
Cohere+Reload: Re-enabling High-Resolution
Cache Attacks on AMD SEV-SNP

Lukas Giner, Sudheendra Raghav Neela, and Daniel Gruss

Graz University of Technology
{first.last}@tugraz.at

Abstract. Confidential computing platforms, e.g., AMD SEV-SNP, al-
low running mutually distrusting workloads on the same hardware with
the protection of several isolation mechanisms: data is encrypted in
RAM, and access to unencrypted data is architecturally prevented. Fur-
thermore, access and cache line operations are restricted, mitigating at-
tacks like Flush+Reload. The hypervisor can access the encrypted data
of virtual machines, e.g., for migration purposes. This creates a coherency
challenge around modifications between encrypted and decrypted cache
lines. AMD enforces coherency between these two cache lines by remov-
ing one when the other is accessed.
In this paper, we present Cohere+Reload, a novel side-channel attack ex-
ploiting AMD’s coherency for encrypted memory. We discover two types
of leakage in the coherency mechanism: First, coherence conflicts leak
victim operations on a spatial granularity of a 2 kB block. Second, the
timing correlates with number and location of accesses the victim per-
formed within the confidential virtual machine, allowing to infer how of-
ten or where within a coherence partition victim accesses were performed,
with a maximum spatial resolution of 256 bytes. We evaluate Cohere+
Reload in two synthetic and two real-world attacks: In synthetic attacks,
we demonstrate that Cohere+Reload can observe the control flow and
access locations in workloads within a confidential virtual machine. We
present a real-world attack on mbedTLS RSA, leaking 4096 key bits in
a single-trace attack, with 99.7% of bits correct. We present another
real-world attack on OpenSSL AES exploiting disalignments on a cache
line granularity: In a first round T-table attack we achieve an accuracy
of 100% in only 1500 encryptions and with a novel correlation attack an
accuracy of 92.81% in 12000 encryptions. We conclude that the coher-
ence approach for AMD SEV-SNP should be re-evaluated and discuss
further potential mitigations.

1 Introduction

Modern processors have a multi-layered memory hierarchy for data, including
code. Data can reside in registers, in cache lines in L1, L2, or L3 cache, or in the
RAM. Some processors have even further cache layers, e.g., an L4 cache. While

2 Giner et al.

caches are crucial for the performance of modern computers, they also inherently
introduce timing side channels that distinguish cached from non-cached data.

The most widely known attacks are Prime+Probe [37] and Flush+Reload [50].
Flush+Reload [50] works by constantly flushing a cache line from the cache, us-
ing the processor’s flush instruction, and measuring how long it takes to reload
the cache line. Flushing a cache line requires read access to the memory, e.g.,
read-only shared memory with the victim, which is typically not available across
virtual machines or in the context of confidential computing. Prime+Probe does
not require shared memory. Prime+Probe [37] works by measuring how much
time it takes to constantly re-fill a specific cache set. If a victim access falls into
the same cache set, the timing increases.

Confidential computing is an emerging compute paradigm where a confiden-
tial workload, running isolated inside a virtual machine, is isolated from all other
workloads and from the host. More specifically, it is part of the threat model
that the hypervisor can be malicious or compromised but the confidential virtual
machine remains secure. Confidential computing platforms, e.g., Intel TDX and
AMD SEV-SNP, still share the underlying hardware across mutually distrusting
workloads running in virtual machines. However, vendors introduced several iso-
lation mechanisms to protect workloads: For instance, data is encrypted in RAM,
decrypted on-the-fly when moved into the caches, and the processor prevents di-
rect access to unencrypted data in caches or registers. The hypervisor cannot
access unencrypted memory of the confidential virtual machine. Furthermore,
cache line operations are restricted, mitigating attacks like Flush+Reload.

Despite the strong isolation, some functionality requires access from the hy-
pervisor to the encrypted data, e.g., migration of virtual machines in the cloud.
Consequently, the hypervisor can access the encrypted data of virtual machines.
However, this implies that data can be in the caches twice: once encrypted for
the host, and once unencrypted for the confidential virtual machine. Clearly,
this creates a coherency challenge as a virtual machine may modify a cache line,
i.e., the cache contains a modified unencrypted cache line and an outdated en-
crypted cache line. Google reported that there is a coherency mechanism on Intel
TDX [1] for this purpose, where accesses with one key flush all other copies of
the address with different keys from the cache. AMD pursued a similar approach
by enforcing coherency between the unencrypted and encrypted cache lines by
removing one when the other is accessed. Still, AMD does not operate on the
granularity of a cache line, as we show in this work.

In this paper, we present Cohere+Reload, a novel attack exploiting that
AMD’s coherency approach introduces a surprisingly powerful side channel. We
thoroughly analyze AMD’s coherence mechanism for encrypted memory and
discover two properties that form the basis of our Cohere+Reload attack: First,
there is a significant timing difference between cache misses and coherence con-
flicts on a spatial granularity of a 2 kB coherence partition, i.e., half a page. This
timing difference directly reveals whether a victim confidential virtual machine
just accessed a specific memory location. Second, the amplitude of the timing
coarsely correlates with the number of accesses the victim performed. It is also

Cohere+Reload 3

more finely correlated with the location of single victim accesses, allowing to
infer which out of 8 alignments within a coherence partition the victim access
had, i.e., we have a maximum spatial resolution of 256 bytes, which is in the
same order of magnitude as Flush+Reload with a spatial resolution of 64 bytes.

We evaluate Cohere+Reload in two synthetic and two real-world attacks: The
two synthetic attacks demonstrate that Cohere+Reload can observe the control
flow in workloads within a confidential virtual machine, i.e., identify the target
of a jump; and that Cohere+Reload can observe which data locations a workload
within a confidential virtual machine accessed, naturally within the limits of the
spatial resolution of Cohere+Reload. We present an attack on mbedTLS RSA-
4096 and show that we can leak all 4096 key bits in a single-trace attack, with a
Levenshtein distance of less than 11 bits on average. Finally, we present a novel
attack on OpenSSL AES that exploits disalignments on a cache line granularity.
Based on this insight, we mount a first round attack with and accuracy of 100%
in only 1500 encryptions. We recover all upper nibbles of AES with a novel
correlation attack with an accuracy of 92.81% in 12000 encryptions. We conclude
that the coherence approach for AMD SEV-SNP should be re-evaluated and
discuss further potential mitigations.

Disclosure. We disclosed our results to AMD, who addressed our findings in
security bulletin AMD-SB-3010.

Contributions. In summary, our main contributions are:

– We introduce Cohere+Reload, a novel attack exploiting that AMD’s coherency
with a spatial granularity of a 2 kB per coherence partition, and 8 distinguish-
able alignments within a partition, yielding a maximum spatial resolution that
is on par with Flush+Reload.

– We evaluate Cohere+Reload in two synthetic attacks demonstrating that we
can leak control flow and data access from a confidential virtual machine on
AMD SEV-SNP.

– We present an attack on mbedTLS RSA-4096 and show that we can leak all
4096 key bits in a single-trace attack, with a Levenshtein distance of less than
11 bits on average.

– We present a novel attack on OpenSSL AES that exploits disalignments on a
cache line granularity, yielding an accuracy of 100% in only 1500 encryptions
in a first-round attack and an accuracy of 92.81% in 12000 encryptions in a
novel correlation attack.

Outline. We provide background in Section 2. We define our threat model in
Section 3. We present our novel Cohere+Reload attack in Section 4. We template
target pages in Section 5. We present an attack on mbedTLS RSA in Section 6
and an attack on OpenSSL AES T-Tables in Section 7. We present an attack on
control flow and data accesses in Section 8. We discuss potential mitigations in
Section 9 and conclude in Section 10.

4 Giner et al.

2 Background

In this section, we provide background on trusted-execution environments, side-
channel attacks, and coherence in the context of memory encryption.

2.1 Trusted-Execution Environments

The goal of trusted-execution environments (TEEs) is to provide confidential-
ity and integrity for code and data on a system even on a compromised sys-
tem [23,2,24,5]. Older TEEs often focus on personal and mobile computers, e.g.,
Intel Software Guard Extensions (SGX) [23]. The TEE runs a small trusted work-
load in a signed enclave [23]. These enclaves run on the same CPU as regular
applications. To prevent access from a compromised host system, SGX prevents
access to the encrypted enclave memory and register state.

More recent TEEs focus on cloud use cases and virtual machines (VMs).
Instead of protecting a small workload, the idea is to move entire VMs into the
TEE, which are then called confidential virtual machines (CVMs) and protect
them from a malicious or compromised host [10], e.g., AMD Secure Encrypted
Virtualization (SEV) [3] and Intel Trust Domain Extensions (TDX) [22].

AMD SEV protects memory contents of CVMs by encrypting any data moved
out of the CPU, e.g., to DRAM or disk [27]. Still, there are many attacks on
SEV. In particular the basic SEV design was demonstrated to provide too little
protection for the guest state [19,47] and memory [19,12,35,48]. AMD addressed
this issue with with the Encrypted State (ES) and Secure Nested Paging (SNP)
SEV extensions, protecting guest state and memory integrity.

Like AMD SEV-SNP, Intel supports CVMs through their Trust Domain Ex-
tensions (TDX) [24]. Guest memory and state are encrypted and managed by
the TEE. The host can only interact with the guest through well-defined secure
interfaces. For fast inter-process communication, the memory has both private
encrypted parts and shared parts that are equally accessible to the host.

2.2 Side-Channel Attacks

Side channels can be used to attack systems even if there are no software or hard-
ware vulnerabilities or they are not known. Side channels instead exploit side ef-
fects of the implementation such as timing [28], power consumption [29], or radi-
ation [39]. Older works focused on cryptographic primitives [28,7,9], leaking keys
of vulnerable cryptographic implementations of e.g., AES [7,37], RSA [50,9], or
ECDSA [49]. More recent works often focus on larger systems to leak information
from one system component, e.g., kernel information [21], user input [41,18,34],
and system activity [16].

Many side-channel attacks target caches as they can be probed without priv-
ileges at a high temporal (i.e., nanosecond to microsecond range) and spatial
resolution (i.e., 64B) while being comparably robust against noise. Most im-
portantly, they allow for use generic attacks that are not tailored to specific
applications and victim programs. Consequently, the community developed a

Cohere+Reload 5

set of generic attack techniques that follow a uniform naming pattern based on
the attack components, e.g., Prime+Probe and Flush+Reload. One of the first
generic attack techniques was Evict+Time [37], in which an attacker runs and
times a victim process twice, once with evicting a target cache line from the
cache by performing a larger number of memory accesses that collide in the
cache, e.g., due to set associativity, and once without. A statistically higher ex-
ecution time means the cache line was used by the victim. Instead of timing the
victim, Prime+Probe [37] times the (evicting) memory accesses, i.e., they time
how long it takes to (re-)prime a cache set. If it takes more time, more cache lines
were replaced by the victim execution. Prime+Probe is one of the most widely
used attack techniques besides Flush+Reload [50]. In the Flush+Reload attack,
an attacker flushes a cache line using a dedicated flush instruction, and measures
the time it takes to reload the memory location in order to decide whether or
not the victim used it. Variations of Flush+Reload include Evict+Reload [15],
which substitutes eviction for flushing, and Flush+Flush [17], which measures
the timing of the flush instruction instead of the reload, thereby revealing a
similar timing difference. Similarly, for Prime+Probe, several attack techniques
and variations have been presented more recently, such as Prime+Abort [11],
Prime+Scope [38], and Spec-o-Scope [20].

2.3 Coherence Between Ciphertext and Plaintext

Modern CPUs feature memory encryption technology, such as Intel’s Total Mem-
ory Encryption (TME) [25] and AMD’s Secure Memory Encryption (SME) [27].
Memory encryption is a crucial aspect of trusted execution environments, in-
cluding Intel TDX and AMD SEV, designed to safeguard sensitive data. These
built-in memory encryption systems encrypt data before it is written to the main
memory and decrypt it when loaded into the CPU caches.

Given the nature of trusted computing, the untrusted hypervisor must inter-
act with ciphertexts to facilitate operations such as migrating the guest machine
to another server. To enable direct access to encrypted data, AMD’s encryption
unit includes a short-circuit path that forwards the data without decrypting it.
Each data access’s physical address encodes a so-called encrypted bit (C-bit),
which indicates whether this short-circuit path should be utilized. This leads
to an important question: how is coherence maintained when the hypervisor
actively requests ciphertext while the guest is processing plaintext?

AMD states that coherency between the ciphertext and plaintext depends on
the hardware [4] as some hardware enforce coherency while others do not. In the
systems where coherence is not enforced, the hypervisor must flush the encrypted
data from all CPU caches. In other systems, hardware supports coherency across
encryption domains and software does not have to flush encrypted data, and the
presence of this feature can be determined by the CPUID bit “CoherencyEn-
forced” (see AMD Architecture Programmer’s Manual [4], 7.10.6).

In our systems, all AMD EPYC CPUs support SEV-SNP and include this
coherence feature. Consumer Ryzen CPUs only support SME [30] without auto-
matic hardware coherence between ciphertext and plaintext. For SEV systems

6 Giner et al.

without SNP, not having hardware coherence poses significant risks, allowing
potential fault-attack-like exploitation during the write-back of ciphertext.

With the introduction of AMD SEV-SNP, the hypervisor can no longer di-
rectly write to an encrypted page [2]. Each guest page undergoes a procedure to
assign it in a reverse page map, indicating its ownership to a given guest VM.
Once a guest accepts a page, the hypervisor retains only read access, which is
ciphertext. Despite these advancements, maintaining coherence between cipher-
text and plaintext remains essential. On Intel TDX, it is known that accesses to a
ciphertext flushes all other copies of the address from the cache [1]. In Section 4,
we present our initial analysis of how coherence is managed on AMD systems.

3 Threat Model

Exploiting the Cohere+Reload mechanism requires a ciphertext view and a
plaintext view on the same memory region. Outside of SME, this can only hap-
pen when a hypervisor maps an SEV guest page (ciphertext view), as guests
have no option to map pages outside their allocated memory. Our threat model
is therefore a malicious hypervisor trying to extract information from an en-
crypted SEV, SEV-ES or SEV-SNP guest. In this scenario, the hypervisor has
control over all parts of the CPU that are not part of the attestation. This in-
cludes control over CPU frequency, disabling hardware prefetching and selecting
a suitable DRAM interleaving setting at boot (see Section 4.1). While Cohere+
Reload attacks can be performed even without stabilizing the frequency or dis-
abling prefetching, like many cache attacks [33,45,6,46,31], it is simplified by
these settings and they will be used throughout the paper.

4 Cohere+Reload

In this section we examine the behaviour of coherence for AMD memory en-
cryption. In all of our tests, hardware cache coherence works the same in SME
as it does in SEV, SEV-ES or SEV-SNP. Therefore we will conduct all basic
experiments in SME for simplicity, unless specifically mentioned.

As a first step, we configure our systems (cf. Table 1) for transparent secure
memory encryption (TSME). This means all pages will be encrypted by default,
denoted by a bit in the physical address, e.g., bit 51. To get a ciphertext view
of a page, we create a second mapping where this bit is not set. When we now
measure access times to a cache line in the ciphertext mapping, we can clearly
distinguish three cases: hits, misses and coherence conflicts (see Figure 1). We
cause a normal miss by flushing the line with clflush before measuring it, and
a coherence conflict by accessing the same line in the plaintext mapping. We
attribute the latency increase to the fact that when there is a plaintext line
to evict, this has to happen before the load is completed, to ensure coherency.
We also observe, as expected, that this effect is entirely symmetrical; it does not
matter which mapping is used as the observer. The coherence also holds for code
pages that were cached through code execution.

Cohere+Reload 7

Table 1. Test systems.

CPU Architecture SME HW Coherence SEV VM page flush MSR

2x AMD EPYC 7443 Zen 3 ✓ ✓ SNP ✓
AMD EPYC 7313P Zen 3 ✓ ✓ SNP ✓
AMD EPYC 8024P Zen 4c ✓ ✓ SNP X

100 200 300 400 500 600
0

5 ⋅ 105

1 ⋅ 106

rdpru [cycles]

sa
m

pl
es

hit miss
coherence conflict

Fig. 1. Access timing histogram for accesses that are hits, misses (flushed) or conflicts
caused by SME coherence.

This basic hit/conflict behaviour constitutes the first part of the Cohere+
Reload primitive (see Section 4.2 for the second).

4.1 Eviction Pattern

Contrary to Intel TDX, AMD memory encryption does not enforce its coherence
with single line granularity. Instead, we find that any access always triggers the
eviction of 32 out of 64 cache lines on a 4 kB aligned section of memory. We
notice that in all of our machines’ default configurations, the page is not simple
split into two contiguous 2048B halves, but instead shows an alternating pattern
of 256 byte (4 cache lines) coherence blocks between the two coherence partitions
(see Figure 2a). Concretely, this means that an access to one or multiple plaintext
(or ciphertext) addresses in the first (or second) coherence partition of a page
will always trigger an eviction of all ciphertext (or plaintext) addresses in the
first (or second) partition of a page. This limits the channel’s spatial resolution
compared to Flush+Reload, though it speeds up page profiling (see Section 5).
We run this experiment on different physical and virtual pages, different page
sizes (4 kB and 2MB) and between different cores. We find that the pictured
pattern is always the same. However, two of our machines’ (EPYC 7443 and
EPYC 7313P) mainboard menus expose a boot setting for “DRAM interleaving
size”. When we change it from its default of 256B to 512B, 1024B or 2048B, we
can see the coherence eviction pattern changing to match (see Figure 2), except
for “off”, 1024B in the case of the EPYC 7443 system, and 4096B (Table 2).
While we do not know why the coherence mechanism is implemented as it is, we
suspect some form of load balancing consideration w.r.t. DRAM.

8 Giner et al.

Table 2. DRAM interleaving size and coherence pattern block size on our two systems.

DRAM interleaving setting off 256 512 1024 2048 4096

block size EPYC 7443 2048 256 512 1024 2048 256
block size EPYC 7313P 2048 256 512 2048 2048 256

0
0

32

64

96

128

32 64 96 128
Plaintext Line

C
ip

he
rt

ex
t

L
in

e

a. 256B

0 32 64 96 128
Plaintext Line

b. 512B

0 32 64 96 128
Plaintext Line

c. 1024B

0 32 64 96 128
Plaintext Line

d. 2048B

Fig. 2. Eviction Pattern for different DRAM interleaving size setting over 8 kB phys-
ically contiguous memory. A plaintext cache line is evicted by (and evicts) all corre-
sponding ciphertext cache lines in black.

4.2 Access Delay Time

Since we have seen in Section 4 that the presence of a single plaintext cache line
increases the access time for a ciphertext line in the same coherence partition,
it stands to reason that more cache lines in the same partition might take even
longer to evict. Indeed, we find that the access delay on the evicting party’s side
is related to the number of accessed lines in the coherence partition. When we
access from 0 to 32 lines of plaintext in the same coherence partition and measure
a ciphertext access, we see a monotonically increasing access time (Figure 3a).
But we do not observe a strictly monotonic increase, instead we see plateaus
every 4 cache lines. When we look at the individual distribution of access times
for each number of accesses (Figure 3c), these groupings are visible. The first
three access groupings are somewhat separated (that is, measuring after 1,2 or
3 accessed lines), but from then on there are quartets of consecutive numbers of
accesses that display very similar access times.

Investigating further, we can see that Figure 3a and Figure 3c are actually a
special case of timings when the accessed cache lines are contiguous, i.e., we do
not skip lines within a coherence partition up to our chosen number of accesses.
Measuring the ciphertext access times for single plaintext evictions of different
plaintexts we find the cause of this behaviour: different offsets within a coherence
block have distinct timings. As Figure 3b shows, when there is only one plaintext
access in the coherence domain the access time of the ciphertext depends on the
position of the plaintext access within the coherence block and repeats from block
to block. This means that while on average a higher number of accessed cache
lines within a partition will increase the conflict eviction time, some combinations

Cohere+Reload 9

0 10 20 30

900

1,000

1,100

accessed cache lines

ac
ce

ss
ti

m
e

[c
yc

le
s]

a. Average access time for n plaintext ac-
cesses in coherence partition.

0 10 20 30
520

540

560

accessed cache line

ac
ce

ss
ti

m
e

[c
yc

le
s]

Core 0 Core 1

b. Average access time for one plaintext
access at position n in partition.

900 925 950 975 1,000 1,025 1,050 1,075

0

200

400

1100

access time [cycles]

oc
cu

ra
nc

e

c. 32 histograms of access times for n = 1 to 32 plaintext accesses. Certain numbers of
accesses have very similar timing distributions.

Fig. 3. Ciphertext conflict access times for different numbers of prior plaintext accesses
on congurent adresses. Which addresses and how many where accessed changes the
conflict eviction time.

of lines will lead to far higher delays than others. This pattern depends on the
core number within a core complex that loaded the plaintext address, but is the
same between core complexes. We believe the pattern comes from the topology
of the core complexes. When the block size is increased, the timing pattern also
expands, though only up to 8 lines. For pattern sizes of 1024B and larger, the
pattern begins to repeat after 512B, i.e., 8 cache lines.

This timing behaviour is the second aspect of the Cohere+Reload primitive.
We will further explore this effect in an attack in section Section 7.2.

4.3 Cohere+Reload Compared to Other Cache Attacks

In this section, we compare Cohere+Reload with two cache attacks: Flush+
Reload and Flush+Flush. Our results, presented in Table 3, show that Cohere+
Reload is a fast attack, comparable to the two Flush-based cache attacks across
three metrics: hit time, miss time (conflict time), and blind spots. Using the
methodology presented in prior work [40], we measure each metric 100 000 times
on three systems: 2x EPYC 7443 (Zen 3), EPYC 7313P (Zen 3), and EPYC
8024P (Zen 4c). We disabled the hardware prefetchers and fixed the frequency
on all three machines. To measure the metrics, we spawn two threads on different

10 Giner et al.

Table 3. Comparison of Cohere+Reload with Flush+Reload and Flush+Flush.

Flush+Reload Flush+Flush Cohere+Reload

System Hits Misses Blind Spots Hits Misses Blind Spots Conflict Hit Blind Spots
[cycles] [cycles] [%] [cycles] [cycles] [%] [cycles] [cycles] [%]

EPYC 7443 122
σ=13

389
σ=130

65.1% 482
σ=96

367
σ=90

3.2% 428
σ=103

125
σ=130

0.06%

EPYC 7313P 150
σ=0

658
σ=173

73.2% 833
σ=124

632
σ=31

3.5% 800
σ=167

151
σ=0

0.53%

EPYC 8024P 145
σ=0

497
σ=117

74.8% 623
σ=92

484
σ=59

1.6% 623
σ=131

146
σ=1

0.02%

We compare Cohere+Reload with Flush+Reload and Flush+Flush across three met-
rics: hit time, miss/conflict time, and blind spots. The measurement for all three metrics
is repeated 100 000 times on each system on different physical cores. Cohere+Reload
has a much smaller blind-spot size and comparable hit and conflict times.

physical cores: a victim thread which randomly accesses a predetermined memory
location, and an attacking thread that mounts the attack, measuring the metric.

On all three systems, we notice that Flush+Reload has a large blind spot —
between 65-75% of victim accesses were missed by the attacker. Flush+Flush has
a much smaller blind spot, with only 1.5-3.5% of victim accesses being missed
by the attacker. Cohere+Reload has a minuscule blind spot, with less than 0.5%
of victim accesses being missed by the attacker.

To measure the attack time, we consider both the hit and miss (conflict)
timings. We see that the hit timings of Cohere+Reload are comparable to the
hits of Flush+Reload, and the conflict timings of Cohere+Reload are comparable
to Flush+Flush. This shows that Cohere+Reload is as fast as comparable attacks
with a much smaller blind spot size, making it a very reliable side-channel attack.

5 Target Page Templating

In a standard SEV-SNP scenario, the host has no knowledge about where the
guest maps which data in its virtual memory range. For an attack, the first step
is therefore to locate pages of interest in the guest. The same result could be
achieved with page access flags, though this is an alternative approach that does
not require the flushing of TLB entries. The only requirement for this step is
that a victim page access can be reliably triggered (e.g., establishing a connection
that causes an RSA encryption).

We implement this for RSA by using a network call to the guest that triggers
an encryption. In our test, we filter 4GB of VM virtual memory with a sieve
of sorts. Starting with all pages, we repeatedly cause the guest to access or
not access the page of interest while measuring each page from different core
with Cohere+Reload. We access each page with a single split load to detect
coherence eviction in both coherence partitions at once, as we find that the
penalty for accessing both partitions is only ≈ 30 cycles. Pages that do not
show the expected hits or conflicts are discarded from the list and the next step

Cohere+Reload 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

⋅106

200

400

600

800

1,000

descheduledhit threshold

timestamp [cycles]

ac
ce

ss
ti

m
e

[c
yc

le
s] exponentiation multiplication

Fig. 4. Part of a raw Cohere+Reload trace of an RSA encryption. When exponentiation
shows a conflict, a new exponentiation loop was started. When multiplication shows
many in a row, the victim was most likely descheduled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

⋅106

0

500

1,000

1,500

⋅102

classification threshold

double detection

timestamp [cycles]∆
be

tw
ee

n
hi

ts
[c

yc
le

s]

exponentiation

Fig. 5. Time difference between hits on exponentiation. The two bands show where a
multiplication was executed (large difference) and the key bit is 1 or where it was not
and the bit is 0 (small difference).

operates on the reduced list. After only 4 sieve steps, 1 048 510 pages can be
reduced to an average of 7.36 pages in 10.6 s in 100 experiments, with the two
RSA pages of interest always being among them. Finding the correct page from
there is trivial, as only those two pages show the expected access pattern during
an encryption (see Section 6).

6 High Frequency Code Attack - RSA

We attack the square-and-multiply mbedtls_mpi_exp_mod implementation of
RSA in Mbed-TLS v3.0.0. For the purposes of this demonstration, we configure
it to use a maximum window size of 1. While the specific version is not crucial
as long as the algorithm is the same, note that because of the coherence pattern,
Cohere+Reload requires a suitable code layout. That is, the code that can be
attacked needs to be aligned suitable within a coherence partition, while code
that would hinder the attack needs to fall into the other partition. In this exam-
ple, we find that a 256B pattern is unsuitable, but switching to a 512B pattern
with the DRAM interleaving setting results in a working attack.

12 Giner et al.

5 10 15 20
0

5

10

15

Levenshtein distance [bit]

O
cc

ur
re

nc
e

[%
]

Fig. 6. The Levenshtein distances in bit
for 100 single-trace RSA 4096bit key re-
covery attacks.

Our victim is an RSA encryption service in an SEV-SNP guest triggered by
the attacker, which runs on the host. For the attack, the host program records
traces of two code locations. First, the second partition in the mpi_exp_mod
function. This contains the beginning of the loop that iterates over each key
bit. Second, we trace the mpi_montmul function that does the squaring and
multiplication operations. Our attack traces starts when the mpi_exp_mod is
called for the first time and records long enough to capture the entire encryption
(240000 samples). Figure 4 shows a section of such a trace. The mpi_exp_mod
signal (blue) carries most of the key information, as it ideally detects an eviction
precisely once per processed bit. This lets us infer whether or not mpi_montmul
was called in addition to the square function (indicating that the key bit was
1) by the time delay to the next detection. The time difference between two
conflicts in this signal is about twice as long when a ‘1’ bit is processed. While
this alone allows us to recover most of the key, we can correct some mistakes
with the signal in mpi_montmul (pink). As the algorithm spends most of its time
in this function, we detect almost all conflicts. However, when the algorithm is
paused for any reason (e.g., scheduling), we see periods of hits on this address
that we can then use to correct the primary signal. Figure 4 shows one occurance
of this near the end. In minor post-processing we also detect the precise start
and end of the encryption and remove double detections for single bits that are
too close together (see Figure 5). Over 100 runs, our attack recovers randomly
generated 4096 bit keys with a Levenshtein distance of 10.7 ± 3.94 (µ, σ) with a
single trace (see Figure 6). In terms of attack performance, this is on par with
related works attacking RSA [42,36,44,13,14].

7 AES T-Tables

In this section, we evaluate Cohere+Reload on the AES T-table implementation
of OpenSSLv3.4 with 128 bit keys. Specifically, the AES_encrypt function which
uses T-tables in lieu of hardware support (i.e., AES-NI). Similar to the RSA
attack (Section 6), we choose this implementation as it has been used extensively
to evaluate prior side-channel attacks and is therefore a well-understood attack
target [42,51,36,32,44,13,14].

The well-known first- and last-round attacks on AES T-tables [7,8,26] are
both based on access probabilities. For a first-round cache attack, each of the
four T-tables’ cache lines (16 per table with 16 entries each) are measured as
hits or conflicts after an entire encryption. As an encryption consists of 40 total

Cohere+Reload 13

0x0
0x140

0x1000
0x1140

512B Pattern

256B Pattern

T-tables

Partition 1
Partition 2

P4x,t ⊕ 0xf0 = K4xP4x+1,t ⊕K4x+1 =?P4x+3,t ⊕K4x+3 =?

Te3 Te2 Te1 Te0

Fig. 7. AES T-table memory alignment in OpenSSL and memory coherence partition
patterns for 256B and 512B. Annotations show where first round T-tables are accessed
depending on the key- and plaintext bytes. Te1 and Te3 demonstrate the 256B/512B
patterns respectively (only 1 pattern can be active for all memory for each system
boot), and Te0 shows the second partition on the next page.

accesses to each table (10 rounds with each 4 accesses), over a sufficient number
of random plaintexts the probability for each line to be accessed at the end of
an encryption is 1 − 15

16

40 = 92.43%. This can be distinguished from lines that
are always accessed. In the first round of the encryption, the tables are accessed
according to the result of Pn⊕Kn, where Kn is byte n in the original key and P
is the plaintext. Fixing one plaintext byte therefore allows an attacker to control
which line is always accessed. After measuring enough encryptions, only this line
will show no conflicts, hence we can infer the upper nibble of each key byte.

The resolution of Cohere+Reload, however, is not a single cache line. The
partition size of half a page is simply not enough to perform this attack merely
by distinguishing hits from conflits, and even other tables on the same page
influence each other. Even if one performed enough measurements to detect a
non-accessed coherence partition (quite unlikely with Paccessed = 1 − 1

2

160), this
would only leak one bit per key byte.

However, we notice that while the default T-table placement in memory
is aligned to cache lines with default compilation options, it is not necessarily
aligned to a page. From this simple fact, we are able to conduct a limited standard
first-round attack (Section 7.1) as well as a novel variation on the first-round
attack based on a bias in the number of accessed cache lines instead of their
location (Section 7.2).

7.1 Disaligned T-Table First-Round Attack

For this first attack, we only look at table Te0, which deals with key/plaintext
bytes 0,4,8 and 12 in the first round. As we can see in Figure 7 bottom right, Te0
spans 5 cache lines into a new page. For a Flush+Reload attack, this would not
make a difference, as the attack either works on all cache lines or it does not work
at all (e.g., because the target cannot be accessed). For Cohere+Reload however,
this enables an attack. With a coherence pattern size of 256B, this means that

14 Giner et al.

0x0 0x2 0x4 0x6 0x8 0xa 0xc 0xe

0

4

8

12

tested key nibble value

ke
y

by
te

0.9

0.95

1H
itrate

Fig. 8. Heatmap of conflicts in an AES disaligned T-table attack on key bytes 0, 4, 8,
12 with a total of 1500 encryptions. Correct key nibbles are 0x4, 0xb, 0xc and 0xa.

the last line of Te0 is the only one that accesses the second coherence partition on
that page. With this disalignment we can convert the Cohere+Reload primitive
into what is essentially a Flush+Reload primitive for this implementation, an
improvement in the same vein as the attack described by Spreitzer et al. [43].

For random plaintexts, each cache line will be used by an encryption in
92% of cases. In our case, the second coherence partition of the second page
will measure this percentage for the last line of Te0. The T-table access in
the first round depends only on the XOR of the plaintext and key bytes, e.g.,
Te0 = P{0,4,8,12}⊕K{0,4,8,12}. As only an XOR product of 0xf in the upper nibble
accesses the measured partition, the correct key nibble can thus be derived with
(Px,t ⊕ 0xf0) ∧ 0xf0 = Kx for the test plaintext byte Px,t for which Cohere+
Reload shows a 100% hit ratio.

We can recover all upper nibbles for these 4 key bytes in 1500 encryptions
with 100% accuracy. Figure 8 shows a heatmap of one such attack with a total
of 1000 encryptions, clearly displaying the key correct key nibbles 0x4, 0xb, 0xc
and 0xa.

7.2 First-Round Correlation Attack

For the standard T-table attack, we use the fact that there is a 92% chance that
any given cache line in a table will be accessed with a random plaintext. We have
established above that the spacial resolution of Cohere+Reload is not enough to
us this in a standard first-round cache attack. However, we know each key- and
plaintext byte combination accesses a specific cache line with 100% certainty.
This in turn means either the first or second coherence partition will be accessed
for each plaintext byte in the first round. Looking at a single key byte at a time,
we can easily calculate a pattern of partition 1 and partition 2 accesses for each
plaintext and each key. Concretely, we can create a template vector for each
possibly key byte value of the form {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0}. Each
number denotes the partition that Pn ⊕Kn will access, in this case for Kn = 0
and a pattern size of 256B. We can now pick a fixed plaintext and change only
one plaintext byte at a time and record the number of total accessed cache

Cohere+Reload 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

⋅105

200

400

600

800

1,000

hit threshold

timestamp [cycles]

ac
ce

ss
ti

m
e

[c
yc

le
s] partition 1 partition 2

Fig. 9. Cohere+Reload access trace for a single AES encryption.

lines in the T-tables that fall within the one of the partitions. With this, we
can now calculate the Pearson correlation coefficients between the templates
and the access count vector. The highest correlation will show the template
corresponding with the correct upper nibble of the tested key byte.

When we generate the template vectors, we find that they contain a different
number of unique templates for the 256B and 512B coherence patterns. Depend-
ing on the cache line offset within a page, there are at most 8 unique templates
for a 256B pattern and 16 for the 512B pattern. This means for all odd cache
line offsets of the T-tables, we can recover 3 or 4 bits per key byte, depending
on the chosen pattern size. The pattern size 256B yields one bit less, since the
disaligned coherence pattern within each table repeats once (see Figure 7) and
we can therefore not distinguish the most significant bit.

While this attack benefits from chosen plaintexts (see above), a sufficient
number of (mostly) random known plaintexts will work just the same. By adding
the number of partition accesses to a bucket for each plaintext byte value and
for every byte of a random plaintext, each encryption can contribute to the
recovery of all 16 key bytes instead of just one. With many encryptions, this
creates a 16x16 matrix with one correlation vector for each key byte. After
enough encryptions, the bias in the average number of accessed cache lines in a
coherence partition outweighs the initial noisiness of random plaintexts and the
key bytes can be recovered. Therefore we consider this a known-plaintext attack.

Cohere+Reload provides for two methods of measuring the number of ac-
cesses. Firstly, the access time for a single read, as described in Section 4.2.
In theory, over enough measurements with randomized plaintexts, the average
access time should provide a proxy measure for the number of cache lines that
were accessed within a partion. Unfortunately, we could not make this method
work with AES. Fortunately, we can make use of the minimal blind spot and
high frequency of Cohere+Reload and mount a trace attack.

Unlike in the case of RSA, there is very little time between accesses to the
T-tables in the OpenSSL implementation. When we try to trace an encryption
normally, we only observe 10-15 accesses per partition, for a total of ≈ 20 − 30
accesses out of the ≈ 135 expected accesses (less than 160, as some accesses

16 Giner et al.

0 5 10 15

7.4

7.6

7.8

8

plaintext nibble

av
er

ag
e

ac
ce

ss
es

measured template

0

1

te
m

pl
at

e

Fig. 10. Correlation attack template
vector for key nibble 0xa vs. average ac-
cess counts for correct key nibble guess
with 8000 encryptions. ρ = 0.99.

0.5 1

⋅104

10

12

14

16

encryption traces

co
rr

ec
t

ke
y

ni
bb

le
s

256B 1 256B 1+2
512B 1 512B 1+2

Fig. 11. Average correct key nibbles for
a given number of AES traces for the top
guess (1) and the top 2 guesses combined
(1+2). n = 100 per point.

fall on the second page). Since in our threat model (cf. Section 3) we are the
hypervisor, we can however employ a little trick to slow down our victim. Even
in SEV-SNP, the hypervisor has control over the bits in the page table entries,
including the uncacheable bit. We find that by making both the function code
and the stash page uncacheable, we can slow down our victim considerably. This
allows us to record around 100 total memory accesses for a single encryption,
as we can see in Figure 9. Though still shy of 160, we cannot reliably see all 16
individual accesses in the first round and infer the table accesses directly. We
can, however use the number of hits to the partitions as a proxy. Even though
some hits will contain two or more accesses, on average the number of accesses
in a partition will be biased by the first round. To reduce the noise, we only look
at the first 16 accesses to both partitions, and extract the number of accesses to
one of them as our signal. We choose 16 as it is the upper limit to how many hits
we can see within the first round, and even if accesses from the second round are
included, they only add noise. We can see this signal plotted together with the
correct template in Figure 10. In this case, we achieve a very high correlation
coefficient of ρ = 0.99.

Figure 11 shows our results for both pattern sizes. We can see that recovering
3 bits is more robust, as the templates are more different to each other. With
4000 traces, we correctly recover 3 bit for an average of 14.5 key bytes in our
first guess. Adding second guesses, this rises to 15.3. Using the 512B pattern,
we can recover an average of 14.85 nibbles per byte with 12000 encryptions with
first guesses and 15.4 when we also include second guesses.

Since this is a correlation based attack, we can identify weakly correlating
key nibbles, or those where several candidates are close, and record more traces
only in these cases to minimize overall traces.

Tracing AES with this time resolution (without repeating encryptions) is
something we do not believe can be easily achieved across cores or even sockets
with other cache attacks like Flush+Reload or Flush+Flush, as Cohere+Reload
can monitor an entire page with only two addresses (cf. Section 4.3). Though

Cohere+Reload 17

compared to the standard our attack takes longer (e.g., Flush+Reload can work
with only a few hundred to low thousands of encryptions as shown in Section 7.1),
it also has slight advantages. Firstly, as a trace-based attack it is not hindered
by software prefetching, as each read resets the cache line. Secondly, this attack
functions the same for 128 bit keys as it does for 192 bit or 256 bit keys, as the
additional two or four rounds do not affect the beginning of the attack, whereas
for other attacks the probabilities become less favorable.

8 Load-time based attacks

In Section 4.2, we observed that Cohere+Reload-timings to different cache lines
in the same coherence block have discernible timing differences, i.e., an attacker
can conclude which cache line was accessed by measuring the time taken to access
a cache block. In this section, we use this observation to mount two synthetic
attacks: the first reveals which part of an array is accessed while the second
detects which case of a switch statement is taken. We test these attacks on an
AMD EPYC 8024P (Zen 4c) with hardware-prefetching disabled.

Our experimental setup consists of two processes, an attacker and a victim,
which can access the same physical page as a ciphertext or plaintext mapping
respectively. This page is either a dynamically allocated array storing values (the
first attack), or it the victim’s code (the second attack). We assume that the
region of interest is one cache-block large (256B) and assume that the physical
address is aligned to this value. For the attack on code execution, we ensure that
each case of the switch is one cache-line long and all four cases are within the
same cache block. By measuring the access time with Cohere+Reload, we can
now infer which line in a coherence block was accessed by the victim, which in
turn can let us infer control- or data flow. With the attack on code, a source
of noise is the (speculative) fetching of instructions from the next case by the
instruction prefetcher. To overcome this, we use the ret instruction at the end
of every case to indicate that the next set of instructions will not be executed.

For the purposes of the experiment, the attacker and victim alternately ac-
cess the physical address. The attacker records the access times and the victim
accesses only one random cache line. Each cache line is accessed 100 000 times,
resulting in 400 000 measurements. Figure 12a shows the access time distribution
to the coherence block when the monitored address corresponds to a dynamically
allocated array, i.e., data. In Figure 12b, we see the access times to the coherence
block when the physical address corresponds to a switch and each case is on a
different cache line, i.e., code.

With these measurements we can make several observations. First, access
times to code (Figure 12b) is noisier than data (Figure 12a), even in our example
with a ret at the end of every case. In further tests we learn that the distributions
become visually separable when the attacker can choose to repeat the same input.
Since the ret instruction also improves the result but does not make it perfect,
we believe this is a combination of misspeculation and a race condition between
how fast the front end can fetch data vs. how soon the ret is decoded.

18 Giner et al.

605 610 615 620 625 630
0

10,000

20,000

30,000
Line 1 Line 2 Line 3 Line 4

access time [cycles]

co
un

t

a. Data

670 680 690 700 710 720 730
0

2,000

4,000

6,000

8,000

access time [cycles]

co
un

t

Line 1 Line 2
Line 3 Line 4

b. Code

Fig. 12. Cohere+Reload access times to a coherence block when it contains victim
data (Figure 12a) and victim code (Figure 12b).

In a real attack, exploitability depends heavily on the control an attacker has
over the target branch. If a single secret bit can be reliably repeated, it only takes
a few samples to train predictors and receive a clean signal (cf. Section 4.2). If
a sequence of bits can reliably be repeated in the same order (e.g., a key that
is used bit by bit), Figure 12b shows that by combining repeated measurements
we can produce distinct distributions, even when attacking instructions.

9 Mitigation

AMD disabling the coherence feature will undoubtedly mitigate Cohere+Reload,
though VMPAGE_FLUSH, if present, may lead to similar leakage, as it may well
have the same time dependence. Here, the fundamental question is if the host’s
ability to read the ciphertext at all is even necessary for SEV-SNP. The SEV-SNP
attestation flag CiphertextHidingDRAM suggests it may not always be necessary,
as it disallows reading of the ciphertext by the hypervisor when active. As we
have no hardware that supports this feature, we can only speculate that the
coherence mechanism could be disabled when this setting is enabled, depending
on how it is implemented.

On the developer side, hardened implementations could change the memory
type of critical sections (e.g., T-tables) to uncacheable. While this slows down ex-
ecution, our experiments show that loads to uncacheable memory do not trigger
the coherence mechanism.

10 Conclusion

In this paper, we introduced Cohere+Reload, a novel side-channel attack exploit-
ing AMD’s coherency for encrypted memory. We exploit two types of leakage in
the coherency mechanism: First, we exploit coherence conflicts, leaking victim
operations on a spatial granularity of a 2 kB block. Second, we exploit timing cor-
relations with the number and location of accesses, reaching a maximum spatial
resolution of 256 bytes. In our synthetic attacks, we showed that Cohere+Reload

Cohere+Reload 19

can observe control flow and access locations in workloads within a confidential
virtual machine. As a benchmark we mounted an attack on mbedTLS RSA,
leaking 99.7% of the 4096 key bits in a single-trace attack. We also mounted
an attack on OpenSSL AES exploiting disalignments on a cache line granular-
ity, achieving an accuracy of 100% in only 1500 encryptions in a first round
T-table attack and an accuracy of 92.81% in 12000 encryptions with a novel
correlation attack. Our work shows that coherence mechanisms can undermine
the confidentiality of confidential virtual machines. Consequently, we believe that
vendors need to weigh the necessity of coherence, as discussed above, against the
opening of this side channel for future implementations.

Acknowledgments

We want to thank Andreas Kogler. After tinkering with cache coherency with
SEV for some time at TU Graz, Andreas found an effect and suggested that we
investigate it. This research is supported in part by the European Research Coun-
cil (ERC project FSSec 101076409), and the Austrian Science Fund (FWF SFB
project SPyCoDe 10.55776/F85 and FWF project NeRAM 10.55776/I6054). Ad-
ditional funding was provided by a generous gift from Intel. Any opinions, find-
ings, and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding parties.

References

1. Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw, and Felix Wilhelm. Intel
Trust Domain Extensions (TDX) Security Review, 2023. URL: https://services.g
oogle.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf.

2. AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and
More, 2020. URL: https://www.amd.com/content/dam/amd/en/documents/e
pyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-
integrity-protection-and-more.pdf.

3. AMD. AMD Secure Encrypted Virtualization (SEV), 2024. URL: https://develo
per.amd.com/sev/.

4. AMD. AMD64 Architecture Programmer’s Manual, 2024.
5. ARM. Arm Confidential Compute Architecture, 2024. URL: https://www.arm.co

m/architecture/security-features/arm-confidential-compute-architecture.
6. C Ashokkumar, M Bhargav Sri Venkatesh, Ravi Prakash Giri, Bholanath Roy, and

Bernard Menezes. An error-tolerant approach for efficient AES key retrieval in the
presence of cacheprefetching–experiments, results, analysis. Sādhanā, 44, 2019.
doi:https://doi.org/10.1007/s12046-019-1070-8.

7. Daniel J. Bernstein. Cache-Timing Attacks on AES, 2005. URL: http://cr.yp.to
/antiforgery/cachetiming-20050414.pdf.

8. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES. In
CHES, 2006.

9. Elad Carmon, Jean-Pierre Seifert, and Avishai Wool. Photonic Side Channel At-
tacks Against RSA. In HOST, 2017.

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://doi.org/https://doi.org/10.1007/s12046-019-1070-8
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

20 Giner et al.

10. Confidential Computing Consortium. A Technical Analysis of Confidential Com-
puting, 2022.

11. Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX.
In USENIX Security, 2017.

12. Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and
Jesse Fang. Secure encrypted virtualization is unsecure. arXiv:1712.05090, 2017.

13. Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar, Andreas
Kogler, Simone Franza, Markus Köstl, and Daniel Gruss. SQUIP: Exploiting the
Scheduler Queue Contention Side Channel. In S&P, 2023.

14. Stefan Gast, Hannes Weissteiner, Robin Leander Schröder, and Daniel Gruss.
CounterSEVeillance: Performance-Counter Attacks on AMD SEV-SNP. In NDSS,
2025.

15. Daniel Gruss, David Bidner, and Stefan Mangard. Practical Memory Deduplication
Attacks in Sandboxed JavaScript. In ESORICS, 2015.

16. Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Trachtenberg,
Jason Hennessey, Alex Ionescu, and Anders Fogh. Page Cache Attacks. In CCS,
2019.

17. Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA, 2016.

18. Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX Security, 2015.

19. Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual ma-
chines. ACM SIGPLAN Notices, 52(7):129–142, 2017.

20. Gal Horowitz, Eyal Ronen, and Yuval Yarom. Spec-o-Scope: Cache Probing at
Cache Speed. In CCS, 2024.

21. Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In S&P, 2013.

22. Intel. Intel Trust Domain Extensions, 2021. URL: https://software.intel.com/con
tent/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf.

23. Intel. Intel Software Guard Extensions (Intel SGX), 2024. URL: https://www.in
tel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-
extensions.html.

24. Intel. Intel Trust Domain Extensions Module Base Architecture Specification,
2024. URL: https://www.intel.com/content/www/us/en/developer/tools/trust-
domain-extensions/documentation.html.

25. Intel. Intel Total Memory Encryption White Paper, 2025. URL: https://www.
intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-
shield/total-memory-encrpytion.html.

26. Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait a
minute! A fast, Cross-VM attack on AES. In RAID, 2014.

27. David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryption, 2016.
28. Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS,

and Other Systems. In CRYPTO, 1996.
29. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

CRYPTO, 1999.
30. Tom Lendacky. What processors support SEV? #1, 2019. URL: https://github.c

om/AMDESE/AMDSEV/issues/1#issuecomment-581426096.
31. Luyi Li, Jiayi Huang, Lang Feng, and Zhongfeng Wang. PREFENDER: A Prefetch-

ing Defender against Cache Side Channel Attacks as A Pretender. IEEE Transac-
tions on Computers, 2024.

https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://github.com/AMDESE/AMDSEV/issues/1#issuecomment-581426096
https://github.com/AMDESE/AMDSEV/issues/1#issuecomment-581426096

Cohere+Reload 21

32. Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Eas-
don, Claudio Canella, and Daniel Gruss. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In S&P, 2021.

33. Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the Other
Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS, 2017.

34. John Monaco. SoK: Keylogging Side Channels. In S&P, 2018.
35. Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. Severed:

Subverting AMD’s virtual machine encryption. In EuroSec, 2018.
36. Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad Khur-

ram Bhatti, and Guy Gogniat. Winter is here! A decade of cache-based side-channel
attacks, detection & mitigation for RSA. Information Systems, 92:101524, 2020.

37. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Countermea-
sures: the Case of AES. In CT-RSA, 2006.

38. Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope: Overcom-
ing the Observer Effect for High-Precision Cache Contention Attacks. In CCS,
2021.

39. Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards. In E-smart, 2001.

40. Fabian Rauscher, Carina Fiedler, Andreas Kogler, and Daniel Gruss. A Systematic
Evaluation of Novel and Existing Cache Side Channels. In NDSS, 2025.

41. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In CCS, 2009.

42. Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Maurice, and Stefan
Mangard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In
DIMVA, 2017.

43. Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables. In COSADE, 2013.

44. Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp: Stateless cache
side-channel attack on CPU mesh. In S&P, 2022.

45. Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishnamurthy.
PAPP: Prefetcher-Aware Prime and Probe Side-channel Attack. In DAC, 2019.

46. Zihao Wang, Shuanghe Peng, Wenbin Jiang, and Xinyue Guo. Defeating Hardware
Prefetchers in Flush+Reload Side-Channel Attack. IEEE Access, 9:21251–21257,
2021.

47. Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. The severest of them all: Inference attacks against secure vir-
tual enclaves. In AsiaCCS, 2019.

48. Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. SEVu-
rity: No Security Without Integrity–Breaking Integrity-Free Memory Encryption
with Minimal Assumptions. In S&P, 2020.

49. Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA Nonces Using the
FLUSH+ RELOAD Cache Side-channel Attack. Cryptology ePrint Archive, Report
2014/140, 2014.

50. Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In USENIX Security, 2014.

51. Mark Zhao and G Edward Suh. FPGA-based Remote Power Side-Channel Attacks.
In S&P, 2018.

	Cohere+Reload: Re-enabling High-Resolution Cache Attacks on AMD SEV-SNP

