
Binary di�ng and patching

Proposal for a structured binary di� format and an
implementation in GNU poke

Jose E. Marchesi
jemarch@gnu.org

Binary Tools Summit 2022

Contents

1 Existing approaches for binary di�s

2 Structured binary di� format

3 Implementation in GNU poke

cmp

• Option -l|�verbose

-l, --verbose

output byte numbers and differing byte values

• cmp -l foo.o bar.o

41 10 350

42 2 4

61 13 23

63 12 22

76 0 112

77 107 0

78 103 0

79 103 0

80 72 4

...

• Good to be used programmatically.

• Zero readability.

• ALL di�erences.

xxd + di�

• diff -u <(xxd foo.o) <(xxd bar.o)

--- /dev/fd/63 2022 -03 -05 10:58:49.994200759 +0100
+++ /dev/fd/62 2022 -03 -05 10:58:49.994200759 +0100
@@ -1,77 +1 ,155 @@
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF
00000010: 0100 3e00 0100 0000 0000 0000 0000 0000 .. >.............

-00000020: 0000 0000 0000 0000 0802 0000 0000 0000
-00000030: 0000 0000 4000 0000 0000 4000 0b00 0a00@.....@.....
-00000040: 5548 89e5 b800 0000 005d c300 4743 433a UH].. GCC:
-00000050: 2028 4465 6269 616e 2036 2e33 2e30 2d31 (Debian 6.3.0 -1
...
+00000020: 0000 0000 0000 0000 e804 0000 0000 0000
+00000030: 0000 0000 4000 0000 0000 4000 1300 1200@.....@.....
+00000040: 5548 89e5 b800 0000 005d c34a 0000 0004 UH].J....
+00000050: 0000 0000 0008 0100 0000 000c 0000 0000
+00000060: 0000 0000 0000 0000 0b00 0000 0000 0000
+00000070: 0000 0000 0266 6f6f 0001 0146 0000 0000 foo...F....
+00000080: 0000 0000 0000 000b 0000 0000 0000 0001
...

• Bad to be used programmatically.

• Not that good readability (locality).

• ALL di�erences.

radi�2

• radiff2 foo.o bar.o

...

0x000000c2 0000 => 0324 0x000000c2

0x000000c5 000000000000 => 0b0b3e0b0308 0x000000c5

0x000000ce 00 => 2c 0x000000ce

0x000000d2 00 => 02 0x000000d2

0x000000d4 04 => 00 0x000000d4

0x000000d6 f1ff00 => 000008 0x000000d6

0x000000e6 00 => 0b 0x000000e6

• radiff2 -r foo.o bar.o

wx 0324 @ 0x000000c2

wx 0b0b3e0b0308 @ 0x000000c5

wx 2c @ 0x000000ce

wx 02 @ 0x000000d2

wx 00 @ 0x000000d4

wx 000008 @ 0x000000d6

wx 0b @ 0x000000e6

• Can be restricted to particular functions.

• Oriented to disassembling and radare2.

dhex di�-mode, vbindi� and similar...

raw bytes dump di�erences side-to-side

A question

How useful is all this?

Structured binary di� format �sbdi��

@@ [AOFF+AS],[BOFF+BS] @@

[+-]BYTES[NAME][VALUE]

...

• AOFF and AS are the the A-thunk o�set and size in bytes.
Ommitted if no - lines in the thunk.

• BOFF and BS are the the B-thunk o�set and size in bytes.
Ommitted if no + lines in the thunk.

• BYTES are hexadecimal digits denoting bytes.

• NAME is an optional symbolic name

• VALUE is an optional string denoting semantics of the
changed portion.

• Additional white characters are ignored.

Support in poke: sdi� command

• In the master branch of poke.

• Synopsis

sdiff :a VAL :b VAL [: values BOOL] [: group_by OFFSET]

• Arguments

:a (any)

First mapped value whose bytes are compared.

:b (any)

Second mapped value whose bytes are compared.

:values (bool)

Whether to include interpreted values in the output.

:group_by (int)

How are bytes grouped together in the output.

Example: �change� thunks

type Elf64_Ehdr =
struct
{

Elf_Ident e_ident;
...
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf_Word e_flags;
offset <Elf_Half ,B> e_ehsize;
offset <Elf_Half ,B> e_phentsize;
Elf_Half e_phnum;
offset <Elf_Half ,B> e_shentsize;
Elf_Half e_shnum;
Elf_Half e_shstrndx : e_shnum == 0 || e_shstrndx < e_shnum;

};

(poke) sdiff :a elf1.ehdr :b elf2.ehdr

@@ 0x28+8,0x28+8 @@

-08 02 00 00 00 00 00 00 a.e_shoff 520UL#B

+e8 04 00 00 00 00 00 00 b.e_shoff 1256UL#B

@@ 0x3c+4,0x3c+4 @@

-0b 00 a.e_shnum 11UH

+13 00 b.e_shnum 19UH

-0a 00 a.e_shstrndx 10UH

+12 00 b.e_shstrndx 18UH

Example: �del� thunks

type Foo =

struct

{

byte sz;

byte b;

byte[sz] data;

};

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

(poke) sdiff :a (Foo @ 1#B) :b (Foo @ 2#B)

@@ 0x01+1,0x02+1 @@

-04 a.sz

+00 b.sz

@@ 0x03+4, @@

-00 a.data [0]

-00 a.data [1]

-00 a.data [2]

-00 a.data [3]

Example: �add� thunks

type Foo =

struct

{

byte sz;

byte b;

byte[sz] data;

};

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

(poke) sdiff :a (Foo @ 2#B) :b (Foo @ 1#B)

@@ 0x02+1,0x01+1 @@

-00 a.sz

+04 b.sz

@@ ,0x03+4 @@

+00 b.data [0]

+00 b.data [1]

+00 b.data [2]

+00 b.data [3]

Example: combined thunks

type Foo =

struct

{

byte sz;

byte[sz] data;

};

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0000 0000 0000 0000

(poke) sdiff :a (Foo @ 2#B) :b (Foo @ 1#B)

@@ 0x02+1,0x01+5 @@

-00 a.sz

+04 b.sz

+00 b.data [0]

+00 b.data [1]

+00 b.data [2]

+00 b.data [3]

Example: grouping bytes

White spaces can be interleaved in BYTES and are ignored.

(poke) sdiff :a elf1.shdr [1] :b elf2.shdr [2] :group_by 2#B

@@ 0x48+4,0x68+4 @@

-1b00 0000 a.sh_name 27U#B

+2100 0000 b.sh_name 33U#B

@@ 0x50+8,0x70+8 @@

-0600 0000 0000 0000 a.sh_flags.flags 6UL

+0300 0000 0000 0000 b.sh_flags.flags 3UL

@@ 0x60+16,0x80 +16 @@

-4000 0000 0000 0000 a.sh_offset 64UL#B

+4b00 0000 0000 0000 b.sh_offset 75UL#B

-0b00 0000 0000 0000 a.sh_size 11UL#B

+0000 0000 0000 0000 b.sh_size 0UL#B

Example: no values

White spaces can be interleaved in BYTES and are ignored.

(poke) sdiff :a elf1.shdr [1] :b elf2.shdr [2] :values 0

@@ 0x48+4,0x68+4 @@

-1b 00 00 00 a.sh_name

+21 00 00 00 b.sh_name

@@ 0x50+8,0x70+8 @@

-06 00 00 00 00 00 00 00 a.sh_flags.flags

+03 00 00 00 00 00 00 00 b.sh_flags.flags

@@ 0x60+16,0x80 +16 @@

-40 00 00 00 00 00 00 00 a.sh_offset

+4b 00 00 00 00 00 00 00 b.sh_offset

-0b 00 00 00 00 00 00 00 a.sh_size

+00 00 00 00 00 00 00 00 b.sh_size

Example: absent Fields

type Foo =

struct

{

byte foo;

int bar if foo != 0;

};

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0x000 0000 0000 0000

(poke) sdiff :a (Foo @ 0#B) :b (Foo @ 1#B)

@@ 0x00+1,0x01+5 @@

-00 a.foo

+04 b.foo

+00 00 00 00 b.bar 0

(poke) sdiff :a (Foo @ 1#B) :b (Foo @ 0#B)

@@ 0x01+5,0x00+1 @@

-04 a.foo

+00 b.foo

-00 00 00 00 a.bar 0

Example: unions

var x = 0;

type Foo =

union

{

byte foo;

int bar : x != 0;

}

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0x000 0000 0000 0000

(poke) sdiff :a (Foo @ 0#B) :b (Foo @ 1#B)

@@ 0x00+1,0x01+1 @@

-00 a.foo

+04 b.foo

(poke) x = 1

(poke) sdiff :a (Foo @ 0#B) :b (Foo @ 1#B)

@@ 0x00+4,0x01+4 @@

-00 04 00 00 a.bar 1024

+04 00 00 00 b.bar 4

Example: a string table

(poke) sdiff :a strtab1 :b strtab2
@@ 0xdc+40,0x6c +119 @@
-2e 63 6f 6d 6d 65 6e 74 00 a[7] ". comment"
+2e 72 65 6c 61 2e 64 65 62 75 67 5f 69 6e 66 6f 00 b[7] ".rela.debug_info"
-2e 6e 6f 74 65 2e 47 4e 55 2d 73 74 61 63 6b 00 a[8] ".note.GNU -stack"
+2e 64 65 62 75 67 5f 61 62 62 72 65 76 00 b[8] ". debug_abbrev"
-2e 72 65 6c 61 2e 65 68 5f 66 72 61 6d 65 00 a[9] ".rela.eh_frame"
+2e 72 65 6c 61 2e 64 65 62 75 67 5f 61 72 61 6e 67 65 73 00 b[9] ".rela.debug_aranges"
+2e 72 65 6c 61 2e 64 65 62 75 67 5f 6c 69 6e 65 00 b[10] ".rela.debug_line"
+2e 64 65 62 75 67 5f 73 74 72 00 b[11] ". debug_str"
+2e 63 6f 6d 6d 65 6e 74 00 b[12] ". comment"
+2e 6e 6f 74 65 2e 47 4e 55 2d 73 74 61 63 6b 00 b[13] ".note.GNU -stack"
+2e 72 65 6c 61 2e 65 68 5f 66 72 61 6d 65 00 b[14] ".rela.eh_frame"

Open questions

• The proposed format is byte-oriented. Should we change
this?

• Alternative 1: support bytes and nibbles
• Alternative 2: support bytes and bits
• Alternative 3: support arbitrary units
• Other approaches?

• Context support? (based on structure and/or bytes?)

• Where to discuss stu� like this? This must not be poke
speci�c. Mailing list in binary-tools.net?

sdi� implementation

• Part of the poke application (pk-diff.pk).

• Implemented in around 300 lines of Poke.

• Will split into application-independent pickle diff.pk.

