The Trojan Poke
Embedding GNU poke in your own program

Mohammad-Reza Nabipoor
mnabipoor@gnu.org

GNU Project

The Trojan Poke GNU Project
e

mnabipoor@gnu.org

This talk

» Introduction to 1ibpoke

The Trojan Poke GNU Project
e

This talk

» Introduction to libpoke
> How to use libpoke in your programs

The Trojan Poke GNU Project
e

This talk

» Introduction to libpoke
> How to use libpoke in your programs
» Real-world examples

The Trojan Poke GNU Project
e

This talk

» Introduction to libpoke

> How to use libpoke in your programs

» Real-world examples

» Tips and best known practices of using libpoke

The Trojan Poke GNU Project
e

This talk

» Introduction to libpoke

> How to use libpoke in your programs

» Real-world examples

» Tips and best known practices of using libpoke
» Current known limitations and future work

: :
The Trojan Poke GNU Project
e

What is GNU poke?

GNU poke libpoke # Poke programming language
incremental compiler (PKL)
&
Poke Virtual Machine (PVM)
&

I0 Space (I0S)

CLI (Command-Line Interface)
based on libpoke

+ poke

H OH H H H K HH

The Trojan Poke GNU Project
e

Poke programming language

» Procedural

The Trojan Poke GNU Project
e

Poke programming language

» Procedural
» Statically-typed

The Trojan Poke GNU Project
e

Poke programming language

» Procedural
> Statically-typed
P Interpreted

The Trojan Poke GNU Project
e

Poke programming language

» Procedural

> Statically-typed

P Interpreted

» Interactive (you can redeclare everything)

The Trojan Poke GNU Project
e

Poke programming language

» Procedural

> Statically-typed

P Interpreted

» Interactive (you can redeclare everything)

» Suitable for describing/poking binary formats

: :
The Trojan Poke GNU Project
e

Poke Virtual Machine (PVM)

> Jitter-generated virtual machine

The Trojan Poke GNU Project
s

Poke Virtual Machine (PVM)

> Jitter-generated virtual machine
» Stack machine

The Trojan Poke GNU Project
e

Poke Virtual Machine (PVM)

> Jitter-generated virtual machine
» Stack machine

Only PVM values are exposed to the user.

The Trojan Poke GNU Project
e

libpoke Components

pomm - +
| Compiler |

pomm - + s +
| I nbd-dev |
v | zero-dev sub-dev |
o + | |
| PVM | <=——=>] / 10 \ |
tom—— + | file-dev | | stream-dev |
| \Space/ |
| |
| memory-dev process-dev |
| foreign-dev |
T +

The Trojan Poke GNU Project |

00

libpoke Components
(pk_compiler)

o +
| Compiler | (pk_ios)

Fmmmm - + o +
I I nbd-dev |
v | zero-dev sub-dev |
o + | |
| PWM | <—==>| / I0 \ |
Hommmm - + | file-dev | | stream-dev |
(pvm_val) | \Space/ |
| |
| memory-dev process-dev [
| foreign-dev |
T +

The Trojan Poke GNU Project |

00

libpoke opaque data types

» pk_compiler
» pk_val
> pk_ios

The Trojan Poke GNU Project
e

Let's write some code!

We're going to write some code on slides!

The Trojan Poke GNU Project
e

Void!

int
main()

return O;

The Trojan Poke GNU Project
e

libpoke

#include <libpoke.h>
int

main ()

{

return O;

}

: :
The Trojan Poke GNU Project

00

libpoke initialization

#include <libpoke.h>
int
main()
{
struct pk_term_if term_if = {
/*Function pointers for terminal output interface*/
};
pk_compiler pkc = pk_compiler_new (&term_if);
pk_compiler_free (pkc);
return O;

: :
The Trojan Poke GNU Project
e

libpoke initialization

#include <err.h>

#include <libpoke.h>

int

main()

{
struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");

pk_compiler_free (pkc);
return O;

: :
The Trojan Poke GNU Project
e

struct pk_term_if

struct pk_term_if {
void (*flush_fn) (void);
void (*puts_fn) (const char *str);
void (*printf_fn) (const char *format, ...);
void (*indent_fn) (unsigned int 1lvl, unsigned int step);
void (*class_fn) (const char *aclass);
int (*end_class_fn) (const char *aclass);
void (*hyperlink_fn) (const char *url, const char *id);
int (*end_hyperlink_fn) (void);
struct pk_color (*get_color_fn) (void);
struct pk_color (*get_bgcolor_fn) (void);
void (*set_color_fn) (struct pk_color color);
void (*set_bgcolor_fn) (struct pk_color color);

};

:
The Trojan Poke GNU Project

00

pkl-rt.pk and std.pk

#include <err.h>

#include <libpoke.h>

int

main()

{
struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");

/* “pkl-rt.pk” and “std.pk’ have been loaded. */
pk_compiler_free (pkc);
return O;

: :
The Trojan Poke GNU Project

How to feed the Poke compiler?

e e e +
| |
| var a = 1; | Hommm o +
| var b = 2; |==777==> | Poke Compiler |
| printf "Yv\n", a + b; | Homm o +
| |
e e e e +
| The Trojan Poke GNU Project |

e

How to feed the Poke compiler?

The assumption here is you have the Poke code as a string

or file
e +
| |
| var a = 1; I Fomm +
| var b = 2; |==777==> | Poke Compiler |
| printf "%v\n", a + b; I ittt +
| |
e +

:
The Trojan Poke GNU Project

00

Most useful functions!

int pk_compile_file (
pk_compiler, const char *filename, pk_val *exc);

int pk_compile_buffer (
pk_compiler, const char *code, const char **end,

pk_val *exc);

int pk_compile_statement (pk_compiler, const char *code,
const char **end, pk_val *val, pk_val *exc);

int pk_compile_expression (pk_compiler, const char *code,
const char #**end, pk_val *val, pk_val *exc);

:
The Trojan Poke GNU Project

00

Poke support code for your app

/* app.pk */

var some_int_setting = O;
var some_str_setting = "no";

fun do_something = void:
{
VA 4
}

: :
The Trojan Poke GNU Project

libpoke: Loading code from file

VA TR V4
int main() {
Jx ... %/

pk_val exception;

pk_compile_file (pkc, "app.pk", &exception);
VLR V4

:
The Trojan Poke GNU Project
e

libpoke: Loading code from file

/* ... */
int main() {
VE S 74

pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
= PK_OK)
/* Compile-time problems, like syntaz error, etc. */
errx (1, "Compilation of 'app.pk' failed");
VA V4
}

: :
The Trojan Poke GNU Project

libpoke: Loading code from file
/x o x/
int main() {
VR 74

pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
= PK_OK)
errx (1, "Compilation of 'app.pk' failed");
if (exception != PK_NULL) {
/* The code raised an unhandled exzception. */
handle_exception(exception) ;
goto somewhere;
}
VL 4
1

The Trojan Poke GNU Project

libpoke: Loading code from file

Yay!
Successfully loaded app.pk :)

The Trojan Poke GNU Project
e

Let's go to the main loop!

To interact with the incremental compiler :)

The Trojan Poke GNU Project
e

Interaction strategies

» Put all logic in app.pk and only call Poke functions (pk_call)

The Trojan Poke GNU Project
e

Interaction strategies

» Put all logic in app.pk and only call Poke functions (pk_call)
» Generate Poke code (as string) and use
pk_compile_{buffer,statement,expression}

The Trojan Poke GNU Project
e

Interaction strategies: Example |

/* app.pk */

var a = -1;

var b = 1;

fun reset_a_and b = void: { a = -1; b

I
[y
-

/* app.c */
pk_val reset_a_and_b_val
= pk_decl_val (pkc, "reset_a_and_b");

assert (reset_a_and_b_val != PK_NULL);
if (pk_call (
pkc, reset_a_and_b_val, /*ret*/NULL, /*narg*/0)
I= PK_OK)
errx (1, "Poke function invocation failed");

:
The Trojan Poke GNU Project

Interaction strategies: Example Il
/* app.pk */
var a = -1;
var b = 1;

/* app.c */
pk_val exception;

if (pk_compile_buffer (
pkc, "a = -1; b = 1;", /*end*/NULL, &exception)
= PK_OK)
errx (1, "pk_compile_buffer() failed");
if (exception != PK_NULL) {
handle_exception (exception);
goto somewhere_else;

3

: :
The Trojan Poke GNU Project

00

Which approch is better?

It depends!

The Trojan Poke GNU Project
e

Which approch is better?

It depends!
But, | prefer the first approach (unless it doesn't make sense)

The Trojan Poke GNU Project
e

Isn’t the first approch too slow?

No!
But, | didn't measure it :)

The Trojan Poke GNU Project
e

Poke keywords

Be careful!

static const char* keywords[] = {
"pinned", "struct", "union", "else", "while", "until",
"for“, "in", "Where“, "if", "sizeof", "fun", "method",
"type", "var", "unit", "break", "continue", "return",
"string", "as", "try", "catch", "raise", "VOid", uanyn’
"print", "printf", “isa", uunmapn’ "big", "little",
"load", "lambda", "assert",

The Trojan Poke GNU Project
e

Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;
: :
The Trojan Poke GNU Project

00

Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;

/* PVM asm */

push Ox1
regvar

pushvar 0x0, 0x0
push 0x2

muli

nip2

popvar 0x0, 0x0

: :
The Trojan Poke GNU Project
e

Check if a variable is in compile-time env

/* libpoke.h */
#define PK_DECL_KIND VAR O

#define PK_DECL_KIND_FUNC 1
#define PK_DECL_KIND_TYPE 2

int pk_decl_p (pk_compiler pkc,
const char *name,

int kind) ;

// pk_decl_p (pkc, "a", PK_DECL_KIND_ VAR);

:
The Trojan Poke GNU Project

PVM values

/* app.pk */

fun double = (int x) long:
{
return (x as long) * 2L;

}

The Trojan Poke GNU Project
e

PVM values

/* app.pk */
fun double = (int x) long: { return (x as long) * 2L; }

/* app.c */
#define CHK(...) /* do error handling */
#define CHK_EXC(...) /* do Poke exception handling */

pk_val func_double = pk_decl_val (pkc, "double");
pk_val x = pk_make_int (/*valuex*/ 10, /*size*/ 32);
pk_val ret, exception;

CHK (pk_call (pkc, func_double, &ret, /#*narg*/ 1, x));
pk_print_val (pkc, ret, &exception); /* Ozl L */
CHK_EXC (exception);

: :
The Trojan Poke GNU Project

PVM values: Integers

/* libpoke.h */

pk_val pk_make_int (int64_t value, int size);
pk_val pk_make_uint (uint64_t value, int size);

int64_t pk_int_value (pk_val val);
uint64_t pk_uint_value (pk_val val);

int pk_int_size (pk_val val);
int pk_uint_size (pk_val val);

:
The Trojan Poke GNU Project

00

PVM values: Strings

/* libpoke.h */
pk_val pk_make_string (const char *str);

const char *pk_string_str (pk_val val);

The Trojan Poke GNU Project
e

PVM values: Offsets

/* libpoke.h */
pk_val pk_make_offset (pk_val magnitude, pk_val unit);

pk_val pk_offset_magnitude (pk_val val);
pk_val pk_offset_unit (pk_val val);

:
GNU Project

The Trojan Poke
e

PVM values:

Please see 1ibpoke.h for more info :)

The Trojan Poke GNU Project
e

Dealing with compile-time environment

/* libpoke.h */

int pk_defvar (pk_compiler pkc,
const char *varname, pk_val val);

void pk_decl_set_val (pk_compiler pkc,
const char *name, pk_val val);

The Trojan Poke GNU Project
e

Alien Tokens

/* Lexer x/
L [a-zA-Z_]
D [0-9]

AS

S

{AY({L} 1{D}) ({L} I {D}| ({S}({L}I{D})))* {
pkl_alien_token_handler_fn cb
= pkl_alien_token_fn (yyextra->compiler);

if (pkl_lexical_cuckolding_p (yyextra->compiler)
&& cb != NULL) /* insert stuff into AST */
else REJECT;
+

: :
The Trojan Poke GNU Project

Alien Tokens

#define PK_ALIEN TOKEN IDENTIFIER O
#define PK_ALIEN TOKEN INTEGER 1
#define PK_ALIEN TOKEN OFFSET 2
#define PK_ALIEN TOKEN STRING 3

/* Let's look at the actual code

* - Lexzer code
* - GDB code
*/

: :
The Trojan Poke GNU Project

O Space

/% Poke */

var id_file = open ("/somewhere/something", I0S_M_RDONLY);
var id_mem = open ("*memory_1*");

var id_proc_mem = open ('"pid://1234");

var id_nbd = open ("nbd+unix://socket");

VZ

: :
The Trojan Poke GNU Project

O Space

int pk_ios_open (pk_compiler pkc, const char *handler,
uint64_t flags, int set_cur_p);
void pk_ios_close (pk_compiler pkc, pk_ios ios);

pk_ios pk_ios_search (pk_compiler pkc,
const char *handler);
pk_ios pk_ios_search_by_id (pk_compiler pkc, int id);

pk_ios pk_ios_cur (pk_compiler pkc);
void pk_ios_set_cur (pk_compiler pkc, pk_ios ios);

uint64_t pk_ios_size (pk_ios ios);
uint64_t pk_ios_flags (pk_ios ios);
/.

The Trojan Poke GNU Project

What if you need more 10 spaces?

For sure 1libpoke cannot support ALL useful 10 devices!

The Trojan Poke GNU Project
e

Foreign 10 devices interface
struct pk_iod_if {
const char *(*get_if_name) ();
char * (*handler_normalize) (
const char *handler, uint64_t flags, int* error);
void * (*open) (
const char *handler, uint64_t f, int *err, void *data)
int (*close) (void *);
int (xpread) (
void *, void *buf, size_t n, pk_iod_off);
int (xpwrite) (
void *, const void *buf, size_t n, pk_iod_off);
uint64_t (xget_flags) (void *);
pk_iod_off (*size) (void *);
int (*flush) (void *, pk_iod_off);

| void *data: |

The Trojan Poke GNU Project

0

libpoke API Categories

» Terminal output interface callbacks

The Trojan Poke GNU Project
s

libpoke API Categories

» Terminal output interface callbacks
» Library intialization /finalization

The Trojan Poke GNU Project
s

libpoke API Categories

» Terminal output interface callbacks
» Library intialization /finalization
» Compilation and execution of Poke code

The Trojan Poke GNU Project
s

libpoke API Categories

» Terminal output interface callbacks

» Library intialization /finalization

» Compilation and execution of Poke code
» Alien token handling

:
The Trojan Poke GNU Project

00

libpoke API Categories

» Terminal output interface callbacks

» Library intialization /finalization

» Compilation and execution of Poke code
» Alien token handling

» PVM code debugging/profiling facilities

:
The Trojan Poke GNU Project

00

libpoke API Categories

Terminal output interface callbacks
Library intialization /finalization
Compilation and execution of Poke code
Alien token handling

PVM code debugging/profiling facilities
Declaration of types and variables

VVvVVyYVYYVYY

: :
The Trojan Poke GNU Project

00

libpoke API Categories

Terminal output interface callbacks
Library intialization /finalization
Compilation and execution of Poke code
Alien token handling

PVM code debugging/profiling facilities
Declaration of types and variables

Text completion

VVYyVVYyVYVYY

: :
The Trojan Poke GNU Project

00

libpoke API Categories

Terminal output interface callbacks
Library intialization /finalization
Compilation and execution of Poke code
Alien token handling

PVM code debugging/profiling facilities
Declaration of types and variables

Text completion

10 space

VVYyVVYVYYVY

: :
The Trojan Poke GNU Project

00

libpoke API Categories

Terminal output interface callbacks
Library intialization /finalization
Compilation and execution of Poke code
Alien token handling

PVM code debugging/profiling facilities
Declaration of types and variables

Text completion

10 space

Compiler/PVM settings

VVVVVYVYYVYYVYY

: :
The Trojan Poke GNU Project

libpoke API Categories

Terminal output interface callbacks

Library intialization /finalization

Compilation and execution of Poke code

Alien token handling

PVM code debugging/profiling facilities
Declaration of types and variables

Text completion

10 space

Compiler/PVM settings

PVM values: Declaration, use and modification

VVVVVVYVYYVYYVYY

: :
The Trojan Poke GNU Project

Current Limitations and Future Work

Geting rid of global states in 1ibpoke

The, you can
» run more than one libpoke instance in a process

The Trojan Poke GNU Project
e

Current Limitations and Future Work

Geting rid of global states in 1ibpoke

The, you can
» run more than one libpoke instance in a process
» use a library which is also using libpoke itself

The Trojan Poke GNU Project
e

Current Limitations and Future Work

Geting rid of global states in 1ibpoke

The, you can
» run more than one libpoke instance in a process

» use a library which is also using libpoke itself
> safely use 1ibpoke with threads

:
GNU Project

:
The Trojan Poke
00

Current Limitations and Future Work

Make Poke and C better friends
» Poke code -> C code -> Poke code
» Foreign functions

/* Poke */
fun do_something = (string x, int y) long:
clibrary ("my_c_library"); /* my suggested syntaz */

/* C */
pk_val do_something (pk_val x, pk_val y)
{7+ ... %/}

:
The Trojan Poke GNU Project

