

Modeling at the Edge: Navigating Trade-offs in Energy System Analysis

The RESILIENT experience

Antonio Frangioni¹

Davide Fioriti²

... & many others

¹Dipartimento di Informatica, Università di Pisa

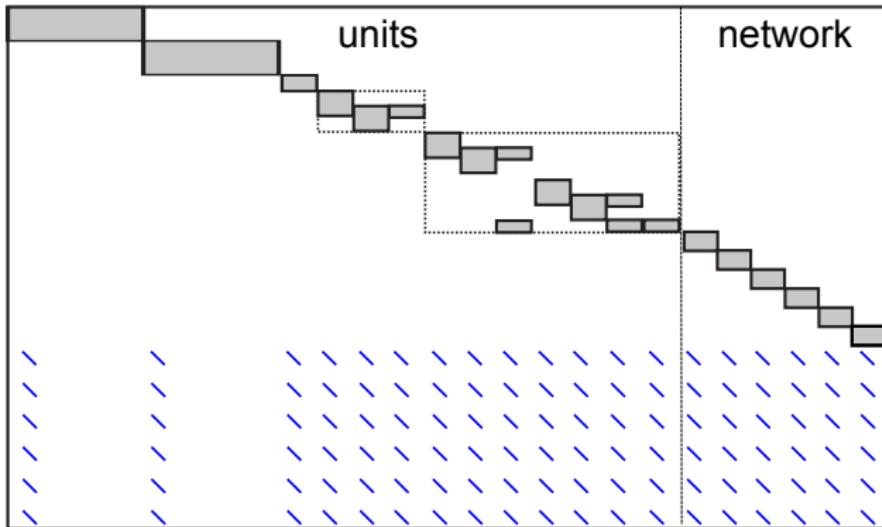
²Dipartimento di Ingegneria dell'Energia, dei Sistemi, del Territorio e delle Costruzioni,
Università di Pisa

Energy Innovation Summit – EIS2025

Berlin, June 25, 2025

Outline

- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion


Energy Optimization bottom-up: Unit Commitment

- I don't need to convince you that energy optimization is important, but **which** of the many energy optimization problems??
- Operational level = Unit Commitment¹: schedule **generating units** over **time horizon** (hours / 15m in day / week) to satisfy (forecasted) **demand**
- Different types of production units, different constraints:
 - Thermal (comprised nuclear): min / max production, min up / down time, ramp rates on production increase / decrease, start-up cost depending on previous downtime, others (modulation, ...)
 - Hydro (valleys): min / max production, min / max reservoir volume, time delay to get to the downstream reservoir, others (pumping, ...)
 - Non programmable** (ROR hydro) **intermittent** units (solar / wind, ...)
 - Fancy things (small-scale storage, demand response, smart grids, ...)
- Plus the **interconnection network** (AC / DC, transmission / distribution, OTS, ...) and **reliability** (primary / secondary reserve, $n - 1$ units, ...)

¹ van Ackooij, Danti Lopez, F., Lacalandra, Tahanan "Large-scale Unit Commitment Under Uncertainty [...]" AOR 2018

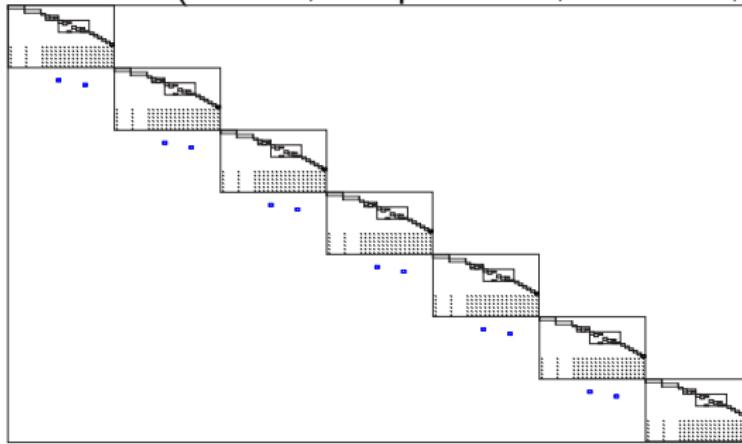
Many Different Structures Already

- **Many different structures:** thermal units², hydro units³, Energy Communities⁴, stochastic⁵, AC-OPF⁶, OTS⁷, ...

²Bacci, F., Gentile, Tavlaridis-Gyparakis "New MINLP Formulations for the Unit Commitment Problem [...]" *OR* 2024

³van Ackooij et. al. "Shortest path problem variants for the hydro unit commitment problem" *Elec. Notes Disc. Math.* 2018

⁴Fioriti, F., Poli "Optimal Sizing of Energy Communities with Fair Revenue Sharing [...]" *Applied Energy* 2021


⁵Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" *IEEE Trans. Sust. En.* 2018

⁶Bienstock, Escobar, Gentile, Liberti "[...]" formulations for the alternating current optimal power flow" *Ann. O.R.*, 2022

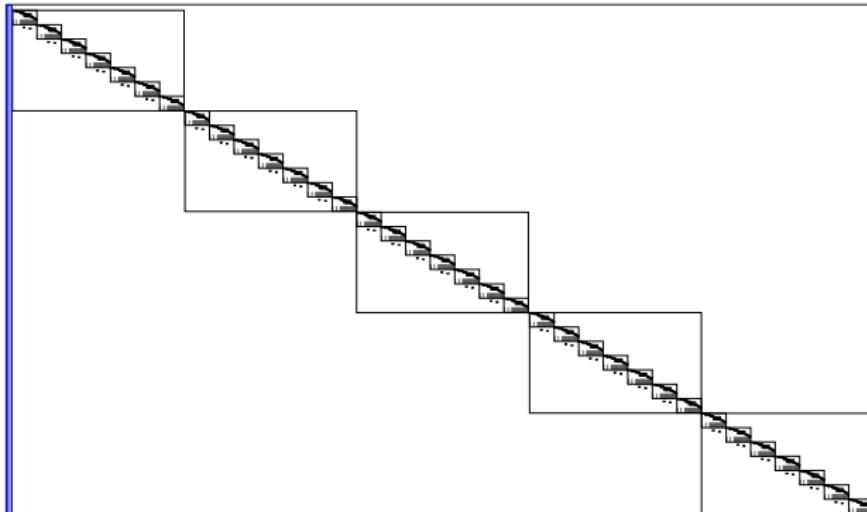
⁷Numan et. al. "The role of optimal transmission switching in enhancing grid flexibility: A review" *IEEE Access*, 2023

The tactical level: Seasonal Storage Valuation

- Mid-term (1y) cost-optimal management of **water levels in reservoirs** considering **uncertainties** (inflows, temperatures, demands, ...)

- **Very large size, nested structure** (one UC per stage)
- Perfect structure for Stochastic Dual **Dynamic Programming**^{8,9}
- SDDP needs **dual variables**, but **Lagrangian dual convexifies**^{10,11}

⁸ Pereira, Pinto "Multi-stage stochastic optimization applied to energy planning" *Math. Prog.*, 1991

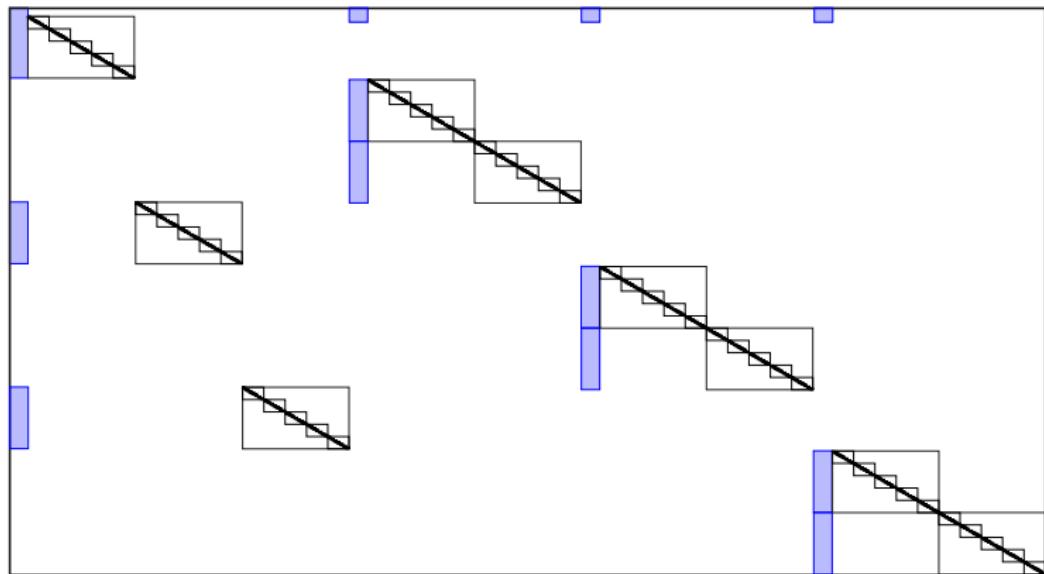

⁹ van-Ackooij, Warin "On conditional cuts for Stochastic Dual Dynamic Programming" *EURO J. on Comp. Opt.*, 2020

¹⁰ Lemaréchal, Renaud "A geometric study of duality gaps, with applications" *Math. Prog.* 2001

¹¹ F. "About Lagrangian Methods in Integer Optimization" *Annals of O.R.*, 2005

Energy System Investment

- Investment on generating units / transmission lines
- Using **stochastic independent representative years** to evaluate system cost


- **Very few** investment variables, can be taken **continuous, identical** copies
- Would be **perfect** for Benders'-like^{12,13}, if given **dual information**

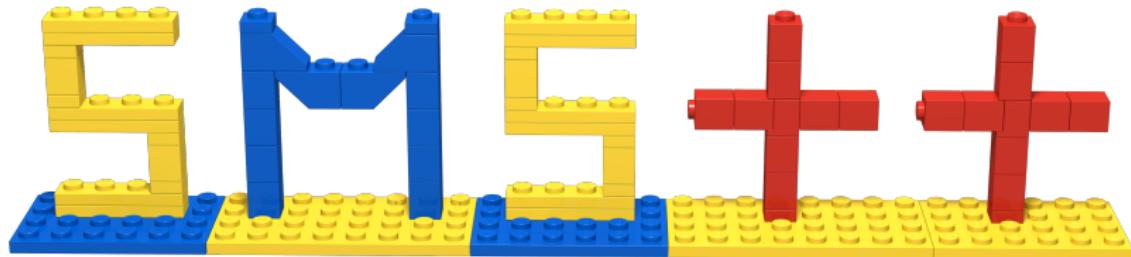
¹²Geoffrion "Generalized Benders Decomposition" *JOTA*, 1972

¹³van Ackooij, F., de Oliveira "Inexact Stabilized Benders' Decomposition Approaches [...]" *COAP*, 2016

Strategic Energy System Investment

- Long-term (30y) optimal (cost, pollution, CO₂ emissions, ...) planning of production/transmission investments considering multi-level **uncertainties scenarios** (technology, economy, politics, ...)

- Many scenarios, huge size, multiple nested structure \Rightarrow multiple nested Benders' or Lagrangian decomposition and/or SDDP??


Outline

- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

A HUGE LOT OF
ELBOW GREASE,
BLODSHED AND TEARS

or

Quite a lot of elbow grease and

<https://gitlab.com/smspp/smspp-project>

“For algorithm developers, from algorithm developers”

- Open source (LGPL3)
- 1 “core” repo, 1 “umbrella” repo, 12+ problem and/or algorithmic-specific repos (public, more in development), tests & tools
- Extensive Doxygen documentation <https://smspp.gitlab.io>

What SMS++ is

- A core set of C++-20 classes implementing a **modelling system** that:
 - explicitly supports the notion of **Block** \equiv nested structure
 - separately provides “semantic” information from “syntactic” details (list of constraints/variables \equiv **one specific** formulation among many)
 - allows exploiting **specialised Solver** on Block with specific structure
 - manages **any dynamic change in the Block** beyond “just” generation of constraints/variables
 - supports **reformulation/restriction/relaxation** of Block
 - has built-in **parallel processing** capabilities
 - **should** be able to deal with almost anything (bilevel, PDE, ...)
- An **hopefully growing** set of specialized **Block** and **Solver**
- **In perspective** an ecosystem fostering collaboration and code sharing:
a community-building effort as much as a (suite of) software product(s)

Outline

- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

It starts deceptively simple

ThermalUnitBlock : Block

$$\min \sum_{i \in P} c^i(\mathbf{p}^i, \mathbf{u}^i) = \sum_{i \in P} \left(c^i(\mathbf{u}^i) + \sum_{t \in \mathcal{T}} c_t^i(p_t^i) \right)$$

$$\bar{p}_{\min}^i \leq p_t^i \leq \bar{p}_{\max}^i \quad t \in \mathcal{T}$$

$$p_t^i \leq p_{t-1}^i + u_{t-1}^i \Delta_{+}^i + (1 - u_{t-1}^i) \bar{p}^i \quad t \in \mathcal{T}$$

$$p_{t-1}^i \leq p_t^i + u_t^i \Delta_{-}^i + (1 - u_t^i) \bar{u}^i \quad t \in \mathcal{T}$$

$$u_t^i \geq u_r^i - u_{r-1}^i \quad t \in \mathcal{T}, \quad r \in [t - \tau_{+}^i, t - 1]$$

$$u_t^i \geq 1 - u_{r-1}^i - u_r^i \quad t \in \mathcal{T}, \quad r \in [t - \tau_{-}^i, t - 1]$$

$$u_t^i \in \{0, 1\} \quad t \in \mathcal{T}$$

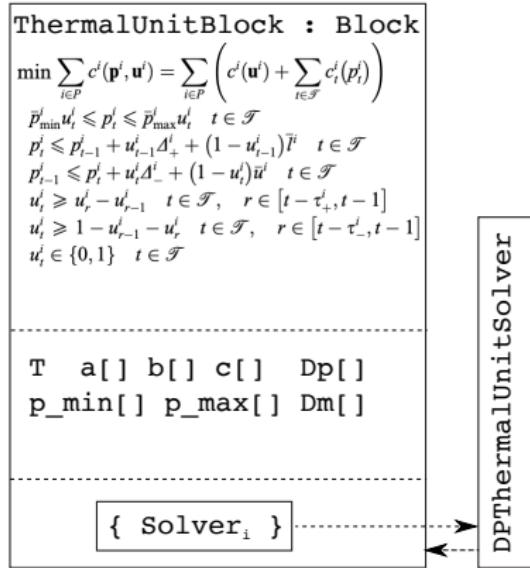
T a[] b[] c[] Dp[]

p_min[] p_max[] Dm[]

- For a man with a hammer everything is a nail

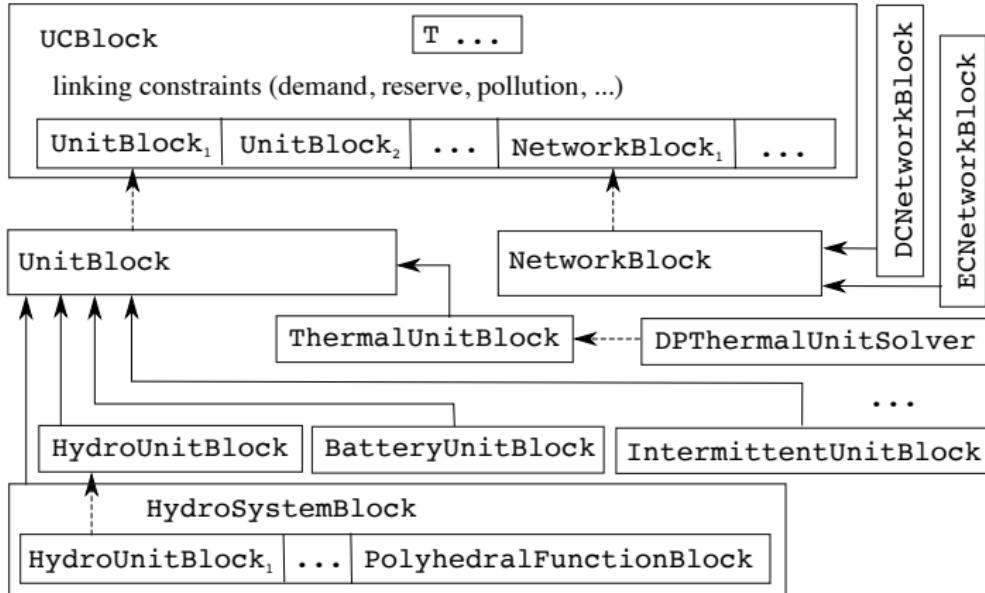
It starts deceptively simple

```
ThermalUnitBlock : Block
min  $\sum_{i \in P} c^i(\mathbf{p}^i, \mathbf{u}^i) = \sum_{i \in P} \left( c^i(\mathbf{u}^i) + \sum_{t \in \mathcal{T}} c_t^i(p_t^i) \right)$ 
 $\bar{p}_{\min}^i \leq p_t^i \leq \bar{p}_{\max}^i \quad t \in \mathcal{T}$ 
 $p_t^i \leq p_{t-1}^i + u_{t-1}^i \Delta_+^i + (1 - u_{t-1}^i) \bar{l}^i \quad t \in \mathcal{T}$ 
 $p_{t-1}^i \leq p_t^i + u_t^i \Delta_-^i + (1 - u_t^i) \bar{u}^i \quad t \in \mathcal{T}$ 
 $u_t^i \geq u_r^i - u_{r-1}^i \quad t \in \mathcal{T}, \quad r \in [t - \tau_+^i, t - 1]$ 
 $u_t^i \geq 1 - u_{r-1}^i - u_r^i \quad t \in \mathcal{T}, \quad r \in [t - \tau_-^i, t - 1]$ 
 $u_t^i \in \{0, 1\} \quad t \in \mathcal{T}$ 

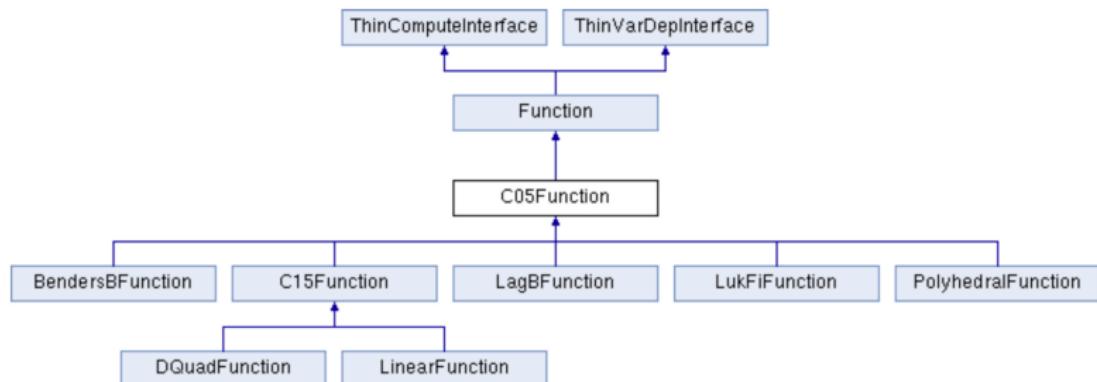

```

```
T  a[]  b[]  c[]  Dp[]
p_min[]  p_max[]  Dm[]
```

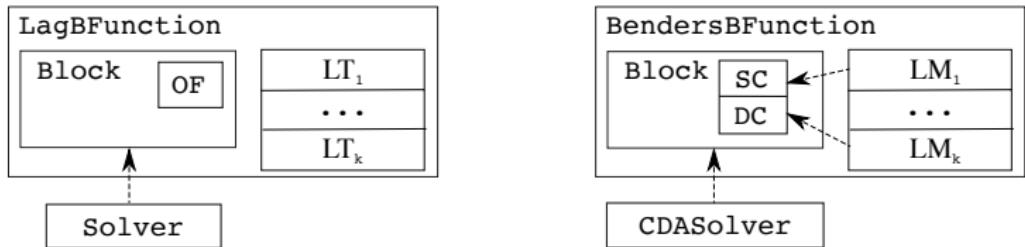
- For a man with a solver everything is a **Block** (call me **blockhead** - Block** = abstract class representing the general concept of “(fragment of) mathematical model with a well-understood semantic”
- Each **:Block** a model with **specific structure**: **ThermalUnitBlock : Block** = a single-(thermal)-unit commitment problem


A Block \exists (\approx) because a (specialised) Solver \exists

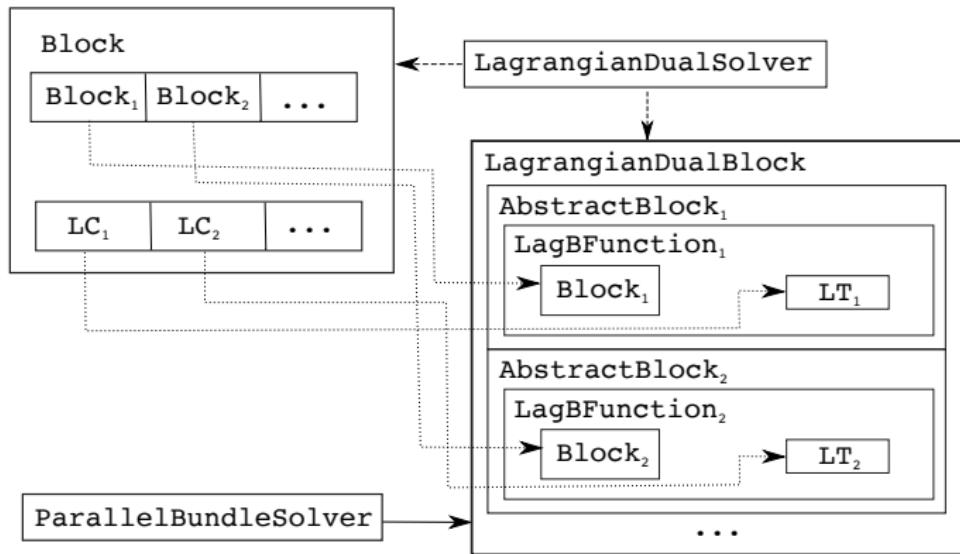
- Any number of Solver can be attached to a Block
- Any specific :Block (e.g., ThermalUnitBlock) can have **specialised** \Rightarrow **fast** :Solver (e.g., DPThermalUnitSolver¹⁴)
- Can be **wrapper classes** to efficient existing (C++) libraries


¹⁴ F., Gentile "Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints" *Op. Res.*, 2006

A Block is (almost) always just a (small) part


- A Block can have **any # of sub-Block, recursively** (Block *); e.g., UCBLOCK : Block has k :UnitBlock and T :NetworkBlock **recursively**
- Problem data split between them (energy constraints only in UCBLOCK)

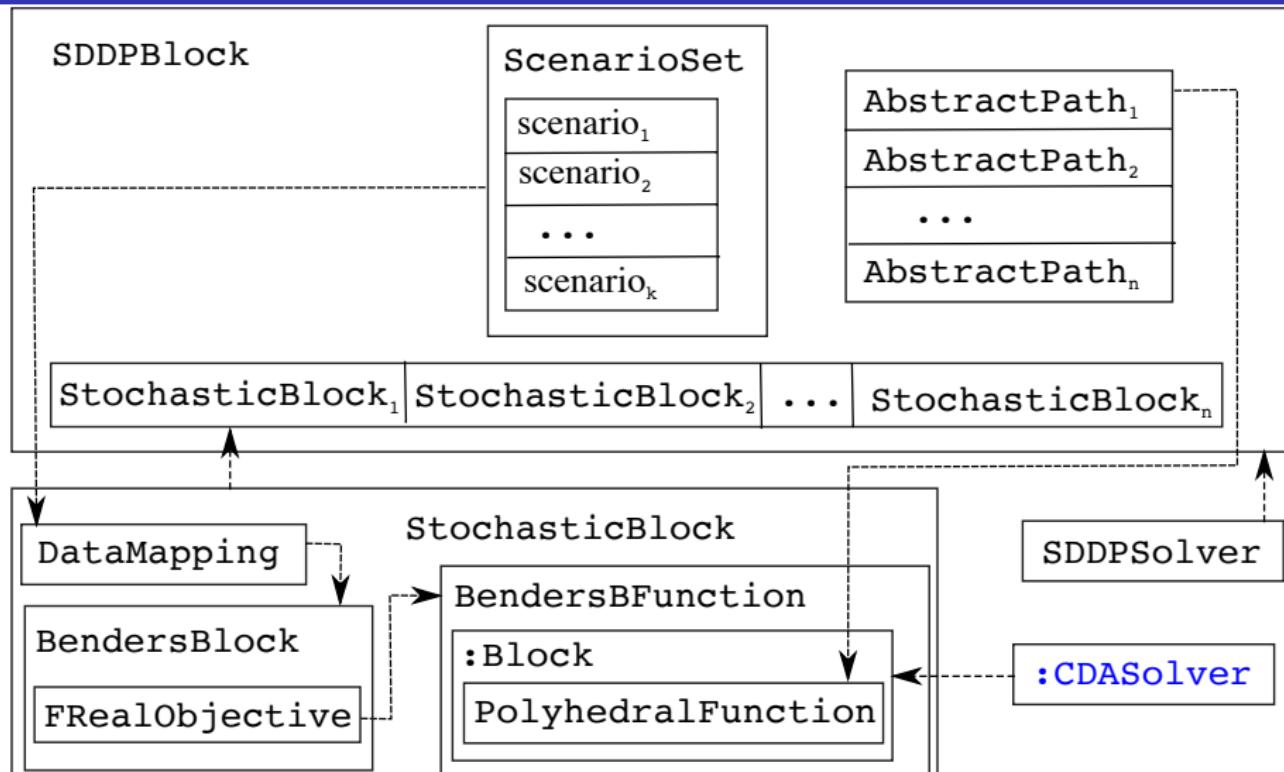
Another necessary step: Function


- Real-valued Function of a set of [Col]Variable (a single \mathbb{R} / \mathbb{Z})
- Must be `compute()`-d w.r.t. the current value of the [Col]Variable, **possibly a costly operation** (:ThinComputeInterface)
- C05Function / C15Function have (**not necessarily continuous**) 1st / 2nd order information (vertical / diagonal linearizations)
- **Local / global pools** of linearizations
- “Easy” Function (linear, quadratic, polyhedral, ...) with no overhead

LagBFunction & BendersBFunction

- LagBFunction \equiv dual function $\varphi(\lambda) = \min\{ f(x) + (\lambda LT)x : x \in X \}$ for (almost) any Block (B) $\min\{ f(x) : x \in X \}$
- BendersBFunction \equiv value function $v(y) = \min\{ f(x) : g(x) \leq LMy : x \in X \}$ for (almost) any Block (B) $\min\{ f(x) : g(x) \leq 0, x \in X \}$
- Both are :Block and :C05Function, with (B) being the only sub-Block
- Use generic [CDA]Solver to compute() (\approx just call its compute())
- Store pools of primal / dual Solution corresponding to linearizations
- Any change in (B) is mapped in changes of F-values / the pools

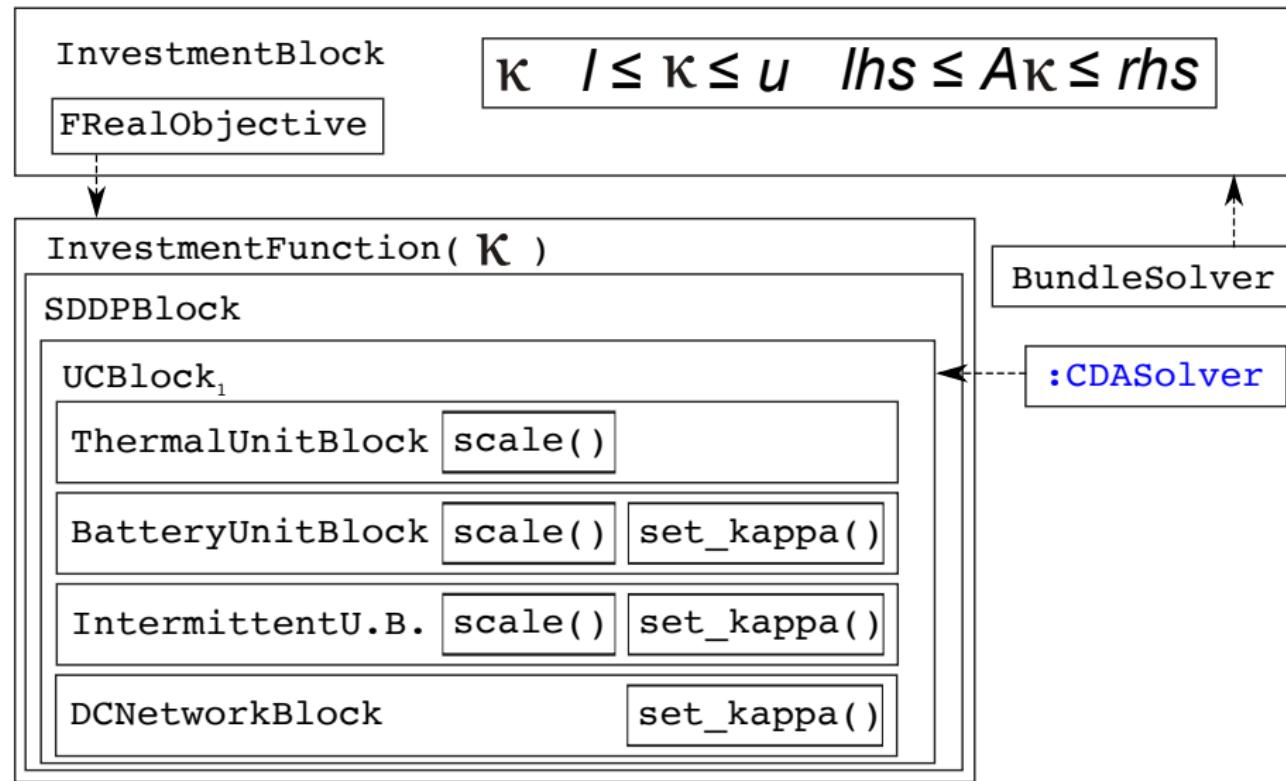
All this \mapsto LagrangianDualSolver


- Forms (hidden) **LagrangianDualBlock**, attaches **parallel**¹⁵ Solver
- Provides **primal** (convexified \equiv "better"^{10,11}) and dual solutions
- Good foundations for heuristic approaches^{16,17} & the next steps

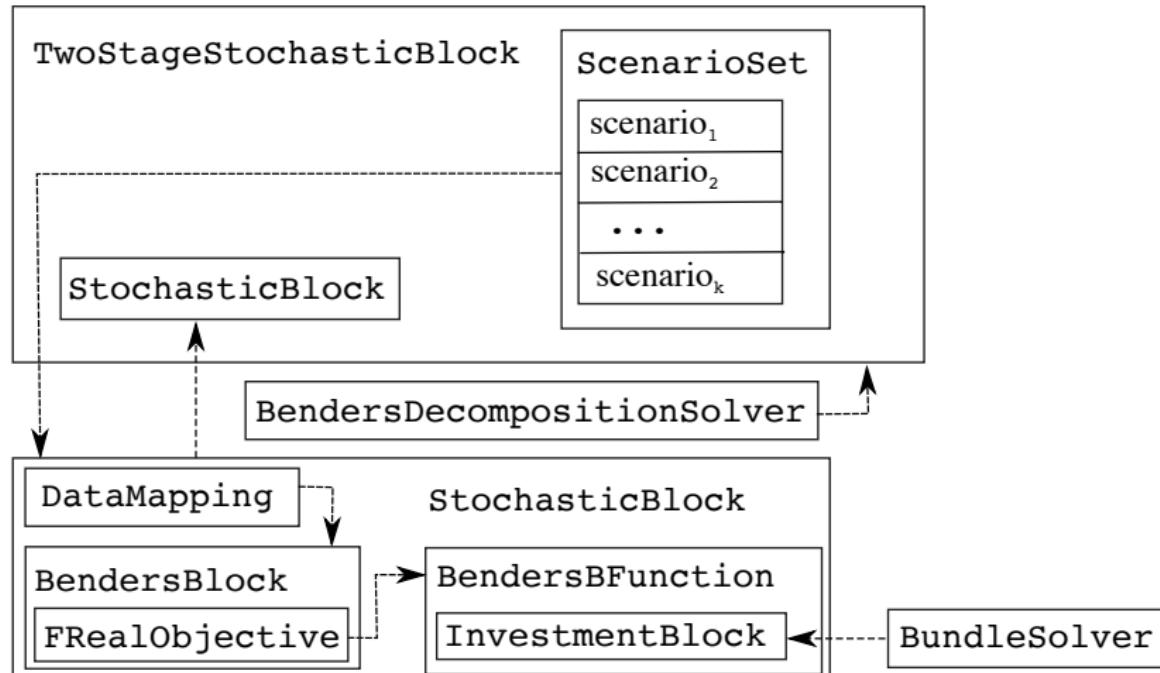
¹⁵ Cappanera, F. "[...] Parallelization of [...] Algorithm for Multi-Commodity Flow Problems" *INFORMS JoC*, 2003

¹⁶ Borghetti, F., Lacalandra, Nucci "Lagrangian [...] for Hydrothermal Unit Commitment", *IEEE Trans. Power Sys.* 2003

¹⁷ Scuzziato, Finardi, F. "Solving Stochastic [...] Unit Commitment with [...] Lagrangian Solutions" *IJEPES*, 2021


SDDPBlock, StochasticBlock and their Solver

- SDDPSolver: wrapper for StOpt¹⁸ + SDDPGreedySolver (simulator)


¹⁸ <https://gitlab.com/stochastic-control/StOpt>

InvestmentBlock

- Scaling a `:Block` a general concept, may be upcasted to base Block

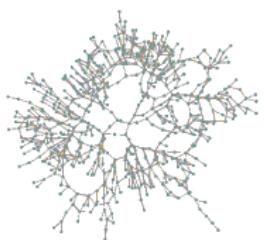
Strategic Investment Problem in SMS++-speak

- Not all here yet, TwoStageStochasticBlock still under active development, BendersDecompositionSolver yet to come
- Clearly **extremely challenging** problem, need all the help we can get

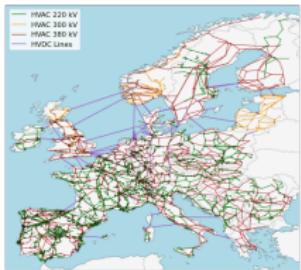
SMS++ support to (coarse-grained) parallel computations

- Block can be (write) lock()-ed to ensure atomic changes
- lock()-ing a Block automatically lock()s all inner Block (recursively)
- Analogously for `read_lock()`, any # of concurrent reads
- `lock()` (but not `read_lock()`) sets an `owner` and records its `std::thread::id`; other `lock()` from the same thread fail (`std::mutex` would not work there)
- **Write starvation not handled yet**
- Solver's `compute()` must be thread-safe (`std::recursive_mutex`)
- Solver/ThinComputeInterface can be “lent ID” (solving a sub-Block)
- Solver's `list<Modification>` under an “active guard” (`std::atomic`)
- General `State` of Solver for `checkpointing` (and reoptimization)
- New `Change` concept: Modification + data, automatic `undo_Change`, can be `de/serialize-d` on `netCDF` file as `everything` \Rightarrow message-passing distributed Solver available **one day** (soon-ish?)

Outline


- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

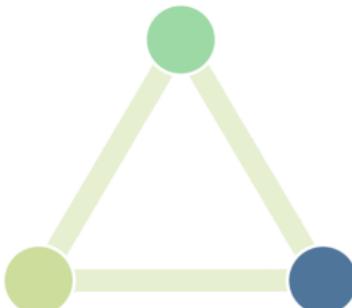
QUITE SOME
ELBOW GREASE AND
netCDF FILES MANGLING


or

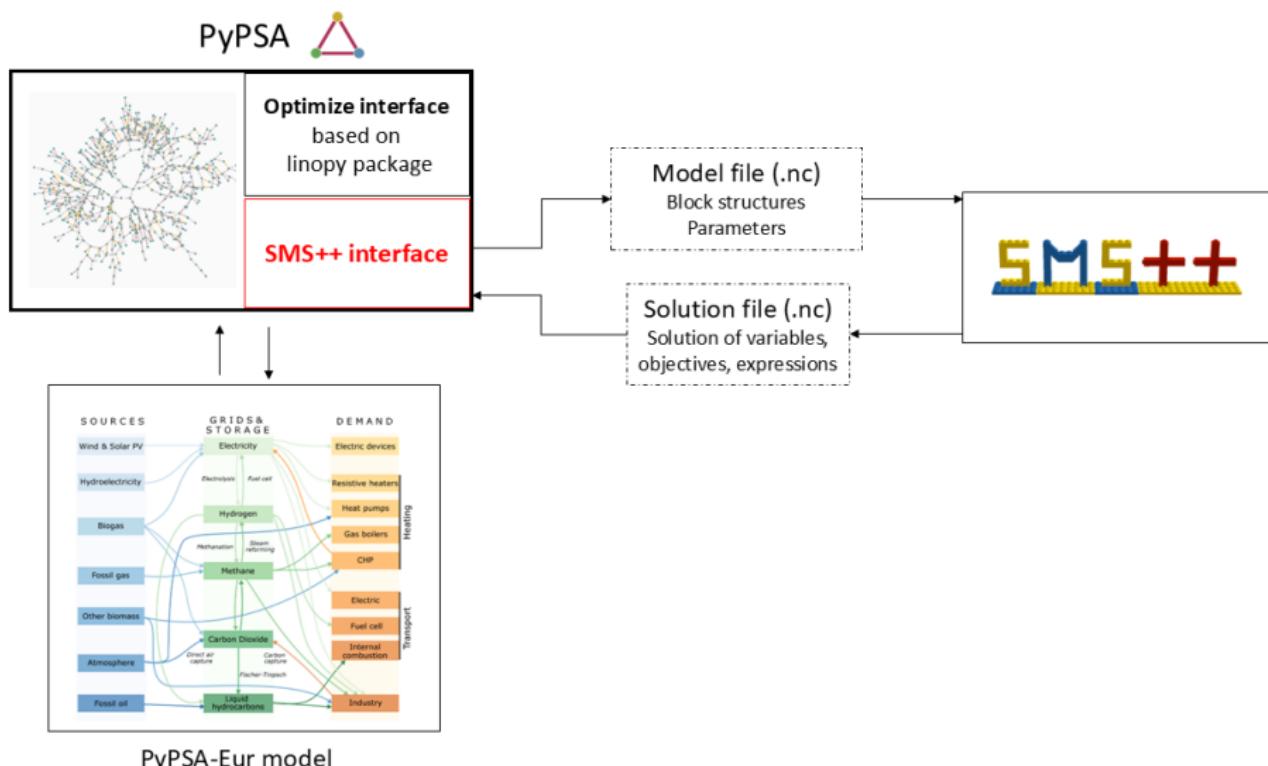
Some elbow grease and


PyPSA

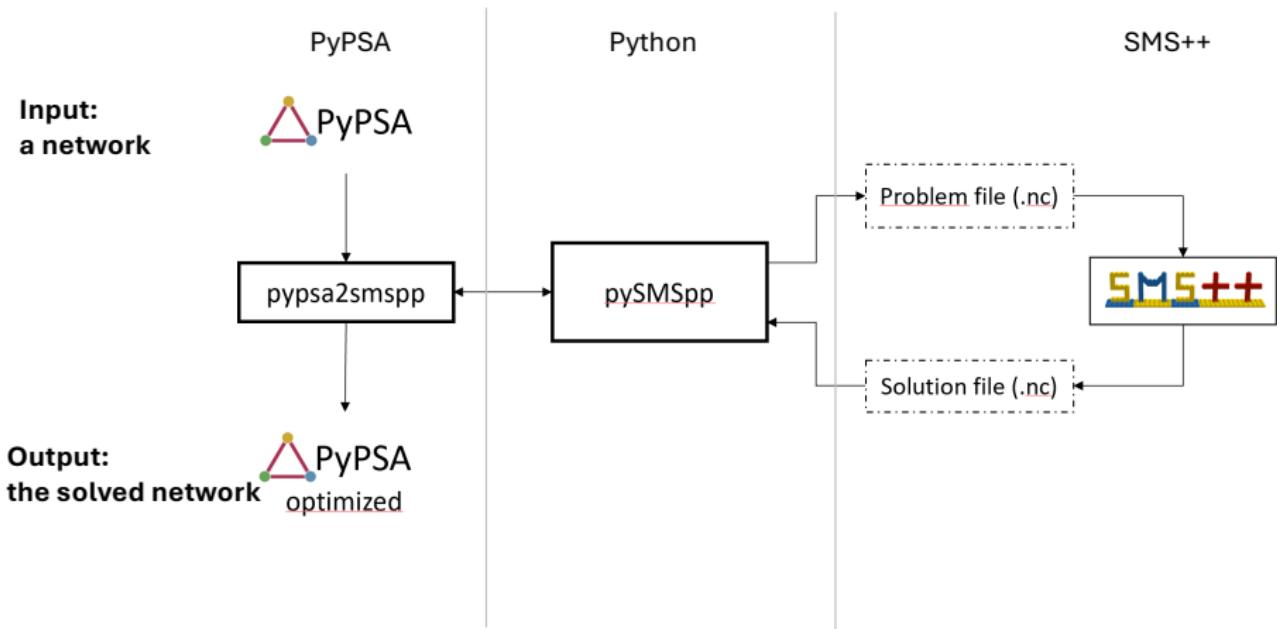
PyPSA-Eur


Linopy

<https://pypsa.org>

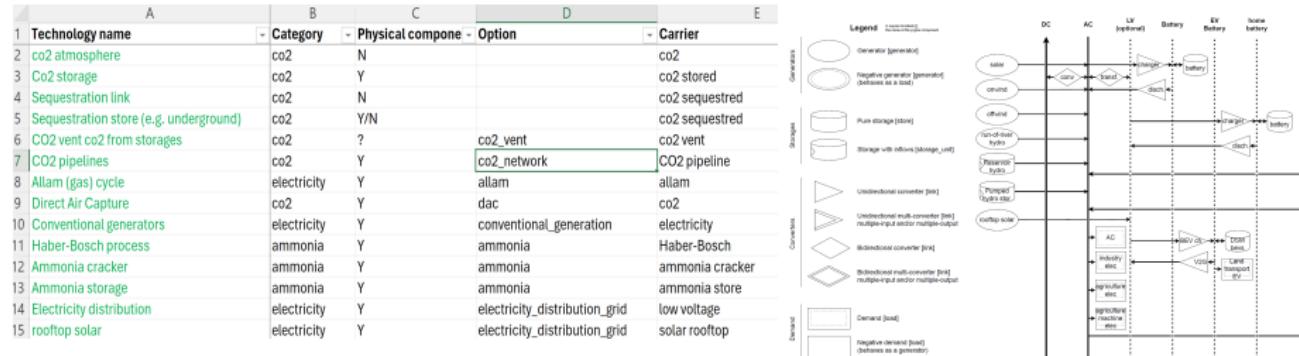

+

RESILIENT


<https://resilient-project.github.io>

What the project wants to do

- Modelling prowess of PyPSA + solution prowess of SMS++


A bit more in details

- Requires careful mapping of PyPSA network \mapsto SMS++:Block
- Especially important for freshly developed PyPSA stochastic extension

A glimpse of the mapping

Equation	Symbol	Generator	Link	Line	Storage unit	Store	Condition	Example
Size bound	SB	X	X	X	X	X		$G_{i,r} \leq G_{i,r} \leq G_{i,r}$
Modularity	MD	X	X	X	X	X		$G_{i,r} = G_{i,r}^{\text{mod}}, n_{i,r}$
Power bound	PB	X	X	X	X	X		$g_{i,r,t} G_{i,r} \leq g_{i,r,t} \leq \bar{g}_{i,r,t} G_{i,r}$
Power unit commitment	PB _{UC}	X	X				committable	$\delta_{i,r,t} g_{i,r,t} G_{i,r} \leq g_{i,r,t} \leq \delta_{i,r,t} \bar{g}_{i,r,t} G_{i,r}$
Minimum time	MT	X	X					$\sum_{i,r,t=1}^{T_{\text{minup}}} \delta_{i,r,t} G_{i,r} \geq T_{\text{minup}} (\delta_{k,t} - \delta_{k,t-1})$
Total energy produced	PSUM	X	X					$E_{\text{sum}}^{\text{sum}} \leq \sum_{i,r,t} w_{i,r,t}^T g_{i,r,t} \leq E_{\text{sum}}^{\text{max}}$
Start up/shut down cost	SC	X	X					$\text{stuc}_{i,t} \geq \text{stuc}_k (\delta_{k,t} - \delta_{k,t-1})$
Rump up/down	RUD	X	X					$(g_{i,r,t} - g_{i,r,t-1}) \leq r_{u,r} G_{i,r}$
Kirchhoff's law	KL			X				$\sum_i C_{L,i} x_{p_{i,t}} = 0$
Line losses	LL			X				$P_i^{\text{loss}} = \alpha_l + \beta_l p_{i,t}$
Energy storage level	ESL				X	X		$e_{i,s,t} = e_{i,s,t-1} + w_{i,s,t}^T h_{i,s,t}$
Energy storage bound	ESB				X	X		$0 \leq e_{i,s,t} \leq E_{i,s,t}^{\text{max}}$
Initial energy level	IEL _S				X	X		$e_{i,s,0} = e_{i,s,0, \text{init}}$
Cyclic energy level	IEL _{CS}				X	X	cyclic_state_of_charge	$e_{i,s,0} = e_{i,s,0} [T]$

- ... but no-one needs bother besides us (or new features developers)

Outline

- 1 A View on (some) Energy Optimization Models
- 2 How on Earth do you solve THAT?!?
- 3 All the above in SMS++-speak
- 4 How on Earth do you model THAT?!?
- 5 Points for the discussion

What we want to hear from you

- From model users:
 - Would you really like to solve such huge problems to solve?
 - Do you believe that all that level of detail is necessary?
 - Do you believe in stochastic information / have it?
 - Would you be ready to dabble with complex solution algorithms?
- From system / algorithm developers:
 - What do you use to solve your largest and most complex problems?
 - Have you ever been set back by the lack of proper development tools?
 - Do you believe in deeper integration of models and algorithms?
- Let the fun begin!