poked
GNU poke beyond the CLI

Mohammad-Reza Nabipoor
mnabipoor@gnu.org

GNU Project

poked GNU Project
e

mnabipoor@gnu.org

User Interface (Ul)

This talk is about user interfaces!

poked GNU Project
e

User Interface (Ul)

What is a UI?

The user interface (Ul) is the space where interactions between

humans and machines occur 1.

https://en.wikipedia.org/wiki/User_interface

poked GNU Project
e

User Interface (Ul)
Altair 8800

Figure 1: https://altairclone.com/

This is a Ul: LEDs and Switches!

: :
poked GNU Project

What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

: :
poked GNU Project
e

https://people.inf.ethz.ch/wirth/ProjectOberon/
https://plan9.io/sys/doc/acme/acme.html

What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

» Oberon System

: :
poked GNU Project
e

https://people.inf.ethz.ch/wirth/ProjectOberon/
https://plan9.io/sys/doc/acme/acme.html

What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

» Oberon System
» acme editor (Plan 9 from Bell Labs)

: :
poked GNU Project
e

https://people.inf.ethz.ch/wirth/ProjectOberon/
https://plan9.io/sys/doc/acme/acme.html

What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

» Oberon System
» acme editor (Plan 9 from Bell Labs)
» Emacs editor

: :
poked GNU Project
e

https://people.inf.ethz.ch/wirth/ProjectOberon/
https://plan9.io/sys/doc/acme/acme.html

What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

» Oberon System
» acme editor (Plan 9 from Bell Labs)
» Emacs editor

P> As a consequence, integration of this program with other
programs is easily achievable (Then, you are not forcing users
to leave their favorite environments (terminals, editors, IDEs,
web browsers, etc.) to use your program)

poked GNU Project

https://people.inf.ethz.ch/wirth/ProjectOberon/
https://plan9.io/sys/doc/acme/acme.html

What is GNU poke?

GNU poke libpoke # Poke programming language
incremental compiler (PKL)
&
Poke Virtual Machine (PVM)
&

I0 Space (I0S)

CLI (Command-Line Interface)
based on libpoke

+ poke

H OH H H H K HH

poked GNU Project
e

How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.

poked GNU Project
00

How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.
» User can declare Poke variables, units, types, and functions.

poked GNU Project
00

How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.
» User can declare Poke variables, units, types, and functions.
» User can compile and run statements, and see the result.

poked GNU Project
00

How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.

» User can declare Poke variables, units, types, and functions.

» User can compile and run statements, and see the result.

> It provides some facilities to make the life of user easier (like
dot commands (.set, .help, .file, etc.)).

: :
poked GNU Project

e

How poke (the program) does look like? (Demo)

(poke) var a = 1

(poke) type T = struct { int i; long 1; }

(poke) fun f = (int x, string y) offset<ulong,B>:
{ return x'size + y'size; } // On a single line
(poke) £ (10, "Hello, binary t00ls summit!")
0x20UL#B

(poke) .set obase 10

(poke) f (10, "Hello, binary t00ls summit!")
32UL#B

(poke) .set

:
GNU Project

poked
e

How poke (the program) works?

(Let’s ignore dot commands)

poked GNU Project
-

How poke (the program) works?

It relies on functions from 1ibpoke:

» pk_compile_buffer
> pk_compile_statement

poked GNU Project
e

How poke (the program) works?

It relies on functions from libpoke:

» pk_compile_buffer
> pk_compile_statement

If the input starts with var, unit, type or fun keywords, it uses
pk_compile_buffer.

Otherwise, it uses the pk_compile_statement.

poked GNU Project

How poke (the program) works?

Example
// This will invoke “pk_compile_buffer™ C function
(poke) var a = 1; a += 1; a += 1

poked GNU Project
-

How poke (the program) works?

Example

// This will invoke pk_compile_buffer C function
(poke) var a = 1; a += 1; a += 1

// This will invoke ‘pk_compile_statement ™ C function
(poke) a += 1

:
poked

GNU Project
e

How poke (the program) works?

Example

// This will invoke ‘pk_compile_buffer ™ C function
(poke) var a = 1; a += 1; a += 1

// This will invoke 'pk_compile_statement™ C function
(poke) a += 1

// This is a syntaz error because it expects a
// single statement but gets two.
(poke) a += 1; a += 1

:
poked GNU Project

How poke (the program) works?

Let's look inside the poke: the main loop

poked GNU Project
e

How poke (the program) works?

Over-simplified pseudo-code
struct input

{
const charx* first; // first word
const char* line; // input

} *input;

struct input *read_command_from_terminal (void);

#define STREQ(a,b) (strcmp ((a), (b)) == 0)

#define CHK(...) /* handle errors ... */
#define CHK_PRINT(...) /* handle errors and \
print the “val® ... x/

: :
poked GNU Project

How poke (the program) works?
Over-simplified pseudo-code
while ((input = read_command_from_terminal ())) {
if (STREQ (input->first, "var"
|| STREQ (input->first, "unit")
| | STREQ (input->first, "type")
|| STREQ (input->first, "fun"))
CHK (pk_compile_buffer (
poke_compiler, input->line, /*end#*/ NULL,
“exit_exception)) ;
else
CHK_PRINT (pk_compile_statement (
poke_compiler, input->line, /*end*/ NULL,
&val, &exit_exception));
free (input);
1

: :
poked GNU Project

Some limitations of CLI

Let's talk about limitations :)

poked GNU Project
e

Some limitations of CLI

» Not automation-friendly.

poked GNU Project
e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.

poked GNU Project
e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.

:
poked GNU Project

e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.

» Not that much user-friendly.

poked GNU Project
e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.
» Not that much user-friendly.
» Everything should be in a single line.

poked GNU Project
e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.
» Not that much user-friendly.
» Everything should be in a single line.
» You cannot have more than one statement per input
(workaround: load).

:
poked GNU Project

e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.
» Not that much user-friendly.
» Everything should be in a single line.
» You cannot have more than one statement per input
(workaround: load).
» Utility of hex dumps are limited to the capabilities of terminal
emulators.

: :
poked GNU Project

e

Some limitations of CLI

> Not automation-friendly.
» You're limited to one readline input and one output.
» You cannot embed poke (the program) in your
program/editor/IDE/etc.
» Not that much user-friendly.
» Everything should be in a single line.
» You cannot have more than one statement per input
(workaround: load).
» Utility of hex dumps are limited to the capabilities of terminal
emulators.

: :
poked GNU Project

The solution

poked

poked GNU Project
e

The solution: poked

» poked is a daemon (background process)

poked GNU Project
e

The solution: poked

» poked is a daemon (background process)
> It listens on a unix socket (default: poked.ipc)

poked GNU Project
e

The solution: poked

» poked is a daemon (background process)
> It listens on a unix socket (default: poked.ipc)

» It has a notion of channels (input channels and output
channels)

:
poked

GNU Project
e

The solution: poked

» poked is a daemon (background process)

> It listens on a unix socket (default: poked.ipc)

» It has a notion of channels (input channels and output
channels)

» Input/Output channels are independent.

:
poked GNU Project

00

The solution: poked

» poked is a daemon (background process)

> It listens on a unix socket (default: poked.ipc)

» It has a notion of channels (input channels and output
channels)

» Input/Output channels are independent.

» Each connection can only has one role (either write (publish)
to input channel or read from (subscribe to) output channel).

:
poked GNU Project

00

The solution: poked

» poked is a daemon (background process)

> It listens on a unix socket (default: poked.ipc)

» It has a notion of channels (input channels and output
channels)

» Input/Output channels are independent.

» Each connection can only has one role (either write (publish)
to input channel or read from (subscribe to) output channel).

» Many clients (pokelets) can simultaneously interact with
poked.

:
poked GNU Project

poked

~~+——— (1) Code Input Chan ———>|
/ (pk_compile_buffer) |

~~t——— (2) Cmd Input Chan ——>
/ (pk_compile_statement)

\
ot (...) Input Chan ———>
/
\
~mt—— (120) Input Chan —->
/

—— (1) out Output

— (2) Vu output

——— (3) Disasm Output

——— (4) Treevu Output

— (...) Output

— (120) Output

Figure 2: poked

Chan

Chan

Chan

Chan

Chan

Chan

poked

:
GNU Project

L

poked, a simple message broker

If you are familiar with MQTT, you'll see some similarities:

MQTT poked
topic channel
publisher pokelet
subscriber pokelet

When a publisher, publishes something on a topic, all subscribers
will receive it. More than one publisher can publish data on topics.

: :
poked GNU Project

How poked works?

Let's look inside the poked: the main loop

poked GNU Project
00

How poked works?
Over-simplified pseudo-code (1)
struct input
{
struct chan chan;
const charx data; // null-terminated string
// of Poke code
} *input;
struct input *read_from_input_channels (void);
#define CHAN IS_INPUT_ P(chan)
#define CHAN_NUM(chan)

#define CHK(...) /* handle errors ... */
#define CHK_PUBLISH(...) /* handle errors and \
publish the “val® ... */

static size_t n_iter;

: :
poked GNU Project

How poked works?
Over-simplified pseudo-code (II)
while ((input = read_from_input_channels ())) {
++n_iter; /* also publish a new iteration msg */
if (CHAN_NUM(input->chan) == CHAN_INPUT_CODE)
CHK (pk_compile_buffer (
poke_compiler, input->data,
/*end*/ NULL, &exit_exception));
else if (CHAN_NUM(input->chan) == CHAN_INPUT_CMD)
CHK_PUBLISH (pk_compile_statement (
poke_compiler, input->data, /*end+*/ NULL,
&val, &exit_exception));
else /* ignore */;
free (input);

: :
poked GNU Project

g +
| in_list out_list |
| poked |
| (status: idle) |
P +
| poked GNU Project |

00

___ +
in_list out_list |
poked |
(status: idle) |
___ +
o +
poke-in |
|
o +
GNU Project

___ +
in_list out_list |
poked |
(status: idle) [
___ +
|
0x01
|
|
e N +
poke-in |
|
T +
GNU Project |

e e +
| din_list out_list |
| [0] cs[0].£d poked I
| (status: idle) [
A +
|
|
|
|
- e +
I poke-in |
| |
o +
poked GNU Project

e e +
| din_list out_list |
| [0] cs[0].£d poked I
| (status: idle) [
it +
| |
| 0x81
| |
| |
o B + Fmm—— B +
I poke-in | I poke-out |
| | | |
e + Fmm e +
poked GNU Project

e R +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
o +

h v

| |

| |

| |

| |
e R + m—m e +
I poke-in | I poke-out |
| | | |
e e + e +

GNU Project

e e +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
it +

h v

| |

| |

| |

| |
o B + Fmm—— v——————= +
I poke-in | I poke-out |

| print "Hi\n"; | | |

GNU Project

o +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
o +

poked GNU Project

o +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: processing) |
S +

- \

| |

| |

| |

| |
R T —— + PR T +
I poke-in | I poke-out |
| | | |
oo + oo +

GNU Project

e e +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: processing) [
A +

- v
| |
| "\x04\x00Hi\n\x00"
| |
| |
o Semmmeem + o y-—————- +
I poke-in | I poke-out |
| | | |
o + o +
poked GNU Project

e e +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) [
it +

h v
| |
| |
| |
| |
o B + Fmm—— v——————= +
I poke-in | I poke-out |
| | I "Hi\n" |
e + Fmm e +
poked GNU Project

e R +
| din_list out_list |
| [0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
o +

h v

| |

| |

| |

| |
e R + m—m e +
I poke-in | I poke-out |
| | | |
e e + e +

GNU Project

Questions?

Ask your questions about the example.

poked GNU Project
e

pokelet for terminal output channel (channel 1)

Part 1
import asyncio
import sys

async def main():
(r, w) = await asyncio.open_unix_connection(
'poked.ipc'
)
w.write(b'\x81")
await w.drain()

while True:
...

poked GNU Project
e

pokelet for terminal output channel (channel 1)
Part 2
...
while True:
lbytes = await r.readexactly(2)
1 = int.from_bytes(lbytes, byteorder='little')
data = await r.readexactly(l)
cmd, data = datal[0], datal[i1:]
if cmd == 1: # New iteration
iteration_n = int.from_bytes(
datal:8], byteorder='little')
print(f'\n//--- {iteration_n}"')

elif cmd == 2: # Output
output = datal:-1].decode('ascii')
if output:

print (output, end='"'); sys.stdout.flush()

: :
poked GNU Project

00

pokelet for terminal output channel (channel 1)

Part 3
...

asyncio.run(main())

poked GNU Project
e

U
@
3
o

poked

poke-out
poke-repl
poke-fuse
poke-vu
poke-treevu
poke-disasm
poke-websocket
poke-plot
poke-ide

VVVVYVyVYVYVYYVYYVYY

Back to conclusion ...

:
poked GNU Project

Automation as the Goal

General-purpose computers started as a tool for automation.

poked GNU Project
e

Automation as the Goal

General-purpose computers started as a tool for automation.
You give the recipe (the instructions) and computer will

execute them.

poked GNU Project
e

Automation as the Goal

But nowadays, we don't use computers only for automation.

poked GNU Project
e

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs

poked GNU Project
e

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs
» Watching videos

poked GNU Project
e

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs
» Watching videos
» Surfing internet

poked GNU Project
e

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs

» Watching videos
» Surfing internet
» Writing programs

: :
poked GNU Project

00

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs

» Watching videos
» Surfing internet

» Writing programs
» Debugging

:
poked GNU Project

00

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs

» Watching videos

» Surfing internet

» Writing programs

» Debugging

> Reversing data formats or programs

: :
poked GNU Project

e

Automation as the Goal

But nowadays, we don’t use computers only for automation.

>

>
>
>
>
>
>

Reading PDFs

Watching videos

Surfing internet

Writing programs

Debugging

Reversing data formats or programs

Exploring data (like scientific research, or program performance
measurements)

poked

:
GNU Project

00

Automation as the Goal

But nowadays, we don’t use computers only for automation.

>

>
>
>
>
2
>

>

Reading PDFs

Watching videos

Surfing internet

Writing programs

Debugging

Reversing data formats or programs

Exploring data (like scientific research, or program performance
measurements)

Computer-aided design (CAD)

poked

:
GNU Project

Automation as the Goal

But nowadays, we don’t use computers only for automation.

>

>
>
>
>
2
>

v

Reading PDFs

Watching videos

Surfing internet

Writing programs

Debugging

Reversing data formats or programs

Exploring data (like scientific research, or program performance
measurements)

Computer-aided design (CAD)

Editing photos/videos

poked

GNU Project

Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs
» Watching videos

» Surfing internet

» Writing programs

» Debugging

» Reversing data formats or programs

» Exploring data (like scientific research, or program performance
measurements)

Computer-aided design (CAD)

» Editing photos/videos

v

At first sight, you might think that these tasks are not
automation-friendly.

: :
poked GNU Project

Automation as the Goal

If you see patterns, that's a sign for automation!

poked GNU Project
e

Automation as the Goal

If you see patterns, that's a sign for automation!
Even for tasks like editing images or videos which seems

non-repetitive and “creative’.

poked GNU Project
e

Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.

poked GNU Project
e

Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.
» Make them available as standalone models (the Smalltalk 80
definition of the word).

poked GNU Project
e

Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.
» Make them available as standalone models (the Smalltalk 80
definition of the word).
» Make them observable.

poked GNU Project
e

Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.
» Make them available as standalone models (the Smalltalk 80
definition of the word).
» Make them observable.
» Make them controllable.

: :
poked GNU Project

