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This talk
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▶ How to use libpoke in your programs
▶ Real-world examples
▶ Tips and best known practices of using libpoke
▶ Current known limitations and future work
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What is GNU poke?

GNU poke = libpoke # Poke programming language
# incremental compiler (PKL)
# &
# Poke Virtual Machine (PVM)
# &
# IO Space (IOS)
#

+ poke # CLI (Command-Line Interface)
# based on libpoke

;
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Poke programming language

▶ Procedural

▶ Statically-typed
▶ Interpreted
▶ Interactive (you can redeclare everything)
▶ Suitable for describing/poking binary formats
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Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine

▶ Stack machine

The Trojan Poke GNU Project



Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine
▶ Stack machine

The Trojan Poke GNU Project



Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine
▶ Stack machine

Only PVM values are exposed to the user.
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libpoke Components
+----------+
| Compiler |
+----------+ +---------------------------------+

| | nbd-dev |
v | zero-dev sub-dev |

+----------+ | |
| PVM | <--->| / IO \ |
+----------+ | file-dev | | stream-dev |

| \Space/ |
| |
| memory-dev process-dev |
| foreign-dev |
+---------------------------------+
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libpoke Components
(pk_compiler)
+----------+
| Compiler | (pk_ios)
+----------+ +---------------------------------+

| | nbd-dev |
v | zero-dev sub-dev |

+----------+ | |
| PVM | <--->| / IO \ |
+----------+ | file-dev | | stream-dev |
(pvm_val) | \Space/ |

| |
| memory-dev process-dev |
| foreign-dev |
+---------------------------------+
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libpoke opaque data types

▶ pk_compiler
▶ pk_val
▶ pk_ios
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Let’s write some code!

We’re going to write some code on slides!
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Void!

int
main()
{

return 0;
}
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libpoke

#include <libpoke.h>
int
main()
{

return 0;
}
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libpoke initialization

#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = {
/*Function pointers for terminal output interface*/

};
pk_compiler pkc = pk_compiler_new (&term_if);
pk_compiler_free (pkc);
return 0;

}
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libpoke initialization

#include <err.h>
#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");
pk_compiler_free (pkc);
return 0;

}
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struct pk_term_if
struct pk_term_if {

void (*flush_fn) (void);
void (*puts_fn) (const char *str);
void (*printf_fn) (const char *format, ...);
void (*indent_fn) (unsigned int lvl, unsigned int step);
void (*class_fn) (const char *aclass);
int (*end_class_fn) (const char *aclass);
void (*hyperlink_fn) (const char *url, const char *id);
int (*end_hyperlink_fn) (void);
struct pk_color (*get_color_fn) (void);
struct pk_color (*get_bgcolor_fn) (void);
void (*set_color_fn) (struct pk_color color);
void (*set_bgcolor_fn) (struct pk_color color);

};
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pkl-rt.pk and std.pk

#include <err.h>
#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");
/* `pkl-rt.pk` and `std.pk` have been loaded. */
pk_compiler_free (pkc);
return 0;

}
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How to feed the Poke compiler?

+--------------------------+
| |
| var a = 1; | +----------------+
| var b = 2; |==???==> | Poke Compiler |
| printf "%v\n", a + b; | +----------------+
| |
+--------------------------+
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How to feed the Poke compiler?

The assumption here is you have the Poke code as a string
or file

+--------------------------+
| |
| var a = 1; | +----------------+
| var b = 2; |==???==> | Poke Compiler |
| printf "%v\n", a + b; | +----------------+
| |
+--------------------------+
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Most useful functions!

int pk_compile_file (
pk_compiler, const char *filename, pk_val *exc);

int pk_compile_buffer (
pk_compiler, const char *code, const char **end,
pk_val *exc);

int pk_compile_statement (pk_compiler, const char *code,
const char **end, pk_val *val, pk_val *exc);

int pk_compile_expression (pk_compiler, const char *code,
const char **end, pk_val *val, pk_val *exc);
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Poke support code for your app

/* app.pk */

var some_int_setting = 0;
var some_str_setting = "no";

fun do_something = void:
{

/* ... */
}
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libpoke: Loading code from file

/* ... */
int main() {

/* ... */
pk_val exception;

pk_compile_file (pkc, "app.pk", &exception);
/* ... */

}
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libpoke: Loading code from file

/* ... */
int main() {

/* ... */
pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
!= PK_OK)

/* Compile-time problems, like syntax error, etc. */
errx (1, "Compilation of 'app.pk' failed");

/* ... */
}

The Trojan Poke GNU Project



libpoke: Loading code from file
/* ... */
int main() {

/* ... */
pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
!= PK_OK)

errx (1, "Compilation of 'app.pk' failed");
if (exception != PK_NULL) {

/* The code raised an unhandled exception. */
handle_exception(exception);
goto somewhere;

}
/* ... */

}
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libpoke: Loading code from file

Yay!
Successfully loaded app.pk :)

The Trojan Poke GNU Project



Let’s go to the main loop!

To interact with the incremental compiler :)
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Interaction strategies

▶ Put all logic in app.pk and only call Poke functions (pk_call)

▶ Generate Poke code (as string) and use
pk_compile_{buffer,statement,expression}
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▶ Put all logic in app.pk and only call Poke functions (pk_call)
▶ Generate Poke code (as string) and use

pk_compile_{buffer,statement,expression}
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Interaction strategies: Example I
/* app.pk */
var a = -1;
var b = 1;
fun reset_a_and_b = void: { a = -1; b = 1; }

/* app.c */
pk_val reset_a_and_b_val

= pk_decl_val (pkc, "reset_a_and_b");

assert (reset_a_and_b_val != PK_NULL);
if (pk_call (

pkc, reset_a_and_b_val, /*ret*/ NULL, /*narg*/ 0)
!= PK_OK)

errx (1, "Poke function invocation failed");
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Interaction strategies: Example II
/* app.pk */
var a = -1;
var b = 1;

/* app.c */
pk_val exception;

if (pk_compile_buffer (
pkc, "a = -1; b = 1;", /*end*/ NULL, &exception)

!= PK_OK)
errx (1, "pk_compile_buffer() failed");

if (exception != PK_NULL) {
handle_exception (exception);
goto somewhere_else;

}
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Which approch is better?

It depends!
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Which approch is better?

It depends!
But, I prefer the first approach (unless it doesn’t make sense)
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Isn’t the first approch too slow?

No!
But, I didn’t measure it :)
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Poke keywords

Be careful!

static const char* keywords[] = {
"pinned", "struct", "union", "else", "while", "until",
"for", "in", "where", "if", "sizeof", "fun", "method",
"type", "var", "unit", "break", "continue", "return",
"string", "as", "try", "catch", "raise", "void", "any",
"print", "printf", "isa", "unmap", "big", "little",
"load", "lambda", "assert",

};
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Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;
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Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;

/* PVM asm */
push 0x1
regvar
pushvar 0x0, 0x0
push 0x2
muli
nip2
popvar 0x0, 0x0
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Check if a variable is in compile-time env

/* libpoke.h */

#define PK_DECL_KIND_VAR 0
#define PK_DECL_KIND_FUNC 1
#define PK_DECL_KIND_TYPE 2

int pk_decl_p (pk_compiler pkc,
const char *name,
int kind);

// pk_decl_p (pkc, "a", PK_DECL_KIND_VAR);
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PVM values

/* app.pk */

fun double = (int x) long:
{

return (x as long) * 2L;
}
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PVM values
/* app.pk */
fun double = (int x) long: { return (x as long) * 2L; }

/* app.c */
#define CHK(...) /* do error handling */
#define CHK_EXC(...) /* do Poke exception handling */

pk_val func_double = pk_decl_val (pkc, "double");
pk_val x = pk_make_int (/*value*/ 10, /*size*/ 32);
pk_val ret, exception;

CHK (pk_call (pkc, func_double, &ret, /*narg*/ 1, x));
pk_print_val (pkc, ret, &exception); /* 0x14L */
CHK_EXC (exception);
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PVM values: Integers

/* libpoke.h */

pk_val pk_make_int (int64_t value, int size);
pk_val pk_make_uint (uint64_t value, int size);

int64_t pk_int_value (pk_val val);
uint64_t pk_uint_value (pk_val val);

int pk_int_size (pk_val val);
int pk_uint_size (pk_val val);
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PVM values: Strings

/* libpoke.h */

pk_val pk_make_string (const char *str);

const char *pk_string_str (pk_val val);
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PVM values: Offsets

/* libpoke.h */

pk_val pk_make_offset (pk_val magnitude, pk_val unit);

pk_val pk_offset_magnitude (pk_val val);
pk_val pk_offset_unit (pk_val val);
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PVM values: . . .

Please see libpoke.h for more info :)
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Dealing with compile-time environment

/* libpoke.h */

int pk_defvar (pk_compiler pkc,
const char *varname, pk_val val);

void pk_decl_set_val (pk_compiler pkc,
const char *name, pk_val val);
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Alien Tokens
/* Lexer */
L [a-zA-Z_]
D [0-9]
A $
S ::

{A}({L}|{D})({L}|{D}|({S}({L}|{D})))* {
pkl_alien_token_handler_fn cb

= pkl_alien_token_fn (yyextra->compiler);

if (pkl_lexical_cuckolding_p (yyextra->compiler)
&& cb != NULL) /* insert stuff into AST */

else REJECT;
}
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Alien Tokens

#define PK_ALIEN_TOKEN_IDENTIFIER 0
#define PK_ALIEN_TOKEN_INTEGER 1
#define PK_ALIEN_TOKEN_OFFSET 2
#define PK_ALIEN_TOKEN_STRING 3

/* Let's look at the actual code
* - Lexer code
* - GDB code
*/
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IO Space

/* Poke */

var id_file = open ("/somewhere/something", IOS_M_RDONLY);
var id_mem = open ("*memory_1*");
var id_proc_mem = open ("pid://1234");
var id_nbd = open ("nbd+unix://socket");
// ...
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IO Space
int pk_ios_open (pk_compiler pkc, const char *handler,

uint64_t flags, int set_cur_p);
void pk_ios_close (pk_compiler pkc, pk_ios ios);

pk_ios pk_ios_search (pk_compiler pkc,
const char *handler);

pk_ios pk_ios_search_by_id (pk_compiler pkc, int id);

pk_ios pk_ios_cur (pk_compiler pkc);
void pk_ios_set_cur (pk_compiler pkc, pk_ios ios);

uint64_t pk_ios_size (pk_ios ios);
uint64_t pk_ios_flags (pk_ios ios);
// ...
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What if you need more IO spaces?

For sure libpoke cannot support ALL useful IO devices!

The Trojan Poke GNU Project



Foreign IO devices interface
struct pk_iod_if {

const char *(*get_if_name) ();
char * (*handler_normalize) (

const char *handler, uint64_t flags, int* error);
void * (*open) (

const char *handler, uint64_t f, int *err, void *data);
int (*close) (void *);
int (*pread) (

void *, void *buf, size_t n, pk_iod_off);
int (*pwrite) (

void *, const void *buf, size_t n, pk_iod_off);
uint64_t (*get_flags) (void *);
pk_iod_off (*size) (void *);
int (*flush) (void *, pk_iod_off);
void *data;
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libpoke API Categories

▶ Terminal output interface callbacks

▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification
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Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process

▶ use a library which is also using libpoke itself
▶ safely use libpoke with threads

The Trojan Poke GNU Project



Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process
▶ use a library which is also using libpoke itself

▶ safely use libpoke with threads

The Trojan Poke GNU Project



Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process
▶ use a library which is also using libpoke itself
▶ safely use libpoke with threads

The Trojan Poke GNU Project



Current Limitations and Future Work

Make Poke and C better friends
▶ Poke code -> C code -> Poke code
▶ Foreign functions

/* Poke */
fun do_something = (string x, int y) long:

clibrary ("my_c_library"); /* my suggested syntax */

/* C */
pk_val do_something (pk_val x, pk_val y)
{ /* ... */ }
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