 366
type variable, 195
typeof operator, 23, 121, 586
TypeScript, 195
typing, 385
typo, 191

unary operator, 23, 32
uncaught exception, 207, 279
undefined, 27, 28, 30, 35, 60, 68,

87, 91, 114, 192, 193, 200

657

underline, 350
underscore character, 36, 52, 226,

236
undo history, 517, 518
UndoButton class, 519
Unicode, 21, 22, 25, 128, 137,

217–219
property, 219

unicycling, 552
uniform resource locator, see URL
uniformity, 301
uniqueness, 353
unit (CSS), 359, 379
Unix, 546, 548, 550
Unix time, 225
unlink function, 535, 546
unshift method, 105
unwinding the stack, 202
upcasing server example, 540
updated method, 565, 569, 616
updateState function, 500
upgrading, 254
upload, 485
URL, 324, 330, 425, 464, 467,

471, 538, 557, 572
URL class, 543

URL encoding, 465
url package, 567
urlPath function, 543
usability, 370
use strict, see strict mode
user experience, 363, 477, 554,

573
user interface, 207, 497
UTF16, 22, 137
UTF8, 535

validation, 200, 211, 300, 408,
479, 565

value, 16
value attribute, 473, 479, 483
var keyword, 36, 60, 61, 114
variable, see binding
Vec class, 172, 395, 396, 414, 607
vector (exercise), 172, 588
vector graphics, 438
verbosity, 66, 270
version, 254, 326, 463, 532, 533
viewport, 406, 408, 447, 449, 454
VillageState class, 178
virtual keyboard, 372
virtual world, 175, 178, 182
virus, 330

658

vocabulary, 58, 123, 124
void operator, 37
volatile data storage, 16

waitForChanges method, 568
waiting, 271
walking, 452
wave, 401, 415
Web, see World Wide Web
web application, 8, 487, 495
web browser, see browser
web page, 261
web worker, 383
WebDAV, 551
webgl (canvas context), 426
website, 330, 331, 464, 526, 551,

552
WebSockets, 555
weekDay module, 251
weekend project, 551
weresquirrel example, 85, 90, 93,

96, 102, 104
while loop, 7, 45, 47, 78
whitespace, 319

in HTML, 341, 507, 603
in URLs, 557
indentation, 46

matching, 217, 218
syntax, 52, 301, 304, 600
trimming, 108, 394

why, 32
width property, 523, 611
window, 367, 376, 381
window object, 364
with statement, 194
wizard (mighty), 5
word boundary, 226
word character, 217, 218, 226
work list, 187, 512
workbench (exercise), 493, 609
world, 390
World Wide Web, 8, 116, 321,

324, 330, 331, 461
writable stream, 538, 539, 543
write method, 538, 539
writeFile function, 535, 539, 616
writeHead method, 537
writing code, 11, 175
writing system, 128
WWW, see World Wide Web

XML, 338, 425
XML namespace, 425
xmlns attribute, 425

659

yield (reserved word), 37
yield keyword, 286
your own loop (example), 142
Yuan-Ma, 15, 249, 526

Zawinski, Jamie, 214
zero-based counting, 83, 86, 224
zeroPad function, 79
zigzag, 606
zooming, 455

660

	Introduction
	On programming
	Why language matters
	What is JavaScript?
	Code, and what to do with it
	Overview of this book
	Typographic conventions

	Values, Types, and Operators
	Values
	Numbers
	Strings
	Unary operators
	Boolean values
	Empty values
	Automatic type conversion
	Summary

	Program Structure
	Expressions and statements
	Bindings
	Binding names
	The environment
	Functions
	The console.log function
	Return values
	Control flow
	Conditional execution
	while and do loops
	Indenting Code
	for loops
	Breaking Out of a Loop
	Updating bindings succinctly
	Dispatching on a value with switch
	Capitalization
	Comments
	Summary
	Exercises

	Functions
	Defining a function
	Bindings and scopes
	Nested scope
	Functions as values
	Declaration notation
	Arrow functions
	The call stack
	Optional Arguments
	Closure
	Recursion
	Growing functions
	Functions and side effects
	Summary
	Exercises

	Data Structures: Objects and Arrays
	The weresquirrel
	Datasets
	Properties
	Methods
	Objects
	Mutability
	The lycanthrope's log
	Computing correlation
	Array loops
	The final analysis
	Further arrayology
	Strings and their properties
	Rest parameters
	The Math object
	Destructuring
	Optional property access
	JSON
	Summary
	Exercises

	Higher-Order Functions
	Abstraction
	Abstracting repetition
	Higher-order functions
	Script dataset
	Filtering arrays
	Transforming with map
	Summarizing with reduce
	Composability
	Strings and character codes
	Recognizing text
	Summary
	Exercises

	The Secret Life of Objects
	Abstract Data Types
	Methods
	Prototypes
	Classes
	Private Properties
	Overriding derived properties
	Maps
	Polymorphism
	Getters, setters, and statics
	Symbols
	The iterator interface
	Inheritance
	The instanceof operator
	Summary
	Exercises

	Project: A Robot
	Meadowfield
	The task
	Persistent data
	Simulation
	The mail truck's route
	Pathfinding
	Exercises

	Bugs and Errors
	Language
	Strict mode
	Types
	Testing
	Debugging
	Error propagation
	Exceptions
	Cleaning up after exceptions
	Selective catching
	Assertions
	Summary
	Exercises

	Regular Expressions
	Creating a regular expression
	Testing for matches
	Sets of characters
	International characters
	Repeating parts of a pattern
	Grouping subexpressions
	Matches and groups
	The Date class
	Boundaries and look-ahead
	Choice patterns
	The mechanics of matching
	Backtracking
	The replace method
	Greed
	Dynamically creating RegExp objects
	The search method
	The lastIndex property
	Parsing an INI file
	Code units and characters
	Summary
	Exercises

	Modules
	Modular programs
	ES modules
	Packages
	CommonJS modules
	Building and bundling
	Module design
	Summary
	Exercises

	Asynchronous Programming
	Asynchronicity
	Callbacks
	Promises
	Failure
	Carla
	Breaking In
	Async functions
	Generators
	A Corvid Art Project
	The event loop
	Asynchronous bugs
	Summary
	Exercises

	Project: A Programming Language
	Parsing
	The evaluator
	Special forms
	The environment
	Functions
	Compilation
	Cheating
	Exercises

	JavaScript and the Browser
	Networks and the Internet
	The Web
	HTML
	HTML and JavaScript
	In the sandbox
	Compatibility and the browser wars

	The Document Object Model
	Document structure
	Trees
	The standard
	Moving through the tree
	Finding elements
	Changing the document
	Creating nodes
	Attributes
	Layout
	Styling
	Cascading styles
	Query selectors
	Positioning and animating
	Summary
	Exercises

	Handling Events
	Event handlers
	Events and DOM nodes
	Event objects
	Propagation
	Default actions
	Key events
	Pointer events
	Scroll events
	Focus events
	Load event
	Events and the event loop
	Timers
	Debouncing
	Summary
	Exercises

	Project: A Platform Game
	The game
	The technology
	Levels
	Reading a level
	Actors
	Drawing
	Motion and collision
	Actor updates
	Tracking keys
	Running the game
	Exercises

	Drawing on Canvas
	SVG
	The canvas element
	Lines and surfaces
	Paths
	Curves
	Drawing a pie chart
	Text
	Images
	Transformation
	Storing and clearing transformations
	Back to the game
	Choosing a graphics interface
	Summary
	Exercises

	HTTP and Forms
	The protocol
	Browsers and HTTP
	Fetch
	HTTP sandboxing
	Appreciating HTTP
	Security and HTTPS
	Form fields
	Focus
	Disabled fields
	The form as a whole
	Text fields
	Checkboxes and radio buttons
	Select fields
	File fields
	Storing data client-side
	Summary
	Exercises

	Project: A Pixel Art Editor
	Components
	The state
	DOM building
	The canvas
	The application
	Drawing tools
	Saving and loading
	Undo history
	Let's draw
	Why is this so hard?
	Exercises

	Node.js
	Background
	The node command
	Modules
	Installing with NPM
	The filesystem module
	The HTTP module
	Streams
	A file server
	Summary
	Exercises

	Project: Skill-Sharing Website
	Design
	Long polling
	HTTP interface
	The server
	The client
	Exercises

	Exercise Hints
	Program Structure
	Functions
	Data Structures: Objects and Arrays
	Higher-Order Functions
	The Secret Life of Objects
	Project: A Robot
	Bugs and Errors
	Regular Expressions
	Modules
	Asynchronous Programming
	Project: A Programming Language
	The Document Object Model
	Handling Events
	Project: A Platform Game
	Drawing on Canvas
	HTTP and Forms
	Project: A Pixel Art Editor
	Node.js
	Project: Skill-Sharing Website

