Rust Language Cheat Sheet

4. January 2026

Contains clickable links to The Book,®* Rust by Example, Std Docs,*™® Nomicon,N°™ and Reference.RE"

Data Structures

Data types and memory locations defined via keywords.

Example Explanation

struct S {} Define a struct BX EX STD REF with named fields.

struct S { x: T } Define struct with named field x of type T.

struct S(T); Define "tupled" struct with numbered field .o of type T.

struct S; Define zero sized N°M unit struct. Occupies no space, optimized away.
enum E {} Define an enum, BX BX REF ¢ algebraic data types, tagged unions.

enum E { A, B(), C {} } Define variants of enum; can be unit- A, tuple- B () and struct-like C{}.

enum E { A =1} Enum with explicit discriminant values, REF e.g., for FFI.

enum E {} Enum w/o variants is uninhabited, REF can't be created, c. 'never' * ¥
union U {} Unsafe C-like union REF for FFI compatibility. ¥
static X: T = T(); Global variable BX EX REF yjith 'static lifetime, single ®* memory location.
const X: T = T(); Defines constant, Bk EX REF copied into a temporary when used.
let x: T; Allocate T bytes on stack? bound as x. Assignable once, not mutable.
let mut x: T; Like let, but allow for mutability B EX and mutable borrow.3

X = y; Moves y to x, inval. y if T is not Copy, ST and copying y otherwise.

L In libraries you might secretly end up with multiple instances of X, depending on how your crate is imported. ¢
2 Bound variables BK EX REF Jiye on stack for synchronous code. In async {} they become part of async's state machine, may reside on heap.
8 Technically mutable and immutable are misnomer. Immutable binding or shared reference may still contain Cell 5™, giving interior mutability.

Creating and accessing data structures; and some more sigilic types.

Example Explanation
S {x:y} Create struct S {} or use'ed enum E::S {} with field x settoy.
s {xt} Same, but use local variable x for field x.
s{ s} Fill remaining fields from s, esp. useful with befault :: default().S™®
s{o: x} Like s (x) below, but set field . @ with struct syntax.
S (x) Create struct S (T) or use'ed enum E::S () with field .0 setto x.
S If S isunit struct S; or use'ed enum E ::S create value of S.
E:xC { x: vy } Create enum variant c. Other methods above also work.
O Empty tuple, both literal and type, aka unit. ST°
(x) Parenthesized expression.

javascript:request_admin()
javascript:request_admin()
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/std
https://doc.rust-lang.org/std
https://doc.rust-lang.org/nightly/nomicon/
https://doc.rust-lang.org/nightly/nomicon/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/book/ch05-00-structs.html
https://doc.rust-lang.org/book/ch05-00-structs.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/structs.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/structs.html
https://doc.rust-lang.org/std/keyword.struct.html
https://doc.rust-lang.org/std/keyword.struct.html
https://doc.rust-lang.org/reference/expressions/struct-expr.html
https://doc.rust-lang.org/reference/expressions/struct-expr.html
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/enum.html#enums
https://doc.rust-lang.org/stable/rust-by-example/custom_types/enum.html#enums
https://doc.rust-lang.org/reference/items/enumerations.html
https://doc.rust-lang.org/reference/items/enumerations.html
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
https://doc.rust-lang.org/reference/glossary.html#uninhabited
https://doc.rust-lang.org/reference/glossary.html#uninhabited
https://doc.rust-lang.org/reference/items/unions.html
https://doc.rust-lang.org/reference/items/unions.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#accessing-or-modifying-a-mutable-static-variable
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#accessing-or-modifying-a-mutable-static-variable
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html#constants
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html#constants
https://doc.rust-lang.org/reference/items/static-items.html#static-items
https://doc.rust-lang.org/reference/items/static-items.html#static-items
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#constants
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#constants
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html
https://doc.rust-lang.org/reference/items/constant-items.html
https://doc.rust-lang.org/reference/items/constant-items.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings/mut.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings/mut.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/cargo/reference/resolver.html#version-incompatibility-hazards
https://doc.rust-lang.org/cargo/reference/resolver.html#version-incompatibility-hazards
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings.html
https://doc.rust-lang.org/reference/variables.html
https://doc.rust-lang.org/reference/variables.html
https://doc.rust-lang.org/std/cell/index.html
https://doc.rust-lang.org/std/cell/index.html
https://doc.rust-lang.org/std/default/trait.Default.html
https://doc.rust-lang.org/std/default/trait.Default.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
javascript:toggle_legend();

Example Explanation

(x,) Single-element tuple expression. EX STD REF
(s,) Single-element tuple type.
[s] Array type of unspec. length, i.e., slice. ¥ ST° REF Can't live on stack. *
[s; nl Array type B STP REF of fixed length n holding elements of type S.
[x; n] Array instance REF (expression) with n copies of x.
[x, y] Array instance with given elements x and y.
x[0] Collection indexing, here w. usize. Impl. via Index, IndexMut.
x[] Same, via range (here full range), also x[a ..b], x[a ..=b], ... c. below.
a..b Right-exclusive range 5™ REF creation, e.g., 1 .. 3 means 1, 2.
b Right-exclusive range to ST° without starting point.
S-=1D Inclusive range to S™ without starting point.
a..=b Inclusive range, ™ 1 ..=3 means 1, 2, 3.
a.. Range from S™° without ending point.

Full range, °'° usually means the whole collection.
S. X Named field access, REF might try to Deref if x not part of type s.
s.0 Numbered field access, used for tuple types s (T).

* For now,RFC¢ pending completion of tracking issue.

References & Pointers

Granting access to un-owned memory. Also see section on Generics & Constraints.

Example Explanation
&S Shared reference B STD NOM REF (type; space for holding any &s).
&[s] Special slice reference that contains (addr, count),
gstr Special string slice reference that contains (addr, byte_len).
gmut S Exclusive reference to allow mutability (also émut [S], émut dyn S, ...).
gdyn T Special trait object BX REF ref, as (addr, vtable); T must be object safe. REF
&s Shared borrow B EX STD (e g., addr., len, vtable, ... of this s, like 0x1234).
gmut s Exclusive borrow that allows mutability. £¥
xconst S Immutable raw pointer type B ST REF /o memory safety.
*mut S Mutable raw pointer type w/o memory safety.
§raw const s Create raw pointer w/o going through ref.; c. ptr:addr_of! () ST° ¥
Sraw mut s Same, but mutable. “* Needed for unaligned, packed fields. ¥
ref s Bind by reference, % makes binding reference type. ©
let ref r = s; Equivalentto let r = &s,
let s { ref mut x } = s; Mut. ref binding (let x = &mut s.x), shorthand destructuring ' version.
*r Dereference BK STD NOM 3 reference r to access what it points to.
*xr = s; If r is @ mutable reference, move or copy s to target memory.
S = *r; Make s a copy of whatever r references, if that is Copy.
S = *r; Won't work ® if xr is not Copy, as that would move and leave empty.
s = *my_box; Special case® for BoxS™® that can move out b'ed content not Copy.
'a A lifetime parameter, B< EX NOM REF duration of a flow in static analysis.
§'as Only accepts address of some s; address existing 'a or longer.

https://doc.rust-lang.org/stable/rust-by-example/primitives/tuples.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/tuples.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/reference/expressions/tuple-expr.html
https://doc.rust-lang.org/reference/expressions/tuple-expr.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/std/primitive.slice.html
https://doc.rust-lang.org/std/primitive.slice.html
https://doc.rust-lang.org/reference/types/slice.html
https://doc.rust-lang.org/reference/types/slice.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/std/primitive.array.html
https://doc.rust-lang.org/std/primitive.array.html
https://doc.rust-lang.org/reference/types/array.html
https://doc.rust-lang.org/reference/types/array.html
https://doc.rust-lang.org/reference/expressions/array-expr.html
https://doc.rust-lang.org/reference/expressions/array-expr.html
https://doc.rust-lang.org/std/ops/trait.Index.html
https://doc.rust-lang.org/std/ops/trait.IndexMut.html
https://doc.rust-lang.org/std/ops/struct.Range.html
https://doc.rust-lang.org/std/ops/struct.Range.html
https://doc.rust-lang.org/reference/expressions/range-expr.html
https://doc.rust-lang.org/reference/expressions/range-expr.html
https://doc.rust-lang.org/std/ops/struct.RangeTo.html
https://doc.rust-lang.org/std/ops/struct.RangeTo.html
https://doc.rust-lang.org/std/ops/struct.RangeToInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeToInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeFrom.html
https://doc.rust-lang.org/std/ops/struct.RangeFrom.html
https://doc.rust-lang.org/std/ops/struct.RangeFull.html
https://doc.rust-lang.org/std/ops/struct.RangeFull.html
https://doc.rust-lang.org/reference/expressions/field-expr.html
https://doc.rust-lang.org/reference/expressions/field-expr.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://rust-lang.github.io/rfcs/1909-unsized-rvalues.html
https://rust-lang.github.io/rfcs/1909-unsized-rvalues.html
https://github.com/rust-lang/rust/issues/48055
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/std/primitive.reference.html
https://doc.rust-lang.org/std/primitive.reference.html
https://doc.rust-lang.org/nightly/nomicon/references.html
https://doc.rust-lang.org/nightly/nomicon/references.html
https://doc.rust-lang.org/reference/types.html#pointer-types
https://doc.rust-lang.org/reference/types.html#pointer-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/types/trait-object.html
https://doc.rust-lang.org/reference/items/traits.html#object-safety
https://doc.rust-lang.org/reference/items/traits.html#object-safety
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/mut.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/mut.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer
https://doc.rust-lang.org/std/primitive.pointer.html
https://doc.rust-lang.org/std/primitive.pointer.html
https://doc.rust-lang.org/reference/types.html#raw-pointers-const-and-mut
https://doc.rust-lang.org/reference/types.html#raw-pointers-const-and-mut
https://doc.rust-lang.org/std/ptr/macro.addr_of.html
https://doc.rust-lang.org/std/ptr/macro.addr_of.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/ref.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/ref.html
https://doc.rust-lang.org/book/ch15-02-deref.html
https://doc.rust-lang.org/book/ch15-02-deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://web.archive.org/web/20230130111147/https://old.reddit.com/r/rust/comments/b4so6i/what_is_exactly/ej8xwg8/
https://web.archive.org/web/20230130111147/https://old.reddit.com/r/rust/comments/b4so6i/what_is_exactly/ej8xwg8/
https://doc.rust-lang.org/std/boxed/index.html
https://doc.rust-lang.org/std/boxed/index.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/nightly/nomicon/lifetimes.html
https://doc.rust-lang.org/nightly/nomicon/lifetimes.html
https://doc.rust-lang.org/reference/items/generics.html#type-and-lifetime-parameters
https://doc.rust-lang.org/reference/items/generics.html#type-and-lifetime-parameters

Example Explanation

§'a mut S Same, but allow address content to be changed.

struct S<'a> {} Signals this S will contain address with It. 'a. Creator of S decides 'a.

trait T<'a> {} Signals any S, which impl T for S, might contain address.

fn f<'a>(t: &'a T) Signals this function handles some address. Caller decides 'a.
'static Special lifetime lasting the entire program execution.

Functions & Behavior

Define units of code and their abstractions.

Example Explanation
trait T {} Define a trait; < #X REF common behavior types can adhere to.
trait T : R {} T is subtrait of supertrait 8¢ X REF R _Any S must impl R before it can impl T.
impl s {} Implementation REF of functionality for a type S, e.g., methods.
impl T for S {} Implement trait T for type S; specifies how exactly s acts like T.
impl !T for S {} Disable an automatically derived auto trait. NOM REF %% ¥
fn £O) {} Definition of a function; BX EX REF or associated function if inside impl.
fn f() — s {} Same, returning a value of type S.
fn f(&self) {} Define a method, K EX REF g g within an impl S {}.
struct S(T); More arcanely, also’ defines fn s(x: T) -»> S constructor fn. RFC ¥
const fn f() {} Constant fn usable at compile time, e.g., const X: u32 = f(Yy).REF18
const { x } Used within a function, ensures { x } evaluated during compilation. RE*
async fn f() {} Async REF 8 function transform, * makes f return an impl Future, STO
async fn f() — s {} Same, but make f return an impl Future<Output=S>.
async { x } Used within a function, make { x } an impl Future<Output=X>.REF
async move { x } Moves captured variables into future, c. move closure. REF
fn() = S Function references, * X ST REF memory holding address of a callable.
Fn() — s Callable trait B¢ ST° (also FnMut, Fnonce), impl. by closures, fn's ...
AsyncFn() — S Callable async trait S™° (also AsyncFnMut, AsyncFnOnce), impl. by async c.
I {} A closure BXK EXREF that borrows its captures, ' REF (e.g., a local variable).
x| {} Closure accepting one argument named x, body is block expression.
x| x + x Same, without block expression; may only consist of single expression.
move [x| x +y Move closure REF taking ownership; i.e., v transferred into closure.
async x| x + x Async closure. REF Converts its result into an impl Future<Output=X>,
async move [x| x + y Async move closure. Combination of the above.
return || true Closures sometimes look like logical ORs (here: return a closure).
unsafe If you enjoy debugging segfaults; unsafe code. ' B« X NOM REF
unsafe fn f() {} Means "calling can cause UB, ' YOU must check requirements".
unsafe trait T {} Means "careless impl. of T can cause UB; implementor must check".
unsafe { f(); } Guarantees to compiler "I have checked requirements, trust me".
unsafe impl T for S {} Guarantees S is well-behaved w.r.t T; people may use T on S safely.
unsafe extern "abi" {} Starting with Rust 2024 extern "abi" {} blocks ' must be unsafe.

pub safe fn f(); Inside an unsafe extern "abi" {} K mark f is actually safe to call. R*¢

1 Most documentation calls them function pointers, but function references might be more appropriate® as they can't be null and must point to valid target.

https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/stable/rust-by-example/trait.html
https://doc.rust-lang.org/stable/rust-by-example/trait.html
https://doc.rust-lang.org/reference/items/traits.html
https://doc.rust-lang.org/reference/items/traits.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-supertraits-to-require-one-traits-functionality-within-another-trait
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-supertraits-to-require-one-traits-functionality-within-another-trait
https://doc.rust-lang.org/stable/rust-by-example/trait/supertraits.html
https://doc.rust-lang.org/stable/rust-by-example/trait/supertraits.html
https://doc.rust-lang.org/reference/items/traits.html#supertraits
https://doc.rust-lang.org/reference/items/traits.html#supertraits
https://doc.rust-lang.org/reference/items/implementations.html
https://doc.rust-lang.org/reference/items/implementations.html
https://doc.rust-lang.org/nightly/nomicon/send-and-sync.html
https://doc.rust-lang.org/nightly/nomicon/send-and-sync.html
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
https://doc.rust-lang.org/stable/rust-by-example/fn.html
https://doc.rust-lang.org/stable/rust-by-example/fn.html
https://doc.rust-lang.org/reference/items/functions.html
https://doc.rust-lang.org/reference/items/functions.html
https://doc.rust-lang.org/book/ch05-03-method-syntax.html
https://doc.rust-lang.org/book/ch05-03-method-syntax.html
https://doc.rust-lang.org/stable/rust-by-example/fn/methods.html
https://doc.rust-lang.org/stable/rust-by-example/fn/methods.html
https://doc.rust-lang.org/reference/items/associated-items.html#methods
https://doc.rust-lang.org/reference/items/associated-items.html#methods
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://doc.rust-lang.org/reference/const_eval.html#const-functions
https://doc.rust-lang.org/reference/const_eval.html#const-functions
https://doc.rust-lang.org/reference/expressions/block-expr.html#const-blocks
https://doc.rust-lang.org/reference/expressions/block-expr.html#const-blocks
https://doc.rust-lang.org/reference/items/functions.html#async-functions
https://doc.rust-lang.org/reference/items/functions.html#async-functions
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/reference/expressions/block-expr.html#async-blocks
https://doc.rust-lang.org/reference/expressions/block-expr.html#async-blocks
https://doc.rust-lang.org/reference/expressions/block-expr.html#capture-modes
https://doc.rust-lang.org/reference/expressions/block-expr.html#capture-modes
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#function-pointers
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#function-pointers
https://doc.rust-lang.org/std/primitive.fn.html
https://doc.rust-lang.org/std/primitive.fn.html
https://doc.rust-lang.org/reference/types.html#function-pointer-types
https://doc.rust-lang.org/reference/types.html#function-pointer-types
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#returning-closures
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#returning-closures
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.AsyncFn.html
https://doc.rust-lang.org/std/ops/trait.AsyncFn.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/stable/rust-by-example/fn/closures.html
https://doc.rust-lang.org/stable/rust-by-example/fn/closures.html
https://doc.rust-lang.org/reference/expressions/closure-expr.html
https://doc.rust-lang.org/reference/expressions/closure-expr.html
https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/reference/expressions/closure-expr.html#async-closures
https://doc.rust-lang.org/reference/expressions/closure-expr.html#async-closures
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/stable/rust-by-example/unsafe.html#unsafe-operations
https://doc.rust-lang.org/stable/rust-by-example/unsafe.html#unsafe-operations
https://doc.rust-lang.org/nightly/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nightly/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/reference/unsafe-blocks.html#unsafe-blocks
https://doc.rust-lang.org/reference/unsafe-blocks.html#unsafe-blocks
https://rust-lang.github.io/rfcs/3484-unsafe-extern-blocks.html
https://rust-lang.github.io/rfcs/3484-unsafe-extern-blocks.html
https://users.rust-lang.org/t/why-are-function-pointers-special-no-null/87990/16
https://users.rust-lang.org/t/why-are-function-pointers-special-no-null/87990/16

Control Flow

Control execution within a function.

Example Explanation
while x {} Loop, REF run while expression x is true.
loop {} Loop indefinitely REF until break. Can yield value with break x.
for x in collection {} Syntactic sugar to loop over iterators. B< STD REF

collection

iterator X
if x {} else {} Conditional branch R&F if expression is true.
"label: {} Block label, RF¢ can be used with break to exit out of this block. 165*
'label: loop {} Similar loop label, &% REF yseful for flow control in nested loops.
break Break expression REF to exit a labelled block or loop.
break 'label x Break out of block or loop named 'label and make x its value.
break 'label Same, but don't produce any value.
break x Make x value of the innermost loop (only in actual loop).
continue Continue expression REF to the next loop iteration of this loop.
continue 'label Same but instead of this loop, enclosing loop marked with 'label.
x? If x is Err or None, return and propagate. BK EX STD REF
x.await Syntactic sugar to get future, poll, yield. REF 8 Only inside async.
X
future
return x Early return R from fn. More idiomatic is to end with expression.
{ return } Inside normal {}-blocks return exits surrounding function.
[[{ return } Within closures return exits that c. only, i.e., closure is s. fn.
async { return } Inside async a return only REF ® exits that {}, i.e., async {} iss. fn.
() Invoke callable f (e.g., a function, closure, function pointer, Fn, ...).
x.f() Call member fn, requires f takes self, §self, ... as first argument.
X f(x) Same as x.f(). Unless impl Copy for X {}, f can only be called once.
X f(&x) Same as x.f().
X f(&smut x) Same as x.f().
S::f(&x) Same as x.f() if X derefsto s, i.e., x.f() finds methods of s.
T f(6x) Same as x.f() if X impl T,i.e., x.f() finds methods of T if in scope.
X::f() Call associated function, e.g., X :: new(),
<X as T>::f() Call trait method T :: () implemented for X.

Organizing Code

Segment projects into smaller units and minimize dependencies.

Example Explanation
mod m {} Define a module, BX EX REF get definition from inside {}.*
mod m; Define a module, get definition from m.rs or m/mod.rs. '
a:b Namespace path X REF to element b within a (mod, enum, ...).
28 [Search b in crate root *° REF or ext. prelude; ‘€ RE" global path. REF ©
crate::b Search b in crate root. 18

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#infinite-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#infinite-loops
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/std/iter/index.html
https://doc.rust-lang.org/std/iter/index.html
https://doc.rust-lang.org/reference/expressions/loop-expr.html#iterator-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#iterator-loops
https://doc.rust-lang.org/reference/expressions/if-expr.html
https://doc.rust-lang.org/reference/expressions/if-expr.html
https://rust-lang.github.io/rfcs/2046-label-break-value.html
https://rust-lang.github.io/rfcs/2046-label-break-value.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/loop/nested.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/loop/nested.html
https://doc.rust-lang.org/reference/expressions/loop-expr.html#loop-labels
https://doc.rust-lang.org/reference/expressions/loop-expr.html#loop-labels
https://doc.rust-lang.org/reference/expressions/loop-expr.html#break-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#break-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#propagating-errors
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#propagating-errors
https://doc.rust-lang.org/stable/rust-by-example/error/result/enter_question_mark.html
https://doc.rust-lang.org/stable/rust-by-example/error/result/enter_question_mark.html
https://doc.rust-lang.org/std/result/index.html#the-question-mark-operator-
https://doc.rust-lang.org/std/result/index.html#the-question-mark-operator-
https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
https://doc.rust-lang.org/reference/expressions/await-expr.html#await-expressions
https://doc.rust-lang.org/reference/expressions/await-expr.html#await-expressions
https://doc.rust-lang.org/reference/expressions/return-expr.html
https://doc.rust-lang.org/reference/expressions/return-expr.html
https://doc.rust-lang.org/reference/expressions/block-expr.html#control-flow-operators
https://doc.rust-lang.org/reference/expressions/block-expr.html#control-flow-operators
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/reference/items/modules.html#modules
https://doc.rust-lang.org/reference/items/modules.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html
https://doc.rust-lang.org/reference/paths.html
https://doc.rust-lang.org/reference/paths.html
https://doc.rust-lang.org/reference/glossary.html#crate
https://doc.rust-lang.org/reference/glossary.html#crate
https://doc.rust-lang.org/reference/names/preludes.html#extern-prelude
https://doc.rust-lang.org/reference/names/preludes.html#extern-prelude
https://doc.rust-lang.org/reference/paths.html#path-qualifiers
https://doc.rust-lang.org/reference/paths.html#path-qualifiers
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/future/trait.IntoFuture.html
https://doc.rust-lang.org/std/future/trait.IntoFuture.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/task/enum.Poll.html
https://doc.rust-lang.org/std/task/enum.Poll.html

Example Explanation

self::b Search b in current module.

super::b Search b in parent module.
use a::b; Use EXREF b directly in this scope without requiring a anymore.
use a::{b, c}; Same, but bring b and ¢ into scope.
use a::b as x; Bring b into scope but name x, like use std::error :: Error as E.
use a::b as _; Bring b anon. into scope, useful for traits with conflicting names.
use a::*; Bring everything from a in, only recomm. if a is some prelude. 5™ ¢
pub use a::b; Bring a :: b into scope and reexport from here.
pub T "Public if parent path is public" visibility & REF for T.

pub(crate) T Visible at most! in current crate.

pub(super) T Visible at most! in parent.

pub(self) T Visible at most* in current module (default, same as no pub).

pub(in a::b) T Visible at most! in ancestor a :: b.
extern crate a; Declare dependency on external crate; 3¢ REF < just use a :: b in 8,
extern "C" {} Declare external dependencies and ABI (e.g., "C") from FFI. BK EX NOM REF
extern "C" fn f() {} Define function to be exported with ABI (e.g., "C") to FFI.

! Items in child modules always have access to any item, regardless if pub or not.

Type Aliases and Casts

Short-hand names of types, and methods to convert one type to another.

Example Explanation
type T = S; Create a type alias, BX REF j.e., another name for s.
Self Type alias for implementing type, REF e.g., fn new() — Self,
self Method subject BK REF in fn f(self) {}, e.g., akinto fn f(self: Self) {}.
gself Same, but refers to self as borrowed, would equal f(self: &§Self)
smut self Same, but mutably borrowed, would equal f(self: smut Self)
self: Box<Self> Arbitrary self type, add methods to smart ptrs (my_box.f_of_self()).
<S as T> Disambiguate B¢ REF type S as trait T, e.g., <S as T>::f().
a:b asc In use of symbol, import S as R, e.g., use a::S as R.
X as u32 Primitive cast, ¥ REF may truncate and be a bit surprising. * NM

1 See Type Conversions below for all the ways to convert between types.

Macros & Attributes

Code generation constructs expanded before the actual compilation happens.

Example Explanation
mt() Macro BK STP REF inyocation, also m! {}, m! [1 (depending on macro).
#Hattr] Outer attribute, EX REF annotating the following item.
#[attr] Inner attribute, annotating the upper, surrounding item.
Inside Macros * Explanation
$x:ty Macro capture, the :ty fragment specifier R¥" 2 declares what $x may be.
$x Macro substitution, e.g., use the captured $x: ty from above.
$(x),* Macro repetition REF zero or more times.

https://doc.rust-lang.org/stable/rust-by-example/mod/use.html#the-use-declaration
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html#the-use-declaration
https://doc.rust-lang.org/reference/items/use-declarations.html
https://doc.rust-lang.org/reference/items/use-declarations.html
https://doc.rust-lang.org/std/prelude/index.html#other-preludes
https://doc.rust-lang.org/std/prelude/index.html#other-preludes
https://stackoverflow.com/questions/36384840/what-is-the-prelude
https://stackoverflow.com/questions/36384840/what-is-the-prelude
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/reference/visibility-and-privacy.html
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#using-a-crate-to-get-more-functionality
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#using-a-crate-to-get-more-functionality
https://doc.rust-lang.org/reference/items/extern-crates.html#extern-crate-declarations
https://doc.rust-lang.org/reference/items/extern-crates.html#extern-crate-declarations
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/stable/rust-by-example/std_misc/ffi.html#foreign-function-interface
https://doc.rust-lang.org/stable/rust-by-example/std_misc/ffi.html#foreign-function-interface
https://doc.rust-lang.org/nightly/nomicon/ffi.html#calling-foreign-functions
https://doc.rust-lang.org/nightly/nomicon/ffi.html#calling-foreign-functions
https://doc.rust-lang.org/reference/items/external-blocks.html#external-blocks
https://doc.rust-lang.org/reference/items/external-blocks.html#external-blocks
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/reference/items/type-aliases.html#type-aliases
https://doc.rust-lang.org/reference/items/type-aliases.html#type-aliases
https://doc.rust-lang.org/reference/types.html#self-types
https://doc.rust-lang.org/reference/types.html#self-types
https://doc.rust-lang.org/book/ch05-03-method-syntax.html#method-syntax
https://doc.rust-lang.org/book/ch05-03-method-syntax.html#method-syntax
https://doc.rust-lang.org/reference/items/associated-items.html#methods
https://doc.rust-lang.org/reference/items/associated-items.html#methods
https://github.com/withoutboats/rfcs/blob/arbitray-receivers/text/0000-century-of-the-self-type.md
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://doc.rust-lang.org/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/stable/rust-by-example/types/cast.html#casting
https://doc.rust-lang.org/stable/rust-by-example/types/cast.html#casting
https://doc.rust-lang.org/reference/expressions/operator-expr.html#type-cast-expressions
https://doc.rust-lang.org/reference/expressions/operator-expr.html#type-cast-expressions
https://doc.rust-lang.org/nightly/nomicon/casts.html
https://doc.rust-lang.org/nightly/nomicon/casts.html
https://cheats.rs/#type-conversions
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/std/index.html#macros
https://doc.rust-lang.org/std/index.html#macros
https://doc.rust-lang.org/reference/macros.html
https://doc.rust-lang.org/reference/macros.html
https://doc.rust-lang.org/stable/rust-by-example/attribute.html
https://doc.rust-lang.org/stable/rust-by-example/attribute.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/macros-by-example.html#metavariables
https://doc.rust-lang.org/reference/macros-by-example.html#metavariables
https://doc.rust-lang.org/reference/macros-by-example.html#repetitions
https://doc.rust-lang.org/reference/macros-by-example.html#repetitions

Inside Macros * Explanation

$(x),+ Same, but one or more times.
$(x)? Same, but zero or one time (separator doesn't apply).
$(x) <<+ In fact separators other than , are also accepted. Here: <<.

1 Applies to 'macros by example'. REF
2 See Tooling Directives below for all fragment specifiers.

Pattern Matching

Constructs found in match or let expressions, or function parameters.

Example Explanation

match m {} Initiate pattern matching, BK EX REF then use match arms, c. next table.
let S(x) = get(); Notably, let also destructures X similar to the table below.

let S { x | = s; Only x will be bound to value s . x.

let (_, b, _) = abc; Only b will be bound to value abc.1.

let (a, ..) = abc; Ignoring 'the rest' also works.

let (.., a, b) = (1, 2); Specific bindings take precedence over 'the rest', here a is 1, b is 2.

let s @S { x } = get(); Bind s to S while x is bnd. to s.x, pattern binding, K EX REF ¢_below ¥

let wa t @ f = get(); Stores 3 copies of get() resultin each w, t, f. ¥

let (Ix] x) = get(); Pathological or-pattern,’ not closure.® Same as let x = get(); ¥
let Ok(x) = f(); Won't work ® if p. can be refuted, REF use let else or if let instead.
let Ok(x) = f(); But can work if alternatives uninhabited, e.g., f returns Result<T, !> 182+
let Ok(x) = f() else {}; Try to assign R*C if not else {} w. must break, return, panic!, . 165 ()
if let Ok(x) = f() {} Branch if pattern can be assigned (e.g., enum variant), syntactic sugar. *
if let .. & let .. { } Let chains, REF use more than binding w.o. nesting. %
while let Ok(x) = f() {} Equiv.; here keep calling f(), run {} as long as p. can be assigned.
fn f(s { x }: S) Function param. also work like let, here x boundto s.x of f(s). ¥

* Desugars to match get() { Some(x) = {}, _ = () .

Pattern matching arms in match expressions. Left side of these arms can also be found in let expressions.

Within Match Arm Explanation

E:A = {} Match enum variant A, c. pattern matching. B BX REF
E=B (..) = {} Match enum tuple variant B, ignoring any index.
ExC{ . } = {} Match enum struct variant C, ignoring any field.
S {x:0, y: 1} = {} Match s. with specific values (only s with s.x of @ and s.y of 1).
S {x:a, y: b} = {} Match s. with any ® values and bind s.x to a and s.y to b.

S {x,y} = {} Same, but shorthand with s.x and s.y bound as x and y respectively.
s{ .} =1{} Match struct with any values.
D = {} Match enum variant E :: D if D in use.
D => {} Match anything, bind b; possibly false friend ® of £ :: b if D notin use.
= {} Proper wildcard that matches anything / "all the rest".
0| 1= {} Pattern alternatives, or-patterns. RF¢

ExA | EnZ = {} Same, but on enum variants.

E:xC {x} | Ex=D {x} = {} Same, but bind x if all variants have it.

Some(A | B) =» {} Same, can also match alternatives deeply nested.

6

https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://cheats.rs/#tooling-directives
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/destructuring.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/destructuring.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
https://rust-lang.github.io/rfcs/3137-let-else.html
https://rust-lang.github.io/rfcs/3137-let-else.html
https://doc.rust-lang.org/reference/expressions/if-expr.html#r-expr.if.chains.bindings
https://doc.rust-lang.org/reference/expressions/if-expr.html#r-expr.if.chains.bindings
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://doc.rust-lang.org/reference/expressions/match-expr.html
https://rust-lang.github.io/rfcs/2535-or-patterns.html
https://rust-lang.github.io/rfcs/2535-or-patterns.html

Within Match Arm Explanation

[x| x =» {} Pathological or-pattern, ® leading | ignored, is just x | x, thus x. ¥
Ix = {} Similar, leading | ignored. ¥

(a, 0) = {} Match tuple with any value for a and @ for second.

[a, 0] = {} Slice pattern, REF ¢ match array with any value for a and 0 for second.
[1, ..1 = {} Match array starting with 1, any value for rest; subslice pattern. REF RFC
[1, .., 51 = {} Match array starting with 1, ending with 5.

[1, x@ .., 5] =5 {} Same, but also bind x to slice representing middle (c. pattern binding).
[a, x@ .., bl = {} Same, but match any first, last, bound as a, b respectively.
1 .. 3= {} Range pattern, ¢ REF here matches 1 and 2; partially unstable. **
1 .= 3 = {} Inclusive range pattern, matches 1, 2 and 3.
1 .. = {} Open range pattern, matches 1 and any larger number.

x@1l..=5 = {} Bind matched to x; pattern binding, 8¢ ®X REF here x would be 1 ... 5.
Err(x @ Error {..}) = {} Also works nested, here x binds to Error, esp. useful with if below.

s {x 1} if x> 10 = {} Pattern match guards, BK EX REF condition must be true as well to match.

Generics & Constraints

Generics combine with type constructors, traits and functions to give your users more flexibility.

Example Explanation

struct S<T> .. A generic BX EX type with a type parameter (T is placeholder here).

S<T> where T: R Trait bound, B¢ ¥X REF [imits allowed T, guarantees T has trait R.
where T: R, P: S Independent trait bounds, here one for T and one for (not shown) P.
where T: R, S Compile error, ® you probably want compound bound R + S below.
where T: R + S Compound trait bound, Bk EX 7 must fulfill R and s.
where T: R + 'a Same, but w. lifetime. T must fulfill R, if T has /t., must outlive 'a.
where T: ?Sized Opt out of a pre-defined trait bound, here Sized.?
where T: 'a Type lifetime bound; X if T has references, they must outlive 'a.
where T: 'static Same; does not mean value t will ® jive 'static, only that it could.
where 'b: 'a Lifetime 'b must live at least as long as (i.e., outlive) *a bound.
where u8: R<T> Can also make conditional statements involving other types. ¥

S<T: R> Short hand bound, almost same as above, shorter to write.

S<const N: usize> Generic const bound; REF user of type S can provide constant value N.
S<10> Where used, const bounds can be provided as primitive values.
S<{5+5}> Expressions must be put in curly brackets.

S<T = R> Default parameters; Bk makes s a bit easier to use, but keeps flexible.
S<const N: u8 = 0> Default parameter for constants; e.g., in f(x: S) {} param N is 0.
S<T = u8> Default parameter for types, e.g., in f(x: S) {} param T is u8.

S<!'_> Inferred anonymous It.; asks compiler to figure it out' if obvious.

S<_> Inferred anonymous type, e.g., as let x: Vec<_> = iter.collect()

S::<T> Turbofish STP call site type disambiguation, e.g., f::<u32>().
E::<T>::A Generic enums can receive their type parameters on their type E ...
E:rAii<T> ... or at the variant (A here); allows Ok: :<R, E>(r) and similar.

trait T<x> {} A trait generic over X. Can have multiple impl T for S (one per X).

https://doc.rust-lang.org/reference/patterns.html#slice-patterns
https://doc.rust-lang.org/reference/patterns.html#slice-patterns
https://doc.rust-lang.org/edition-guide/rust-2018/slice-patterns.html
https://doc.rust-lang.org/edition-guide/rust-2018/slice-patterns.html
https://doc.rust-lang.org/reference/patterns.html#rest-patterns
https://doc.rust-lang.org/reference/patterns.html#rest-patterns
https://rust-lang.github.io/rfcs/2359-subslice-pattern-syntax.html
https://rust-lang.github.io/rfcs/2359-subslice-pattern-syntax.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#matching-ranges-of-values-with-
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#matching-ranges-of-values-with-
https://doc.rust-lang.org/reference/patterns.html#range-patterns
https://doc.rust-lang.org/reference/patterns.html#range-patterns
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#extra-conditionals-with-match-guards
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#extra-conditionals-with-match-guards
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/guard.html#guards
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/guard.html#guards
https://doc.rust-lang.org/reference/expressions/match-expr.html#match-guards
https://doc.rust-lang.org/reference/expressions/match-expr.html#match-guards
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/stable/rust-by-example/generics.html
https://doc.rust-lang.org/stable/rust-by-example/generics.html
https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
https://doc.rust-lang.org/stable/rust-by-example/generics/bounds.html
https://doc.rust-lang.org/stable/rust-by-example/generics/bounds.html
https://doc.rust-lang.org/reference/trait-bounds.html#trait-and-lifetime-bounds
https://doc.rust-lang.org/reference/trait-bounds.html#trait-and-lifetime-bounds
https://doc.rust-lang.org/book/ch10-02-traits.html#specifying-multiple-trait-bounds-with-the--syntax
https://doc.rust-lang.org/book/ch10-02-traits.html#specifying-multiple-trait-bounds-with-the--syntax
https://doc.rust-lang.org/stable/rust-by-example/generics/multi_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/generics/multi_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime/lifetime_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime/lifetime_bounds.html
https://doc.rust-lang.org/reference/items/generics.html#const-generics
https://doc.rust-lang.org/reference/items/generics.html#const-generics
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#default-generic-type-parameters-and-operator-overloading
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#default-generic-type-parameters-and-operator-overloading
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect

Example Explanation

trait T { type X; } Defines associated type BK REF RFC x Only one impl T for S possible.
trait T { type X<G>; } Defines generic associated type (GAT), RC X can be generic Vec <.
trait T { type X<'a>; } Defines a GAT generic over a lifetime.

type X = R; Set associated type within impl T for S { type X = R; }.

type X<G> = R<G>; Same for GAT, e.g., impl T for S { type X<G> = Vec<G>; }.
impl<T> S<T> {} Impl. fn's for any T in s<T> generically, REF here T ty. parameter.
impl S<T> {} Impl. fn's for exactly S<T> inherently, RE" here T specific type, e.g., u8.
fn £() — impl T Existential types (aka RPIT), B¢ returns an unknown-to-caller S that impl T.

- impl T + 'a Signals the hidden type lives at least as long as 'a. RFC

> impl T + use<'a> Signals instead the hidden type captured lifetime 'a, use bound. ¢ ?

- impl T + use<'a, R> Also signals the hidden type may have captured lifetimes from R.

- S<impl T> The impl T part can also be used inside type arguments.
fn f(x: &impl T) Trait bound via "impl traits", X similar to fn f<S: T>(x: &S) below.
fn f(x: &dyn T) Invoke f via dynamic dispatch, B¢ REF £ will not be instantiated for x.
fn f<x: T>(x: X) Fn. generic over x, f will be instantiated (‘'monomorphized’) per x.
fn f() where Self: R; In trait T {}, make f accessible only on types known to also impl R.

fn f() where Self: Sized; Using Sized can opt f out of trait object vtable, enabling dyn T.

fn f() where Self: R {} Other R useful w. dflt. fn. (non dflt. would need be impl'ed anyway).

Higher-Ranked Items ¥

Actual types and traits, abstract over something, usually lifetimes.

Example Explanation
for<'a> Marker for higher-ranked bounds. NOM REF ¥
trait T: for<'a> R<'a> {} Any s that impl T would also have to fulfill R for any lifetime.
fn(&'a u8) Function pointer type holding fn callable with specific lifetime 'a.
for<'a> fn(&'a u8) Higher-ranked type! ¢ holding fn call. with any /t.; subtype' of above.
fn(&'_ u8) Same; automatically expanded to type for<'a> fn(&'a u8).
fn(sus) Same; automatically expanded to type for<'a> fn(s'a u8).
dyn for<'a> Fn(&'a u8) Higher-ranked (trait-object) type, works like fn above.
dyn Fn(&'_ u8) Same; automatically expanded to type dyn for<'a> Fn(&'a u8).
dyn Fn(&u8) Same; automatically expanded to type dyn for<'a> Fn(&'a u8).

1 Yes, the for< is part of the type, which is why you write impl T for for<'a> fn(&'a u8) below.

Implementing Traits Explanation
impl<'a> T for fn(&'a u8) {} For fn. pointer, where call accepts specific /t. *a, impl trait T.
impl T for for<'a> fn(&'a u8) {} For fn. pointer, where call accepts any /t., impl trait T.
impl T for fn(&u8) {} Same, short version.

Strings & Chars

Rust has several ways to create textual values.

Example Explanation

L String literal, REF.1 a UTF-8 5'static str, ST supporting these escapes:

8

https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#specifying-placeholder-types-in-trait-definitions-with-associated-types
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#specifying-placeholder-types-in-trait-definitions-with-associated-types
https://doc.rust-lang.org/reference/items/associated-items.html#associated-types
https://doc.rust-lang.org/reference/items/associated-items.html#associated-types
https://rust-lang.github.io/rfcs/0195-associated-items.html
https://rust-lang.github.io/rfcs/0195-associated-items.html
https://rust-lang.github.io/rfcs/1598-generic_associated_types.html
https://rust-lang.github.io/rfcs/1598-generic_associated_types.html
https://doc.rust-lang.org/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/reference/items/implementations.html#inherent-implementations
https://doc.rust-lang.org/reference/items/implementations.html#inherent-implementations
https://santiagopastorino.com/2022/10/20/what-rpits-rpitits-and-afits-and-their-relationship/
https://doc.rust-lang.org/book/ch10-02-traits.html#returning-types-that-implement-traits
https://doc.rust-lang.org/book/ch10-02-traits.html#returning-types-that-implement-traits
https://rust-lang.github.io/rfcs/3498-lifetime-capture-rules-2024.html#capturing-lifetimes
https://rust-lang.github.io/rfcs/3498-lifetime-capture-rules-2024.html#capturing-lifetimes
https://blog.rust-lang.org/2024/09/05/impl-trait-capture-rules.html
https://blog.rust-lang.org/2024/09/05/impl-trait-capture-rules.html
https://doc.rust-lang.org/book/ch10-02-traits.html#trait-bound-syntax
https://doc.rust-lang.org/book/ch10-02-traits.html#trait-bound-syntax
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/reference/types.html#trait-objects
https://doc.rust-lang.org/reference/types.html#trait-objects
https://en.wikipedia.org/wiki/Monomorphization
https://doc.rust-lang.org/nightly/nomicon/hrtb.html
https://doc.rust-lang.org/nightly/nomicon/hrtb.html
https://doc.rust-lang.org/reference/trait-bounds.html#higher-ranked-trait-bounds
https://doc.rust-lang.org/reference/trait-bounds.html#higher-ranked-trait-bounds
https://github.com/rust-lang/rust/issues/56105
https://github.com/rust-lang/rust/issues/56105
https://doc.rust-lang.org/reference/tokens.html#string-literals
https://doc.rust-lang.org/reference/tokens.html#string-literals
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/primitive.str.html

Example Explanation

"\n\r\t\o\\" Common escapes REF, e.g., "\n" becomes new line.

"\x36" ASClle. R¥F upto 7f, e.g., "\x36" would become 6.

"\u{7fff}" Unicode e. REF up to 6 digits, e.g., "\u{7fff}" becomes 4.
r' .t Raw string literal. R¥F 1UTF-8, but won't interpret any escape above.
r#" ... "# Raw string literal, UTF-8, but can also contain ". Number of # can vary.
c" Lt C string literal, REF a NUL-terminated &'static CStr, STP for FFIl. 177+
CRY oo ¥y G coo Vi Raw C string literal, combination analog to above.
b ... " Byte string literal; "7 ! constructs ASCll-only &'static [u8; NI,
br" ...", br#" ..."# Raw byte string literal, combination analog to above.
b'x' ASCII byte literal, REF a single us byte.
& Character literal, REF fixed 4 byte unicode 'char'. STO

1 Supports multiple lines out of the box. Just keep in mind Debug' (e.g., dbg!(x) and println!("{x:?}")) might render them as \n, while Display' (e.g., println!("{x}")) renders them proper.

Documentation

Debuggers hate him. Avoid bugs with this one weird trick.

Example Explanation
/// Outer line doc comment,! BK EXREF yse these on ty., traits, fn's, ...
Va Inner line doc comment, mostly used at top of file.
// Line comment, use these to document code flow or internals.
o %/ Block comment. 2 ©
[*x o/ Outer block doc comment. 2 ©
/LK Inner block doc comment. 2 ©

1 Tooling Directives outline what you can do inside doc comments.
2 Generally discouraged due to bad UX. If possible use equivalent line comment instead with IDE support.

Miscellaneous

These sigils did not fit any other category but are good to know nonetheless.

Example Explanation

! Always empty never type. BK EX STD REF

fn f() = ! {} Function that never ret.; compat. with any ty. e.g., let x: u8 = f();
fn f() — Result<(), !> {} Function that must return Result but signals it can never Err.
fn f(x: 1) {} Function that exists, but can never be called. Not very useful. ¥
_ Unnamed wildcard REF variable binding, e.g., Ix, _| {}.
let _ = x; Unnamed assign. is no-op, does not ® move out x or preserve scope!
=X You can assign anything to _ without let, i.e., _ = ignore_rval(); &
_X Variable binding that won't emit unused variable warnings.
1_234_567 Numeric separator for visual clarity.
1_u8 Type specifier for numeric literals ¥X REF (also i8, u16, ...).
0xBEEF, 00777, 0b1001 Hexadecimal (0x), octal (@0) and binary (@b) integer literals.
12.3e4, 1E-8 Scientific notation for floating-point literals. REF
r#foo A raw identifier BK EX for edition compatibility. ¥
'r#a Araw lifetime label ? for edition compatibility. ¥
X; Statement REF terminator, c. expressions B REF

9

https://doc.rust-lang.org/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/reference/tokens.html#unicode-escapes
https://doc.rust-lang.org/reference/tokens.html#unicode-escapes
https://doc.rust-lang.org/reference/tokens.html#raw-string-literals
https://doc.rust-lang.org/reference/tokens.html#raw-string-literals
https://doc.rust-lang.org/reference/tokens.html#c-string-literals
https://doc.rust-lang.org/reference/tokens.html#c-string-literals
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/reference/tokens.html#byte-and-byte-string-literals
https://doc.rust-lang.org/reference/tokens.html#byte-and-byte-string-literals
https://doc.rust-lang.org/reference/tokens.html#byte-literals
https://doc.rust-lang.org/reference/tokens.html#byte-literals
https://doc.rust-lang.org/reference/tokens.html#character-and-string-literals
https://doc.rust-lang.org/reference/tokens.html#character-and-string-literals
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/reference/comments.html#doc-comments
https://doc.rust-lang.org/reference/comments.html#doc-comments
https://cheats.rs/#tooling-directives
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#the-never-type-that-never-returns
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#the-never-type-that-never-returns
https://doc.rust-lang.org/stable/rust-by-example/fn/diverging.html#diverging-functions
https://doc.rust-lang.org/stable/rust-by-example/fn/diverging.html#diverging-functions
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/reference/types.html#never-type
https://doc.rust-lang.org/reference/types.html#never-type
https://doc.rust-lang.org/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/stable/rust-by-example/types/literals.html#literals
https://doc.rust-lang.org/stable/rust-by-example/types/literals.html#literals
https://doc.rust-lang.org/reference/tokens.html#number-literals
https://doc.rust-lang.org/reference/tokens.html#number-literals
https://doc.rust-lang.org/reference/tokens.html#floating-point-literals
https://doc.rust-lang.org/reference/tokens.html#floating-point-literals
https://doc.rust-lang.org/book/appendix-01-keywords.html#raw-identifiers
https://doc.rust-lang.org/book/appendix-01-keywords.html#raw-identifiers
https://doc.rust-lang.org/stable/rust-by-example/compatibility/raw_identifiers.html#raw-identifiers
https://doc.rust-lang.org/stable/rust-by-example/compatibility/raw_identifiers.html#raw-identifiers
https://doc.rust-lang.org/reference/statements.html
https://doc.rust-lang.org/reference/statements.html
https://doc.rust-lang.org/stable/rust-by-example/expression.html
https://doc.rust-lang.org/stable/rust-by-example/expression.html
https://doc.rust-lang.org/reference/expressions.html
https://doc.rust-lang.org/reference/expressions.html

Common Operators

Rust supports most operators you would expect (+, *, %, =, =, ...), including overloading. '° Since they behave no differently in Rust we do not list
them here.

Behind the Scenes

Arcane knowledge that may do terrible things to your mind, highly recommended.

The Abstract Machine

Like ¢ and c++, Rust is based on an abstract machine.

Overview

- K - [Rust] > [ADStract Machine] > [CPU]

With rare exceptions you are never 'allowed to reason' about the actual CPU. You write code for an abstracted CPU.
Rust then (sort of) understands what you want, and translates that into actual RISC-V / x86 / ... machine code.

This abstract machine

e is not a runtime, and does not have any runtime overhead, but is a computing model abstraction,
e contains concepts such as memory regions (stack, ...), execution semantics, ...

e knows and sees things your CPU might not care about,

e is de-facto a contract between you and the compiler,

e and exploits all of the above for optimizations.

Misconceptions

On the left things people may incorrectly assume they should get away with if Rust targeted CPU directly. On the right
things you'd interfere with if in reality if you violate the AM contract.

Without AM With AM
oxffff_ffff would make a valid char. ® AM may exploit ‘invalid' bit patterns to pack unrelated data.
oxff and 0xff are same pointer. ® AM pointers can have provenance S for optimization.
Any r/w on pointer 0xff always fine. ® AM may issue cache-friendly ops since 'no read possible'.
Reading un-init just gives random value. ® AM 'knows' read impossible, may remove all related code.
Data race just gives random value. ® AM may split R/W, produce impossible value. *
Null ref. is just 0x0 in some register. ® Holding 0x0 in reference summons Cthulhu.

10

https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/ptr/index.html#provenance
https://doc.rust-lang.org/std/ptr/index.html#provenance

This table is only to outline what the AM does. Unlike C or C++, Rust never lets you do the wrong thing unless you
force it with unsafe . '

Language Sugar

If something works that "shouldn't work now that you think about it", it might be due to one of these.

Name Description
Coercions NoM Weakens types to match signature, e.g., émut T to &T; c. type conv. !
Deref NOM & Derefs x: T until *x, *xx, ... compatible with some target S.
Prelude 5™ Automatic import of basic items, e.g., Option, drop(), ...
Reborrow ¢ Since x: &mut T can't be copied; moves new &émut =*x instead.
Lifetime Elision BK NOM REF Allows you to write f(x: &T), instead of f<'a>(x: &'a T), for brevity.
Lifetime Extensions ¢ REF In let x = &tmp().f and similar hold on to temporary past line.
Method Resolution REF Derefs or borrow x until x. () works.
Match Ergonomics R Repeatedly deref. scrutinee and adds ref and ref mut to bindings.
Rvalue Static Promotion R°C ¥ Makes refs. to constants 'static, e.g., 642, &None, &mut [],
Dual Definitions RFC £ Defining one (e.g., struct s(u8)) implicitly def. another (e.g., fn s).
Drop Hidden Flow REF ¥ At end of blocks { ... } or _ assignment, may call T ::drop().ST®
Drop Not Callable ™ ¥ Compiler forbids explicit T :: drop() call, must use mem ::drop(), ST®
Auto Traits REF Always impl'ed for your types, closures, futures if possible.

Opinion €2 — These features make your life easier using Rust, but stand in the way of learning it. If you want to develop a genuine
understanding, spend some extra time exploring them.

Memory & Lifetimes

An illustrated guide to moves, references and lifetimes.

Types & Moves

Application Memory £J

e Application memory is just array of bytes on low level.
e Operating environment usually segments that, amongst others, into:
o stack (small, low-overhead memory,! most variables go here),
o heap (large, flexible memory, but always handled via stack proxy like Box<T>),
o static (most commonly used as resting place for str part of str),
o code (where bitcode of your functions reside).
e Most tricky part is tied to how stack evolves, which is our focus.

1 For fixed-size values stack is trivially manageable: take a few bytes more while you need them, discarded once you leave. However, giving out
pointers to these transient locations form the very essence of why lifetimes exist; and are the subject of the rest of this chapter.

11

https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://stackoverflow.com/questions/28519997/what-are-rusts-exact-auto-dereferencing-rules
https://stackoverflow.com/questions/28519997/what-are-rusts-exact-auto-dereferencing-rules
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/std/prelude/index.html
https://quinedot.github.io/rust-learning/st-reborrow.html
https://quinedot.github.io/rust-learning/st-reborrow.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#lifetime-elision
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#lifetime-elision
https://doc.rust-lang.org/nightly/nomicon/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/nightly/nomicon/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/reference/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/reference/lifetime-elision.html#lifetime-elision
https://blog.m-ou.se/super-let/
https://blog.m-ou.se/super-let/
https://doc.rust-lang.org/reference/destructors.html#temporary-lifetime-extension
https://doc.rust-lang.org/reference/destructors.html#temporary-lifetime-extension
https://doc.rust-lang.org/reference/expressions/method-call-expr.html
https://doc.rust-lang.org/reference/expressions/method-call-expr.html
https://rust-lang.github.io/rfcs/2005-match-ergonomics.html
https://rust-lang.github.io/rfcs/2005-match-ergonomics.html
https://doc.rust-lang.org/stable/reference/glossary.html#scrutinee
https://rust-lang.github.io/rfcs/1414-rvalue_static_promotion.html
https://rust-lang.github.io/rfcs/1414-rvalue_static_promotion.html
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://doc.rust-lang.org/reference/destructors.html
https://doc.rust-lang.org/reference/destructors.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/std/ops/trait.Drop.html
https://doc.rust-lang.org/std/mem/fn.drop.html
https://doc.rust-lang.org/std/mem/fn.drop.html
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits

0000000ew0000000000C00G00R0LA0GooERAY

Variables [3

let t = S(1);

e Reserves memory location with name t of type s and the value s(1) stored inside.
If declared with let that location lives on stack. *
¢ Note the linguistic ambiguity, in the term variable, it can mean the:
1. name of the location in the source file ("rename that variable"),
2. location in a compiled app, 0x7 ("tell me the address of that variable"),
3. value contained within, s(1) ("increment that variable").
Specifically towards the compiler t can mean location of t, here ox7, and value within t, here s(1).

1 Compare above,' true for fully synchronous code, but async stack frame might placed it on heap via runtime.

U008800e80000000000000000CCL0ICLO0AA0Y

Moves [3

let a = t;

e This will move value within t to location of a, or copy it, if S is Copy.
o After move location t is invalid and cannot be read anymore.
o Technically the bits at that location are not really empty, but undefined.
o |If you still had access to t (via unsafe) they might still look like valid s, but any attempt to use them as
valid s is undefined behavior. *
e We do not cover Copy types explicitly here. They change the rules a bit, but not much:
o They won't be dropped.
o They never leave behind an 'empty' variable location.

UDDUDDUDDUDH(DDUDDUDDUDDUDDUDUUDUU

Type Safety [J

let ¢c: S = M::new();

e The type of a variable serves multiple important purposes, it:
1. dictates how the underlying bits are to be interpreted,
2. allows only well-defined operations on these bits
3. prevents random other values or bits from being written to that location.
e Here assignment fails to compile since the bytes of M :: new() cannot be converted to form of type S.
e Conversions between types will always fail in general, unless explicit rule allows it (coercion, cast, ...).

12

@
UU0KU0e00KL0000000000BA00AL00YALLY

Scope & Drop [

{
let mut ¢ = S(2);
c = S(3); // « Drop called on "¢ before assignment.
let t = S(1);
let a = t;
} // ¢« Scope of "a’, "t°, “c’ ends here, drop called on “a”, "c .

e Once the 'name’' of a non-vacated variable goes out of (drop-)scope, the contained value is dropped.
o Rule of thumb: execution reaches point where name of variable leaves {}-block it was defined in
o In detail more tricky, esp. temporaries, ...
Drop also invoked when new value assigned to existing variable location.
In that case brop :: drop() is called on the location of that value.
o In the example above drop() is called on a, twice on ¢, but noton t.
e Most non-Copy values get dropped most of the time; exceptions include mem :: forget (), Rc cycles, abort().

Call Stack

U008800e800000000000000000CLHLUOB000Y

Function Boundaries [J

fn f(x: s) { .. }
let a = S(1); // < We are here

f(a);

* When a function is called, memory for parameters (and return values) are reserved on stack.!
e Here before f is invoked value in a is moved to 'agreed upon' location on stack, and during f works like ‘'local
variable' x.

1 Actual location depends on calling convention, might practically not end up on stack at all, but that doesn't change mental model.

JUaL L6 L ueeuseueeeeeeeeesees

Nested Functions [J

fn f(x: S) {
if once() { f(x) } // <« We are here (before recursion)

}

let a = S(1);
fla);

13

e Recursively calling functions, or calling other functions, likewise extends the stack frame.

» Nesting too many invocations (esp. via unbounded recursion) will cause stack to grow, and eventually to
overflow, terminating the app.

U00es00es00reeea000000000000000Ad000Y

Repurposing Memory [
fn f(x: S) {

if once() { f(x) }
let m = M::new() // ¢ We are here (after recursion)

let a = S(1);
f(a);

e Stack that previously held a certain type will be repurposed across (even within) functions.
e Here, recursing on f produced second x, which after recursion was partially reused for m.

Key take away so far, there are multiple ways how memory locations that previously held a valid value of a certain
type stopped doing so in the meantime. As we will see shortly, this has implications for pointers.

References & Pointers

U00ee000000 eeEeL000000000000A0000RA0Y

References as Pointers [3

let a = S(1);
let r: &S = &a;

Areference type such as &S or émut S can hold the location of some s.

Here type &S, bound as name r, holds location of variable a (0x3), that must be type S, obtained via &a.
If you think of variable c as specific location, reference r is a switchboard for locations.

The type of the reference, like all other types, can often be inferred, so we might omit it from now on:

let r: 65 = &a;
let r = &a;

14

100000000 eeee00ee00000000040004000d

Access to Non-Owned Memory [

let mut a = S(1);

let r = &mut a;

let d = r.clone(); // Valid to clone (or copy) from r-target.
*r = S(2); // Valid to set new S value to r-target.

o References can read from (&S) and also write to (émut S) locations they point to.
e The dereference =r means to use the location r points to (not the location of or value within r itself)
» In the example, clone d is created from *r, and S(2) written to *r.

o We assume S implements Clone, and r.clone() clones target-of-r, not r itself.

o On assignment *r = .. old value in location also dropped (not shown above).

23]
U00E000000eeSw00a80000000000000000a0

References Guard Referents [J

let mut a = ..;

let r = &mut a;

let d = *r; // Invalid to move out value, “a would be empty.

*r = M::new(); // invalid to store non S value, doesn't make sense.

e While bindings guarantee to always hold valid data, references guarantee to always point to valid data.

e Esp. &mut T must provide same guarantees as variables, and some more as they can't dissolve the target:
o They do not allow writing invalid data.
o They do not allow moving out data (would leave target empty w/o owner knowing).

ODD@DOOODOOCﬁi@OOOODOODOODOODDODOOOOO

Raw Pointers [J

let p: *const S = questionable_origin();

e In contrast to references, pointers come with almost no guarantees.
e They may point to invalid or non-existent data.
o Dereferencing them is unsafe, and treating an invalid «p as if it were valid is undefined behavior. *

Lifetime Basics

Lifetimes in Functions

15

"Lifetime" of Things [J

Every entity in a program has some (temporal / spatial) extent where it is relevant, i.e., alive.
Loosely speaking, this alive time can be?!

1. the LOC (lines of code) where an item is available (e.g., a module name).

2. the LOC between when a location is initialized with a value, and when the location is abandoned.

3. the LOC between when a location is first used in a certain way, and when that usage stops.

4. the LOC (or actual time) between when a value is created, and when that value is dropped.
Within the rest of this section, we will refer to the items above as the:

1. scope of that item, irrelevant here.

2. scope of that variable or location.

3. lifetime? of that usage.

4. lifetime of that value, might be useful when discussing open file descriptors, but also irrelevant here.
Likewise, lifetime parameters in code, e.g., r: &'a S, are

o concerned with LOC any location r points to needs to be accessible or locked;

o unrelated to the 'existence time' (as LOC) of r itself (well, it needs to exist shorter, that's it).
§'static S means address must be valid during all lines of code.

1 There is sometimes ambiguity in the docs differentiating the various scopes and lifetimes. We try to be pragmatic
here, but suggestions are welcome.

2 Live lines might have been a more appropriate term ...

C r

Meaningof r: s'c s [J

e Assumeyougotar: &'c S from somewhere it means:

o r holds an address of some S,
o any address r points to must and will exist for at least 'c,
o the variable r itself cannot live longer than

c.

16

OUllUUI'UOIIOUU!C!IUUOUUOOUOOUOOOOOOO

Typelikeness of Lifetimes [

{
let b = S(3);
{
let ¢ = S(2);
let r: &§'c S = &¢c; // Does not quite work since we can't name lifetimes of local
{ // variables in a function body, but very same principle
applies
let a = S(0); // to functions next page.
r = §a; // Location of “a’ does not live sufficient many lines — not
ok.
r = &b; // Location of “b~ lives all lines of "¢ and more — ok.
}
}
}

Assume you gota mut r: smut 'c S from somewhere.
o That is, a mutable location that can hold a mutable reference.
As mentioned, that reference must guard the targeted memory.
However, the 'c part, like a type, also guards what is allowed into r.
Here assigning sb (0x6) to r is valid, but §a (0x3) would not, as only sb lives equal or longer than &c.

ODDODOI‘BOOOOOOQ@QIOOOOOOOOOOOOOOODOO

Borrowed State [

let mut b = S(0);
let r = &mut b;

b = S(4); // Will fail since “b~ in borrowed state.

print_byte(r);

e Once the address of a variable is taken via &b or smut b the variable is marked as borrowed.
e While borrowed, the content of the address cannot be modified anymore via original binding b.
e Once address taken via sb or émut b stops being used (in terms of LOC) original binding b works again.

Advanced ¥

17

e ey e eE e

Function Parameters [

fn f(x: &S, y:65) — &u8 { .. }

let b = S(1);
let ¢ = S(2);
let r = f(&b, &c);

e When calling functions that take and return references two interesting things happen:
o The used local variables are placed in a borrowed state,
o But it is during compilation unknown which address will be returned.

U0ee00eeUles00 esee000000000000000000

Problem of 'Borrowed' Propagation £3

let b = S(1);
let ¢ = S(2);

let r = f(&b, &c);

let a = b; // Are we allowed to do this?
let a = c; // Which one is _really_ borrowed?

print_byte(r);

e Since f can return only one address, not in all cases b and ¢ need to stay locked.
e In many cases we can get quality-of-life improvements.
o Notably, when we know one parameter couldn't have been used in return value anymore.

18

U08e00e800ee000esma00000000030000000Y

fn f<'

let b
let ¢

let r

let a

print_

,

Lifetimes Propagate Borrowed State [

b, '¢c>(x: §'bS, y: §'cS) > &'cu8 { .}

= S(1);

= 5(2);

= f(&b, &c); // We know returned reference is “c -based, which must stay locked,
// while "b” is free to move.

= b;

byte(r);

e Lifetime parameters in signatures, like 'c above, solve that problem.
e Their primary purpose is:

o outside the function, to explain based on which input address an output address could be generated,
o within the function, to guarantee only addresses that live at least 'c are assigned.

e The actual lifetimes 'b, 'c are transparently picked by the compiler at call site, based on the borrowed
variables the developer gave.

e They are not equal to the scope (which would be LOC from initialization to destruction) of b or c, but only a
minimal subset of their scope called lifetime, that is, a minmal set of LOC based on how long b and ¢ need to
be borrowed to perform this call and use the obtained result.

e In some cases, like if f had 'c: 'b instead, we still couldn't distinguish and both needed to stay locked.

1088000000880000000000000BLAAA00AALLAY

Unlocking 3

let mut ¢ = S(2);

let r
let s

print_

let a

= f(&c);
=r;
// < Not here, s’ prolongs locking of “c’.
byte(s);
= C; // ¢ But here, no more use of 'r or "s’.

» Avariable location is unlocked again once the last use of any reference that may point to it ends.

19

U0se00esss 0 esmC0esma 0000000000000y

rval References to References [
// Return short ('b) reference
fn flsr<'b, 'a>(rb: &'b §'a S) > &'b S { *rb }
fn f2sr<'b, 'a>(rb: &'b §'amut S) > &'b S { xrb }
fn f3sr<'b, 'a>(rb: &'b mut &'a S) > &'b S { xrb }
fn f4sr<'b, 'a>(rb: &'b mut &§'a mut S) — &'b S { *rb }
// Return short ('b) mutable reference.
// flsm<'b, 'a>(rb: &'b §'a S) > &b mut S { *rb} // M
// f2sm<'b, 'a>(rb: &'b 'amut S) > &'bmutS { *xrb } // M
// f3sm<'b, 'a>(rb: &'b mut &§'a S) > &b mut S {*rb} // M
fn f4sm<'b, 'a>(rb: &§'b mut &§'a mut S) — &'b mut S { xrb }
// Return long ('a) reference.
fn filr<'b, 'a>(rb: &'b &§'a S) - &'a S { xrb }
// f2lr<'b, 'a>(rb: &'b §'a mut S) > &'a S{x*xrb} // L
fn f3lr<'b, 'a>(rb: &'b mut &'a S) - &'a S { *rb }
// fu4lr<'b, 'a>(rb: &'b mut §'a mut S) — &'a S{*rb} // L
// Return long ('a) mutable reference.
// fllm<'b, 'a>(rb: &'b §'a S) > &'amut S { *xrb } // M
// f21lm<'b, 'a>(rb: &'b 'amut S) - &'amut S { *xrb} // M
// f3lm<'b, 'a>(rb: &'b mut &§'a S) > s'amut S { *xrb} // M
// f&lm<'b, 'a>(rb: &'b mut &'a mut S) —» 'amut S { xrb } // L
// Now assume we have a “ra’ somewhere
let mut ra: &'a mut S = ..;
let rval = filsr(&6xra); // OK
let rval = f2sr(&mut *ra);
let rval = f3sr(&mut &*ra);
let rval = f4sr(smut ra);
// rval = fism(&6*ra); // Would be bad, since rval would be mutable
// rval = f2sm(&mut *ra); // reference obtained from broken mutability

// rval = f3sm(&mut &+ra); // chain.
let rval = f4sm(Smut ra);

let rval = fllr(&6+ra);

// rval = f2lr(&mut *ra); // If this worked we'd have “rval® and ‘ra’
let rval = f3lr(&mut &*ra);

// rval = fa4lr(&mut ra); // .. now (mut) aliasing °S in compute below.

// rval = film(&6xra); // Same as above, fails for mut-chain reasons.
// rval = f2lm(&mut *ra); // !
// rval = f3lm(&mut &*ra); // !

// rval = f4lm(&mut ra); // Same as above, fails for aliasing reasons.

// Some fictitious place where we use “ra and “rval’, both alive.
compute(ra, rval);

Here (M) means compilation fails because mutability error, (L) lifetime error. Also, dereference *rb not strictly necessary, just added for clarity.
« f_sr cases always work, short reference (only living 'b) can always be produced.

20

o f_sm cases usually fail simply because mutable chain to S needed to return émut S.

o f_1lr cases can fail because returning 6'a S from &'a mut S to caller means there would now exist two
references (one mutable) to same S which is illegal.

o f_1lm cases always fail for combination of reasons above.

Note: This example is about the f functions, not compute . You can assume it to be defined as

fn compute(x: &S, y: 6S) {}.Inthatcase the ra parameter would be automatically coerced ' from &mut S to
&S, since you can't have a shared and a mutable reference to the same target.

u Drop and _ [J

{
let f = |x, yl| (S(x), S(y)); // Function returning two 'Droppables’
let (x1, y) = f(1, 4); // S(1) - Scope S(4) - Scope
let (x2, _) = f(2, 5); // S(2) - Scope S(5) - Immediately
let (ref x3, _) = f(3, 6); // S(3) - Scope S(6) - Scope
println!(".");

}

Here Scope means contained value lives until end of scope, i.e., past the println!(),

e Functions or expressions producing movable values must be handled by callee.

e Values stores in 'normal’ bindings are kept until end of scope, then dropped.

e Values stored in _ bindings are usually dropped right away.

* However, sometimes references (e.g., ref x3) can keep value (e.g., the tuple (s(3), s(6))) around for
longer, so s(6), being part of that tuple can only be dropped once reference to its s(3) sibling disappears).

3 Examples expand by clicking.

Memory Layout

Byte representations of common types.

Basic Types
Essential types built into the core of the language.

Boolean REF and Numeric Types REF

21

https://doc.rust-lang.org/reference/types/boolean.html
https://doc.rust-lang.org/reference/types/boolean.html
https://doc.rust-lang.org/reference/types/numeric.html
https://doc.rust-lang.org/reference/types/numeric.html

bool us, i8 u16, i16 u32, i32 ubk, 64

u128, 1128

f128 #

64
Unsigned Types

usize, isize

Same as ptr on platform.

us 255

ulé6 65_535

u32 4_294_967_295

ubs4 18_446_744_073_709_551_615

u128 340_282_366_920_938_463_463_374_607_431_768_211_455
usize Depending on platform pointer size, same as ul6, u32, or u64,

Signed Types

i8 127
i16 32_767
132 2_147_483_647
164 9_223_372_036_854_775_807
1128 170_141_183_460_469_231_731_687_303_715_884_105_727
isize Depending on platform pointer size, same as 116, 132, Or i64.
e winvae
i8 -128
i16 -32_768
132 -2_147_483_648
164 -9_223_372_036_854_775_808
i128 -170_141_183_460_469_231_731_687_303_715_884_105_728

22

Type Min Value

isize Depending on platform pointer size, same as 116, 132, Or i64.
Float Types
Type Max value Min pos value Max lossless integer?
fie 65504.0 6.10-10° 2048
f32 3.40-10 38 3.40-10 38 16_777_216
f64 1.79 - 10308 2.23 - 10 308 9 007_199 254 740 _992
f128 * 1.19 - 10 49%2 3.36 - 10 4932 2.07 - 10 3%

1 The maximum integer M so that all other integers @ < X < M can be losslessly represented in that type. In other words, there might be larger
integers that could still be represented losslessly (e.g., 65504 for f16), but up until that value a lossless representation is guaranteed.

Float values approximated for visual clarity. Negative limits are values multipled with -1.

Float Internals?

Sample bit representation” for a f32:

|S|EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

Explanation:
32 S (1) E (8) F (23) Value
Normalized number * 1to 254 any *(1.F), * 28127
Denormalized number + 0 non-zero +(0.F), * 27126
Zero * 0 0 0
Infinity + 255 0 +oo
NaN * 255 non-zero NaN
Similarly, for f64 types this would look like:
f64 S (1) E (11) F (52) Value
Normalized number + 1to 2046 any +(1.F), * 281023
Denormalized number + 0 non-zero +(0.F), * 21022
Zero + 0 0 +0
Infinity + 2047 0 +oo
NaN + 2047 non-zero NaN

* Float types follow IEEE 754-2008 and depend on platform endianness.

23

https://en.wikipedia.org/wiki/IEEE_754-2008_revision

Casting Pitfalls ®

Cast? Gives Note
3.9_f32 as u8 3 Truncates, consider x.round() first.
314_f32 as u8 255 Takes closest available number.
f32 :: INFINITY as u8 255 Same, treats INFINITY as really large number.
f32 :: NAN as u8 0 -
_314 as us8 58 Truncates excess bits.
_257 as i8 1 Truncates excess bits.
_200 as i8 -56 Truncates excess bits, MSB might then also signal negative.

Arithmetic Pitfalls ®

Operation?
200_u8 / 0_us8
200_us8 / _0 4
200_u8 + 200_us8
200 _u8 + _200¢

200 _u8 + 200"

Gives

Compile error.

Panic.

Compile error.

Panic.

144

Note

Regular math may panic; here: division by zero.

Consider checked_, wrapping_, ... instead. S™°

In release mode this will overflow.

-128_1i8 * -1 Compile error. Would overflow (128_i8 doesn't exist).
-128_i8 * _1lnegd Panic. -

-128_i8 * _1lneg "' -128 Overflows back to -128 in release mode.
1_u8 / 2_us8 0 Other integer division truncates.
0.8_f32 + 0.1_f32 0.90000004 -

1.0_f32 / 0.0_f32

32 :: INFINITY

0.0_f32 / 0.0_f32 £32 :: NAN -

X < f32::NAN false NAN comparisons always return false.
x > f32::NAN false NAN comparisons always return false.
f32 ::NAN = f32::NAN false Use f32::is_nan() STP instead.

1 Expression _100 means anything that might contain the value 100, e.g., 100_i32, but is opaque to compiler.
4 Debug build.
" Release build.

Textual Types REF

24

https://doc.rust-lang.org/reference/types/textual.html
https://doc.rust-lang.org/reference/types/textual.html
https://doc.rust-lang.org/std/primitive.isize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.isize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan
https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan

Any Unicode scalar.

)
i ... unspecified times
)

Rarely seen alone, but as &str instead.

Basics
Type Description
char Always 4 bytes and only holds a single Unicode scalar value ¢,
str An ug-array of unknown length guaranteed to hold UTF-8 encoded code points.
Usage
Chars Description
let ¢ = "a’; Often a char (unicode scalar) can coincide with your intuition of character.
let c = 'e'; It can also hold many Unicode symbols.
let ¢ = '@"; But not always. Given emoji is two char (see Encoding) and can't ® he held by c.
c = Oxffff_ffff; Also, chars are not allowed ® to hold arbitrary bit patterns.

! Fun fact, due to the Zero-width joiner () what the user perceives as a character can get even more unpredictable: & is in fact 5 chars @XM,
and rendering engines are free to either show them fused as one, or separately as three, depending on their abilities.

Strings Description
let s = "a"; A str is usually never held directly, but as &str, like s here.
let s = "v@"; It can hold arbitrary text, has variable length per c., and is hard to index.
Encoding‘lgo
let s = "I « Rust";

let t = "I @ Rust";

Variant Memory Representation?
s.as_bytes() 49 20 e2 9d ak 20 52 75 73 743
t.as_bytes() 49 20 e2 9d a4 ef b8 8f 20 52 75 73 744

s.chars()!?

t.chars()?

49 00 00 00 20 00 00 00 64 27 00 00 20 00 00 00 52 00 00 00 75 00 00 00 73 0O ...

49 00 00 00 20 00 00 00 64 27 00 00 Of fe 00 00 20 00 00 00 52 00 00 00 75 00 ...

1 Result then collected into array and transmuted to bytes, compare here.

2 Values given in hex, on x86.

3 Notice how +, having Unicode Code Point (U+2764), is represented as 64 27 00 00 inside the char, but got UTF-8 encoded to €2 9d a4 in the str.
4 Also observe how the emoji Red Heart @, is a combination of » and the U+FEOF Variation Selector-16, thus t has a higher char count than s.

25

https://www.unicode.org/glossary/#unicode_scalar_value
https://www.unicode.org/glossary/#unicode_scalar_value
https://en.wikipedia.org/wiki/Zero-width_joiner
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=4303e6e40f3e971901409552bae88ac0
https://codepoints.net/U+2764
https://en.wikipedia.org/wiki/UTF-8#Description
https://emojipedia.org/red-heart/
https://emojipedia.org/red-heart/
https://emojipedia.org/red-heart/
https://codepoints.net/U+FE0F

I For what seem to be browser bugs Safari and Edge render the hearts in Footnote 3 and 4 wrong, despite being able to differentiate them
correctly in s and t above.

Custom Types

Basic types definable by users. Actual layout REF is subject to representation; R¥" padding can be present.

T T: ?Sized [T; n] [T]
B BEH EEE - (EEE e
Sized type. Maybe sized. Fixed array of n elements. Slice type of unknown-many elements. Neither

Sized (nor carries len information), and most
often lives behind reference as &[T]. *

struct S; (A, B, C) struct S { b: B, ¢: C }
Zero-sized or maybe or maybe
| [e |

Unless a representation is forced Compiler may also add padding.

(e.g., via #repr(C)1), type layout

unspecified.

Also note, two types A(X, Y) and B(X, Y) with exactly the same fields can still have differing layout; never transmute() STP without representation guarantees.

These sum types hold a value of one of their sub types:

enum E { A, B, C } union { .. }

N e N

exclusive or unsafe or

exclusive or unsafe or
Safely holds A or B or C, also Can unsafely reinterpret
called 'tagged union’, though memory. Result might
compiler may squeeze tag be undefined.

into 'unused' bits.

References & Pointers

References give safe access to 3 party memory, raw pointers unsafe access. The corresponding mut types have an identical data layout to their
immutable counterparts.

26

https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/reference/type-layout.html#representations
https://doc.rust-lang.org/reference/type-layout.html#representations
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html

§'aT *xconst T

,,,,,, I
No guarantees.

T

(any mem)

Must target some valid t of T,
and any such target must exist for
at least 'a.

Pointer Meta

Many reference and pointer types can carry an extra field, pointer metadata. S™ It can be the element- or byte-length of the target, or a pointer to a
vtable. Pointers with meta are called fat, otherwise thin.

§'aT §'aT &§'a [T]
E] [|] [: :]
T ! T | T T

___(Emy =) ; nymem) (Eimem)
No meta for If Tisa DST struct such as Regular slice reference (i.e., the
sized target. S { x: [u8] } metafield len is reference type of a slice type [T]) '
(pointer is thin). count of dyn. sized content. often seen as &[T] if 'a elided.
§'a str
[:]

j iU} iT1iF =1 181

1 (any mem)

String slice reference (i.e., the
reference type of string type str),
with meta len being byte length.

&'a dyn Trait

o

T *Drop :: drop(&mut T
(any mem)!

size

align

*Trait:: f(&T, ..
*Trait:: g(&T, ..
(static vtable)

Meta points to vtable, where *Drop :: drop(),
*Trait:: f(), ... are pointers to their respective
impl for T.

27

https://doc.rust-lang.org/nightly/std/ptr/trait.Pointee.html#pointer-metadata
https://doc.rust-lang.org/nightly/std/ptr/trait.Pointee.html#pointer-metadata

Closures

Ad-hoc functions with an automatically managed data block capturing REF 1 environment where closure was defined. For example, if you had:

let y e
let z e

with_closure(move x| x + y.f() + z); // y and z are moved into closure instance (of type C1)
with_closure(Ix| x + y.f() + z); // y and z are pointed at from closure instance (of type C2)

Then the generated, anonymous closures types C1 and C2 passed to with_closure() would look like:

move |x| x + y.f() + z [x| x +y.f() + z
Anonymous closure type C1 Anonymous closure type C2
| |
Y Z
(any mem) (any mem)

Also produces anonymous fn such as fai(Cl, X) or f,(6C2, X) . Details depend on which FnOnce | FnMut, Fn . is supported, based on properties of captured types.

1 A bit oversimplified a closure is a convenient-to-write 'mini function' that accepts parameters but also needs some local variables to do its job. It is therefore a type (containing the needed
locals) and a function. ‘Capturing the environment'is a fancy way of saying that and how the closure type holds on to these locals, either by moved value, or by pointer. See Closures in
APIs ' for various implications.

Standard Library Types

Rust's standard library combines the above primitive types into useful types with special semantics, e.g.:

Option<T> STD Result<T, E> STD ManuallyDrop<T> STD AtomicUsize STD
Prevents T:: drop() from Other atomic similarly.
| [
Tag may be omitted for Either some error E or value
certain T, e.g., NonNul1.5T® of T.
MaybeUninit<T>STD PhantomData<T> STD Pin<p> STD

[l =
Zero-sized helper to hold *

unsafeor Zero-sized helpertohold b ‘
. . . 1
(_] otherwise unused lifetimes. _ !

(any mem)
Uninitialized memory or

Signals tgt. of P is pinned ‘forever'
some T. Only legal way

to work with uninit data.

even past It. of Pin. Value within
may not be moved out (but new
one moved in), unless Unpin.S™®

® Al depictions are for illustrative purposes only. The fields should exist in latest stable , but Rust makes no guarantees about their layouts, and
you must not attempt to unsafely access anything unless the docs allow it.

https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/std/pin/struct.Pin.html
https://doc.rust-lang.org/std/pin/struct.Pin.html
https://doc.rust-lang.org/std/marker/trait.Unpin.html
https://doc.rust-lang.org/std/marker/trait.Unpin.html
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html

Cells

UnsafeCell<T> STD Cell<T> STD RefCell<T> STD OnceCell<T> STD

Magic type allowing

liased bili Allows T's Also support dynamic
aliased mutability. to move in borrowing of T. Like Cell this
and out. is Send, but not Sync.

Initialized at most once.

LazyCell<T, F> STD

Initialized on first access.

Order-Preserving Collections

Box<T> STD Vec<T> STD

E < T E E T T | .. len E
: (heap)! _____« capacity —__(neap)]
For some T stack proxy may carry Regular growable array vector of single type.

meta’ (e.g., Box<[T1>),

LinkedList<T> STO¥ VecDeque<T> STD

P nextyy Prevyysg T LT | empy . | TR

L (heap), L capaciy — (heap)]
Elements head and tail both null or point to nodes on Index head selects in array-as-ringbuffer. This means content may be
the heap. Each node can point to its prev and next node. non-contiguous and empty in the middle, as exemplified above.

Eats your cache (just look at the thing!); don't use unless
you evidently must. ®

Other Collections

29

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.OnceCell.html
https://doc.rust-lang.org/std/cell/struct.OnceCell.html
https://doc.rust-lang.org/std/cell/struct.LazyCell.html
https://doc.rust-lang.org/std/cell/struct.LazyCell.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html

HashMap<K, V> STP BinaryHeap<T> STD

b |t [Meft T gt Gt |l

K:VIK:V| ... [KeV| L KV To T1 T T2 T2 | jen
Oversimplified! (heap) « capacity — (heap)
Stores keys and values on heap according to hash value, SwissTable Heap stored as array with 2" elements per layer. Each T
implementation via hashbrown. Hashset ™ jdentical to HashMap, can have 2 children in layer below. Each T larger than its
just type V disappears. Heap view grossly oversimplified. ® children.
Owned Strings
String STP CString STD 0sString STP
e e et
| Pa [capacityu | leMas | | Ptrae | leMawe | ! Platorm Defined |
I I o o
tULITF] =181 . ten tATIBIIC! ten... @)} IR VER R
- <: c_a‘pac}t;/ ;; (heap) - (Héap) S ‘___(F]éap)
Observe how String differs from &str and &lchar]. NUL-terminated but w/o NUL in middle. Encapsulates how operating system

represents strings (e.g., WTF-8 on
Windows).

PathBuf STP

——

.............. =
fL|

Encapsulates how operating system
represents paths.

Shared Ownership

If the type does not contain a Cell for T, these are often combined with one of the Cell types above to allow shared de-facto mutability.

30

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://github.com/rust-lang/hashbrown
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://simonsapin.github.io/wtf-8/
https://doc.rust-lang.org/std/path/struct.PathBuf.html
https://doc.rust-lang.org/std/path/struct.PathBuf.html

Rc<T> STD Arc<T> STD

PET g Pometay,, ; PET e Pometay,, i J
I T
strng,.s weak,, g [« T strng,.s weak,, g |« T
(heap) (heap)
Share ownership of T in same thread. Needs nested Cell Same, but allow sharing between threads IF contained
or RefCellto allow mutation. Is neither Send nor Sync. T itself is Send and Sync.
Mutex<T> STD / RwLock<T> STP Cow<'a, T> STD

gmTTToTmmmmees ~ :
i inner il poison,,, -’

Inner fields depend on platform. Needs to be

held in Arc to be shared between decoupled

threads, or via scope() ST for scoped threads.

%T*}

(any mem)

Holds read-only reference to
some T, or owns its ToOwned STP
analog.

Standard Library

One-Liners

Snippets that are common, but still easy to forget. See Rust Cookbook ¢ for more.

Strings
Intent Shippet

Concatenate strings (any display' thatis). STP 121 format!("{x}{y}")
Append string (any Display to any write). 21 STP write!(x, "{y}")
Split by separator pattern. ST0 ¢ s.split(pattern)

... with &str s.split("abc")

... With char s.split('/")

... with closure s.split(char ::is_numeric)
Split by whitespace. S™P s.split_whitespace()
Split by newlines. STP s.lines()
Split by regular expression. ¢ 2 Regex ::new(r"\s") ?.split("one two three")

1 Allocates; if x or y are not going to be used afterwards consider using write! or std::ops:: Add,
2 Requires regex crate.

31

https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html
https://rust-lang-nursery.github.io/rust-cookbook/
https://rust-lang-nursery.github.io/rust-cookbook/
https://doc.rust-lang.org/std/fmt/index.html
https://doc.rust-lang.org/std/fmt/index.html
https://doc.rust-lang.org/std/fmt/index.html#write
https://doc.rust-lang.org/std/fmt/index.html#write
https://doc.rust-lang.org/std/str/pattern/trait.Pattern.html
https://doc.rust-lang.org/std/str/pattern/trait.Pattern.html
https://stackoverflow.com/a/38138985
https://stackoverflow.com/a/38138985
https://doc.rust-lang.org/std/primitive.str.html#method.split_whitespace
https://doc.rust-lang.org/std/primitive.str.html#method.split_whitespace
https://doc.rust-lang.org/std/primitive.str.html#method.lines
https://doc.rust-lang.org/std/primitive.str.html#method.lines
https://docs.rs/regex/latest/regex/struct.Regex.html#method.split
https://docs.rs/regex/latest/regex/struct.Regex.html#method.split
https://crates.io/crates/regex

[}

Create a new file S™° File::create(PATH)?

Same, via OpenOptions OpenOptions ::new().create(true).write(true).truncate(true).open(PATH)?

Read file as String STP read_to_string(path)?
Macros
Macro w. variable arguments macro_rules! var_args { ($($args:expr), =) = {{ }} }
Using args, e.g., calling f multiple times. $C f($args);)=
Transforms *
Option<T> — .. See the Type-Based Cheat Sheet
Result<T, R> —> .. See the Type-Based Cheat Sheet
Iterator<Item=T> — .. See the Type-Based Cheat Sheet
&§[T] —» . See the Type-Based Cheat Sheet
Future<T> —> .. See the Futures Cheat Sheet
Esoterics
Cleaner closure captures wants_closure({ let ¢ = outer.clone(); move || use_clone(c) })
Fix inference in 'try' closures iter.try_for_each(|x| { Ok::<(), Error>(()) })?;

Iterate and edit smut [T]if T))
Cell:: from_mut(mut_slice).as_slice_of_cells()

Copy.
Get subslice with length. goriginal_slicel[offset..][..length]
Canary so trait T is object safe.)
const _: Option<&dyn T> = None;
REF
Semver trick to unify types. ¢ my_crate = "next.version" in Cargo.toml + re-export types.

U insid e & macro_rules! internal_macro {} with
Se macro Insiae own crate.
pub(crate) use internal_macro;

Thread Safety

32

https://doc.rust-lang.org/std/fs/struct.File.html#method.open
https://doc.rust-lang.org/std/fs/struct.File.html#method.open
https://doc.rust-lang.org/std/fs/fn.read_to_string.html
https://doc.rust-lang.org/std/fs/fn.read_to_string.html
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://rufflewind.com/img/rust-futures-cheatsheet.html
https://doc.rust-lang.org/reference/items/traits.html#object-safety
https://doc.rust-lang.org/reference/items/traits.html#object-safety
https://github.com/dtolnay/semver-trick
https://github.com/dtolnay/semver-trick
https://users.rust-lang.org/t/use-macro-inside-proc-macro-crate/61095/4
https://users.rust-lang.org/t/use-macro-inside-proc-macro-crate/61095/4

Assume you hold some variables in Thread 1, and want to either move them to Thread 2, or pass their references to Thread 3. Whether this is allowed
is governed by SendS™ and SyncS™P respectively:

Mutex<u32> Cell<u32> [MutexGuard<u32>] - Thread 1
Mutex<u32> Cell<u32> Thread 2

&Mutex<u32> [§MutexGuard<u32>] Thread 3

Example Explanation
Mutex<u32> Both Send and Sync. You can safely pass or lend it to another thread.
Cell<u32> Send, not Sync. Movable, but its reference would allow concurrent non-atomic writes.
MutexGuard<u32> Sync, but not Send. Lock tied to thread, but reference use could not allow data race.
Rc<u32> Neither since it is easily clonable heap-proxy with non-atomic counters.
Trait Send !Send
Sync Most types ... Arc<T>12 Mutex<T>2 MutexGuard<T>1 RwLockReadGuard<T>1
!Sync Cell<T>2, RefCell<T>2 Rc<T>, §dyn Trait, *const T3
LIf Tis Sync.
21f Tis Send,

% If you need to send a raw pointer, create newtype struct Ptr(xconst u8) and unsafe impl Send for Ptr {}. Just ensure you may send it.

Whenis Send?
T All contained fields are Send, or unsafe impl'ed.
struct S { ... } All fields are Send, or unsafe impl'ed.
struct S<T> { ... } All fields are send and T is Send, or unsafe impl'ed.
enum E { ... } All fields in all variants are Send, or unsafe impl'ed.
&T If Tis Sync.
I {r Closures are Send if all captures are Send.
x| {} Send, regardless of x.
[x| { Rc::new(x) } Send, since still nothing captured, despite Rc not being Send.
IxI { x+y} Only Send if y is Send.
async { } Futures are Send if no !Send is held over .await points.
async { Rc::new() } Future is Send, since the !Send type Rc is not held over .await,
async { rc; x.await; rc; }1? Future is !Send, since Rc used across the -await point.
async || { }# Async cl. Send if all cpts. Send, res. Future if also no !Send inside.
async Ix| { x +y } # Async closure Send if y is Send. Future Send if x and y Send.

1 This is a bit of pseudo-code to get the point across, the idea is to have an Rc before an -await point and keep using it beyond that point.

Atomics & Cache ¥

CPU cache, memory writes, and how atomics affect it.

33

https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/marker/trait.Sync.html

00C080880000ELL0UNL0L0L00NEBON semm
SEHEe BRRR. oo
@ @ ™) @ (s) CPU2 Cache

Modern CPUs don't accesses memory directly, only their cache. Each CPU has its own cache, 100x faster than RAM, but much smaller. It comes in cache lines, some sliced window of
bytes, which track if it's an exclusive (E), shared (S) or modified (M) ¢ view of the main memory. Caches talk to each other to ensure coherence,? i.e., 'small-enough' data will be
'immediately’ seen by all other CPUs, but that may stall the CPU.

- @i BB~
- @ =
@

Left: Both compiler and CPUs are free to re-order ¢ and split R/W memory access. Even if you explicitly said write(1); write(23); write(4), your compiler might think it's a good idea to
write 23 first; in addition your CPU might insist on splitting the write, doing 3 before 2. Each of these steps could be observable (even the impossible 03) by CPU2 via an unsafe data race.
Reordering is also fatal for locks.

Right: Semi-related, even when two CPUs do not attempt to access each other's data (e.g., update 2 independent variables), they might still experience a significant performance loss if the
underlying memory is mapped by 2 cache lines (false sharing).

J000e088C000eeee000080e8800000000000 s
@ s
o _J s
Q-3

Atomics address the above issues by doing two things, they

+ make sure a read / write / update is not partially observable by temporarily locking cache lines in other CPUs,
o force both the compiler and the CPU to not re-order ‘unrelated’ access around it (i.e., act as a fence °'°). Ensuring multiple CPUs agree on the relative order of these other ops is
called consistency. ¢ This also comes at a cost of missed performance optimizations.

Note — The above section is greatly simplified. While the issues of coherence and consistency are universal, CPU architectures differ a lot in how
they implement caching and atomics, and in their performance impact.

A. Ordering Explanation
Relaxed STD Full reordering. Unrelated R/W can be freely shuffled around the atomic.
Release STD:1 When writing, ensure other data loaded by 3™ party Acquire is seen after this write.
Acquire STD:1 When reading, ensures other data written before 3™ party Release is seen after this read.
SeqCst STP No reordering around atomic. All unrelated reads and writes stay on proper side.

! To be clear, when synchronizing memory access with 2+ CPUs, all must use Acquire or Release (or stronger). The writer must ensure that all other data it wishes to release to memory are
put before the atomic signal, while the readers who wish to acquire this data must ensure that their other reads are only done after the atomic signal.

Iterators

Processing elements in a collection.

34

https://stackoverflow.com/questions/3928995/how-do-cache-lines-work
https://stackoverflow.com/questions/3928995/how-do-cache-lines-work
https://en.wikipedia.org/wiki/MESI_protocol
https://en.wikipedia.org/wiki/MESI_protocol
https://gfxcourses.stanford.edu/cs149/fall20content/media/cachecoherence/10_coherence.pdf
https://gfxcourses.stanford.edu/cs149/fall20content/media/cachecoherence/10_coherence.pdf
https://en.wikipedia.org/wiki/Memory_ordering
https://en.wikipedia.org/wiki/Memory_ordering
https://docs.kernel.org/kernel-hacking/false-sharing.html
https://docs.kernel.org/kernel-hacking/false-sharing.html
https://doc.rust-lang.org/std/sync/atomic/fn.fence.html
https://doc.rust-lang.org/std/sync/atomic/fn.fence.html
https://gfxcourses.stanford.edu/cs149/winter19content/lectures/09_consistency/09_consistency_slides.pdf
https://gfxcourses.stanford.edu/cs149/winter19content/lectures/09_consistency/09_consistency_slides.pdf
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Relaxed
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Relaxed
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Release
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Release
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Acquire
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Acquire
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.SeqCst
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.SeqCst

Basics

There are, broadly speaking, four styles of collection iteration:

for x in ¢ { ... } Imperative, useful w. side effects, interdepend., or need to break flow early.
c.iter().map().filter() Functional, often much cleaner when only results of interest.
c_iter.next() Low-level, via explicit Iterator :: next() STP invocation. ¥

c.get(n) Manual, bypassing official iteration machinery.

Opinion &2 — Functional style is often easiest to follow, but don't hesitate to use for if your .iter() chain turns
messy. When implementing containers iterator support would be ideal, but when in a hurry it can sometimes be
more practical to just implement .1en() and .get() and move on with your life.

Obtaining

Basics
Assume you have a collection ¢ of type C you want to use:

e c.into_iter()! — Turns collection c into an Iterator ST0 i and consumes? c. Std. way to get iterator.
e c.iter() — Courtesy method some collections provide, returns borrowing lterator, doesn't consume c.
e c.iter_mut() — Same, but mutably borrowing Iterator that allow collection to be changed.

The Iterator
Once you have an i:

e i.next() — Returns Some(x) next element c provides, or None if we're done.
For Loops

e for x in ¢ {} — Syntactic sugar, calls c.into_iter() and loops i until None.

! Requires IntoIterator STC for C to be implemented. Type of item depends on what C was.

2 |If it looks as if it doesn't consume c that's because type was Copy. For example, if you call (6c).into_iter() it will invoke -into_iter() on &c (which
will consume a copy of the reference and turn it into an Iterator), but the original ¢ remains untouched.

Creating

Essentials

Let's assume you have a struct Collection<T> {} you authored. You should also implement:

e struct IntoIter<T> {} — Create a struct to hold your iteration status (e.g., an index) for value iteration.
e impl Iterator for IntoIter<T> {} — Implement Iterator ::next() SO it can produce elements.

35

https://doc.rust-lang.org/std/iter/trait.Iterator.html#tymethod.next
https://doc.rust-lang.org/std/iter/trait.Iterator.html#tymethod.next
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

At this point you have something that can behave as an Iterator, S™° but no way of actually obtaining it. See the next
tab for how that usually works.

For Loops

Native Loop Support
Many users would expect your collection to just work in for loops. You need to implement:

e impl IntoIterator for Collection<T> {} — Now for x in c {} works
e impl IntoIterator for &Collection<T> {} — Now for x in &c {} works
e impl IntoIterator for &mut Collection<T> {} — Now for x in &mut c {} works.

{ Collection<T> | &Collection<T> &mut
"""""""""""" Collectn<T>

Iterate over &T.

Iterate over T. Iterate over &mut T.

As you can see, the Intolterator S trait is what actually connects your collection with the Intolter struct you
created in the previous tab. The two siblings of Intolter (Iter and IterMut) are discussed in the next tab.

Borrowing

Shared & Mutable Iterators
In addition, if you want your collection to be useful when borrowed you should implement:

e struct Iter<T> {} — Create struct holding sCollection<T> state for shared iteration.

e struct IterMut<T> {} — Similar, but holding smut Collection<T> state for mutable iteration.
e impl Iterator for Iter<T> {} — Implement shared iteration.

e impl Iterator for IterMut<T> {} — Implement mutable iteration.

Also you might want to add convenience methods:

e Collection::iter(&self) — Iter,
e Collection::iter_mut(&mut self) — IterMut,

36

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

The code for borrowing interator support is basically just a repetition of the previous steps with a slightly different

types, e.g., 6T vs T.

Interoperability

Iterator Interoperability

To allow 3™ party iterators to 'collect into' your collection implement:

e impl FromIterator for Collection<T> {} — NOW some_iter.collect::<Collection<_>>() works.

e impl Extend for Collection<T> {} — NOw c.extend(other) works.

In addition, also consider adding the extra traits from std :: iter ST° to your previous structs:

Writing collections can be work. The good news is, if you followed all these steps your collections will feel like first

class citizens.

Number Conversions

As-correct-as-it-currently-gets number conversions.

| Have | Want — us .., i128 f32 | f64
u8 ... i128 ug ::try_from(x)? 1 x as f32 3
f32 / f64 x as u8 ? x as f32
String X.parse::<u8>()? X.parse::<f32>()?

L If type true subset from() works directly, e.g., u32:: from(my_u8).
2 Truncating (11.9_f32 as u8 gives 11) and saturating (1024_f32 as u8 gives 255); c. below.
3 Might misrepresent number (u64::MAX as £32) or produce Inf (u128::MAX as f32).

Also see Casting- and Arithmetic Pitfalls ' for more things that can go wrong working with numbers.

String Conversions

37

String
Xx.to_string()
X.to_string()

X

https://doc.rust-lang.org/std/iter/index.html#
https://doc.rust-lang.org/std/iter/index.html#

If you want a string of type ...

String

String
CString
0sString
PathBuf
Vec<u8> 1
gstr
&CStr
§0sStr
§Path

&lug]?

X.into_string()?

x.to_str() 2. to_string()

x.to_str() 2. to_string()

String::

from_utf8(x)?

x.to_string() 1

x.to_str() 2. to_string()

x.to_str() 2. to_string()

x.to_str() 2. to_string()

String::

from_utf8_lossy(x).to_string()

CString

String
CString
0sString
PathBuf
Vec<u8> 1
gstr
&§CStr
§0sStr
gPath
&lug] !

«mut c_char ?

CString

X

CString ::
CString ::

CString ::

CString

inew(x)?

new(x.to_str()?)?
new(x.to_str()?)?
new(x)?

cinew(x)?

x.to_owned() 1

CString
CString

CString

::new(x.to_os_string().into_string()?)?
cinew(x.to_str()?)?

::new(Vec :: from(x))?

unsafe { CString::from_raw(x) }

0sString

String
CString
0sString

PathBuf

0sString:: from(x) *t

OsString:: from(x.to_str()?)

X

X.into_os_string()

38

.

Vec<u8> 1
§str
&§CStr
&§0sStr
gPath

&lus]?

unsafe { OsString::from_encoded_bytes_unchecked(x) }
OsString:: from(x) }

OsString:: from(x.to_str()?)

0sString:: from(x) 1

x.as_os_str().to_owned()

unsafe { OsString::from_encoded_bytes_unchecked(x.to_vec()) }

PathBuf

String
CString
0sString
PathBuf
Vec<u8> 1
gstr
&CStr
§0sStr

&Path

s[ug] 1

PathBuf :: from(x) 1

PathBuf :: from(x.to_str()?)

PathBuf :: from(x) ?

X

unsafe { PathBuf ::from(0sString:: from_encoded_bytes_unchecked(x)) }
PathBuf :: from(x) ?

PathBuf :: from(x.to_str()?)

PathBuf :: from(x) ?

PathBuf :: from(x) ?

unsafe {
PathBuf :: from(0sString:: from_encoded_bytes_unchecked(x.to_vec())) }

Vec<u8>

String
CString
0sString
PathBuf
Vec<u8> 1
gstr
&CStr
§0sStr
§Path

&lug]?

X.into_bytes()
Xx.into_bytes()
X.into_encoded_bytes()

X.into_os_string().into_encoded_bytes()

Vec :: from(x.as_bytes())

Vec :: from(x.to_bytes_with_nul())

Vec :: from(x.as_encoded_bytes())

Vec :: from(x.as_os_str().as_encoded_bytes())

x.to_vec()

&str

String
CString
0sString
PathBuf
Vec<u8> 1
gstr
§CStr
§0sStr
gPath

&lug]?

.as_str()

x

X

.to_str()?
x.to_str()?

.to_str()?

x

std::str:: from_utf8(&x)?
X

x.to_str()?

x.to_str()?

x.to_str()?

std::str::from utf8(x)?

&5CStr

String
CString
0sString
PathBuf
Vec<u8> 14
gstr
§CStr
§0sStr
&Path
§[ug] 44

«const c_char !

CString::new(x) ?.as_c_str()
x.as_c_str()
x.to_str()?

2.3

CStr:: from_bytes_with_nul(&x)?

2,3

CStr:: from_bytes_with_nul(x)?

unsafe { CStr::from_ptr(x) }

50sStr

String
CString
0sString
PathBuf
Vec<u8> 1
gstr

&CStr

OsStr ::new(&x)

P

x.as_os_str()

x.as_os_str()

unsafe { OsStr::from_encoded_bytes_unchecked(&x) }

0sStr::new(x)

?

40

§0sStr X
sPath x.as_os_str()
&lus] ! unsafe { OsStr::from_encoded_bytes_unchecked(x) }

\.

&Path

String Path ::new(x) *

CString Path ::new(x.to_str()?)

0sString Path ::new(x.to_str()?) *

PathBuf Path::new(x.to_str()?) *

Vec<u8> 1 unsafe { Path::new(0sStr:: from_encoded_bytes_unchecked(&x)) }
§str Path ::new(x) ©

&§CStr Path ::new(x.to_str()?)

§0sStr Path ::new(x) *

&Path X

&lus] 1 unsafe { Path::new(0sStr :: from_encoded_bytes_unchecked(x)) }

&[us]

String x.as_bytes()

CString x.as_bytes()

0sString x.as_encoded_bytes()

PathBuf x.as_os_str().as_encoded_bytes()
Vec<ug> ! &x

&§str x.as_bytes()

&§CStr Xx.to_bytes_with_nul()

§0sStr x.as_encoded_bytes()

sPath x.as_os_str().as_encoded_bytes()
§[us] ! X

Other

#const c_char CString x.as_ptr()

i Short form x.into() possible if type can be inferred.
r Short form x.as_ref() possible if type can be inferred.

1 You must ensure x comes with a valid representation for the string type (e.g., UTF-8 data for a String).
2 The c_char must have come from a previous cstring. If it comes from FFI see scCstr instead.

3 No known shorthand as x will lack terminating 0x@. Best way to probably go via CString.

4 Must ensure x actually ends with 0x0.

String Output

How to convert types into a String, or output them.

APIs

Rust has, among others, these APIs to convert types to stringified output, collectively called format macros:

Macro Output Notes
format!(fmt) String Bread-and-butter "to String" converter.
print!(fmt) Console Writes to standard output.
println!(fmt) Console Writes to standard output.
eprint!(fmt) Console Writes to standard error.
eprintln!(fmt) Console Writes to standard error.
write!(dst, fmt) Buffer Don't forget to also use std::io::Write;
writeln!(dst, fmt) Buffer Don't forget to also use std::io::Write;

Method Notes
x.to_string() STP Produces string, implemented for any Display type.

Here fmt is string literal such as "hello {}", that specifies output (compare "Formatting" tab) and additional

parameters.

Printable Types

In format! and friends, types convert via trait Display "{}" ST® or Debug "{:?}" ST° non exhaustive list:

Type
String
CString
0sString
PathBuf
Vec<u8>
§str
&§CStr
§0sStr

&Path

Debug,
Debug
Debug
Debug
Debug
Debug,
Debug
Debug

Debug

Implements

Display

Display

42

https://doc.rust-lang.org/std/string/trait.ToString.html
https://doc.rust-lang.org/std/string/trait.ToString.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html

Type Implements

&§lus] Debug

bool Debug, Display
char Debug, Display
u8 ... 1128 Debug, Display
32, f64 Debug, Display

! Debug, Display

@) Debug

In short, pretty much everything is bebug; more special types might need special handling or conversion ' to Display.

Formatting

Each argument designator in format macro is either empty {}, {argument}, or follows a basic syntax:

{ [argument] ':' [[fill] align] [sign] ['#'] [width [$]] ['.' precision [$]] [type] }
Element Meaning

argument Number (0, 1, ...), variable ?* or name,*® e.g., print!("{x}").

fill The character to fill empty spaces with (e.g., 0), if width is specified.

align Left (<), center ("), or right (>), if width is specified.

sign Can be + for sign to always be printed.

Alternate formatting, e.g., prettify DebugS™ formatter ? or prefix hex with 0x.

width Minimum width (= 0), padding with fill (default to space). If starts with @, zero-padded.
precision Decimal digits (= 0) for numerics, or max width for non-numerics.

$ Interpret width or precision as argument identifier instead to allow for dynamic formatting.
type DebugSTP (?) formatting, hex (x), binary (b), octal (o), pointer (p), exp (e) ... see more.
Format Example Explanation

{} Print the next argument using Display.S™

{x} Same, but use variable x from scope. 2!

{:7} Print the next argument using Debug.S™

{2:42} Pretty-print the 3@ argument with bebugST™ formatting.

{val:"2%$} Center the val named argument, width specified by the 3¢ argument.

{:<10.3} Left align with width 10 and a precision of 3.

{val:#x} Format val argument as hex, with a leading ox (alternate format for x).

Full Example Explanation
println!("{}", x) Print x using DisplayS™ on std. out and append new line. 15 <

43

https://doc.rust-lang.org/std/fmt/index.html#syntax
https://doc.rust-lang.org/std/fmt/index.html#sign0
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/index.html#traits
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html

Full Example
println!("{x}")

format!("{a:.3} {b:?}")

Tooling

Project Anatomy

Explanation

Same, but use variable x from scope. %!

Convert a with 3 digits, add space, b with bebug ST, return String. %

Basic project layout, and common files and folders, as used by cargo. *

Entry Code
.cargo/ Project-local cargo configuration, may contain config.toml. ¢ ¥
benches/ Benchmarks for your crate, run via cargo bench, requires nightly by default. * ##
examples/ Examples how to use your crate, they see your crate like external user would.

my_example.rs
src/
main.rs
lib.rs
src/bin/
extra.rs
tests/
.rustfmt.toml
.clippy.toml
build.rs
Cargo.toml
Cargo.lock
rust-toolchain.toml

* On stable consider Criterion.

Individual examples are run like cargo run --example my_example,.

Actual source code for your project.

Default entry point for applications, this is what cargo run uses.

Default entry point for libraries. This is where lookup for my_crate :: f() starts.
Place for additional binaries, even in library projects.

Additional binary, run with cargo run --bin extra.

Integration tests go here, invoked via cargo test. Unit tests often stay in src/ file.
In case you want to customize how cargo fmt works.

Special configuration for certain clippy lints, utilized via cargo clippy ¥
Pre-build script, ¢ useful when compiling C / FFI, ...

Main project manifest, ¢ Defines dependencies, artifacts ...

For reproducible builds. Add to git for apps, consider not for libs. € ¢ ¢

Define toolchain override® (channel, components, targets) for this project.

Minimal examples for various entry points might look like:

Applications

// src/main.rs (default

fn main() {
println!("Hello, wo

Libraries

application entry point)

rid!");

44

https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://rust-lang.github.io/rustfmt/
https://rust-lang.github.io/rust-clippy/master/index.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://blog.rust-lang.org/2023/08/29/committing-lockfiles.html
https://blog.rust-lang.org/2023/08/29/committing-lockfiles.html
https://web.archive.org/web/20240108203227/https://old.reddit.com/r/rust/comments/164qfjm/change_in_guidance_on_committing_lockfiles_rust/jya8ouf/
https://web.archive.org/web/20240108203227/https://old.reddit.com/r/rust/comments/164qfjm/change_in_guidance_on_committing_lockfiles_rust/jya8ouf/
https://rust-lang.github.io/rustup/overrides.html
https://rust-lang.github.io/rustup/overrides.html
https://github.com/bheisler/criterion.rs
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html

// src/lib.rs (default library entry point)

pub fn f() {} // Is a public item in root, so it's accessible from the outside.
mod m {
pub fn g() {} // No public path ('m> not public) from root, so g’
h // is not accessible from the outside of the crate.
Unit Tests

// src/my_module.rs (any file of your project)

fn f() — u32 { 0}

#Hcfg(test)]
mod test {
use super::f; // Need to import items from parent module. Has
// access to non-public members.
#Htest]
fn ff() {

assert_eq!(f(), 0);

Integration Tests

// tests/sample.rs (sample integration test)
#Htest]
fn my_sample() {
assert_eq!(my_crate:: f(), 123); // Integration tests (and benchmarks) 'depend' to the crate
like
} // a 3rd party would. Hence, they only see public items.
Benchmarks*

Build Scripts

Proc Macros ki

45

// benches/sample.rs (sample benchmark)
#![feature(test)] // #Hbench] is still experimental

extern crate test; // Even in '18 this is needed for .. reasons.
// Normally you don't need this in '18 code.

use test::{black_box, Bencher};
#H bench]

fn my_algo(b: &mut Bencher) {
b.iter(|| black_box(my_crate::f())); // “black_box prevents 'f from being optimized away.

// build.rs (sample pre-build script)
fn main() {

// You need to rely on env. vars for target; “#{cfg(..)] are for host.
let target_os = env::var("CARGO_CFG_TARGET_0S");

“See here for list of environment variables set.

// src/lib.rs (default entry point for proc macros)

extern crate proc_macro; // Apparently needed to be imported like this.
use proc_macro :: TokenStream;

#H proc_macro_attribute] // Crates can now use “#{my_attribute]”

pub fn my_attribute(_attr: TokenStream, item: TokenStream) — TokenStream {

item

}

// Cargo.toml

[package]

name = "my_crate"
version = "0.1.0"
[lib]

proc-macro = true

Module trees and imports:

46

https://doc.rust-lang.org/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts

Module Trees

Modules BX BX REF and source files work as follows:

* Module tree needs to be explicitly defined, is not implicitly built from file system tree. ¢
e Module tree root equals library, app, ... entry point (e.g., lib.rs).

Actual module definitions work as follows:

e Amod m {} defines module in-file, while mod m; will read m.rs or m/mod.rs,
o Path of .rs based on nesting, e.g., mod a { mod b { mod c; }}} is either a/b/c.rs or a/b/c/mod.rs,
« Files not pathed from module tree root via some mod m; won't be touched by compiler! ®

Namespaces ¥

Rust has three kinds of nhamespaces:

Namespace Types Namespace Functions Namespace Macros
mod X {} fn X() {} macro_rules! X { .. }
X (crate) const X: u8 = 1;
trait X {} static X: u8 = 1;
enum X {}

union X {}

struct X {}
struct X;1
struct X();2

1 Counts in Types and in Functions, defines type X and constant X.
2 Counts in Types and in Functions, defines type X and function X.

* In any given scope, for example within a module, only one item per namespace can exist, e.g.,
o enum X {} and fn X() {} can coexist
o struct X; and const X cannot coexist

e With a use my_mod :: X; all items called X will be imported.

Due to naming conventions (e.g., fn and mod are lowercase by convention) and common sense (most developers

just don't name all things X) you won't have to worry about these kinds in most cases. They can, however, be a
factor when designing macros.

Cargo

Commands and tools that are good to know.

47

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/reference/items/modules.html#modules
https://doc.rust-lang.org/reference/items/modules.html#modules
http://www.sheshbabu.com/posts/rust-module-system/
http://www.sheshbabu.com/posts/rust-module-system/

Command Description

cargo init Create a new project for the latest edition.

cargo build Build the project in debug mode (- release for all optimization).

cargo check Check if project would compile (much faster).

cargo test Run tests for the project.

cargo doc --no-deps --open Locally generate documentation for your code.

cargo run Run your project, if a binary is produced (main.rs).
cargo run --bin b Run binary b. Unifies feat. with other dependents (can be confusing).
cargo run --package w Run main of sub-worksp. w. Treats features more sanely.

cargo .. ——timings Show what crates caused your build to take so long. %

cargo tree Show dependency graph, all crates used by project, transitively.
cargo tree -i foo Inverse dependency lookup, explain why foo is used.

cargo info foo Show crate metadata for foo (by default for version used by this project).

cargo +{nightly, stable} .. Use given toolchain for command, e.g., for 'nightly only' tools.

cargo +1.85.0 .. Also accepts a specific version directly.

cargo +nightly .. Some nightly-only commands (substitute .. with command below)
rustc -- -Zunpretty=expanded Show expanded macros. *

rustup doc Open offline Rust documentation (incl. the books), good on a plane!

Here cargo build means you can either type cargo build or just cargo b; and --release means it can be replaced with -r.

These are optional rustup components. Install them with rustup component add [tool].

Tool Description
cargo clippy Additional (lints) catching common API misuses and unidiomatic code. ¢
cargo fmt Automatic code formatter (rustup component add rustfmt), ¢

A large number of additional cargo plugins can be found here.

Cross Compilation

© Check target is supported.

© Install target via rustup target install aarch64-linux-android (for example).

© Install native toolchain (required to link, depends on target).

Get from target vendor (Google, Apple, ...), might not be available on all hosts (e.g., no iOS toolchain on Windows).
Some toolchains require additional build steps (e.g., Android's make-standalone-toolchain.sh).

© Update ~/.cargo/config.toml like this:

[target.aarch64-linux-android]
linker = "[PATH_TO_TOOLCHAIN]/aarch64-linux-android/bin/aarch64-linux-android-clang"

or

[target.aarch64-linux-android]
linker = "C:/[PATH_TO_TOOLCHAIN]/prebuilt/windows-x86_64/bin/aarch64-1linux-android21-clang.cmd"

48

https://rust-lang.github.io/rust-clippy/master/
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://crates.io/categories/development-tools::cargo-plugins?sort=downloads
https://doc.rust-lang.org/rustc/platform-support.html

© Set environment variables (optional, wait until compiler complains before setting):

set CC=C:\[PATH_TO_TOOLCHAIN]\prebuilt\windows-x86_64\bin\aarch64-1linux-android21-clang.cmd

set CXX=C:\[PATH_TO_TOOLCHAIN]\prebuilt\windows-x86_64\bin\aarch64-linux-android21-clang.cmd

set AR=C:\[PATH_TO_TOOLCHAIN]\prebuilt\windows-x86_64\bin\aarch64-1linux-android-ar.exe
Whether you set them depends on how compiler complains, not necessarily all are needed.

Some platforms / configurations can be extremely sensitive how paths are specified (e.g., \ vs /) and quoted.

\/ Compile with cargo build --target=aarch64-linux-android

Tooling Directives

Special tokens embedded in source code used by tooling or preprocessing.

Macro Fragments

Inside a declarative B macro by example BX EXREF nacro_rules! implementation these fragment specifiers REF
work:

Within Macros Explanation

ity Macro capture (here a $x is the capture and ty means x must be type).
:block Ablock {} of statements or expressions, e.g., { let x = 5; }
texpr An expression, e.g., x, 1 + 1, String::new() or vec![]
texpr_2021 An expression that matches the behavior of Rust '21 RF¢
:ident An identifier, for example in let x = 0; the identifier is x.
:item An item, like a function, struct, module, etc.
:lifetime Alifetime (e.g., 'a, 'static, etc.).
:literal Aliteral (e.g., 3, "foo", b"bar", etc.).
:meta A meta item; the things that go inside #..1 and #![..]1 attributes.
:pat A pattern, e.g., Some(x), (17, 'a') or x|x.
‘pat_param Subset of patterns without top-level |, e.g., Some(x) or x.
:path Apath (e.g., foo, ::std::mem:: replace, transmute::<_, int>),
istmt A statement, e.g., let x = 1 + 1;, String::new(); or vec![];
1ttt A single token tree, see here for more details.
Tty Atype, e.g., String, usize Or Vec<u8>,
:vis A visibility modifier; pub, pub(crate), etc.

Special hygiene variable, crate where macros is defined. ?

Documentation

49

https://doc.rust-lang.org/book/ch19-06-macros.html#declarative-macros-with-macro_rules-for-general-metaprogramming
https://doc.rust-lang.org/book/ch19-06-macros.html#declarative-macros-with-macro_rules-for-general-metaprogramming
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/stable/rust-by-example/macros.html#macro_rules
https://doc.rust-lang.org/stable/rust-by-example/macros.html#macro_rules
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html
https://doc.rust-lang.org/reference/macros-by-example.html#metavariables
https://doc.rust-lang.org/reference/macros-by-example.html#metavariables
https://rust-lang.github.io/rfcs/3531-macro-fragment-policy.html
https://rust-lang.github.io/rfcs/3531-macro-fragment-policy.html
https://stackoverflow.com/a/40303308

Inside a doc comment BK EX REF these work:

Within Doc Comments

rust

should_panic
no_run
compile_fail
ignore
edition2018
#
[*s™]

[*S™1(crate::S)

#![globals]

Explanation
Include a doc test (doc code running on cargo test).
Same, and include optional configurations; with x, v being ...
Make it explicit test is written in Rust; implied by Rust tooling.
Compile test. Run test. Fail if panic. Default behavior.
Compile test. Run test. Execution should panic. If not, fail test.
Compile test. Fail test if code can't be compiled, Don't run test.
Compile test but fail test if code can be compiled.
Do not compile. Do not run. Prefer option above instead.
Execute code as Rust '18; default is '15.
Hide line from documentation ("~ ~ # use x::hidden; "~ ").
Create a link to struct, enum, trait, function, ... s.

Paths can also be used, in the form of markdown links.

Attributes affecting the whole crate or app:

Opt-Out's

#![no_std]

#!'[no_implicit_prelude]

#!'[no_main]

Opt-In's

#![feature(a, b, c)]

Builds
#!'[crate_name = "x"]
#![crate_type = "bin"]

#!'[recursion_limit =
#![type_length_limit

#! [windows_subsystem

Handlers

#Halloc_error_handler]

#H global_allocator]

#H panic_handler]

On Explanation
C Don't (automatically) import stdS™ ; use core®™ instead. REF
cM Don't add preludeS™, need to manually import None, Vec, ... REF
C Don't emit main() in apps if you do that yourself. REF
On Explanation
C Rely on f. that may not get stabilized, c. Unstable Book. **
On Explanation

C Specify current crate name, e.g., when not using cargo. ? REF ¥

C Specify current crate type (bin, lib, dylib, cdylib, ...). REF ¥

"123"] C Set compile-time recursion limit for deref, macros, ... REF ¥
"456"] C Limits maximum number of type substitutions. REF ¥
"x"] C On Windows, make a console or windows app. REF ¥
On Explanation
F Make some fn(Layout) —> ! the allocation fail. handler. ¢ *
S Make static item impl. GlobalAlloc ST global allocator. REF
F Make some fn(&PanicInfo) — ! app's panic handler. REF

50

https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/reference/comments.html#doc-comments
https://doc.rust-lang.org/reference/comments.html#doc-comments
https://doc.rust-lang.org/rustdoc/documentation-tests.html
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/core/
https://doc.rust-lang.org/core/
https://doc.rust-lang.org/reference/names/preludes.html#the-no_std-attribute
https://doc.rust-lang.org/reference/names/preludes.html#the-no_std-attribute
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/reference/names/preludes.html#the-no_implicit_prelude-attribute
https://doc.rust-lang.org/reference/names/preludes.html#the-no_implicit_prelude-attribute
https://doc.rust-lang.org/reference/crates-and-source-files.html#the-no_main-attribute
https://doc.rust-lang.org/reference/crates-and-source-files.html#the-no_main-attribute
https://doc.rust-lang.org/unstable-book/the-unstable-book.html
https://doc.rust-lang.org/reference/crates-and-source-files.html#the-crate_name-attribute
https://doc.rust-lang.org/reference/crates-and-source-files.html#the-crate_name-attribute
https://doc.rust-lang.org/reference/linkage.html
https://doc.rust-lang.org/reference/linkage.html
https://doc.rust-lang.org/reference/attributes/limits.html#the-recursion_limit-attribute
https://doc.rust-lang.org/reference/attributes/limits.html#the-recursion_limit-attribute
https://doc.rust-lang.org/reference/attributes/limits.html#the-type_length_limit-attribute
https://doc.rust-lang.org/reference/attributes/limits.html#the-type_length_limit-attribute
https://doc.rust-lang.org/reference/runtime.html#the-windows_subsystem-attribute
https://doc.rust-lang.org/reference/runtime.html#the-windows_subsystem-attribute
https://github.com/rust-lang/rust/issues/51540
https://github.com/rust-lang/rust/issues/51540
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/reference/runtime.html#the-global_allocator-attribute
https://doc.rust-lang.org/reference/runtime.html#the-global_allocator-attribute
https://doc.rust-lang.org/reference/runtime.html#the-panic_handler-attribute
https://doc.rust-lang.org/reference/runtime.html#the-panic_handler-attribute

Developer UX
#H non_exhaustive]
#Hpath = "x.rs"]

#Hdiagnostic::on_unimplemented]

Codegen

cold]
#Hinlinel
#inline(always)]
#Hinline(never)]
#Hrepr(x)1*t
#H target_feature(enable="x")]
track_caller]

#repr(C)]

#Hrepr(C, u8)]

repr(transparent)]

#Hrepr(packed(1))]

#Hrepr(align(8))]

Linking
#Hunsafe(no_mangle)]
#Hunsafe(export_name = "foo")]
#Hunsafe(link_section = ".x")]
#Hlink(name="x", kind="y")]
#H link_name = "foo"]
#Hno link]

#Hused]

#Hquality]

Code Patterns On
#Hallow(X)] *
#Hexpect(x)] 1 *

Attributes primarily governing emitted code:

On

T

On

*
FS

FS

Explanation
Future-proof struct or enum; hint it may grow in future. REF
Get module from non-standard file. REF

Give better error messages when trait not implemented. RF¢

Explanation
Hint that function probably isn't going to be called. REF
Nicely suggest compiler should inline function at call sites. REF
Emphatically threaten compiler to inline call, or else. REF
Instruct compiler to feel sad if it still inlines the function. REF
Use another representation instead of the default rust REF gne:
Enable CPU feature (e.g., avx2) for code of unsafe fn, REF
Allows fn to find caller®™ for better panic messages. RE"
Use a C-compatible (f. FFI), predictable (f. transmute) layout. REF
Give enum discriminant the specified type. REF
Give single-element type same layout as contained field. REF
Lower align. of struct and contained fields, mildly UB prone. REF

Raise alignment of struct to given value, e.g., for SIMD types. REF

1 Some representation modifiers can be combined, e.g., #repr(C, packed(1))],

Explanation
Use item name directly as symbol name, instead of mangling. REF
Export a fn or static under a different name. REF
Section name of object file where item should be placed. REF
Native lib to link against when looking up symbol. REF
Name of symbol to search for resolving extern fn. REF
Don'tlink extern crate when only wanting macros. REF

Don't optimize away static variable despite it looking unused. REF

Attributes used by Rust tools to improve code quality:

Explanation

Instruct rustc / clippy to ign. class X of possible issues. REF

Warn if a lint doesn't trigger. REF

51

https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/reference/items/modules.html#the-path-attribute
https://doc.rust-lang.org/reference/items/modules.html#the-path-attribute
https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html
https://rust-lang.github.io/rfcs/3368-diagnostic-attribute-namespace.html
https://doc.rust-lang.org/reference/attributes/codegen.html#the-cold-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-cold-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/reference/type-layout.html#the-default-representation
https://doc.rust-lang.org/reference/type-layout.html#the-default-representation
https://doc.rust-lang.org/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/reference/type-layout.html#the-transparent-representation
https://doc.rust-lang.org/reference/type-layout.html#the-transparent-representation
https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/reference/items/external-blocks.html#the-link-attribute
https://doc.rust-lang.org/reference/items/external-blocks.html#the-link-attribute
https://doc.rust-lang.org/reference/items/external-blocks.html#the-link_name-attribute
https://doc.rust-lang.org/reference/items/external-blocks.html#the-link_name-attribute
https://doc.rust-lang.org/reference/items/extern-crates.html#the-no_link-attribute
https://doc.rust-lang.org/reference/items/extern-crates.html#the-no_link-attribute
https://doc.rust-lang.org/reference/abi.html#the-used-attribute
https://doc.rust-lang.org/reference/abi.html#the-used-attribute
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes

Code Patterns On Explanation

#Hwarn(x)] 1 * ... emit a warning, mixes well with clippy lints. % REF
#deny(x)] ! * ... fail compilation. REF

#H forbid(x)]1 1 * ... fail compilation and prevent subsequent allow overrides. REF
deprecated = "msg"] * Let your users know you made a design mistake. REF
#H{must_use = "msg"] FTX Makes compiler check return value is processed by caller. % REF

16 There is some debate which one is the best to ensure high quality crates. Actively maintained multi-dev crates probably benefit from more
aggressive deny or forbid lints; less-regularly updated ones probably more from conservative use of warn (as future compiler or clippy updates may
suddenly break otherwise working code with minor issues).

Tests On Explanation
#Htest] F Marks the function as a test, run with cargo test. % REF
#ignore = "msg"] F Compiles but does not execute some # test] for now. REF
#{should_panic] F Test must panic! () to actually succeed. REF
#{bench] F Mark function in bench/ as benchmark for cargo bench, ** REF
Formatting On Explanation
#Hrustfmt :: skip] * Prevent cargo fmt from cleaning up item. ¢
#! [rustfmt :: skip ::macros(x)] CM ... from cleaning up macro x. ¢
#! [rustfmt :: skip::attributes(x)] CM ... from cleaning up attribute x. ¢
Documentation On Explanation
#{doc = "Explanation"] * Same as adding a /// doc comment. ¢
doc(alias = "other")] * Provide other name for search in docs. ¢
doc(hidden)] * Prevent item from showing up in docs. ¢
#! [doc(html_favicon_url = "")] C Sets the favicon for the docs. ¢
#! [doc(html_logo_url = "")] C The logo used in the docs. ¢
#![doc(html_playground_url = "")] @ Generates Run buttons and uses given service. ¢
#! [doc(html_root_url = "")] C Base URL for links to external crates. ¢
#!' [doc(html_no_source)] C Prevents source from being included in docs. ¢

#{macros]

Attributes related to the creation and use of macros:

Macros By Example On Explanation
#{macro_export] ! Export macro_rules! as pub on crate level REF
#Hmacro_use] MX Let macros persist past mod.; or import from extern crate. REF
Proc Macros On Explanation
#{proc_macro] F Mark fn as function-like procedural m. callable as m! (). REF

52

https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/reference/diagnostics.html#the-deprecated-attribute
https://doc.rust-lang.org/reference/diagnostics.html#the-deprecated-attribute
https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
https://doc.rust-lang.org/reference/attributes/diagnostics.html#the-must_use-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/rustdoc/the-doc-attribute.html
https://doc.rust-lang.org/rustdoc/the-doc-attribute.html
https://github.com/rust-lang/rust/issues/50146
https://github.com/rust-lang/rust/issues/50146
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#hidden
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#hidden
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_favicon_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_favicon_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_logo_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_logo_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_playground_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_playground_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_root_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_root_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_no_source
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_no_source
https://doc.rust-lang.org/reference/macros-by-example.html#path-based-scope
https://doc.rust-lang.org/reference/macros-by-example.html#path-based-scope
https://doc.rust-lang.org/reference/macros-by-example.html#the-macro_use-attribute
https://doc.rust-lang.org/reference/macros-by-example.html#the-macro_use-attribute
https://doc.rust-lang.org/reference/procedural-macros.html#function-like-procedural-macros
https://doc.rust-lang.org/reference/procedural-macros.html#function-like-procedural-macros

Proc Macros On Explanation

#H proc_macro_derive(Foo)] F Mark fn as derive macro which can #derive(Foo)]. REF
#{proc_macro_attribute] F Mark fn as attribute macro for new #{x]. REF

Derives On Explanation
#H derive(X)] T Let some proc macro provide a goodish impl of trait x. % REF

cfgl

Attributes governing conditional compilation:

Config Attributes On Explanation
#Hcfg(X)] * Include item if configuration x holds. REF
#Hcfg(all(x, Y, Z))] * Include item if all options hold. REF
#Hcfglany(X, Y, Z))] * Include item if at least one option holds. REF
#Hcfg(not(x))] * Include item if x does not hold. REF
#Hcfg_attr(X, foo = "msg")] * Apply # foo = "msg"] if configuration X holds. REF

I\ Note, options can generally be set multiple times, i.e., the same key can show up with multiple values. One can
expect #H cfg(target_feature = "avx")] and #Hcfg(target_feature = "avx2")] to be true at the same time.

Known Options On Explanation
cfg(debug_assertions)] * Whether debug_assert! () & co. would panic. REF
#H cfg(feature = "foo")] * When your crate was compiled with f. foo. % REF
cfg(target_arch = "x86_64")] * The CPU architecture crate is compiled for. REF
#Hcfg(target_env = "msvc")] * How DLLs and functions are interf. with on OS. REF
cfg(target_endian = "little")] * Main reason your new zero-cost prot. fails. REF
#Hcfg(target_family = "unix")] * Family operating system belongs to. REF
#H cfg(target_feature = "avx")] * Whether a particular class of instructions is avail. REF
#H cfg(target_os = "macos")] * Operating system your code will run on. REF
cfg(target_pointer_width = "64")] * How many bits ptrs, usize and words have. REF
#{ cfg(target_vendor = "apple")] * Manufacturer of target. REF
cfg(panic = "unwind")] * Whether unwind or abort will happen on panic. ?
cfg(proc_macro)] * Whether crate compiled as proc macro. REF
#Hcfg(test)] * Whether compiled with cargo test. % REF

build.rs

Environment variables and outputs related to the pre-build script. Consider build-rs¢ instead.
53

https://doc.rust-lang.org/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg-attribute
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg-attribute
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg_attr-attribute
https://doc.rust-lang.org/reference/conditional-compilation.html#the-cfg_attr-attribute
https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions
https://doc.rust-lang.org/reference/conditional-compilation.html#debug_assertions
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch
https://doc.rust-lang.org/reference/conditional-compilation.html#target_arch
https://doc.rust-lang.org/reference/conditional-compilation.html#target_env
https://doc.rust-lang.org/reference/conditional-compilation.html#target_env
https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian
https://doc.rust-lang.org/reference/conditional-compilation.html#target_endian
https://doc.rust-lang.org/reference/conditional-compilation.html#target_family
https://doc.rust-lang.org/reference/conditional-compilation.html#target_family
https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature
https://doc.rust-lang.org/reference/conditional-compilation.html#target_feature
https://doc.rust-lang.org/reference/conditional-compilation.html#target_os
https://doc.rust-lang.org/reference/conditional-compilation.html#target_os
https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width
https://doc.rust-lang.org/reference/conditional-compilation.html#target_pointer_width
https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor
https://doc.rust-lang.org/reference/conditional-compilation.html#target_vendor
https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro
https://doc.rust-lang.org/reference/conditional-compilation.html#proc_macro
https://doc.rust-lang.org/reference/conditional-compilation.html#test
https://doc.rust-lang.org/reference/conditional-compilation.html#test
https://docs.rs/build-rs/0.1.2/build/
https://docs.rs/build-rs/0.1.2/build/

Input Environment Explanation ¢

CARGO_FEATURE_X Environment variable set for each feature x activated.
CARGO_FEATURE_SOMETHING If feature something were enabled.
CARGO_FEATURE_SOME_FEATURE If f. some-feature were enabled; dash - converted to _.

CARGO_CFG_X Exposes cfg's; joins mult. opts. by , and converts - to _.
CARGO_CFG_TARGET_0S=macos If target_os were set to macos.
CARGO_CFG_TARGET_FEATURE=avx,avx2 If target_feature were setto avx and avx2.

OUT_DIR Where output should be placed.

TARGET Target triple being compiled for.

HOST Host triple (running this build script).

PROFILE Can be debug or release.

Available in build.rs via env::var()?. List not exhaustive.

Output String Explanation ¢
cargo :: rerun-if-changed=PATH (Only) run this build.rs again if PATH changed.
cargo :: rerun-if-env-changed=VAR (Only) run this build.rs again if environment VAR changed.
cargo :: rustc-cfg=KEY[="VALUE"] Emit given cfg option to be used for later compilation.
cargo :: rustc-cdylib-link-arg=FLAG When building a cdylib, pass linker flag.
cargo :: rustc-env=VAR=VALUE Emit var accessible via env! () in crate during compilation.
cargo :: rustc-flags=FLAGS Add special flags to compiler. ?
cargo :: rustc-link-1lib=[KIND=]NAME Link native library as if via -1 option.
cargo :: rustc-link-search=[KIND=]PATH Search path for native library as if via -L option.
cargo ::warning=MESSAGE Emit compiler warning.

Emitted from build.rs via println!(). List not exhaustive.

For the On column in attributes:

C means on crate level (usually given as #![my_attr] in the top level file).
M means on modules.

F means on functions.

S means on static.

T means on types.

X means something special.

! means on macros.

* means on almost any item.

Working with Types

Types, Traits, Generics

Allowing users to bring their own types and avoid code duplication.

Types & Traits

54

https://doc.rust-lang.org/cargo/reference/environment-variables.html
https://doc.rust-lang.org/cargo/reference/environment-variables.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html

¢ Set of values with given semantics, layout, ...

Type Values
us { Oug, 1lug, ., 25548 |
char { 'a', 'b', . '"&'}
struct S(u8, char) { (04, 'a"'), .. (255,48, "&') }

Sample types and sample values.

Type Equivalence and Conversions

(o) w) (Comwe) 0) ()

e It may be obvious but u8, &u8, &mut u8, are entirely different from each other
e Any t: T only accepts values from exactly T, e.g.,

o f(0_u8) can't be called with f(50_u8),

o f(&mut my_u8) can't be called with f(&my_u8),

o f(0_u8) can't be called with f(0_i8).

Yes, 0 + o (in a mathematical sense) when it comes to types! In a language sense, the operation =(0,g, 0,16)
just isn't defined to prevent happy little accidents.

Type Values
us { Oug, 1lug, ., 25548 |
ulé { @uie, luze, -, 65_535u16 |
su8 { 0xffaagu, 0xffbbgyg, .. |
gmut us { 0xffaasyut us, 0xFfbbsput ug, - 1}

How values differ between types.

» However, Rust might sometimes help to convert between types!
o casts manually convert values of types, 0_i8 as u8
o coercions ' automatically convert types if safe?, let x: &u8 = &smut 0_us8;

1 Casts and coercions convert values from one set (e.g., U8) to another (e.g., u16), possibly adding CPU instructions to do so; and in such differ from
subtyping, which would imply type and subtype are part of the same set (e.g., u8 being subtype of ul6 and 0_u8 being the same as 0_ul6) where
such a conversion would be purely a compile time check. Rust does not use subtyping for regular types (and ©_u8 does differ from 0_u16) but sort-of
for lifetimes. ¢

2 Safety here is not just physical concept (e.g., §u8 can't be coerced to 6u128), but also whether 'history has shown that such a conversion would lead
to programming errors'.

Implementations — impl S { }

55

https://featherweightmusings.blogspot.com/2014/03/subtyping-and-coercion-in-rust.html
https://featherweightmusings.blogspot.com/2014/03/subtyping-and-coercion-in-rust.html

impl Port {
fn fO) { ..}

o Types usually come with inherent implementations, REF e.g., impl Port {}, behavior related to type:

o associated functions Port :: new(80)
o methods port.close()

What's considered related is more philosophical than technical, nothing (except good taste) would prevent a

u8 :: play_sound() from happening.

Traits — trait T { }

e Traits ...

o are way to "abstract" behavior,

o trait author declares semantically this trait means X,

o other can implement ("subscribe to") that behavior for their type.
e Think about trait as "membership list" for types:

Copy Trait Clone Trait
Self Self
u8 us8

ule String

Traits as membership tables, Self refers to the type included.

* Whoever is part of that membership list will adhere to behavior of list.
¢ Traits can also include associated methods, functions, ...

trait ShowHex {
// Must be implemented according to documentation.
fn as_hex() — String;

// Provided by trait author.
fn print_hex() {}

trait Copy { }

 Traits without methods often called marker traits.
e Copy is example marker trait, meaning memory may be copied bitwise.

56

Sized Trait
Self

char

Port

https://doc.rust-lang.org/reference/items/implementations.html#inherent-implementations
https://doc.rust-lang.org/reference/items/implementations.html#inherent-implementations

e Some traits entirely outside explicit control
e sSized provided by compiler for types with known size; either this is, or isn't

Implementing Traits for Types — impl T for S { }

impl ShowHex for Port { ..}

¢ Traits are implemented for types 'at some point'.
o Implementation impl A for B add type B to the trait membership list:

ShowHex Trait
Self

Port

¢ Visually, you can think of the type getting a "badge" for its membership:

Traits vs. Interfaces

.@. @_ : venison.eat()

Interfaces

e In Java, Alice creates interface Eat.

e When Bob authors venison, he must decide if venison implements Eat or not.

In other words, all membership must be exhaustively declared during type definition.
e When using Venison, Santa can make use of behavior provided by Eat:

// Santa imports “Venison to create it, can “eat()” if he wants.
import food.Venison;

new Venison("rudolph").eat();

+

57

Traits

¢ In Rust, Alice creates trait Eat.

e Bob creates type venison and decides not to implement Eat (he might not even know about Eat).
e Someone’ later decides adding Eat to Venison would be a really good idea.

e When using Venison Santa must import Eat separately:

// Santa needs to import “Venison to create it, and import “Eat® for trait method.
use food::Venison;
use tasks::Eat;

// Ho ho ho
Venison ::new("rudolph").eat();

“ To prevent two persons from implementing Eat differently Rust limits that choice to either Alice or Bob; that is, an impl Eat for Venison may only
happen in the crate of Venison or in the crate of Eat. For details see coherence. ?

Generics

Type Constructors — Vec<

e Vec<u8> is type "vector of bytes"; vec<char> is type "vector of chars", but what is vec < ?

Construct Values
Vec<u8> {01, [11, [1, 2, 3], «}
Vec<char> {01, tra'l, O'x', 'y', 'z'1, .}
Vec < -

Types vs type constructors.

e Vec< is no type, does not occupy memory, can't even be translated to code.
e Vec< istype constructor, a "template" or "recipe to create types"

o allows 3" party to construct concrete type via parameter,

o only then would this Vec<UserType> become real type itself.

Generic Parameters — <T>

e Parameter for vec < often named T therefore vec<T>.
e T "variable name for type" for user to plug in something specific, Vec<f32>, S<u8>, ...

Type Constructor Produces Family

struct Vec<T> {} Vec<u8>, Vec<f32>, Vec<Vec<u8>>, ...

58

Type Constructor Produces Family
[T; 128] [u8; 128], [char; 1281, [Port; 128] ...

&T &u8, 6ul6b, &str,

Type vs type constructors.

// S< is type constructor with parameter T; user can supply any concrete type for T.
struct S<T> {

x: T

// Within 'concrete' code an existing type must be given for T.
fn f() {

let x: S<f32> = S::new(0_f32);

Const Generics — [T; N] and S<const N: usize>

e Some type constructors not only accept specific type, but also specific constant.
e [T; nl constructs array type holding T type n times.
e For custom types declared as MyArray<T, const N: usize>,

Type Constructor Produces Family
[u8; N]J [u8; @], [u8; 11, [u8; 21, ...
struct S<const N: usize> {} S<1>, S<6>, S<123>,

Type constructors based on constant.

let x: [u8; 4]; // "array of 4 bytes"
let y: [f32; 16]; // "array of 16 floats"

// “MyArray is type constructor requiring concrete type T and
// concrete usize N to construct specific type.
struct MyArray<T, const N: usize> {

data: [T; NJ,

Bounds (Simple) — where T: X

Port

© ShowHex

e If T can be any type, how can we reason about (write code) for such a Num<T>?
e Parameter bounds:

o limit what types (trait bound) or values (const bound ?) allowed,
o we now can make use of these limits!

59

e Trait bounds act as "membership check™:

// Type can only be constructed for some “T if that Absolute Trait
// T is part of “Absolute’ membership list. o
struct Num<T> where T: Absolute { €

u8
} ulé

We add bounds to the struct here. In practice it's nicer add bounds to the respective impl blocks instead, see later this section.

Bounds (Compound) — where T: X + Y

[ws J[2 [char

[@Absolute][@Absolute]

(@ 0in J[oma)

© Mul

© DirName

T: Absolute + Dim + Mul + DirName + TwoD

{ .1}

struct S<T>
where

¢ Long trait bounds can look intimidating.
e In practice, each + X addition to a bound merely cuts down space of eligible types.

Implementing Families — impl<

When we write:

impl<T> S<T> where T: Absolute + Dim + Mul {
fn f(&§self, x: T) { .. };

It can be read as:

¢ here is an implementation recipe for any type T (the impl <T> part),

¢ where that type must be member of the Absolute + Dim + Mul traits,
e you may add an implementation block to the type family s<,

e containing the methods ...

You can think of such imp1<T> .. {} code as abstractly implementing a family of behaviors. REF Most notably, they
allow 31 parties to transparently materialize implementations similarly to how type constructors materialize types:

60

https://doc.rust-lang.org/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/reference/items/implementations.html#generic-implementations

// If compiler encounters this, it will

// - check 0" and “x~ fulfill the membership requirements of T

// - create two new version of “f°, one for “char’, another one for “u32".
// - based on "family implementation" provided

s.f(0_u32);

s.f('x");

Blanket Implementations — impl<T> X for T { .. }

Can also write "family implementations” so they apply trait to many types:

// Also implements Serialize for any type if that type already implements ToHex
impl<T> Serialize for T where T: ToHex { .. }

These are called blanket implementations.

- Whatever L .
ToHex . Serialize Trait
was in left table,
Ll may be added to Sl
Port right table, us
Device based on the Port
following recipe (
impl) -

They can be neat way to give foreign types functionality in a modular way if they just implement another interface.

Advanced Concepts?

Trait Parameters — Trait<In> { type Out; }

Notice how some traits can be "attached" multiple times, but others just once?

Why is that?
« Traits themselves can be generic over two kinds of parameters:
o trait From<I> {}
o trait Deref { type 0; }

¢ Remember we said traits are "membership lists" for types and called the list Self?
e Turns out, parameters I (for input) and 0 (for output) are just more columns to that trait's list:

61

impl From<u8> for ul6 {}

impl From<ul6> for u32 {}

impl Deref for Port { type O = u8; }
impl Deref for String { type 0 = str; }

From Deref
Self I Self 0
uleé us Port us
u32 ule String str

Input and output parameters.

Now here's the twist,

e any output 0 parameters must be uniquely determined by input parameters I,
¢ (in the same way as a relation X Y would represent a function),
e Self counts as an input.

A more complex example:

trait Complex<I1l, I2> {
type 01;
type 02;

« this creates a relation of types named Complex,

o with 3 inputs (Self is always one) and 2 outputs, and it holds (Self, I1, I2) = (01,

Complex
Self [I] I1 I2 01
Player us char 32
EvilMonster ule str us
EvilMonster ule String us
NiceMonster ule String us
NiceMonster® ulé String us

Various trait implementations. The last one is not valid as (NiceMonster, ul6, String) has

already uniquely determined the outputs.

Trait Authoring Considerations (Abstract)

o GRS © NI o © (G
e
2 @ ©) 2© EE

T = u8;

= car.a(0_us)
car.a(0_f32)

= car.b(0_us)
P

62

02)

02
32
u8
u8
u8

ulé

e Parameter choice (input vs. output) also determines who may be allowed to add members:
o I parameters allow "familes of implementations" be forwarded to user (Santa),
o 0 parameters must be determined by trait implementor (Alice or Bob).

trait A<I> { }
trait B { type 0; }

// Implementor adds (X, u32) to A.
impl A<u32> for X { }

// Implementor adds family impl. (X, ..) to A, user can materialze.
impl<T> A<T> for Y { }

// Implementor must decide specific entry (X, 0) added to B.
impl B for X { type 0 = u32; }

A B
Self I Self 0
X u32 Player String
Y - X u32
Santa may add more members by For given set of inputs (here Self),
providing his own type for T. implementor must pre-select 0.

Trait Authoring Considerations (Example)

_ vs. _ vs. VS.
type 0O; type 0;

Choice of parameters goes along with purpose trait has to fill.

No Additional Parameters

trait Query {
fn search(&self, needle: &§str);
}

impl Query for PostgreSQL { .. }
impl Query for Sled { .. }

postgres.search("SELECT ..");

faey > O Posteresat J[stea]
Trait author assumes:

¢ neither implementor nor user need to customize API.

63

Input Parameters

trait Query<I> {
fn search(&self, needle: I);
}

impl Query<&str> for PostgreSQL { .. }
impl Query<String> for PostgreSQL { .. }
impl<T> Query<T> for Sled where T: ToU8Slice { .. }

postgres.search("SELECT ..");
postgres.search(input.to_string());
sled.search(file);

o I - ©

~ where T is
ToU8Slice.

Trait author assumes:

e implementor would customize API in multiple ways for same Self type,
e users may want ability to decide for which I-types behavior should be possible.

Output Parameters

trait Query {
type 0;
fn search(&self, needle: Self::0);

)

impl Query for PostgreSQL { type O = String; ..}
impl Query for Sled { type O = Vec<u8>; .. }

postgres.search("SELECT ..".to_string());
sled.search(vec![0, 1, 2, 4]);

2 > 0
type 0;

Trait author assumes:

0 = String; 0 = Vec<u8>;

e implementor would customize API for self type (but in only one way),
« users do not need, or should not have, ability to influence customization for specific self.

64

As you can see here, the term input or output does not (necessarily) have anything to do with whether I or 0 are
inputs or outputs to an actual function!

Multiple In- and Output Parameters

trait Query<I> {
type O;
fn search(§self, needle: I) — Self::0;

s

impl Query<&str> for PostgreSQL { type O = String; .. }
impl Query<CString> for PostgreSQL { type 0 = CString; .. }
imp1<T> Query<T> for Sled where T: ToU8Slice { type O = Vec<u8>; .. }

postgres.search("SELECT ..").to_uppercase();
sled.search(s[1, 2, 3, 41).pop();

> 0
type 0;

0 = Vec<u8>;

~ where T is

ToU8Slice.
= CString;

Like examples above, in particular trait author assumes:

e users may want ability to decide for which 1-types ability should be possible,
« for given inputs, implementor should determine resulting output type.

Dynamic | Zero Sized Types

FEm) -] -)@ Ermn =]
Pt] [potres]) =N N
Normal types. Zero sized. Dynamically sized

Atype T is sized S0 if at compile time it is known how many bytes it occupies, us and &[u8] are, [u8] isn't.
e Being sized means impl Sized for T {} holds. Happens automatically and cannot be user impl'ed.

e Types not Sized are called dynamically sized types BX NOM REF (DSTs), sometimes unsized.

Types without data are called zero sized types N°M (ZSTs), do not occupy space.

Example Explanation
struct A { x: u8 } Type A is sized, i.e., impl Sized for A holds, this is a 'regular' type.
struct B { x: [u8] } Since [u8] is a DST, B in turn becomes DST, i.e., does not impl Sized,
struct C<T> { x: T } Type params have implicit T: Sized bound, e.g., C<A> is valid, c is not.
struct D<T: ?Sized> { x: T } Using ?sized REF allows opt-out of that bound, i.e., D is also valid.
struct E; Type E is zero-sized (and also sized) and will not consume memory.
trait F { fn f(&self); } Traits do not have an implicit sized bound, i.e., impl F for B {} is valid.

65

https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
https://doc.rust-lang.org/reference/dynamically-sized-types.html#dynamically-sized-types
https://doc.rust-lang.org/reference/dynamically-sized-types.html#dynamically-sized-types
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/reference/trait-bounds.html#sized
https://doc.rust-lang.org/reference/trait-bounds.html#sized

Example Explanation

trait F: Sized {} Traits can however opt into Sized via supertraits.’
trait G { fn g(self); } For self-like params DST impl may still fail as params can't go on stack.
?Sized

struct S<T> { .. }

e T can be any concrete type.
e However, there exists invisible default bound T: Sized, so S<str> is not possible out of box.

e Instead we have to add T : ?Sized to opt-out of that bound:

struct S<T> where T: ?Sized { .. }

Generics and Lifetimes — <'a>

« Lifetimes act” as type parameters:
o user must provide specific 'a to instantiate type (compiler will help within methods),
o S<'p> and s<'q> are different types, just like vec<f32> and vec<u8> are
o meaning you can't just assign value of type s<'a> to variable expecting s<'b> (exception: subtype

relationship for lifetimes, i.e., 'a outlives 'b).

e ‘'static is only globally available type of the lifetimes kind.

// ~'a is free parameter here (user can pass any specific lifetime)

struct S<'a> {
x: &§'a u32

// In non-generic code, 'static is the only nameable lifetime we can explicitly put in here.

let a: S<'static>;

// Alternatively, in non-generic code we can (often must) omit 'a and have Rust determine
// the right value for 'a automatically.
let b: S;

*There are subtle differences, for example you can create an explicit instance @ of a type u32, but with the exception of 'static you can't really create

a lifetime, e.g., "lines 80 - 100", the compiler will do that for you. ¢

Examples expand by clicking.

66

https://medium.com/nearprotocol/understanding-rust-lifetimes-e813bcd405fa
https://medium.com/nearprotocol/understanding-rust-lifetimes-e813bcd405fa

Foreign Types and Traits

A visual overview of types and traits in your crate and upstream.

([we] [char | -

Primitive Types Traits Composite Types

T

Type Constructors Functions Other

Items defined in upstream crates.

-

String String

- Foreign trait impl. Local trait impl. for ® |llegal, foreign

Blanket impl. of
trait for any type.

for local type. foreign type. trait for f. type.

Mult. impl. of trait
with differing IN

©® From<Port> ® |llegal impl. of
trait with differing
Exception: Legal if OUT params.

\ used type local. /

Your crate.

Examples of traits and types, and which traits you can implement for which type.

Type Conversions

How to get B when you have A?

Intro

fn f(x: A) = B {
// How can you obtain B from A?

Identity Trivial case, B is exactly A.

Computation Create and manipulate instance of B by writing code transforming data.

67

Casts On-demand conversion between types where caution is advised.
Coercions Automatic conversion within ‘weakening ruleset'.
Subtyping Automatic conversion within ‘same-layout-different-lifetimes ruleset'.*

1 While both convert A to B, coercions generally link to an unrelated B (a type "one could reasonably expect to have different methods"), while
subtyping links to a B differing only in lifetimes.

Computation (Traits)

fn f(x: A) - B {
x.into()

Bread and butter way to get B from A. Some traits provide canonical, user-computable type relations:

impl From<A> for B {} a.into() Obvious, always-valid relation.
impl TryFrom<A> for B {} a.try_into()? Obvious, sometimes-valid relation.
impl Deref for A {} *a A is smart pointer carrying B; also enables coercions.
impl AsRef for A {} a.as_ref() A can be viewed as B.
impl AsMut for A {} a.as_mut() A can be mutably viewed as B.
impl Borrow for A {} a.borrow() A has borrowed analog B (behaving same under Eq, ...).
impl ToOwned for A { .. } a.to_owned() A has owned analog B.
Casts

fn f(x: A) - B {
X as B

Convert types with keyword as if conversion relatively obvious but might cause issues. NoV

Pointer Pointer device_ptr as xconst u8 If *xA, *B are Sized.
Pointer Integer device_ptr as usize

Integer Pointer my_usize as *const Device

Number Number my_u8 as ulé Often surprising behavior. !
enum w/o fields Integer E::A as u8

bool Integer true as u8

68

https://doc.rust-lang.org/nightly/nomicon/casts.html
https://doc.rust-lang.org/nightly/nomicon/casts.html

char Integer "A" as u8

&§[T; NI *const T my_ref as *const u8

fn(..) Pointer f as xconst u8 If Pointer is Sized.
fn(..) Integer f as usize

Where Pointer, Integer, Number are just used for brevity and actually mean:

e Pointer any xconst T or *xmut T;
e Integer any countable u8 ... 1128;
e Number any Integer, f32, f64.

Opinion &2 — Casts, esp. Number - Number, can easily go wrong. If you are concerned with correctness, consider
more explicit methods instead.

Coercions

fn f(x: A) - B {
X

Automatically weaken type A to B; types can be substantially* different. NoM

smut T &T Pointer weakening.

gmut T xmut T -

&T xconst T -

*mut T xconst T -

&T &U Deref, if impl Deref<Target=U> for T.

T U Unsizing, if impl CoerceUnsized<U> for T 2 b+
T \% Transitivity, if T coercesto U and U to V.

x| x + x fn(ug8) — u8 Non-capturing closure, to equivalent fn pointer.

! Substantially meaning one can regularly expect a coercion result B to be an entirely different type (i.e., have entirely
different methods) than the original type A.

2 Does not quite work in example above as unsized can't be on stack; imagine f(x: &§A) — &B instead. Unsizing works
by default for:

e [T; nlto[T]
e Ttodyn Trait if impl Trait for T {}.
e Fo00<.., T, .>t0 Foo<.., U, ..> under arcane ¢ circumstances.

69

https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nomicon/coercions.html
https://doc.rust-lang.org/nomicon/coercions.html

Subtyping?

fn f(x: A) = B {
X

Automatically converts A to B for types only differing in lifetimes "M - subtyping examples:

§'static u8 &'a us Valid, forever-pointer is also transient-pointer.

&'a us 6'static u8 ® |nvalid, transient should not be forever.

§'a 6'b us8 §'a §'b us Valid, same thing. But how things get interesting. Read on.
§'a §'static u8 §'a §'b u8 Valid, §'static u8 isalso &'b u8; covariant inside &.

§'a mut §'static u8 §'a mut &§'b u8 ® |nvalid and surprising; invariant inside smut.
Box<&'static u8> Box<&'a u8> Valid, Box with forever is also box with transient; covariant.
Box<&'a u8> Box<&'static u8> ® |nvalid, Box with transient may not be with forever.

Box<&'a mut u8> Box<&'a u8> ® |nvalid, see table below, smut u8 never was a sus.
Cell<&'static u8> Cell<&'a u8> ® |nvalid, cell are never something else; invariant.
fn(&'static u8) fn(&'a u8) ® |f rn needs forever it may choke on transients; contravar.
fn(&'a u8) fn(&'static u8) But sth. that eats transients can be(!) sth. that eats forevers.
for<'r> fn(&'r u8) fn(s'a us) Higher-ranked type for<'r> fn(&'r u8) isalso fn(&'a u8).

In contrast, these are not® examples of subtyping:

ulé us ® Obviously invalid; u16 should never automatically be u8.

us uls ® |nhvalid by design; types w. different data still never subtype even if they could.

§'a mut u8 &§'a u8 ® Trojan horse, not subtyping; but coercion (still works, just not subtyping).
Variance t

fn f(x: A) - B {
X

Automatically converts A to B for types only differing in lifetimes N°M - subtyping variance rules:

e Alonger lifetime 'a that outlives a shorter 'b is a subtype of 'b.
e Implies 'static is subtype of all other lifetimes 'a.
» Whether types with parameters (e.g., §'a T) are subtypes of each other the following variance table is used:

70

https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html

§'aT covariant covariant

§'a mut T covariant invariant

Box<T> covariant

Cell<T> invariant

fn(T) - U contravariant covariant
xconst T covariant

*xmut T invariant

Covariant means if A is subtype of B, then T[A! is subtype of T[BI.
Contravariant means if A is subtype of B, then T[B] is subtype of T[A].
Invariant means even if A is subtype of B, neither T[A] nor T[B] will be subtype of the other.

1 Compounds like struct S<T> {} obtain variance through their used fields, usually becoming invariant if multiple variances are mixed.

¢ In other words, 'regular' types are never subtypes of each other (e.g., u8 is not subtype of u16), and a
Box<u32> would never be sub- or supertype of anything. However, generally a Box<A>, can be subtype of Box
(via covariance) if A is a subtype of B, which can only happen if A and B are 'sort of the same type that only
differed in lifetimes', e.g., A being &'static u32 and B being §'a u32.

Coding Guides

Idiomatic Rust

If you are used to Java or C, consider these.

Idiom Code
Think in Expressions y = if x { a } else { b };
y = loop { break 5 };
fn f() — u32 {0}
Think in Iterators (1..10).map(f).collect()
names.iter().filter(|x| x.starts_with("A"))
Test Absence with ? y = try_something()?;
get_option() 2. run()?
Use Strong Types enum E { Invalid, Vvalid { .. } } over ERROR_INVALID = -1
enum E { Visible, Hidden } over visible: bool
struct Charge(f32) over f32
lllegal State: Impossible my_lock.write().unwrap().guaranteed_at_compile_time_to_be_locked = 10; 1

thread ::scope(|s| { /x Threads can't exist longer than scope() */ });

Avoid Global State Being depended on in multiple versions can secretly duplicate statics. ® ¢
Provide Builders Car ::builder().name("Model T").hp(20).build();

Make it Const Where possible mark fns. const; where feasible run code inside const {}.
Don't Panic Panics are not exceptions, they suggest immediate process abortion!

71

https://doc.rust-lang.org/cargo/reference/resolver.html#version-incompatibility-hazards
https://doc.rust-lang.org/cargo/reference/resolver.html#version-incompatibility-hazards

Idiom Code
Only panic on programming error; use Option<T>STP or Result<T, E>STP otherwise.
If clearly user requested, e.g., calling obtain() vs. try_obtain(), panic ok too.
Inside const { NonZero::new(1).unwrap() } p.becomes compile error, ok too.
Generics in Moderation Asimple <T: Bound> (e.g., AsRef<Path>) can make your APIs nicer to use.
Complex bounds make it impossible to follow. If in doubt don't be creative with g.
Split Implementations Generics like Point<T> can have separate impl per T for some specialization.
impl<T> Point<T> { /* Add common methods here x/ }

impl Point<f32> { /x Add methods only relevant for Point<f32> %/ }

Unsafe Avoid unsafe {},' often safer, faster solution without it.
Implement Traits # derive(Debug, Copy, ..)] and custom impl where needed.
Tooling Run clippy regularly to significantly improve your code quality. %

Format your code with rustfmt for consistency. %

Add unit tests B¢ (#{ test]) to ensure your code works.

Add doc tests B¢ (""" my_api:: f() ") to ensure docs match code.
Documentation Annotate your APIs with doc comments that can show up on docs.rs.

Don't forget to include a summary sentence and the Examples heading.

If applicable: Panics, Errors, Safety, Abort and Undefined Behavior.

1 In most cases you should prefer ? over -unwrap(). In the case of locks however the returned PoisonError signifies a panic in another thread, so unwrapping it (thus propagating the panic) is
often the better idea.

@ We highly recommend you also follow the API Guidelines and the Pragmatic Rust Guidelines @

Performance Tips

"My code is slow" sometimes comes up when porting microbenchmarks to Rust, or after profiling.

& ¥ Release Mode < & Always do cargo build --release for massive speed boost.
Y A Target Native CPU ¢ Add rustflags = ["-Ctarget-cpu=native"] to config.toml, '
Yt Codegen Units ¢ Codegen units 1 may yield faster code, slower compile.
y Reserve Capacity S™° Pre-allocation of collections reduces allocation pressure.
y Recycle Collections S Calling x.clear() and reusing x prevents allocations.
y Append to Strings °™° Using write!(smut s, "{}") can prevent extra allocation.
Yif Global Allocator 5™ On some platforms ext. allocator (e.g., mimalloc <) faster.
Bump Allocations ¢ Cheaply gets temporary, dynamic memory, esp. in hot loops.
Batch APls Design APIs to handle multiple similar elements at once, e.g., slices.
iy} SoA / AoSoA ¢ Beyond that consider struct of arrays (SoA) and similar.
« (i SIMD S0 Inside (math heavy) batch APIs using SIMD can give 2x - 8x boost.
Reduce Data Size Small types (e.g, u8 vs u32, niches®) and data have better cache use.
Keep Data Nearby ¢ Storing often-used data nearby can improve memory access times.
Pass by Size ¢ Small (2-3 words) structs best passed by value, larger by reference.
iyl Async-Await ¢ If parallel waiting happens a lot (e.g., server I/O) async good idea.

72

https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html
https://docs.rs/
https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://rust-lang.github.io/api-guidelines/
https://microsoft.github.io/rust-guidelines/
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/rustc/codegen-options/index.html#codegen-units
https://doc.rust-lang.org/rustc/codegen-options/index.html#codegen-units
https://doc.rust-lang.org/std/?search=with_capacity
https://doc.rust-lang.org/std/?search=with_capacity
https://doc.rust-lang.org/std/index.html?search=clear
https://doc.rust-lang.org/std/index.html?search=clear
https://doc.rust-lang.org/std/macro.write.html
https://doc.rust-lang.org/std/macro.write.html
https://doc.rust-lang.org/std/alloc/index.html#the-global_allocator-attribute
https://doc.rust-lang.org/std/alloc/index.html#the-global_allocator-attribute
https://crates.io/crates/mimalloc
https://crates.io/crates/mimalloc
https://docs.rs/bumpalo/latest/bumpalo/
https://docs.rs/bumpalo/latest/bumpalo/
https://web.archive.org/web/20240815193855/https://www.rustsim.org/blog/2020/03/23/simd-aosoa-in-nalgebra/
https://web.archive.org/web/20240815193855/https://www.rustsim.org/blog/2020/03/23/simd-aosoa-in-nalgebra/
https://doc.rust-lang.org/std/simd/index.html
https://doc.rust-lang.org/std/simd/index.html
https://en.wikipedia.org/wiki/Data-oriented_design
https://en.wikipedia.org/wiki/Data-oriented_design
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#reason-45
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#reason-45
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

Threading S™°
4 ...in app
iy ... inside libs
« ... for lib callers
Avoid Locks

Avoid Atomics

a g g

Avoid False Sharing ¢
& Buffered I/0 ST° &
Yy A Faster Hasher ¢
b Faster RNG
it Avoid Trait Objects ¢
i Defer Drop ¢

Y A Unchecked APIs ST°

Threads allow you to perform parallel work on mult. items at once.
Often good for apps, as lower wait times means better UX.

Opagque t. use inside lib often not good idea, can be too opinionated.
However, allowing your user to process you in parallel excellent idea.
Locks in multi-threaded code kills parallelism.

Needless atomics (e.g., Arc vs Rc) impact other memory access.
Make sure data R/W by different CPUs at least 64 bytes apart. ¢
Raw File I/O highly inefficient w/o buffering.

Default HashMap STP hasher DoS attack-resilient but slow.

If you use a crypto RNG consider swapping for non-crypto.

T.O. reduce code size, but increase memory indirection.

Dropping heavy objects in dump-thread can free up current one.

If you are 100% confident, unsafe { unchecked_ } skips checks.

Entries marked «” often come with a massive (> 2x) performance boost, ¥ are easy to implement even after-the-fact, £{2 might have costly side effects (e.g., memory, complexity), 1\ have

special risks (e.g., security, correctness).

Profiling Tips &

Profilers are indispensable to identify hot spots in code. For the best experience add this to your Cargo.toml:

[profile.release]
debug = true

Thendo a cargo build --release and run the result with Superluminal (Windows) or Instruments (macOS). That said, there are many
performance opportunities profilers won't find, but that need to be designed in.

Async-Await 101

If you are familiar with async / await in C# or TypeScript, here are some things to keep in mind:

Basics
Construct Explanation
async Anything declared async always returns an impl Future<Output=_>, STP
async fn f() {} Function f returns an impl Future<Output=()>.
async fn f() — s {} Function f returns an impl Future<Output=S>,
async { x } Transforms { x } into an impl Future<Output=X>,

let sm = f();
sm = async { g() };
runtime.block_on(sm);

sm.await

Calling f() thatis async will not execute f, but produce state machine sm. * 2
Likewise, does not execute the { g() } block; produces state machine.
Outside an async {}, schedules sm to actually run. Would execute g(). 34

Inside an async {}, run sm until complete. Yield to runtime if sm not ready.

73

https://doc.rust-lang.org/std/thread/index.html
https://doc.rust-lang.org/std/thread/index.html
https://en.wikipedia.org/wiki/False_sharing
https://en.wikipedia.org/wiki/False_sharing
https://igoro.com/archive/gallery-of-processor-cache-effects/
https://igoro.com/archive/gallery-of-processor-cache-effects/
https://doc.rust-lang.org/std/io/index.html#bufreader-and-bufwriter
https://doc.rust-lang.org/std/io/index.html#bufreader-and-bufwriter
https://lib.rs/crates/seahash
https://lib.rs/crates/seahash
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://stackoverflow.com/questions/28621980/what-are-the-actual-runtime-performance-costs-of-dynamic-dispatch
https://stackoverflow.com/questions/28621980/what-are-the-actual-runtime-performance-costs-of-dynamic-dispatch
https://abrams.cc/rust-dropping-things-in-another-thread
https://abrams.cc/rust-dropping-things-in-another-thread
https://doc.rust-lang.org/std/?search=unchecked
https://doc.rust-lang.org/std/?search=unchecked
https://superluminal.eu/rust/
https://en.wikipedia.org/wiki/Instruments_%28software%29
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html

1 Technically async transforms following code into anonymous, compiler-generated state machine type; f() instantiates that machine.
2 The state machine always impl Future, possibly Send & co, depending on types used inside async.

8 State machine driven by worker thread invoking Future:: poll() via runtime directly, or parent .await indirectly.

4 Rust doesn't come with runtime, need external crate instead, e.g., tokio. Also, more helpers in futures crate.

Execution Flow

At each x.await, state machine passes control to subordinate state machine x. At some point a low-level state
machine invoked via -await might not be ready. In that the case worker thread returns all the way up to runtime so it
can drive another Future. Some time later the runtime:

* might resume execution. It usually does, unless sm / Future dropped.
¢ might resume with the previous worker or another worker thread (depends on runtime).

Simplified diagram for code written inside an async block :

consecutive_code(); consecutive_code(); consecutive_code();

START

/"

// Invoked via runtime
// or an external .await
//

//

//

//

Caveats ®

X.await y.await READY
» n Future<Output=X> ready -"
| I

| This might resume on another thread (next best available),

| or NOT AT ALL if Future was dropped.

|

Execute “x . If ready: just continue execution; if not, return
this thread to runtime.

With the execution flow in mind, some considerations when writing code inside an async construct:

Constructs ?
sleep_or_block();
set _TL(a); x.await; TL();
s.no(); x.await; s.go();

Rc::new(); x.await; rc();

Explanation
Definitely bad ®, never halt current thread, clogs executor.
Definitely bad ®, await may return from other thread, thread local invalid.
Maybe bad ®, await will not return if Future dropped while waiting. 2

Non-Send types prevent impl Future from being Send; less compatible.

1 Here we assume s is any non-local that could temporarily be put into an invalid state; TL is any thread local storage, and that the async {}
containing the code is written without assuming executor specifics.
2 Since Drop is run in any case when Future js dropped, consider using drop guard that cleans up / fixes application state if it has to be left in bad

condition across -await points.

Closures in APIs

There is a subtrait relationship Fn : FnmMut :

Fnonce. That means a closure that implements Fn STP also implements FnMut and Fnonce. Likewise a

closure that implements Fnmut STP also implements Fnonce. STP

74

https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://crates.io/crates/tokio
https://github.com/rust-lang-nursery/futures-rs
https://doc.rust-lang.org/std/macro.thread_local.html
http://www.randomhacks.net/2019/03/09/in-nightly-rust-await-may-never-return/
https://doc.rust-lang.org/std/ops/trait.Drop.html

From a call site perspective that means:

Signature Function g can call ... Function g accepts ...
g<F: FnOnce()>(f: F) ... f() at most once. Fn, FnMut, FnOnce
g<F: FnMut()>(mut f: F) ... £() multiple times. Fn, FnMut
g<F: Fn()>(f: F) ... £() multiple times. Fn

Notice how asking for a Fn closure as a function is most restrictive for the caller; but having a Fn closure as a caller is most compatible with any function.

From the perspective of someone defining a closure:

Closure Implements” Comment
[[{ moved_s; } FnOnce Caller must give up ownership of moved_s.
[| { smut s; } FnOnce, FnMut Allows g() to change caller's local state s.
[l { &s; } FnOnce, FnMut, Fn May not mutate state; but can share and reuse s.

" Rust prefers capturing by reference (resulting in the most "compatible" Fn closures from a caller perspective), but can be forced to capture its
environment by copy or move via the move || {} syntax.

That gives the following advantages and disadvantages:

Requiring Advantage Disadvantage
F: FnOnce Easy to satisfy as caller. Single use only, g() may call f() just once.
F: FnMut Allows g() to change caller state. Caller may not reuse captures during g().
F: Fn Many can exist at same time. Hardest to produce for caller.

Unsafe, Unsound, Undefined

Unsafe leads to unsound. Unsound leads to undefined. Undefined leads to the dark side of the force.

Safe Code

Safe Code

« Safe has narrow meaning in Rust, vaguely 'the intrinsic prevention of undefined behavior (UB)'.
 Intrinsic means the language won't allow you to use itself to cause UB.

* Making an airplane crash or deleting your database is not UB, therefore 'safe’' from Rust's perspective.

e Writing to /proc/[pid]/mem to self-modify your code is also 'safe’, resulting UB not caused intrinsincally.

let y = x + x; // Safe Rust only guarantees the execution of this code is consistent with
print(y); // ‘'specification' (long story ..). It does not guarantee that y is 2x

// (X::add might be implemented badly) nor that y is printed (Y::fmt may
panic).

Unsafe Code

Unsafe Code

e Code marked unsafe has special permissions, e.g., to deref raw pointers, or invoke other unsafe functions.
75

https://doc.rust-lang.org/stable/reference/expressions/closure-expr.html

¢ Along come special promises the author must uphold to the compiler, and the compiler will trust you.
e By itself unsafe code is not bad, but dangerous, and needed for FFI or exotic data structures.

// “x° must always point to race-free, valid, aligned, initialized u8 memory.
unsafe fn unsafe_f(x: *mut u8) {
my_native_lib(x);

Undefined Behavior

Undefined Behavior (UB)

e As mentioned, unsafe code implies special promises to the compiler (it wouldn't need be unsafe otherwise).

« Failure to uphold any promise makes compiler produce fallacious code, execution of which leads to UB.

« After triggering undefined behavior anything can happen. Insidiously, the effects may be 1) subtle, 2) manifest far
away from the site of violation or 3) be visible only under certain conditions.

¢ A seemingly working program (incl. any number of unit tests) is no proof UB code might not fail on a whim.

« Code with UB is objectively dangerous, invalid and should never exist.

if maybe_true() {

let r: &u8 = unsafe { &*ptr::null() }; // Once this runs, ENTIRE app is undefined. Even
if
} else { // line seemingly didn't do anything, app might
now run

println!("the spanish inquisition"); // both paths, corrupt database, or anything else.
}

Unsound Code

Unsound Code

¢ Any safe Rust that could (even only theoretically) produce UB for any user input is always unsound.
e Asis unsafe code that may invoke UB on its own accord by violating above-mentioned promises.
e Unsound code is a stability and security risk, and violates basic assumption many Rust users have.

fn unsound_ref<T>(x: &T) — 6&ul28 { // Signature looks safe to users. Happens to be
unsafe { mem:: transmute(x) } // ok if invoked with an &ul28, UB for practically
} // everything else.

Responsible use of Unsafe &

« Do notuse unsafe unless you absolutely have to.
« Follow the Nomicon, Unsafe Guidelines, always follow all safety rules, and never invoke UB.

76

https://doc.rust-lang.org/nightly/nomicon/
https://rust-lang.github.io/unsafe-code-guidelines/
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html

« Minimize the use of unsafe and encapsulate it in small, sound modules that are easy to review.
« Never create unsound abstractions; if you can't encapsulate unsafe properly, don't do it.
« Each unsafe unit should be accompanied by plain-text reasoning outlining its safety.

Adversarial Code ¥

Adversarial code is safe 3™ party code that compiles but does not follow API expectations, and might interfere with your own (safety) guarantees.

fn g<F: Fn()>(f: F) { .} Unexpectedly panic.
struct S<x: T> { . } Implement T badly, e.g., misuse Deref, ...
macro_rules! m { .. } Do all of the above; call site can have weird scope.
_ wskpatem Deserpen
#H repr(packed)] Packed alignment can make reference &s. x invalid.
impl std::.. for s {} Any trait impl, esp. std :: ops may be broken. In particular ...
impl Deref for S {} May randomly Deref, e.g., s.x s s.x, Or panic.
impl PartialkEq for S {} May violate equality rules; panic.
impl Eq for S {} May cause s # s; panic; must not use s in HashMap & co.
impl Hash for S {} May violate hashing rules; panic; must not use s in HashMap & co.
impl Ord for S {} May violate ordering rules; panic; must not use s in BTreeMap & CO.
impl Index for S {} May randomly index, e.g., s[x] == s[x]; panic.
impl Drop for S {} May run code or panic end of scope {}, during assignment s = new_s.
panic!() User code can panic any time, resulting in abort or unwind.
catch_unwind(|| s.f(panicky)) Also, caller might force observation of broken state in s.
let .. = f(); Variable name can affect order of brop execution. 1 ®

1 Notably, when you rename a variable from _x to _ you will also change Drop behavior since you change semantics. A variable named _x will have Drop:: drop() executed at the end of its
scope, a variable named _ can have it executed immediately on 'apparent’ assignment (‘apparent' because a binding named _ means wildcard REF discard this, which will happen as soon
as feasible, often right away)!

Implications

« Generic code cannot be safe if safety depends on type cooperation w.r.t. most (std ::) traits.

« If type cooperation is needed you must use unsafe traits (prob. implement your own).

« You must consider random code execution at unexpected places (e.g., re-assignments, scope end).
« You may still be observable after a worst-case panic.

As a corollary, safe-but-deadly code (e.g., airplane_speed<T>()) should probably also follow these guides.

API Stability

When updating an API, these changes can break client code.RF¢ Major changes (@) are definitely breaking, while minor changes () might be
breaking:

Crates

@ WMaking a crate that previously compiled for stable require nightly.

https://doc.rust-lang.org/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/reference/patterns.html#wildcard-pattern
https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://rust-lang.github.io/rfcs/1105-api-evolution.html

Crates

@ Removing Cargo features.

Altering existing Cargo features.

Modules

@ Renaming / moving / removing any public items.

Adding new public items, as this might break code that does use your_crate :: .

Structs
@ Adding private field when all current fields public.
@ Adding public field when no private field exists.
Adding or removing private fields when at least one already exists (before and after the change).

Going from a tuple struct with all private fields (with at least one field) to a normal struct, or vice versa.

Enums
@ Adding new variants; can be mitigated with early #{non_exhaustive] REF

@ Adding new fields to a variant.

Traits
@ Adding a non-defaulted item, breaks all existing impl T for S {},
@ Any non-trivial change to item signatures, will affect either consumers or implementors.
@ Implementing any "fundamental” trait, as not implementing a fundamental trait already was a promise.
Adding a defaulted item; might cause dispatch ambiguity with other existing trait.
Adding a defaulted type parameter.

Implementing any non-fundamental trait; might also cause dispatch ambiguity.

Inherent Implementations

Adding any inherent items; might cause clients to prefer that over trait fn and produce compile error.

Signatures in Type Definitions
@ Tightening bounds (e.g., <T> to <T: Clone>).
Loosening bounds.
Adding defaulted type parameters.
Generalizing to generics.
Signatures in Functions

@ Adding / removing arguments.
Introducing a new type parameter.

Generalizing to generics.

Behavioral Changes

@ /) Changing semantics might not cause compiler errors, but might make clients do wrong thing.

Ralf Biedert, 2026 — cheats.rs

78

https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://xr.io/
https://cheats.rs/

