Binary diffing and patching
Proposal for a structured binary diff format and an
implementation in GNU poke

Jose E. Marchesi
jemarch@gnu.org

Binary Tools Summit 2022

Contents

1 Existing approaches for binary diffs
2 Structured binary diff format
3 Implementation in GNU poke

cmp

e Option -1|-verbose

-1, --verbose
output byte numbers and differing byte values

e cmp -1 foo.o bar.o

41 10 350
42 2 4
61 13 23
63 12 22
76 0 112
77 107 0
78 103 0
79 103 0
80 72 4

e Good to be used programmatically.
e Zero readability.
o ALL differences.

xxd + diff

diff -u <(xxd foo.0) <(xxd bar.o)

--- /dev/£d/63
+++ /dev/fd/62
ee -1,77 +1,155

00000000:
00000010
-00000020:
-00000030:
-00000040:
-00000050:

+00000020:
+00000030:
+00000040:
+00000050:
+00000060:
+00000070:
+00000080:

7£45
0100

2022-03-05 10:58:49.
2022-03-05 10:58:49.

Qe
4c46

0201

0100

0000

994200759
994200759

0000

Bad to be used programmatically.
Not that good readability (locality).
ALL differences.

0000

+0100
+0100

0000
0000
0000
0a00
433a
2d31

0000
1200
0004
0000
0000
0000
0001

radiff2

e radiff2 foo.o bar.o

0x000000c2 0000 => 0324 0x000000c2

0x000000c5 000000000000 => O0bOb3e0b0308 0x000000ch
0x000000ce 00 => 2c¢ 0x000000ce

0x000000d2 00 => 02 0x00000042

0x000000d4 04 => 00 0x000000d4

0x000000d6 £1£f£f00 => 000008 0x000000d6

0x000000e6 00 => 0b 0x000000e6

e radiff2 -r foo.o bar.o

WX
WX
WX
WX
WX
WX
WX

0324 @ 0x000000c2
0b0b3e0b0308 @ 0x000000ch
2¢c @ 0x000000ce

02 @ 0x000000d2

00 @ 0x000000d4

000008 @ 0x000000d6

Ob @ 0x000000e6

e Can be restricted to particular functions.

e Oriented to disassembling and radare2.

dhex diff-mode, vbindiff and similar...

raw bytes dump differences side-to-side
®nNo Terminal — dhex — 8024

A question

How useful is all this?

Structured binary diff format “sbdiff”

@0 [AQFF+AS],[BOFF+BS] 0@
[+-1BYTES[NAME][VALUE]

e AOFF and AS are the the A-thunk offset and size in bytes.
Ommitted if no - lines in the thunk.

e BOFF and BS are the the B-thunk offset and size in bytes.
Ommitted if no + lines in the thunk.

e BYTES are hexadecimal digits denoting bytes.
e NAME is an optional symbolic name

e VALUE is an optional string denoting semantics of the
changed portion.

o Additional white characters are ignored.

Support in poke: sdiff command

e |n the master branch of poke.
e Synopsis

sdiff :a VAL :b VAL [:values BOOL] [:group_by OFFSET]

e Arguments

ra (any)
First mapped value whose bytes are compared.

:b (any)
Second mapped value whose bytes are compared.

:values (bool)
Whether to include interpreted values in the output.

:group_by (int)
How are bytes grouped together in the output.

Example: “change” thunks

type E1f64 _Ehdr =
struct

Elf_Ident e_ident;

E1f64_0ff e_phoff;

E1f64_0ff e_shoff;

El1f_Word e_flags;

offset <E1f_Half ,B> e_ehsize;

offset <ELf_Half ,B> e_phentsize;

El1f_Half e_phnum;

offset <ELf_Half ,B> e_shentsize;

E1f_Half e_shnum;

E1f_Half e_shstrndx : e_shnum == 0 || e_shstrndx < e_shnum;

};

(poke) sdiff :a elfl.ehdr :b elf2.ehdr
0@ 0x28+8,0x28+8 @@

-08 02 00 00 00 00 00 OO a.e_shoff 520UL#B
+e8 04 00 00 00 00 00 OO b.e_shoff 1256 UL#B
Q0@ 0x3c+4,0x3c+4 @@

-0b 00 a.e_shnum 11UH

+13 00 b.e_shnum 19UH

-0a 00 a.e_shstrndx 10UH

+12 00 b.e_shstrndx 18UH

Example: “del” thunks

type Foo =

struct

{
byte sz;
byte b;
byte[sz] data;
¥

(poke) dump :size 32#B :ascii 0

765643210 0011 2233 4455 6677 8899 aabb ccdd eeff
00000000: 0004 0000 0000 0000 0000 0000 0000 0000
00000010: 0000 0000 0000 0000 0000 0000 0000 0000
(poke) sdiff :a (Foo @ 1#B) :b (Foo @ 2#B)

@@ 0x01+1,0x02+1 @@

-04 a.sz

+00 b.sz

@@ 0x03+4, @@
-00 a.datal[0]
-00 a.datal[1]
-00 a.datal[2]
-00 a.datal[3]

Example: “add” thunks

type Foo =

struct

{
byte sz;
byte b;
byte[sz] data;
¥

(poke) dump :size 32#B :ascii 0

765643210 0011 2233 4455 6677 8899 aabb ccdd eeff
00000000: 0004 0000 0000 0000 0000 0000 0000 0000
00000010: 0000 0000 0000 0000 0000 0000 0000 0000
(poke) sdiff :a (Foo @ 2#B) :b (Foo @ 1#B)

@@ 0x02+1,0x01+1 @@

-00 a.sz

+04 b.sz

@@ ,0x03+4 @@
+00 b.datal[0]
+00 b.data[1]
+00 b.data[2]
+00 b.data[3]

Example: combined thunks

type Foo =
struct
{
byte sz;
byte[sz] data;
}

(poke) dump :size 32#B :ascii 0

765643210 0011 2233 4455 6677 8899 aabb ccdd eeff
00000000: 0004 0000 0000 0000 0000 0000 0000 0000
00000010: 0000 0000 0000 0000 0000 0000 0000 0000
(poke) sdiff :a (Foo @ 2#B) :b (Foo @ 1#B)

@@ 0x02+1,0x01+5 @@

-00 a.sz
+04 b.sz
+00 b.datal[0]
+00 b.datal[1]
+00 b.data[2]
+00 b.data[3]

Example: grouping bytes

White spaces can be interleaved in BYTES and are ignored.

(poke) sdiff :a elfl.shdr[1] :b elf2.shdr[2] :group_by 2#B
@@ 0x48+4,0x68+4 Q@

-1b00 0000 a.sh_name 27U#B

+2100 0000 b.sh_name 33U#B

0@ 0x50+8,0x70+8 @@

-0600 0000 0000 0000 a.sh_flags.flags 6UL
+0300 0000 0000 0000 b.sh_flags.flags 3UL

@@ 0x60+16,0x80+16 @@

-4000 0000 0000 0000 a.sh_offset 64UL#B
+4b00 0000 0000 0000 b.sh_offset 75UL#B
-0b00 0000 0000 0000 a.sh_size 11UL#B
+0000 0000 0000 0000 b.sh_size OUL#B

Example: no values

White spaces can be interleaved in BYTES and are ignored.

(poke) sdiff :a elfl.shdr[1]
Q@ 0x48+4,0x68+4 @@

-1b 00 00 00 a.sh_name
+21 00 00 00 b.sh_name
@@ 0x50+8,0x70+8 @@

-06 00 00 00 00 00 00 0O
+03 00 00 00 00 00 00 0O
@@ 0x60+16,0x80+16 @@

-40 00 00 00 00 00 00 OO
+4b 00 00 00 00 00 00 00
-0b 00 00 00 00 00 00 0O
+00 00 00 00 00 00 00 0O

o

o T e

:b elf2.shdr[2] :values O

.sh_flags.flags
.sh_flags.flags

.sh_offset
.sh_offset
.sh_size
.sh_size

Example: absent Fields

type Foo =
struct
{
byte foo;
int bar if foo != 0;

};

(poke) dump :size 32#B :ascii 0

76543210 0011 2233 4455 6677 8899 aabb ccdd eeff

00000000: 0004 0000 0000 0000 0000 0000 0000 0000

00000010: 0000 0000 0000 0000 0x000 0000 0000 0000
(poke) sdiff :a (Foo @ O#B) :b (Foo @ 1#B)

@@ 0x00+1,0x01+5 @@

-00 a.foo
+04 b.foo
+00 00 00 00 b.bar 0

(poke) sdiff :a (Foo @ 1#B) :b (Foo @ O0#B)
@@ 0x01+5,0x00+1 @@

-04 a.foo

+00 b.foo

-00 00 00 0O a.bar 0

Example: unions

var x = 0;
type Foo =
union
{
byte foo;
int bar : x != 0;

}

(poke) dump :size 32#B :ascii 0

765643210 0011 2233 4455 6677 8899 aabb ccdd eeff
00000000: 0004 0000 0000 0000 0000 0000 0000 0000
00000010: 0000 0000 0000 0000 0x000 0000 0000 0000
(poke) sdiff :a (Foo @ O#B) :b (Foo @ 1#B)

@@ 0x00+1,0x01+1 @@

-00 a.foo

+04 b.foo

(poke) x = 1

(poke) sdiff :a (Foo @ O#B) :b (Foo @ 1#B)

@@ 0x00+4,0x01+4 Q@

-00 04 00 00 a.bar 1024

+04 00 00 00 b.bar 4

(poke)

@@ Oxdc+40,0x6c+119 @@

-2e
+2e
-2e
+2e
-2e
+2e
+2e
+2e
+2e
+2e
+2e

63
72

sdiff

6d
6¢c
74
62
6¢c

ta strtabl

6d

65
2e
2e
67
2e

74

:b strtab2

74
61

Example: a string table

61
6d

63
65

66
6b

00

6e

6b
00

6f
00

6e
65

00

00

67 65 73 00
00

al7]
b [7]
al[8]
b [8]
al[9]
b [9]
b[10]
b[11]
b[12]
b[13]
b[14]

. comment"
.rela.debug_inf
-note.GNU-stack
.debug_abbrev"
.rela.eh_frame"
.rela.debug_ara
.rela.debug_lin
.debug_str"
.comment"
.note.GNU-stack
.rela.eh_frame"

Open questions

e The proposed format is byte-oriented. Should we change
this?
e Alternative 1: support bytes and nibbles
o Alternative 2: support bytes and bits
o Alternative 3: support arbitrary units
o Other approaches?

e Context support? (based on structure and/or bytes?)

e Where to discuss stuff like this? This must not be poke
specific. Mailing list in binary-tools.net?

sdiff implementation

e Part of the poke application (pk-diff.pk).
e Implemented in around 300 lines of Poke.

o Will split into application-independent pickle diff.pk.

