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User Interface (UI)

This talk is about user interfaces!
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User Interface (UI)

What is a UI?
The user interface (UI) is the space where interactions between
humans and machines occur 1.

1https://en.wikipedia.org/wiki/User_interface
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User Interface (UI)
Altair 8800

Figure 1: https://altairclone.com/

This is a UI: LEDs and Switches!
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What is this talk all about?
In this talk I want to show you that:

▶ UIs should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:

▶ Oberon System
▶ acme editor (Plan 9 from Bell Labs)
▶ Emacs editor

▶ As a consequence, integration of this program with other
programs is easily achievable (Then, you are not forcing users
to leave their favorite environments (terminals, editors, IDEs,
web browsers, etc.) to use your program)

poked GNU Project
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What is GNU poke?

GNU poke = libpoke # Poke programming language
# incremental compiler (PKL)
# &
# Poke Virtual Machine (PVM)
# &
# IO Space (IOS)
#

+ poke # CLI (Command-Line Interface)
# based on libpoke

;
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How poke (the program) does look like?

▶ It’s a REPL (Read-Evaluate-Print-Loop) program.

▶ User can declare Poke variables, units, types, and functions.
▶ User can compile and run statements, and see the result.
▶ It provides some facilities to make the life of user easier (like

dot commands (.set, .help, .file, etc.)).
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How poke (the program) does look like? (Demo)

(poke) var a = 1
(poke) type T = struct { int i; long l; }
(poke) fun f = (int x, string y) offset<ulong,B>:
{ return x'size + y'size; } // On a single line
(poke) f (10, "Hello, binary t00ls summit!")
0x20UL#B
(poke) .set obase 10
(poke) f (10, "Hello, binary t00ls summit!")
32UL#B
(poke) .set

poked GNU Project



How poke (the program) works?

(Let’s ignore dot commands)
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How poke (the program) works?

It relies on functions from libpoke:

▶ pk_compile_buffer
▶ pk_compile_statement
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How poke (the program) works?

It relies on functions from libpoke:

▶ pk_compile_buffer
▶ pk_compile_statement

If the input starts with var, unit, type or fun keywords, it uses
pk_compile_buffer.

Otherwise, it uses the pk_compile_statement.
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How poke (the program) works?

Example
// This will invoke `pk_compile_buffer` C function
(poke) var a = 1; a += 1; a += 1
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How poke (the program) works?

Example
// This will invoke `pk_compile_buffer` C function
(poke) var a = 1; a += 1; a += 1

// This will invoke `pk_compile_statement` C function
(poke) a += 1

// This is a syntax error because it expects a
// single statement but gets two.
(poke) a += 1; a += 1
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How poke (the program) works?

Let’s look inside the poke: the main loop
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How poke (the program) works?
Over-simplified pseudo-code
struct input
{

const char* first; // first word
const char* line; // input

} *input;

struct input *read_command_from_terminal (void);

#define STREQ(a,b) (strcmp ((a), (b)) == 0)
#define CHK(...) /* handle errors ... */
#define CHK_PRINT(...) /* handle errors and \

print the `val` ... */
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How poke (the program) works?
Over-simplified pseudo-code
while ((input = read_command_from_terminal ())) {

if (STREQ (input->first, "var")
|| STREQ (input->first, "unit")
|| STREQ (input->first, "type")
|| STREQ (input->first, "fun"))

CHK (pk_compile_buffer (
poke_compiler, input->line, /*end*/ NULL,
&exit_exception));

else
CHK_PRINT (pk_compile_statement (

poke_compiler, input->line, /*end*/ NULL,
&val, &exit_exception));

free (input);
}
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Some limitations of CLI

Let’s talk about limitations :)
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Some limitations of CLI

▶ Not automation-friendly.

▶ You’re limited to one readline input and one output.
▶ You cannot embed poke (the program) in your

program/editor/IDE/etc.
▶ Not that much user-friendly.

▶ Everything should be in a single line.
▶ You cannot have more than one statement per input

(workaround: load).
▶ Utility of hex dumps are limited to the capabilities of terminal

emulators.

▶ . . .
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The solution

poked
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The solution: poked

▶ poked is a daemon (background process)

▶ It listens on a unix socket (default: poked.ipc)
▶ It has a notion of channels (input channels and output

channels)
▶ Input/Output channels are independent.
▶ Each connection can only has one role (either write (publish)

to input channel or read from (subscribe to) output channel).
▶ Many clients (pokelets) can simultaneously interact with

poked.
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poked

Figure 2: poked
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poked, a simple message broker

If you are familiar with MQTT, you’ll see some similarities:

MQTT poked

topic
publisher
subscriber

channel
pokelet
pokelet

When a publisher, publishes something on a topic, all subscribers
will receive it. More than one publisher can publish data on topics.
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How poked works?

Let’s look inside the poked: the main loop
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How poked works?
Over-simplified pseudo-code (I)
struct input
{

struct chan chan;
const char* data; // null-terminated string

// of Poke code
} *input;
struct input *read_from_input_channels (void);
#define CHAN_IS_INPUT_P(chan) ...
#define CHAN_NUM(chan) ...
#define CHK(...) /* handle errors ... */
#define CHK_PUBLISH(...) /* handle errors and \

publish the `val` ... */
static size_t n_iter;
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How poked works?
Over-simplified pseudo-code (II)
while ((input = read_from_input_channels ())) {

++n_iter; /* also publish a new iteration msg */
if (CHAN_NUM(input->chan) == CHAN_INPUT_CODE)

CHK (pk_compile_buffer (
poke_compiler, input->data,
/*end*/ NULL, &exit_exception));

else if (CHAN_NUM(input->chan) == CHAN_INPUT_CMD)
CHK_PUBLISH (pk_compile_statement (

poke_compiler, input->data, /*end*/ NULL,
&val, &exit_exception));

else /* ignore */ ;
free (input);

}

poked GNU Project



Example: poked & pokelet poke-in & pokelet poke-out

+---------------------------------------------------+
| in_list out_list |
| poked |
| (status: idle) |
+---------------------------------------------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
| poked |
| (status: idle) |
+---------------------------------------------------+

+---------------+
| poke-in |
| |
+---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
| poked |
| (status: idle) |
+---------------------------------------------------+

ˆ
|

0x01
|
|

+-------ˆ-------+
| poke-in |
| |
+---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked |
| (status: idle) |
+---------------------------------------------------+

ˆ
|
|
|
|

+-------ˆ-------+
| poke-in |
| |
+---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked |
| (status: idle) |
+---------------------------------------------------+

ˆ ˆ
| |
| 0x81
| |
| |

+-------ˆ-------+ +-------ˆ-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
+---------------------------------------------------+

ˆ v
| |
| |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
+---------------------------------------------------+

ˆ v
| |
| |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| print "Hi\n"; | | |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
+---------------------------------------------------+

ˆ v
| |

"\x0c\x00print \"Hi\n\";" |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: processing) |
+---------------------------------------------------+

ˆ v
| |
| |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+

poked GNU Project



Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: processing) |
+---------------------------------------------------+

ˆ v
| |
| "\x04\x00Hi\n\x00"
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
+---------------------------------------------------+

ˆ v
| |
| |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | "Hi\n" |
+---------------+ +---------------+
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Example: poked & pokelet poke-in & pokelet poke-out
+---------------------------------------------------+
| in_list out_list |
|[0] cs[0].fd poked [0] cs[1].fd |
| (status: idle) |
+---------------------------------------------------+

ˆ v
| |
| |
| |
| |

+-------ˆ-------+ +-------v-------+
| poke-in | | poke-out |
| | | |
+---------------+ +---------------+
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Questions?

Ask your questions about the example.
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pokelet for terminal output channel (channel 1)
Part 1
import asyncio
import sys

async def main():
(r, w) = await asyncio.open_unix_connection(

'poked.ipc'
)
w.write(b'\x81')
await w.drain()

while True:
# ...
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pokelet for terminal output channel (channel 1)
Part 2
# ...
while True:

lbytes = await r.readexactly(2)
l = int.from_bytes(lbytes, byteorder='little')
data = await r.readexactly(l)
cmd, data = data[0], data[1:]
if cmd == 1: # New iteration

iteration_n = int.from_bytes(
data[:8], byteorder='little')

print(f'\n//--- {iteration_n}')
elif cmd == 2: # Output

output = data[:-1].decode('ascii')
if output:

print(output, end=''); sys.stdout.flush()
poked GNU Project



pokelet for terminal output channel (channel 1)

Part 3
# ...

asyncio.run(main())
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Demo

▶ poked
▶ poke-out
▶ poke-repl
▶ poke-fuse
▶ poke-vu
▶ poke-treevu
▶ poke-disasm
▶ poke-websocket
▶ poke-plot
▶ poke-ide

Back to conclusion . . .
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Automation as the Goal

General-purpose computers started as a tool for automation.
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Automation as the Goal

General-purpose computers started as a tool for automation.
You give the recipe (the instructions) and computer will
execute them.
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Automation as the Goal

But nowadays, we don’t use computers only for automation.
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Automation as the Goal

But nowadays, we don’t use computers only for automation.

▶ Reading PDFs

▶ Watching videos
▶ Surfing internet
▶ Writing programs
▶ Debugging
▶ Reversing data formats or programs
▶ Exploring data (like scientific research, or program performance

measurements)
▶ Computer-aided design (CAD)
▶ Editing photos/videos
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Automation as the Goal
But nowadays, we don’t use computers only for automation.

▶ Reading PDFs
▶ Watching videos
▶ Surfing internet
▶ Writing programs
▶ Debugging
▶ Reversing data formats or programs
▶ Exploring data (like scientific research, or program performance

measurements)
▶ Computer-aided design (CAD)
▶ Editing photos/videos

At first sight, you might think that these tasks are not
automation-friendly.

poked GNU Project



Automation as the Goal

If you see patterns, that’s a sign for automation!
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Automation as the Goal

If you see patterns, that’s a sign for automation!
Even for tasks like editing images or videos which seems
non-repetitive and “creative”.
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Automation as the Goal

Final words
Please,
▶ Don’t hide your model behind GUI/TUI/Browser/etc.

▶ Make them available as standalone models (the Smalltalk 80
definition of the word).

▶ Make them observable.
▶ Make them controllable.
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