
BinDat:
Bin there, done Dat

Stefan Monnier

monnier@iro.umontreal.ca

Université de Montréal

Stefan Monnier BinaryTools’22 1

Overview

What’s BinDat anyway?

Problems encountered

• Lack of flexibility

• Repeated assaults on kitten

The new design

• Simpler and more flexible by exposing code as code

• Try and keep efficiency in mind

Examples

Stefan Monnier BinaryTools’22 2

What’s BinDat anyway

An Emacs Lisp library. From the horse’s mouth:

Packing and unpacking of (binary) data structures.

The data formats used in binary files and network protocols are

often structured data which can be described by a C-style

structure such as the one shown below. Using the Bindat

package, decoding and encoding binary data formats like these

is made simple using a structure specification which closely

resembles the C style structure declarations.

Encoded (binary) data is stored in a unibyte string or vector,

while the decoded data is stored in an alist with (field .

value) pairs.

Stefan Monnier BinaryTools’22 3

More concretely

A description language:

struct data {

char opcode;

char id[7];

int length;

char data[];

};

(setq data-bindat-spec

’((opcode u8)

(id strz 7)

(length i32r)

(data vec (length))

(align 4)))

With 3 functions to make use of those descriptions:

(bindat-pack spec struct)

(bindat-length spec struct)

(bindat-unpack spec raw)

Stefan Monnier BinaryTools’22 4

Example use

[192 168 1 100 192 168 1 101 01 28 21 32 2 0 0 0

2 3 5 0 ?A ?B ?C ?D ?E ?F 0 0 1 2 3 4 5 0 0 0 1

4 7 0 ?B ?C ?D ?E ?F ?G 0 0 6 7 8 9 10 11 12 0]

⇕

((header (dest-ip . [192 168 1 100])

(src-ip . [192 168 1 101])

(dest-port . 284)

(src-port . 5408))

(items . 2)

(item ((data . [1 2 3 4 5]) ((data . [6 7 8 9 10 11 12])

(id . "ABCDEF") (id . "BCDEFG")

(length . 5) (length . 7)

(opcode . 3) (opcode . 4)

(type . 2)) (type . 1))))

Stefan Monnier BinaryTools’22 5

Patient 0 of BinDat

Switch to lexical-binding broke weechat.el:

(defconst weechat--relay-message-spec

’((length u32)

(compression u8)

(id struct weechat--relay-str-spec)

(data vec

(eval (- (bindat-get-field struct ’length)

4 ;length

1 ;compression

(+ 4 (length (bindat-get-field

struct ’id ’val))))))))

Stefan Monnier BinaryTools’22 6

The DSL’s original syntax

SPEC ::= (ITEM...)

ITEM ::= ([FIELD] TYPE)

| ([FIELD] eval FORM) -- Eval FORM for side-effect only

| ([FIELD] fill LEN) -- Skip LEN bytes

| ([FIELD] align LEN) -- Skip to next multiple of LEN bytes

| ([FIELD] struct SPEC_NAME)

| ([FIELD] union ARG (TAG SPEC)... [(t SPEC)])

| ([FIELD] repeat COUNT ITEM...)

Stefan Monnier BinaryTools’22 7

The DSL’s original syntax (cont’d)

TYPE ::= (eval EXPR)

| u8 | byte -- Length 1

| u16 | word | short -- Length 2, network byte order

| u24 -- 3-byte value

| u32 | dword | long -- Length 4, network byte order

| u16r | u24r | u32r -- Little endian byte order.

| str LEN -- LEN byte string

| strz LEN -- LEN byte (zero-terminated) string

| vec LEN [TYPE] -- Vector of LEN items of TYPE (default: u8)

| ip -- 4 byte vector

| bits LEN -- List with bits set in LEN bytes.

Stefan Monnier BinaryTools’22 8

The DSL’s original syntax (cont’d)

FIELD ::= NAME | (eval EXPR)

LEN ::= ARG | <omitted> | nil

TAG ::= LISP_CONSTANT

| (eval EXPR) -- Return non-nil if tag match

current ARG in ‘union’.

ARG ::= (eval EXPR)

| INTEGER_CONSTANT

| ([NAME | INTEGER]...)

-- Field NAME or array index relative

to current structure spec.

Stefan Monnier BinaryTools’22 9

Problems I saw with BinDat

The spec imposes the use of eval: kitten hell

Var struct undocumented, tho indispensable!

Grammar is more complex than necessary

• 9 distinct nonterminals, with ambiguity

• Vector length can be INTEGER or (LABEL) or (eval EXP)

• Lots of places allow an (eval EXP), but not all!

No Edebugging

Not conveniently extensible

Stefan Monnier BinaryTools’22 10

Problem sample 1

(defun weechat--message-available-p ()

(and (> (buffer-size) 5)

(>= (buffer-size)

(bindat-get-field

(bindat-unpack ’((len u32))

(buffer-string))

’len))))

Useless construction of an alist

Stefan Monnier BinaryTools’22 11

Problem sample 2

(bindat-get-field

(bindat-unpack

‘((:val

,(cond ((= n 1) ’u8)

((= n 2) ’u16)

((= n 4) ’u32)

(t (error "websocket-get-bytes: ...")))))

s)

:val)

Fixed integer sizes (no (eval EXP) available there)

BinDat only used to pack&unpack integers!

Stefan Monnier BinaryTools’22 12

The new design

Make it all code!

Expose the field’s values as local variables

(defconst weechat--relay-message-spec

(bindat-type

(length uint 32)

(compression uint 8)

(id type weechat--relay-str-spec)

(data vec (- length

4 ;length

1 ;compression

(+ 4 (length (bindat-get-field

id ’val))))))))

Stefan Monnier BinaryTools’22 13

New grammar

TYPE ::= uint BITLEN - Big-endian unsigned integer

uintr BITLEN - Little-endian unsigned integer

str LEN - Byte string

strz [LEN] - Zero-terminated byte-string

bits LEN - Bit vector (LEN is counted in bytes)

fill LEN - Just a filler

align LEN - Fill up to the next multiple of LEN bytes

vec COUNT TYPE - COUNT repetitions of TYPE

type EXP - Indirection; EXP should return a Bindat type value

unit EXP - 0-width type holding the value returned by EXP

struct FIELDS... - A composite type

FIELDS... ::= (LABEL TYPE)...

Stefan Monnier BinaryTools’22 14

Advantages

Support for Edebug

struct, repeat, align not special cased any more

No need for union: can use cond or pcase instead!

No need to use a single-field struct for simple types

Flymake and the compiler can pester you

Kitten can safely play with your mouse!

Everything is code! Even TYPE!

(bindat-type vec (sqrt -1)

if (reino-del-revés)

(uintr 32) (uint 32))

Stefan Monnier BinaryTools’22 15

New features

Control over the representation of unpacked structs:

• :unpack-val EXP tells how to construct the unpacked value

from its fields’s unpacked values.

• :pack-val EXP tells how to extract the unpacked value of a

field from the unpacked value of the containing object.

• :pack-var VAR gives a name to the unpacked value of an

object, so :pack-val can refer to it.

Define new types with bindat-defmacro!

Stefan Monnier BinaryTools’22 16

Example, rookie

Timestamp values in OSC:

(defconst osc-timetag

(let ((hz (ash 1 32)))

(bindat-type :pack-var time

(ticks uint 64

:pack-val (+ (car (time-convert time hz))

(* osc-ntp-offset hz)))

:unpack-val (cons (- ticks (* osc-ntp-offset hz))

hz))))

bindat-pack/unpack convert to/from proper time values!

Admittedly, we’re back to single-field structs :-(

Stefan Monnier BinaryTools’22 17

Example, journeyman

(defconst bindat-test--LEB128

(bindat-type

letrec

((loop

(struct :pack-var n

(head u8

:pack-val (+ (logand n 127)

(if (> n 127) 128 0)))

(tail if (< head 128) (unit 0) loop

:pack-val (ash n -7))

:unpack-val (+ (logand head 127)

(ash tail 7)))))

loop))

Stefan Monnier BinaryTools’22 18

Conclusion

Simpler, more flexible, more powerful, better behaved.

Significantly faster as well, by the way.

—————————————————————————

Distinction between bindat-defmacro and bindat-type?

No bit-level control

Not anywhere near GNU Poke’s power and flexibility

Not used very much

Stefan Monnier BinaryTools’22 19

