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User Interface (Ul)

This talk is about user interfaces!
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User Interface (Ul)

What is a UI?

The user interface (Ul) is the space where interactions between

humans and machines occur 1.

https://en.wikipedia.org/wiki/User_interface
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User Interface (Ul)
Altair 8800

Figure 1: https://altairclone.com/

This is a Ul: LEDs and Switches!
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What is this talk all about?
In this talk | want to show you that:

» Uls should be designed to be automation-friendly.

Automation must be a core design principle, not an
after-thought.

Good examples:
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P> As a consequence, integration of this program with other
programs is easily achievable (Then, you are not forcing users
to leave their favorite environments (terminals, editors, IDEs,
web browsers, etc.) to use your program)
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What is GNU poke?

GNU poke libpoke #  Poke programming language
incremental compiler (PKL)
&
Poke Virtual Machine (PVM)
&

I0 Space (I0S)

CLI (Command-Line Interface)
based on libpoke

+ poke
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How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.
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How poke (the program) does look like?

» It's a REPL (Read-Evaluate-Print-Loop) program.

» User can declare Poke variables, units, types, and functions.

» User can compile and run statements, and see the result.

> It provides some facilities to make the life of user easier (like
dot commands (.set, .help, .file, etc.)).
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How poke (the program) does look like? (Demo)

(poke) var a = 1

(poke) type T = struct { int i; long 1; }

(poke) fun f = (int x, string y) offset<ulong,B>:
{ return x'size + y'size; } // On a single line
(poke) £ (10, "Hello, binary t00ls summit!")
0x20UL#B

(poke) .set obase 10

(poke) f (10, "Hello, binary t00ls summit!")
32UL#B

(poke) .set

:
GNU Project

poked
e




How poke (the program) works?

(Let’s ignore dot commands)
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It relies on functions from 1ibpoke:

» pk_compile_buffer
> pk_compile_statement
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How poke (the program) works?

It relies on functions from libpoke:

» pk_compile_buffer
> pk_compile_statement

If the input starts with var, unit, type or fun keywords, it uses
pk_compile_buffer.

Otherwise, it uses the pk_compile_statement.
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How poke (the program) works?

Example
// This will invoke “pk_compile_buffer™ C function
(poke) var a = 1; a += 1; a += 1
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How poke (the program) works?

Example

// This will invoke pk_compile_buffer  C function
(poke) var a = 1; a += 1; a += 1

// This will invoke ‘pk_compile_statement ™ C function
(poke) a += 1
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How poke (the program) works?

Example

// This will invoke ‘pk_compile_buffer ™ C function
(poke) var a = 1; a += 1; a += 1

// This will invoke 'pk_compile_statement™ C function
(poke) a += 1

// This is a syntaz error because it expects a
// single statement but gets two.
(poke) a += 1; a += 1
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How poke (the program) works?

Let's look inside the poke: the main loop
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How poke (the program) works?

Over-simplified pseudo-code
struct input

{
const charx* first; // first word
const char* line; // input

} *input;

struct input *read_command_from_terminal (void);

#define STREQ(a,b) (strcmp ((a), (b)) == 0)

#define CHK(...) /* handle errors ... */
#define CHK_PRINT(...) /* handle errors and \
print the “val® ... x/
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How poke (the program) works?
Over-simplified pseudo-code
while ((input = read_command_from_terminal ())) {
if (STREQ (input->first, "var"
|| STREQ (input->first, "unit")
| | STREQ (input->first, "type")
|| STREQ (input->first, "fun"))
CHK (pk_compile_buffer (
poke_compiler, input->line, /*end#*/ NULL,
“exit_exception)) ;
else
CHK_PRINT (pk_compile_statement (
poke_compiler, input->line, /*end*/ NULL,
&val, &exit_exception));
free (input);
1
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Some limitations of CLI

Let's talk about limitations :)
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The solution: poked

» poked is a daemon (background process)

> It listens on a unix socket (default: poked.ipc)

» It has a notion of channels (input channels and output
channels)

» Input/Output channels are independent.

» Each connection can only has one role (either write (publish)
to input channel or read from (subscribe to) output channel).

» Many clients (pokelets) can simultaneously interact with
poked.
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poked
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Figure 2: poked
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poked, a simple message broker

If you are familiar with MQTT, you'll see some similarities:

MQTT poked
topic channel
publisher pokelet
subscriber pokelet

When a publisher, publishes something on a topic, all subscribers
will receive it. More than one publisher can publish data on topics.
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How poked works?

Let's look inside the poked: the main loop
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How poked works?
Over-simplified pseudo-code (1)
struct input
{
struct chan chan;
const charx data; // null-terminated string
// of Poke code
} *input;
struct input *read_from_input_channels (void);
#define CHAN IS_INPUT_ P(chan)
#define CHAN_NUM(chan)

#define CHK(...) /* handle errors ... */
#define CHK_PUBLISH(...) /* handle errors and \
publish the “val® ... */

static size_t n_iter;
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How poked works?
Over-simplified pseudo-code (II)
while ((input = read_from_input_channels ())) {
++n_iter; /* also publish a new iteration msg */
if (CHAN_NUM(input->chan) == CHAN_INPUT_CODE)
CHK (pk_compile_buffer (
poke_compiler, input->data,
/*end*/ NULL, &exit_exception));
else if (CHAN_NUM(input->chan) == CHAN_INPUT_CMD)
CHK_PUBLISH (pk_compile_statement (
poke_compiler, input->data, /*end+*/ NULL,
&val, &exit_exception));
else /* ignore */;
free (input);
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Questions?

Ask your questions about the example.
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pokelet for terminal output channel (channel 1)

Part 1
import asyncio
import sys

async def main():
(r, w) = await asyncio.open_unix_connection(
'poked.ipc'
)
w.write(b'\x81")
await w.drain()

while True:
# ...
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pokelet for terminal output channel (channel 1)
Part 2
# ...
while True:
lbytes = await r.readexactly(2)
1 = int.from_bytes(lbytes, byteorder='little')
data = await r.readexactly(l)
cmd, data = datal[0], datal[i1:]
if cmd == 1: # New iteration
iteration_n = int.from_bytes(
datal:8], byteorder='little')
print(f'\n//--- {iteration_n}"')

elif cmd == 2: # Output
output = datal:-1].decode('ascii')
if output:

print (output, end='"'); sys.stdout.flush()
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pokelet for terminal output channel (channel 1)

Part 3
# ...

asyncio.run(main())
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poked

poke-out
poke-repl
poke-fuse
poke-vu
poke-treevu
poke-disasm
poke-websocket
poke-plot
poke-ide

VVVVYVyVYVYVYYVYYVYY

Back to conclusion ...
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Automation as the Goal

General-purpose computers started as a tool for automation.
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Automation as the Goal

General-purpose computers started as a tool for automation.
You give the recipe (the instructions) and computer will

execute them.
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Automation as the Goal

But nowadays, we don't use computers only for automation.
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» Watching videos

» Surfing internet

» Writing programs

» Debugging

> Reversing data formats or programs
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Automation as the Goal

But nowadays, we don't use computers only for automation.

» Reading PDFs
» Watching videos

» Surfing internet

» Writing programs

» Debugging

» Reversing data formats or programs

» Exploring data (like scientific research, or program performance
measurements)

Computer-aided design (CAD)

» Editing photos/videos

v

At first sight, you might think that these tasks are not
automation-friendly.
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Automation as the Goal

If you see patterns, that's a sign for automation!
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Automation as the Goal

If you see patterns, that's a sign for automation!
Even for tasks like editing images or videos which seems

non-repetitive and “creative’.
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Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.
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Automation as the Goal

Final words
Please,
» Don't hide your model behind GUI/TUI/Browser/etc.
» Make them available as standalone models (the Smalltalk 80
definition of the word).
» Make them observable.
» Make them controllable.
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