GNU Jitter and the illusion of simplicity
or
Copying, patching and combining
compiler-generated code in executable memory

The Anarchist’s guide to GCC

or

The fun of playing with fire

Luca Saiu
http://ageinghacker.net
positron@gnu.org

GNU Project
Binary T00Is Summit 2022
About these slides: Copyright © Luca Saiu 2022, released under the CC BY-SA 4.0 license.

The master copy is at http://ageinghacker.net/talks/
Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

http://ageinghacker.net
http://ageinghacker.net/talks/

Jitter Links for future viewers Introduction Demo How it works

Hello future viewers

The following resources are for those watching a recording of this
presentation who want to occasionally pause the video and follow
along:

@ Source tarball for Structured, including GNU Jitter as a sub-package
http://ageinghacker.net/bts2022/structured-simple-1.0.
tar.gz (recommended)

@ Source tarball for GNU Jitter, including Structured as a sub-package
(yes, this is not a mistake), requiring bootstrap with the Autotools
to compile Structured as in this demo:
http://ageinghacker.net/bts2022/jitter-0.9.285.tar.gz

@ Git source repository http://git.ageinghacker.net/jitter,
requiring bootstrap with the Autotoools plus Flex, GNU Bison,
GNU Texinfo and so on. Use the tag binary-tools-summit-2022 ~ 5
to get today's version. @

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

http://ageinghacker.net/bts2022/structured-simple-1.0.tar.gz
http://ageinghacker.net/bts2022/structured-simple-1.0.tar.gz
http://ageinghacker.net/bts2022/jitter-0.9.285.tar.gz
http://git.ageinghacker.net/jitter

Jitter Links for future viewers Introduction Demo How it works

History and rationale

o Late 2016: | wanted to make GNU epsilon faster.
Disappointed by threaded-code VMs;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

History and rationale

o Late 2016: | wanted to make GNU epsilon faster.
Disappointed by threaded-code VMs;

@ 2017: Read many scientific papers about making
threaded-code VMs faster, mostly from Anton Ertl and the
other GForth people (I recommend [Ertl and Gregg, 2004]);
added my own ideas, generalised. Started Jitter.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

History and rationale

o Late 2016: | wanted to make GNU epsilon faster.
Disappointed by threaded-code VMs;

@ 2017: Read many scientific papers about making
threaded-code VMs faster, mostly from Anton Ertl and the
other GForth people (I recommend [Ertl and Gregg, 2004]);
added my own ideas, generalised. Started Jitter.

@ Presented Jitter at GHM 2017; see the Talks page
[Saiu, 2017] on my web site;

http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Luca Saiu

Jitter Links for future viewers Introduction Demo How it works

History and rationale

o Late 2016: | wanted to make GNU epsilon faster.
Disappointed by threaded-code VMs;

@ 2017: Read many scientific papers about making
threaded-code VMs faster, mostly from Anton Ertl and the
other GForth people (I recommend [Ertl and Gregg, 2004]);
added my own ideas, generalised. Started Jitter.

@ Presented Jitter at GHM 2017; see the Talks page
[Saiu, 2017] on my web site;
o Jitter used by GNU poke for its Poke Virtual Machine;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

History and rationale

o Late 2016: | wanted to make GNU epsilon faster.
Disappointed by threaded-code VMs;

@ 2017: Read many scientific papers about making
threaded-code VMs faster, mostly from Anton Ertl and the
other GForth people (I recommend [Ertl and Gregg, 2004]);
added my own ideas, generalised. Started Jitter.

@ Presented Jitter at GHM 2017; see the Talks page
[Saiu, 2017] on my web site;

o Jitter used by GNU poke for its Poke Virtual Machine;

@ December 2021: Jitter accepted as part of GNU.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Demo: the Structured programming language

The Structured programming language
@ Distributed along with Jitter as an example;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Demo: the Structured programming language

The Structured programming language

@ Distributed along with Jitter as an example;
@ Boring, unimaginative:

e Pascal-style imperative language;

e integer variables;

e conditionals, loops;

e recursive subprograms.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Demo: the Structured programming language

The Structured programming language
@ Distributed along with Jitter as an example;
@ Boring, unimaginative:
e Pascal-style imperative language;
e integer variables;
e conditionals, loops;
e recursive subprograms.
@ Simple, clean implementation
e Two VM code generators:

@ stack-based code;
@ register-based code
(choose with a command-line-option);
e minimal build system example including Jitter, with
Autoconf / Automake;

GNU lJitter and GCC: the fun of playing with fire BTS 2022

Luca Saiu http://ageinghacker.net

Jitter Links for future viewers Introduction Demo How it works

Demo: the Structured programming language

The Structured programming language

@ Distributed along with Jitter as an example;
@ Boring, unimaginative:
e Pascal-style imperative language;
e integer variables;
e conditionals, loops;
e recursive subprograms.
@ Simple, clean implementation
e Two VM code generators:
@ stack-based code;
@ register-based code
(choose with a command-line-option);
e minimal build system example including Jitter, with
Autoconf / Automake;

o Fast with little effort

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Demo: the Structured programming language

The Structured programming language

@ Distributed along with Jitter as an example;
@ Boring, unimaginative:
e Pascal-style imperative language;
e integer variables;
e conditionals, loops;
e recursive subprograms.
@ Simple, clean implementation
e Two VM code generators:
@ stack-based code;
@ register-based code
(choose with a command-line-option);
e minimal build system example including Jitter, with
Autoconf / Automake;

o Fast with little effort

Demo

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Jitter contains some assembly

We are currently supporting ELF and COFF configurations using
GCC on:

o aarch64-unknown-linux-gnu o poverpe-unknown-linux-gnu
b alphaev4-unknown-linux-gnu o riscv32-unknown-linux-gnu
o alphaev67-unknown-linux-gnu o riscv64-unknown-linux-gon
@ arm-beaglebone-linux-gnueabihf @ 5390x-ibm-linux-gnu
o arm—re_plicant—linux—androi.deabi o sparc64-unknown-1inux-gnu

(Android 6, tested on my Replicant. More .

recent versions probably work as well) @ sparc-unknown-linux-gnu
@ u68k-unknown-linux-gnu @ x86_64-unknown-haiku (64-bit Haiku)
o mipsel-unknown-linux-gnu] x86_64-unknown-1linux-gnu
o mips-unknown-linux-gnu o x86_64-w64-mingw32

o x86_64-unknown-*bsd*

o powerpcle-unknown-linux-gnu

Not all of these configuration are supported as efficiently as you
saw, yet.

More will come.

http://ageinghacker.net | GNU Jitter and GCi he fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Simple dispatches and why we are ignoring them

As an alternative to what you saw in the demo the same VMs can
also run as interpreters instead of JITs.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Simple dispatches and why we are ignoring them

As an alternative to what you saw in the demo the same VMs can
also run as interpreters instead of JITs.

One of two techniques:

@ switch dispatch

o direct-threading dispatch

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Simple dispatches and why we are ignoring them

As an alternative to what you saw in the demo the same VMs can
also run as interpreters instead of JITs.

One of two techniques:
@ switch dispatch
o direct-threading dispatch

These are slower portability fallbacks, with identical semantics;
[Saiu, 2017] shows how they work. extremely portable.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter Links for future viewers Introduction Demo How it works

Simple dispatches and why we are ignoring them

As an alternative to what you saw in the demo the same VMs can
also run as interpreters instead of JITs.

One of two techniques:
@ switch dispatch
o direct-threading dispatch

These are slower portability fallbacks, with identical semantics;
[Saiu, 2017] shows how they work. extremely portable.

These alternatives exist but | will ignore them today. Today we
deal with GNU C with GCC on a supported architecture with a
supported binary format. e

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Jitter

Links for future viewers Introduction Demo How it works

Simple dispatches and why we are ignoring them

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

As an alternative to what you saw in the demo the same VMs can
also run as interpreters instead of JITs.

One of two techniques:
@ switch dispatch
o direct-threading dispatch

These are slower portability fallbacks, with identical semantics;
[Saiu, 2017] shows how they work. extremely portable.

[If I have time: minimal-threading dispatch also exists as a middle-ground compromise between interpreter and JIT]

These alternatives exist but | will ignore them today. Today we
deal with GNU C with GCC on a supported architecture with a
supported binary format. o

Low-level view Specialisation, replication Materialisation Patch-ins

Specialisation

Turn a generic VM instruction definition. . .

add VM instruction: Jitter specification

instruction add (?R, 7?Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Specialisation

Turn a generic VM instruction definition. . .

add VM instruction: Jitter specification

instruction add (?R, 7?Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

...into every possible instantiation of register and immediate.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Specialisation

Turn a generic VM instruction definition. . .

add VM instruction: Jitter specification

instruction add (?R, 7?Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

...into every possible instantiation of register and immediate.
One example:

add specialisation ' /n1/r4: Generated C, macroexpanded, simplified

add_r4_nl_r4_begin:
_local_state.r4 = _local_state.r4 + 1;
add_r4_nl_r4_end:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Specialisation

Turn a generic VM instruction definition. . .

add VM instruction: Jitter specification

instruction add (?R, 7?Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

...into every possible instantiation of register and immediate.
One example:

add specialisation ' /n1/r4: Generated C, macroexpanded, simplified

add_r4_nl_r4_begin:
_local_state.r4 = _local_state.r4 + 1;
add_r4_nl_r4_end:

add specialisation r4/n1/r4, compiled

add_r4_nl_r4_begin:
addq $1, Yrdx # Here Jrdx 4s both input and output
add_r4_nl_r4_end:

v

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Replication

(The same block of hardware instructions shown above, delimited
by two labels:)

add specialisation r4/n1/r4, compiled

add_r4_nl_r4_begin:
addq $1, Yrdx
add_r4_nl_r4_end:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Replication

(The same block of hardware instructions shown above, delimited
by two labels:)

add specialisation r4/n1/r4, compiled

add_r4_nl_r4_begin:
addq $1, Yrdx
add_r4_nl_r4_end:

Easy: copy memory between the two labels into executable
memory (allocated with mmap):

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Replication

(The same block of hardware instructions shown above, delimited
by two labels:)

add specialisation r4/n1/r4, compiled

add_r4_nl_r4_begin:
addq $1, Yrdx
add_r4_nl_r4_end:

Easy: copy memory between the two labels into executable
memory (allocated with mmap):

JIT-time replication: append an add/r4/n1/r4 instruction

size_t vm_instruction_size_in_chars
= ((char *) && add_r4_nl_r4_end
- (char *) && add_r4_nl_r4_begin);
memcpy (executable_memory_end,
&% add_r4_nl_r4_begin,
vm_instruction_size_in_chars);
executable_memory_end += vm_instruction_size_in_chars;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (1/2)

add VM instruction: Jitter specification

instruction add (?R, 7Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

How do we specialise add %r4, 3, %r4?

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (1/2)

add VM instruction: Jitter specification

instruction add (?R, 7Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

How do we specialise add %r4, 3, %r4?
@ Asadd r4 nR r4d ...
nR means that the literal number is Residual: we load into a
register or memory via assembly code, filled in by the Jitter
runtime.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (1/2)

add VM instruction: Jitter specification

instruction add (?R, 7Rn 1, !R)
code
JITTER_ARGN2 = JITTER_ARGNO + JITTER_ARGN1;
end
end

How do we specialise add %r4, 3, %r4?
@ Asadd r4 nR r4d ...
nR means that the literal number is Residual: we load into a
register or memory via assembly code, filled in by the Jitter
runtime.

add/_r4_nR_r4 compiled, with

) movl $0x3,%ri2d
movq %rl2,%r8 2

. l\‘\\YU

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

add/_r4_nR_r4 compiled, with

xorl %ri12d,%r12d # This only works for 0xO
movq %rl2,%r8

10/3:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

add/_r4_nR_r4 compiled, with

xorl %ri12d,%r12d # This only works for 0xO
movq %rl2,%r8

Same for small constants on most RISCs.

10/3:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

add/_r4_nR_r4 compiled, with

xorl %ri12d,%r12d # This only works for 0xO
movq %rl2,%r8

Same for small constants on most RISCs.

10/3:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

add/_r4_nR_r4 compiled, with

xorl %ri12d,%r12d # This only works for 0xO
movq %rl2,%r8

Same for small constants on most RISCs.
(A hardware register has been reserved)

This is very architecture-specific, and a little laborious, but. ..

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Literal materialisation (2/2)

We can even have different assembly code for different constants.
For example on x86_64 the literal 0x0 can be loaded in a more
efficient way than other numbers.

add/_r4_nR_r4 compiled, with

xorl %ri12d,%r12d # This only works for 0xO
movq %rl2,%r8

Same for small constants on most RISCs.
(A hardware register has been reserved)
This is very architecture-specific, and a little laborious, but. ..

... VM-independent: the complexity is all in Jitter!

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (1/1)

How do we perform jumps from a VM instruction to another?
o

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (1/1)

How do we perform jumps from a VM instruction to another?
@ One way would be by materialisation:

e load the target address into a register
e jump via register

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire

BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (1/1)

How do we perform jumps from a VM instruction to another?
@ One way would be by materialisation:
o load the target address into a register
@ jump via register
That works (I used to do that) but is slow.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (1/1)

How do we perform jumps from a VM instruction to another?
@ One way would be by materialisation:
o load the target address into a register
@ jump via register
That works (I used to do that) but is slow.

@ Much better solution: generate something like

b $f compiled, with being

jmp .L # .L will be overwritten after replication

11/3:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (2/2)

There are two main problems
@ How to present this to the user in a friendly way

e How to implement this (where to patch)?

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (2/2)

There are two main problems
@ How to present this to the user in a friendly way

o JITTER_BRANCH_FAST(label),
JITTER_BRANCH_FAST_IF_NONZERQO(exzpression, label)
JITTER_PLUS_BRANCH_FAST_IF_OVERFLOW(lvalue,
rvalue, rvalue, label) ...

e How to implement this (where to patch)?

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (2/2)

There are two main problems
@ How to present this to the user in a friendly way
o JITTER_BRANCH_FAST(label),
JITTER_BRANCH_FAST_IF_NONZERQO(exzpression, label)
JITTER_PLUS_BRANCH_FAST_IF_OVERFLOW(lwvalue,
rvalue, rvalue, label) ...
e How to implement this (where to patch)?
o We need a new idea: patch-ins.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Fast branches (2/2)

There are two main problems
@ How to present this to the user in a friendly way
o JITTER_BRANCH_FAST(label),
JITTER_BRANCH_FAST_IF_NONZERQO(exzpression, label)
JITTER_PLUS_BRANCH_FAST_IF_OVERFLOW(lwvalue,
rvalue, rvalue, label) ...
e How to implement this (where to patch)?
o We need a new idea: patch-ins.

[Quick demo with uninspired
[unless I am very late]
- conditional branch
- plus-or-branch-if-overflow

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Low-level view Specialisation, replication Materialisation Patch-ins

Patch-ins

The fast-branching macro expands to something like:

(Macro-expanded) GNU C, simplified

asm goto (".pushsection .data, 42\n"
g .quad hole_to_£fill_%=\n"
" .quad " SPECIALIZED_INSTRUCTION_ID "\n"
" .quad " PATCH_IN_CASE "\n"
".popsection\n"
"hole_to_£fill %=:\n"
" .skip " ROUTINE_LENGTH_IN_BYTES "\n"
1 /% dnputs... */
5 unreachable_label_jumping_where_gcc_cant_know)]

This trick uses subsections. A pointer to the memory to patch is
stored in a global table; the displacement between that address
and an instruction start address is a literal constant.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: global variables

C globals are accessed with PC-relative instructions on modern
architectures.

@ a_global
—> (* _a_local_struct->a_global_address)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: global variables

C globals are accessed with PC-relative instructions on modern
architectures

@ a_global
—> (* _a_local_struct->a_global_address)
@ wrapping mechanism:
#define a_global \
(* _a_local_struct->a_global_address)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: global variables

C globals are accessed with PC-relative instructions on modern
architectures.
@ a_global
—> (* _a_local_struct->a_global_address)
@ wrapping mechanism:
#define a_global \
(* _a_local_struct->a_global_address)

Jitter specification

wrapped-globals
my_datum
prompt_string
end

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (1/3)

Functions are also accessed with PC-relative instructions.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (1/3)

Functions are also accessed with PC-relative instructions.
Same trick necessary. ..

@ a_function
— (¥ _a_local_struct->a_function_address)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (1/3)

Functions are also accessed with PC-relative instructions.
Same trick necessary. ..

@ a_function
— (¥ _a_local_struct->a_function_address)
@ wrapping mechanism:
#define a_function \
(* _a_local struct->a_function_ address)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (1/3)

Functions are also accessed with PC-relative instructions.
Same trick necessary. ..

@ a_function
— (¥ _a_local_struct->a_function_address)

@ wrapping mechanism:
#define a_function \
(* _a_local struct->a_function_ address)

Jitter specification

wrapped-functions
putc
getc

end

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (1/3)

Functions are also accessed with PC-relative instructions.
Same trick necessary. ..

@ a_function
— (¥ _a_local_struct->a_function_address)

@ wrapping mechanism:
#define a_function \
(* _a_local struct->a_function_ address)

Jitter specification

wrapped-functions
putc
getc

end

... but this is not enough! v

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (2/3)

On some architectures / ABls calling a C function clobbers CPU
state: for example the global pointer register on Alpha, or a
floating point status register on SH4. [1 have time: violating the C ABI with respect

to call-clobbered registers can be useful]

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (2/

On some architectures / ABls calling a C function clobbers CPU
state: for example the global pointer register on Alpha, or a
floating point status register on SH4. [1 have time: violating the C ABI with respect
to call-clobbered registers can be useful]
@ A wrapped function call should expand to an expression “like":
({ PRE_PROCEDURE_CALL_CODE;
int _res
= (% _a_local_struct->a_function_address) (args);
POST_PROCEDURE_CALL_CODE;

_res; })

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (2/

On some architectures / ABls calling a C function clobbers CPU
state: for example the global pointer register on Alpha, or a
floating point status register on SH4. [1 have time: violating the C ABI with respect
to call-clobbered registers can be useful]
@ A wrapped function call should expand to an expression “like":
({ PRE_PROCEDURE_CALL_CODE;
int _res < any output type, not just int

= (% _a_local_struct->a_function_address) (args);
POST_PROCEDURE_CALL_CODE;

_res; })

@ The macro must work with any arity, any input type, any
output type — and void is special.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (2/

On some architectures / ABls calling a C function clobbers CPU
state: for example the global pointer register on Alpha, or a
floating point status register on SH4. [1 have time: violating the C ABI with respect
to call-clobbered registers can be useful]
@ A wrapped function call should expand to an expression “like":
({ PRE_PROCEDURE_CALL_CODE;
int _res < any output type, not just int

= (% _a_local_struct->a_function_address) (args);
POST_PROCEDURE_CALL_CODE;

_res; })
@ The macro must work with any arity, any input type, any
output type — and void is special.

@ The actual definition is complex and requires GNU C (but is
well factored).)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (3/3)

@ The actual macro needs:

statement-expressions;

typeof

__builtin_choose_expr;
__builtin_types_compatible_p;

different definition for functions returning void.

For more information use git grep ’Function
wrapping’

GNU lJitter and GCC: the fun of playing with fire BTS 2022

Luca Saiu http://ageinghacker.net

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: calling C functions (3/3)

@ The actual macro needs:

statement-expressions;

typeof

__builtin_choose_expr;
__builtin_types_compatible_p;

different definition for functions returning void.

For more information use git grep ’Function
wrapping’

@ Still very easy to use:

Jitter specification

wrapped-functions
putc
getc

end

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:

@ Sometimes solvable by command-line options.
Ex.: struct assignment on PowerPC:
-mblock-move-inline-1imit=8192

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:

@ Sometimes solvable by command-line options.
Ex.: struct assignment on PowerPC:
-mblock-move-inline-1imit=8192

o floating-point literals;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:

@ Sometimes solvable by command-line options.
Ex.: struct assignment on PowerPC:
-mblock-move-inline-1imit=8192

o floating-point literals;

@ division;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:
@ Sometimes solvable by command-line options.
Ex.: struct assignment on PowerPC:
-mblock-move-inline-1imit=8192
o floating-point literals;
@ division;
e automatically wrap libgcc internal functions; it seems to work

(') — GCC experts, do you know why it works? | have no
idea

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C operators implemented as out-of-line routines

Very architecture-dependent:

@ Sometimes solvable by command-line options.
Ex.: struct assignment on PowerPC:
-mblock-move-inline-1imit=8192
o floating-point literals;
@ division;
e automatically wrap libgcc internal functions; it seems to work
(') — GCC experts, do you know why it works? | have no
idea
e dividing VM instruction attribute — easy, but not
implemented yet

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: summary

What we have learned up to this point:
@ VM instruction code blocks require care:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: summary

What we have learned up to this point:
@ VM instruction code blocks require care:

o write C...
e ...think assembly

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: summary

What we have learned up to this point:
@ VM instruction code blocks require care:

o write C...
e ...think assembly

@ No restrictions in called C functions;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: summary

What we have learned up to this point:
@ VM instruction code blocks require care:

o write C...
e ...think assembly

@ No restrictions in called C functions;

@ No restrictions in non-relocatable VM instructions:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

C restrictions Non-global wrapping Function wrapping libgcc routines

C restrictions: summary

What we have learned up to this point:
@ VM instruction code blocks require care:

o write C...
e ...think assembly

@ No restrictions in called C functions;

@ No restrictions in non-relocatable VM instructions:

@ Relatively minor annoyances.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can really go wrong

GCC can compile C in ways that are legitimate, but break our
strategy of copying and recombining hardware instruction blocks.

reorder;

tail-merging;

inconsistent register assignments across branches;
far branches;

PC-relative loads to materialise constants.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (1/2: the problem)

When replicating we memcpy from the_beginning to the_end:

A specialised instruction, compiled

the_beginning:

the_end:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (1/2: the problem)

When replicating we memcpy from the_beginning to the_end:

A specialised instruction, compiled

the_beginning:

the_end:

But GCC might (legitimately) reorder blocks:

A specialised instruction, compiled — negative length?

.foo:
the_end:

Something else
the_beginning:

jmp .foo

=)
21

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (1/2:

When replicating we memcpy from the_beginning to the_end:

A specialised instruction, compiled

the_beginning:

the_end:

But GCC might (legitimately) reorder blocks:

A specialised instruction, compiled — negative length?

.foo:
the_end:

Something else
the_beginning:

jmp .foo

Code from different VM instructions may even be intertwined.

=)
21

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC

What can go wrong: reorder (2/2: the solution)

In this case the solution is easy: GCC has a
-fno-reorder-blocks option

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (2/2: the solution)

In this case the solution is easy: GCC has a
-fno-reorder-blocks option

The generated file ymprefiz-vm2.c must be compiled with
-fno-reorder-blocks.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (2/2: the solution)

In this case the solution is easy: GCC has a
-fno-reorder-blocks option

The generated file ymprefiz-vm2.c must be compiled with
-fno-reorder-blocks.

This GCC optimisation option is necessary for correctness!

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (2/2: the solution)

In this case the solution is easy: GCC has a
-fno-reorder-blocks option

The generated file ymprefiz-vm2.c must be compiled with
-fno-reorder-blocks.

This GCC optimisation option is necessary for correctness!

JITTER_CFLAGS contains it.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: reorder (2/2: the solution)

In this case the solution is easy: GCC has a
-fno-reorder-blocks option

The generated file ymprefiz-vm2.c must be compiled with
-fno-reorder-blocks.

This GCC optimisation option is necessary for correctness!

JITTER_CFLAGS contains it.

(Out of defensiveness, VM code checks at startup that specialised
instruction blocks are disjoint and sizes are non-negative.)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail:

foo VM instruction

foo_beginning:

.tail_of_foo:
TTT
Yyyy

foo_end:

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail: bar VM instruction

; ; bar_beginning:
foo VM instruction ar_beginning

foo_beginning: jmp .tail_of_foo # Hmm...

cc bar_end: # If at all
.tail_of_foo:

TET
yyy

foo_end: ﬁ¢§§

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail: bar VM instruction

; ; bar_beginning:
foo VM instruction ar_beginning

foo_beginning: jmp .tail_of_foo # Hmm...

cc bar_end: # If at all
.tail_of_foo:

After copying, at run time, the

TTET i)

yyy jump will reach out of the
foo_end: relocated bar_beginning and ﬁc%@
bar_end. g;%

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail: bar VM instruction

bar_beginning:

foo VM instruction

foo_beginning: jmp .tail_of_foo # Hmm...
bar_end: # If at all

.tail_of_foo: .
After copying, at run time, the

TTT
yyy jump will reach out of the
foo_end: relocated bar_beginning and (2N
bar_end. g;%
Crash. ;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (1/3: the problem)

Two VM instructions happen to behave the same way at the end:

foo VM instruction bar VM instruction
foo_beginning: bar_beginning:
TTE ETT
Yyyy yyy
foo_end: bar_end:

Or GCC might (legitimately) compile foo and bar factoring their
common tail: bar VM instruction

; ; bar_beginning:
foo VM instruction ar_beginning

foo_beginning: jmp .tail_of_foo # Hmm...
bar_end: # If at all

.tail_of_foo: .
After copying, at run time, the

TTET i)

yyy jump will reach out of the
foo_end: relocated bar_beginning and ﬁc%@
bar_end. g;%

Crash. (If you are lucky.)

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (2/3: not enough)

GCC has a -fno-tail-merge option. ..

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (2/3: not enough)

GCC has a -fno-tail-merge option. ..

... which is, unfortunately, not enough: GCC merges some tails
even with the Option. [Changing GCC now would not be very useful in practice: many stable

releases with this behaviour are in use]

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (2/3: not enough)

GCC has a -fno-tail-merge option. ..

... which is, unfortunately, not enough: GCC merges some tails
even with the Option. [Changing GCC now would not be very useful in practice: many stable

releases with this behaviour are in use]

We need a more creative solution.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (3/3: the solution)

Use GNU C assembly constraints to pretend there are
dependencies, and that a variable is modified in many different
ways: prevent factoring by making tails appear different.

foo VM instruction, in C

foo_beginning:

asm (: "+X" (variable),
"# Useless 123");
foo_end:
asm (: "+X" (variable),
"# Useless 124");
goto * variable;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Reorder Tail merging RA across branches Far branches PC-re

Playing with fire

What can go wrong: tail merging (3/3: the solution)

Use GNU C assembly constraints to pretend there are
dependencies, and that a variable is modified in many different

ways: prevent factoring by making tails appear different.

foo VM instruction, in C bar VM instruction, in C

foo_beginning: bar_beginning:

asm (: "+X" (variable), asm (: "+X" (variable),
"# Useless 123"); "# Useless 125");
foo_end: bar_end:
asm (: "+X" (variable), asm (: "+X" (variable),
"# Useless 124"); "# Useless 126");
goto * variable;

goto * variable;

GNU lJitter and GCC: the fun of playing with fire BTS 2022

Luca Saiu http://ageinghacker.net

Playing with fire

Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (3/3: the solution)

Use GNU C assembly constraints to pretend there are
dependencies, and that a variable is modified in many different

ways: prevent factoring by making tails appear different.

foo VM instruction, in C

foo_beginning:

asm (: "+X" (variable),
"# Useless 123");
foo_end:
asm (: "+X" (variable),
"# Useless 124");
goto * variable;

v

bar VM instruction, in C

bar_beginning:

asm (: "+X" (variable),
"# Useless 125");
bar_end:
asm (: "+X" (variable),
"# Useless 126");
goto * variable;

The variable must actually be used.

[The Array’s base is in a reserved register: the obvious candidate, but | am not speaking of The Array in this

presentation]

Luca Saiu

http://ageinghacker.net

GNU lJitter and GCC: the fun of playing with fire

BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

What can go wrong: tail merging (3/3: the solution)

Use GNU C assembly constraints to pretend there are
dependencies, and that a variable is modified in many different
ways: prevent factoring by making tails appear different.

foo VM instruction, in C bar VM instruction, in C

foo_beginning: bar_beginning:
asm (: "+X" (variable), asm (: "+X" (variable),
"# Useless 123"); "# Useless 125");
foo_end: bar_end:
asm (: "+X" (variable), asm (: "+X" (variable),
"# Useless 124"); "# Useless 126");
goto * variable; goto * variable;
v v

The variable must actually be used.

[The Array’s base is in a reserved register: the obvious candidate, but | am not speaking of The Array in this

presentation] s
AR

A lot of Jitter code is based on this principle: lie to the compiler!

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

Register-assignments across branches

Can we guarantee that GCC uses the same register assignment at
a branch site and at the target site?

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

Register-assignments across branches

Can we guarantee that GCC uses the same register assignment at
a branch site and at the target site?

@ the target is always the beginning of a VM instruction

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

Register-assignments across branches

Can we guarantee that GCC uses the same register assignment at
a branch site and at the target site?

@ the target is always the beginning of a VM instruction

compiled code going to

GCC can (legitimately) generate code like this:

jmp .Ltemp
.Ltemp:
mov ..., /4rdx # Register assignment now compatible with Ltarget

jmp Ltarget

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

Register-assignments across branches

Can we guarantee that GCC uses the same register assignment at
a branch site and at the target site?

@ the target is always the beginning of a VM instruction

compiled code going to

GCC can (legitimately) generate code like this:

jmp .Ltemp
.Ltemp:
mov ..., /4rdx # Register assignment now compatible with Ltarget

jmp Ltarget

[To do: There will be no time for the details: the solution uses asm
goto in a creative way, lying to the compiler]

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC-re

Far branches

[To do: There will be no time for this]

o

http://ageinghacker.net | GNU Jitter and GCi he fun of playing with fire BTS 2022

Playing with fire Reorder Tail merging RA across branches Far branches PC

PC-relative loads to materialise constants

[To do: There will be no time for this]

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated

@ Possibly unjustified effort for a single VM

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o

Luca Saiu

http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o (Notice that | do)

o

Luca Saiu

http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o (Notice that | do)
@ Architecture-dependent, VM-independent

Luca Saiu

http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o (Notice that | do)
@ Architecture-dependent, VM-independent

e lJitter is the right way to factor

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o (Notice that | do)
@ Architecture-dependent, VM-independent

e lJitter is the right way to factor
o Jitter users do not need to play with fire

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Code reuse

@ Good architecture-dependent support is complicated
@ Possibly unjustified effort for a single VM

@ It will not happen unless the author enjoys assembly and
low-level programming

o (Notice that | do)
@ Architecture-dependent, VM-independent

e lJitter is the right way to factor

o Jitter users do not need to play with fire
o Jittery VMs are high-level

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.
o Jitter is a product of its environment;

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.
o Jitter is a product of its environment;

e Jitter's complexity comes from the lack of flexibility of C;
o Impossible to reuse a C compiler without playing with fire, if
we want to keep performance.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.
o Jitter is a product of its environment;

e Jitter's complexity comes from the lack of flexibility of C;
o Impossible to reuse a C compiler without playing with fire, if
we want to keep performance.

Is the environment complexity necessary?
@ Unix is too complex;

o Cis too complex.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.
o Jitter is a product of its environment;

e Jitter's complexity comes from the lack of flexibility of C;
o Impossible to reuse a C compiler without playing with fire, if
we want to keep performance.

Is the environment complexity necessary?
@ Unix is too complex;

o Cis too complex.

@ We should be prepared to restart from scratch

30/3

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

Is this the right thing?

Is this complexity necessary?

@ In an ideal world a VM generator would be simpler.
o Jitter is a product of its environment;

e Jitter's complexity comes from the lack of flexibility of C;
o Impossible to reuse a C compiler without playing with fire, if
we want to keep performance.

Is the environment complexity necessary?
@ Unix is too complex;

o Cis too complex.

@ We should be prepared to restart from scratch
e Factor. Simplify. Reject compatibility.

30/3

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):
e The Jitter manual

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):
o The Jitter manual (very, very incomplete)

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:

@ Structured manual

o JitterLisp manual

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:

@ Structured manual (existing as an empty stub)

o JitterLisp manual

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:

@ Structured manual (existing as an empty stub)

o JitterLisp manual (a little better)

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:

@ Structured manual (existing as an empty stub) — however
the sources are very easy to understand
o JitterLisp manual (a little better)

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:
@ Structured manual (existing as an empty stub) — however
the sources are very easy to understand
o JitterLisp manual (a little better)

@ Tutorial at
http://ageinghacker.net/projects/jitter-tutorial

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:
@ Structured manual (existing as an empty stub) — however
the sources are very easy to understand
o JitterLisp manual (a little better)

e Tutorial at
http://ageinghacker.net/projects/jitter-tutorial
(incomplete)

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

How to learn about GNU Jitter, as of March 2022

@ Web page at https://gnu.org/software/jitter
e Jitter Texinfo documentation (= Info, PDF, HTML, ...):

o The Jitter manual (very, very incomplete)
o Jitter example manuals:

@ Structured manual (existing as an empty stub) — however
the sources are very easy to understand
o JitterLisp manual (a little better)

@ Tutorial at
http://ageinghacker.net/projects/jitter-tutorial
(incomplete)

e Contact me:

e Mailing list: see the web page
o | am always on IRC as lucasaiu: Libera network, ##jitter,
##epsilon, and #poke

31/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://gnu.org/software/jitter
http://ageinghacker.net/projects/jitter-tutorial

Closing Code reuse A serious question More information The end

The end

https://www.gnu.org/software/jitter
http://ageinghacker.net

Thanks.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://www.gnu.org/software/jitter
http://ageinghacker.net

The end

Closing Code reuse A serious question More information The end

Luca Saiu

https://www.gnu.org/software/jitter
http://ageinghacker.net

Thanks.

Any questions?

http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://www.gnu.org/software/jitter
http://ageinghacker.net

Bibliography |

[4 Ertl, M. A. and Gregg, D. (2004). Retargeting JIT compilers
by using C-compiler generated executable code. In Proceedings
of the 13th International Conference on Parallel Architectures
and Compilation Techniques, PACT '04, pages 41-50,
Washington, DC, USA. IEEE Computer Society.

[4 Saiu, L. (2017). The art of the language VM or
Machine-generating virtual machine code or Almost zero
overhead with almost zero assembly or My virtual machine is
faster than yours. GNU Hackers’ Meeting 2017,
Kniillwald-Niederbeisheim, Germany, August 2017. The first
public presentation about Jitter, still useful as an introduction.
Slides and video recording available from
http://ageinghacker.net/talks. @

33/34

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

http://ageinghacker.net/talks

Bibliography Il

[Saiu, L. (2021). Informal jitter talk. Informal live presentation,
March 2021. A friendly talk including a live demo, mostly
improvised and not particularly well prepared, with friends
from the GNU poke project. Video recording available from
https://archive.org/details/
jitter-presentation--2021-03-25.

Luca Saiu http://ageinghacker.net | GNU Jitter and GCC: the fun of playing with fire BTS 2022

https://archive.org/details/jitter-presentation--2021-03-25
https://archive.org/details/jitter-presentation--2021-03-25

	GNU Jitter
	Low-level view
	C restrictions
	Playing with fire
	Closing
	Appendix

