
The Trojan Poke
Embedding GNU poke in your own program

Mohammad-Reza Nabipoor
mnabipoor@gnu.org

GNU Project

The Trojan Poke GNU Project

mnabipoor@gnu.org

This talk

▶ Introduction to libpoke

▶ How to use libpoke in your programs
▶ Real-world examples
▶ Tips and best known practices of using libpoke
▶ Current known limitations and future work

The Trojan Poke GNU Project

This talk

▶ Introduction to libpoke
▶ How to use libpoke in your programs

▶ Real-world examples
▶ Tips and best known practices of using libpoke
▶ Current known limitations and future work

The Trojan Poke GNU Project

This talk

▶ Introduction to libpoke
▶ How to use libpoke in your programs
▶ Real-world examples

▶ Tips and best known practices of using libpoke
▶ Current known limitations and future work

The Trojan Poke GNU Project

This talk

▶ Introduction to libpoke
▶ How to use libpoke in your programs
▶ Real-world examples
▶ Tips and best known practices of using libpoke

▶ Current known limitations and future work

The Trojan Poke GNU Project

This talk

▶ Introduction to libpoke
▶ How to use libpoke in your programs
▶ Real-world examples
▶ Tips and best known practices of using libpoke
▶ Current known limitations and future work

The Trojan Poke GNU Project

What is GNU poke?

GNU poke = libpoke # Poke programming language
incremental compiler (PKL)
&
Poke Virtual Machine (PVM)
&
IO Space (IOS)
#

+ poke # CLI (Command-Line Interface)
based on libpoke

;

The Trojan Poke GNU Project

Poke programming language

▶ Procedural

▶ Statically-typed
▶ Interpreted
▶ Interactive (you can redeclare everything)
▶ Suitable for describing/poking binary formats

The Trojan Poke GNU Project

Poke programming language

▶ Procedural
▶ Statically-typed

▶ Interpreted
▶ Interactive (you can redeclare everything)
▶ Suitable for describing/poking binary formats

The Trojan Poke GNU Project

Poke programming language

▶ Procedural
▶ Statically-typed
▶ Interpreted

▶ Interactive (you can redeclare everything)
▶ Suitable for describing/poking binary formats

The Trojan Poke GNU Project

Poke programming language

▶ Procedural
▶ Statically-typed
▶ Interpreted
▶ Interactive (you can redeclare everything)

▶ Suitable for describing/poking binary formats

The Trojan Poke GNU Project

Poke programming language

▶ Procedural
▶ Statically-typed
▶ Interpreted
▶ Interactive (you can redeclare everything)
▶ Suitable for describing/poking binary formats

The Trojan Poke GNU Project

Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine

▶ Stack machine

The Trojan Poke GNU Project

Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine
▶ Stack machine

The Trojan Poke GNU Project

Poke Virtual Machine (PVM)

▶ Jitter-generated virtual machine
▶ Stack machine

Only PVM values are exposed to the user.

The Trojan Poke GNU Project

libpoke Components
+----------+
| Compiler |
+----------+ +---------------------------------+

| | nbd-dev |
v | zero-dev sub-dev |

+----------+ | |
| PVM | <--->| / IO \ |
+----------+ | file-dev | | stream-dev |

| \Space/ |
| |
| memory-dev process-dev |
| foreign-dev |
+---------------------------------+

The Trojan Poke GNU Project

libpoke Components
(pk_compiler)
+----------+
| Compiler | (pk_ios)
+----------+ +---------------------------------+

| | nbd-dev |
v | zero-dev sub-dev |

+----------+ | |
| PVM | <--->| / IO \ |
+----------+ | file-dev | | stream-dev |
(pvm_val) | \Space/ |

| |
| memory-dev process-dev |
| foreign-dev |
+---------------------------------+

The Trojan Poke GNU Project

libpoke opaque data types

▶ pk_compiler
▶ pk_val
▶ pk_ios

The Trojan Poke GNU Project

Let’s write some code!

We’re going to write some code on slides!

The Trojan Poke GNU Project

Void!

int
main()
{

return 0;
}

The Trojan Poke GNU Project

libpoke

#include <libpoke.h>
int
main()
{

return 0;
}

The Trojan Poke GNU Project

libpoke initialization

#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = {
/*Function pointers for terminal output interface*/

};
pk_compiler pkc = pk_compiler_new (&term_if);
pk_compiler_free (pkc);
return 0;

}

The Trojan Poke GNU Project

libpoke initialization

#include <err.h>
#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");
pk_compiler_free (pkc);
return 0;

}

The Trojan Poke GNU Project

struct pk_term_if
struct pk_term_if {

void (*flush_fn) (void);
void (*puts_fn) (const char *str);
void (*printf_fn) (const char *format, ...);
void (*indent_fn) (unsigned int lvl, unsigned int step);
void (*class_fn) (const char *aclass);
int (*end_class_fn) (const char *aclass);
void (*hyperlink_fn) (const char *url, const char *id);
int (*end_hyperlink_fn) (void);
struct pk_color (*get_color_fn) (void);
struct pk_color (*get_bgcolor_fn) (void);
void (*set_color_fn) (struct pk_color color);
void (*set_bgcolor_fn) (struct pk_color color);

};

The Trojan Poke GNU Project

pkl-rt.pk and std.pk

#include <err.h>
#include <libpoke.h>
int
main()
{

struct pk_term_if term_if = { /* ... */ };
pk_compiler pkc = pk_compiler_new (&term_if);
if (pkc == NULL)

err (1, "pk_compiler_new() failed");
/* `pkl-rt.pk` and `std.pk` have been loaded. */
pk_compiler_free (pkc);
return 0;

}

The Trojan Poke GNU Project

How to feed the Poke compiler?

+--------------------------+
| |
| var a = 1; | +----------------+
| var b = 2; |==???==> | Poke Compiler |
| printf "%v\n", a + b; | +----------------+
| |
+--------------------------+

The Trojan Poke GNU Project

How to feed the Poke compiler?

The assumption here is you have the Poke code as a string
or file

+--------------------------+
| |
| var a = 1; | +----------------+
| var b = 2; |==???==> | Poke Compiler |
| printf "%v\n", a + b; | +----------------+
| |
+--------------------------+

The Trojan Poke GNU Project

Most useful functions!

int pk_compile_file (
pk_compiler, const char *filename, pk_val *exc);

int pk_compile_buffer (
pk_compiler, const char *code, const char **end,
pk_val *exc);

int pk_compile_statement (pk_compiler, const char *code,
const char **end, pk_val *val, pk_val *exc);

int pk_compile_expression (pk_compiler, const char *code,
const char **end, pk_val *val, pk_val *exc);

The Trojan Poke GNU Project

Poke support code for your app

/* app.pk */

var some_int_setting = 0;
var some_str_setting = "no";

fun do_something = void:
{

/* ... */
}

The Trojan Poke GNU Project

libpoke: Loading code from file

/* ... */
int main() {

/* ... */
pk_val exception;

pk_compile_file (pkc, "app.pk", &exception);
/* ... */

}

The Trojan Poke GNU Project

libpoke: Loading code from file

/* ... */
int main() {

/* ... */
pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
!= PK_OK)

/* Compile-time problems, like syntax error, etc. */
errx (1, "Compilation of 'app.pk' failed");

/* ... */
}

The Trojan Poke GNU Project

libpoke: Loading code from file
/* ... */
int main() {

/* ... */
pk_val exception;

if (pk_compile_file (pkc, "app.pk", &exception)
!= PK_OK)

errx (1, "Compilation of 'app.pk' failed");
if (exception != PK_NULL) {

/* The code raised an unhandled exception. */
handle_exception(exception);
goto somewhere;

}
/* ... */

}
The Trojan Poke GNU Project

libpoke: Loading code from file

Yay!
Successfully loaded app.pk :)

The Trojan Poke GNU Project

Let’s go to the main loop!

To interact with the incremental compiler :)

The Trojan Poke GNU Project

Interaction strategies

▶ Put all logic in app.pk and only call Poke functions (pk_call)

▶ Generate Poke code (as string) and use
pk_compile_{buffer,statement,expression}

The Trojan Poke GNU Project

Interaction strategies

▶ Put all logic in app.pk and only call Poke functions (pk_call)
▶ Generate Poke code (as string) and use

pk_compile_{buffer,statement,expression}

The Trojan Poke GNU Project

Interaction strategies: Example I
/* app.pk */
var a = -1;
var b = 1;
fun reset_a_and_b = void: { a = -1; b = 1; }

/* app.c */
pk_val reset_a_and_b_val

= pk_decl_val (pkc, "reset_a_and_b");

assert (reset_a_and_b_val != PK_NULL);
if (pk_call (

pkc, reset_a_and_b_val, /*ret*/ NULL, /*narg*/ 0)
!= PK_OK)

errx (1, "Poke function invocation failed");

The Trojan Poke GNU Project

Interaction strategies: Example II
/* app.pk */
var a = -1;
var b = 1;

/* app.c */
pk_val exception;

if (pk_compile_buffer (
pkc, "a = -1; b = 1;", /*end*/ NULL, &exception)

!= PK_OK)
errx (1, "pk_compile_buffer() failed");

if (exception != PK_NULL) {
handle_exception (exception);
goto somewhere_else;

}
The Trojan Poke GNU Project

Which approch is better?

It depends!

The Trojan Poke GNU Project

Which approch is better?

It depends!
But, I prefer the first approach (unless it doesn’t make sense)

The Trojan Poke GNU Project

Isn’t the first approch too slow?

No!
But, I didn’t measure it :)

The Trojan Poke GNU Project

Poke keywords

Be careful!

static const char* keywords[] = {
"pinned", "struct", "union", "else", "while", "until",
"for", "in", "where", "if", "sizeof", "fun", "method",
"type", "var", "unit", "break", "continue", "return",
"string", "as", "try", "catch", "raise", "void", "any",
"print", "printf", "isa", "unmap", "big", "little",
"load", "lambda", "assert",

};

The Trojan Poke GNU Project

Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;

The Trojan Poke GNU Project

Compile-time environment & run-time environment

/* Poke */
var a = 1;
a *= 2;

/* PVM asm */
push 0x1
regvar
pushvar 0x0, 0x0
push 0x2
muli
nip2
popvar 0x0, 0x0

The Trojan Poke GNU Project

Check if a variable is in compile-time env

/* libpoke.h */

#define PK_DECL_KIND_VAR 0
#define PK_DECL_KIND_FUNC 1
#define PK_DECL_KIND_TYPE 2

int pk_decl_p (pk_compiler pkc,
const char *name,
int kind);

// pk_decl_p (pkc, "a", PK_DECL_KIND_VAR);

The Trojan Poke GNU Project

PVM values

/* app.pk */

fun double = (int x) long:
{

return (x as long) * 2L;
}

The Trojan Poke GNU Project

PVM values
/* app.pk */
fun double = (int x) long: { return (x as long) * 2L; }

/* app.c */
#define CHK(...) /* do error handling */
#define CHK_EXC(...) /* do Poke exception handling */

pk_val func_double = pk_decl_val (pkc, "double");
pk_val x = pk_make_int (/*value*/ 10, /*size*/ 32);
pk_val ret, exception;

CHK (pk_call (pkc, func_double, &ret, /*narg*/ 1, x));
pk_print_val (pkc, ret, &exception); /* 0x14L */
CHK_EXC (exception);

The Trojan Poke GNU Project

PVM values: Integers

/* libpoke.h */

pk_val pk_make_int (int64_t value, int size);
pk_val pk_make_uint (uint64_t value, int size);

int64_t pk_int_value (pk_val val);
uint64_t pk_uint_value (pk_val val);

int pk_int_size (pk_val val);
int pk_uint_size (pk_val val);

The Trojan Poke GNU Project

PVM values: Strings

/* libpoke.h */

pk_val pk_make_string (const char *str);

const char *pk_string_str (pk_val val);

The Trojan Poke GNU Project

PVM values: Offsets

/* libpoke.h */

pk_val pk_make_offset (pk_val magnitude, pk_val unit);

pk_val pk_offset_magnitude (pk_val val);
pk_val pk_offset_unit (pk_val val);

The Trojan Poke GNU Project

PVM values: . . .

Please see libpoke.h for more info :)

The Trojan Poke GNU Project

Dealing with compile-time environment

/* libpoke.h */

int pk_defvar (pk_compiler pkc,
const char *varname, pk_val val);

void pk_decl_set_val (pk_compiler pkc,
const char *name, pk_val val);

The Trojan Poke GNU Project

Alien Tokens
/* Lexer */
L [a-zA-Z_]
D [0-9]
A $
S ::

{A}({L}|{D})({L}|{D}|({S}({L}|{D})))* {
pkl_alien_token_handler_fn cb

= pkl_alien_token_fn (yyextra->compiler);

if (pkl_lexical_cuckolding_p (yyextra->compiler)
&& cb != NULL) /* insert stuff into AST */

else REJECT;
}

The Trojan Poke GNU Project

Alien Tokens

#define PK_ALIEN_TOKEN_IDENTIFIER 0
#define PK_ALIEN_TOKEN_INTEGER 1
#define PK_ALIEN_TOKEN_OFFSET 2
#define PK_ALIEN_TOKEN_STRING 3

/* Let's look at the actual code
* - Lexer code
* - GDB code
*/

The Trojan Poke GNU Project

IO Space

/* Poke */

var id_file = open ("/somewhere/something", IOS_M_RDONLY);
var id_mem = open ("*memory_1*");
var id_proc_mem = open ("pid://1234");
var id_nbd = open ("nbd+unix://socket");
// ...

The Trojan Poke GNU Project

IO Space
int pk_ios_open (pk_compiler pkc, const char *handler,

uint64_t flags, int set_cur_p);
void pk_ios_close (pk_compiler pkc, pk_ios ios);

pk_ios pk_ios_search (pk_compiler pkc,
const char *handler);

pk_ios pk_ios_search_by_id (pk_compiler pkc, int id);

pk_ios pk_ios_cur (pk_compiler pkc);
void pk_ios_set_cur (pk_compiler pkc, pk_ios ios);

uint64_t pk_ios_size (pk_ios ios);
uint64_t pk_ios_flags (pk_ios ios);
// ...

The Trojan Poke GNU Project

What if you need more IO spaces?

For sure libpoke cannot support ALL useful IO devices!

The Trojan Poke GNU Project

Foreign IO devices interface
struct pk_iod_if {

const char *(*get_if_name) ();
char * (*handler_normalize) (

const char *handler, uint64_t flags, int* error);
void * (*open) (

const char *handler, uint64_t f, int *err, void *data);
int (*close) (void *);
int (*pread) (

void *, void *buf, size_t n, pk_iod_off);
int (*pwrite) (

void *, const void *buf, size_t n, pk_iod_off);
uint64_t (*get_flags) (void *);
pk_iod_off (*size) (void *);
int (*flush) (void *, pk_iod_off);
void *data;

};The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks

▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization

▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code

▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling

▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities

▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables

▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion

▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space

▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings

▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

libpoke API Categories

▶ Terminal output interface callbacks
▶ Library intialization/finalization
▶ Compilation and execution of Poke code
▶ Alien token handling
▶ PVM code debugging/profiling facilities
▶ Declaration of types and variables
▶ Text completion
▶ IO space
▶ Compiler/PVM settings
▶ PVM values: Declaration, use and modification

The Trojan Poke GNU Project

Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process

▶ use a library which is also using libpoke itself
▶ safely use libpoke with threads

The Trojan Poke GNU Project

Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process
▶ use a library which is also using libpoke itself

▶ safely use libpoke with threads

The Trojan Poke GNU Project

Current Limitations and Future Work

Geting rid of global states in libpoke
The, you can
▶ run more than one libpoke instance in a process
▶ use a library which is also using libpoke itself
▶ safely use libpoke with threads

The Trojan Poke GNU Project

Current Limitations and Future Work

Make Poke and C better friends
▶ Poke code -> C code -> Poke code
▶ Foreign functions

/* Poke */
fun do_something = (string x, int y) long:

clibrary ("my_c_library"); /* my suggested syntax */

/* C */
pk_val do_something (pk_val x, pk_val y)
{ /* ... */ }

The Trojan Poke GNU Project

