BinDat:
Bin there, done Dat

Stefan Monnier
monnier@iro.umontreal.ca

Université de Montréal

Stefan Monnier ™ BinaryTools22™ 1

€» DIRO

Overview

What's BinDat anyway?

Problems encountered
e Lack of flexibility
e Repeated assaults on kitten
The new design
e Simpler and more flexible by exposing code as code
e Try and keep efficiency in mind

Examples

Stefan Monnier"BinaryTools22™ 2

€» DIRO

What’s BinDat anyway

An Emacs Lisp library. From the horse’s mouth:

Packing and unpacking of (binary) data structures.

The data formats used in binary files and network protocols are
often structured data which can be described by a C-style
structure such as the one shown below. Using the Bindat
package, decoding and encoding binary data formats like these
is made simple using a structure specification which closely
resembles the C style structure declarations.

Encoded (binary) data is stored in a unibyte string or vector,
while the decoded data is stored in an alist with (field

tefan Monnier " Binary Tools 3

value) pairs.

€*DIRO

More concretely

A description language:

struct data { (setqg data-bindat-spec

char opcode; " ((opcode us)

char 1d[7]; (1d strz 7)

int length; (length 132r)

char datal]; (data vec (length))
b (align 4)))

With 3 functions to make use of those descriptions:

(bindat-pack spec struct)
(bindat—1length spec struct)

(bindat—-unpack spec raw)

Stefan Monnier "BinaryTools’22™ 4

€» DIRO

Example use

192 168 1 100 192 168 1 101 01 28 21 32 2 0 0 O
2 350 72?A?B7?2C?DP2E ?F 00123450001
4 7 0 ?B ?2C ?D ?E ?F ?2G 0 0 6 7 8 9 10 11 12 0]

[

X
((header (dest-ip . [192 168 1 100])

(src—ip . [192 168 1 1017)
(dest—port . 284)
(src—port . 5408))

(items . 2)

(item ((data . [1 2 3 4 57]) ((data . [67 8 9 10 11 12])
(1 . "ABCDEF") (1 "BCDEFG")
(length . D) (length . 7)
(opcode . 3) (opcode . 4)
(type . 2)) (type . 1))))

€» DIRO

Patient 0 of BinDat

Switchto lexical—-binding broke weechat .el:

(defconst weechat—-—-relay—-message—-spec
" ((length u32)
(compression u8)
(1d struct weechat-—-relay—-str—-spec)
(data wvec
(eval (- (bindat—-get—-field struct ’length)
4 ; Llength
1 ; compression
(+ 4 (length (bindat—-get-field
struct 1d ’'wval))))

Stefan Monnier "BinaryTools22™ 6

€» DIRO

The DSL’s original syntax

TYPE)

([]
| ([FIELD] eval FORM) —— Eval FORM for side
| ([FIELD] f£ill LEN) —— Skip LEN bytes
| ([FIELD] align LEN) —— Skip to next multi
| ([FIELD] struct SPEC_NAME)
| ([FIELD] union ARG (TAG SPEC)... [(t SPEC)])
| ([FIELD] repeat COUNT ITEM...)

Stefan Monnier " BinaryTools22™, 7

€» DIRO

TYPE

€» DIRO

(eval EXPR)

us8 | byte
ulo | word |
uzé

u3lz | dword |
ulor | uZdr |
str LEN

strz LEN

vec LEN [TYPE]
ip

bits LEN

The DSL’s original syntax (contd)

short

long ——

u3lZlr

Length 1
Length 2, network byt
3—-byte wvalue

Length 4, network byt
Little endian byte or
LEN byte string

LEN byte (zero-termin
Vector of LEN items
4 byte vector

List with bits set

Stefan Monnier ™ "BinaryTools’22™ 8

The DSL’s original syntax (contd)

FIELD ::= NAME | (eval EXPR)
LEN ::= ARG | <omitted> | nil
TAG ::= LISP CONSTANT
| (eval EXPR) —— Return non—-nil 1f tag match

current ARG in ‘union’.

ARG ::= (eval EXPR)
| INTEGER _CONSTANT
| ([NAME | INTEGER]...)
—— Field NAME or array 1ndex relative

to current structure spec.

Stefan Monnier "BinaryTools’22™ 9

€» DIRO

Problems | saw with BinDat

The spec imposes the use of eval: kitten hell
Var st ruct undocumented, tho indispensable!

Grammar is more complex than necessary
e 9 distinct nonterminals, with ambiguity
e \ector length can be INTEGER or (LABEL) or (eval EXP)
e Lots of places allow an (eval EXP), butnot all!

No Edebugging

Not conveniently extensible

(‘ DIRO tefan Monnier™ " BinaryTools’22 10

Problem sample 1

(defun weechat—-—message—available-p ()
(and (> (buffer—-size) 5)
(>= (buffer-size)
(bindat—get—-field
(bindat—unpack ’ ((len u32))
(buffer-string))
"len))))

Useless construction of an alist

a» DIRO Stefan Monnier " BinaryTools22™, 11

Problem sample 2

(bindat—-get-field
(bindat—unpack

Y ((:val
, (cond ((= n 1) "u8)
((=n 2) "ulob)
((=n 4) "u3l2)
(t (error "websocket—get-bytes: ...")))))
S)
:val)

Fixed integer sizes (no (eval EXP) available there)

BinDat only used to pack&unpack integers!

a» DIRO Stefan Monnier " BinaryTools’22™ 12

The new design

Make it all code!
Expose the field’s values as local variables

(defconst weechat—-—-relay—-message—-spec
(bindat-type
(length uint 32)
compression uilnt 8)

(
(1d type weechat—-—-relay-str—-spec)
(

data vec (- length
4 ; Llength
1 ; compression
(+ 4 (length (bindat—-get-field

id "val))))))))

(‘ DIRO Stefan Monnier " BinaryTools’22™ 13

New grammar

uint BITLEN — Big—-endian unsigned 1n

uintr BITLEN — Little—-endian unsigned
str LEN — Byte string
strz [LEN] — Zero—-terminated byte-s
bits LEN — Bit vector (LEN 1is cou
fill LEN — Just a filler
align LEN — F111 up to the next mu
vec COUNT TYPE — COUNT repetitions of T
type EXP — Indirection; EXP shoul
unit EXP — O-width type holding
struct FIELDS... - A composite type
FIELDS... ::= (LABEL TYPE) ...

a» DIRO Stefan Monnier " BinaryTools22™, 14

Advantages

Support for Edebug
struct, repeat, align not special cased any more
No need for union: can use cond or pcase instead!
No need to use a single-field struct for simple types
Flymake and the compiler can pester you

Kitten can safely play with your mouse!

Everything is code! Even TYPE!

(bindat-type vec (sqgrt —-1)
if (reino—-del-revés)
(uintr 32) (ulint 32))

(‘ DIRO Stefan Monnier " BinaryTools’22™ 15

New features

Control over the representation of unpacked st ructs:

e :unpack—-val EXP tells how to construct the unpacked value

from its fields’s unpacked values.

e :pack-val EXP tells how to extract the unpacked value of a

field from the unpacked value of the containing object.

® :pack—-var VAR gives a name to the unpacked value of an

object, so : pack—val can refer to it.

Define new types with b1ndat—-defmacro!

(‘ DIRO tefan Monnier ™ BinaryTools22, 16

Example, rookie

Timestamp values in OSC:

(defconst osc-timetag
(let ((hz (ash 1 32)))
(bindat-type :pack-var time
(ticks uint 64
:pack-val (+ (car (time-convert time hz))
(x osc—ntp—-offset hz)))

:unpack-val (cons (- ticks (x osc—ntp-offset hz))

hz))))
bindat-pack/unpack convert to/from proper time values!

Admittedly, we're back to single-field structs :-(

a» DIRO Stefan Monnier " BinaryTools22™, 17

Example, journeyman

(defconst bindat-test——-LEB128
(bindat—-type
letrec
((Loop
(struct :pack-var n
(head u8
:pack-val (+ (logand n 127)
(1f (> n 127) 128 0)))
(tail 1f (< head 128) (unit 0) loop
:pack-val (ash n -=7))
:unpack-val (+ (logand head 127)
(ash tail 7)))))

loop))

(‘ DIRO Stefan Monnier " BinaryTools22™, 18

Conclusion

Simpler, more flexible, more powerful, better behaved.

Significantly faster as well, by the way.

Distinction between bindat—-defmacro and bindat-type?
No bit-level control
Not anywhere near GNU Poke’s power and flexibility

Not used very much

(‘ DIRO Stefan Monnier " BinaryTools22™, 19

