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Abstract

Dynamic topic models (DTMs) model the evolu-
tion of prevalent themes in literature, online media,
and other forms of text over time. DTMs assume
that word co-occurrence statistics change continu-
ously and therefore impose continuous stochastic
process priors on their model parameters. These
dynamical priors make inference much harder
than in regular topic models, and also limit scal-
ability. In this paper, we present several new re-
sults around DTMs. First, we extend the class
of tractable priors from Wiener processes to the
generic class of Gaussian processes (GPs). This
allows us to explore topics that develop smoothly
over time, that have a long-term memory or are
temporally concentrated (for event detection). Sec-
ond, we show how to perform scalable approxi-
mate inference in these models based on ideas
around stochastic variational inference and sparse
Gaussian processes. This way we can train a rich
family of DTMs to massive data. Our experiments
on several large-scale datasets show that our gener-
alized model allows us to find interesting patterns
that were not accessible by previous approaches.

1 Introduction

Probabilistic topic models help us to organize and browse
large collections of documents (Blei, 2012). Topic mod-
els have been successfully applied in information retrieval
(McCallum et al., 2004; Wang et al., 2007; Charlin and
Zemel, 2013), computational biology (Pritchard et al., 2000;
Gopalan et al., 2016), recommendation systems (Wang and
Blei, 2011), and computer vision (Fei-Fei and Perona, 2005;
Chong et al., 2009). Topic models assume that all words in a
document were independently drawn from a finite set of prob-
ability distributions over words, termed the ’topics’. This
way, every document is a mixture of topics. The limitation
is that this approach assumes that topics are static.
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Topics change over time. To provide some intuition, consider
the example of the topic fechnology when training topic mod-
els on historical articles '. Restricting the corpus to articles
around 1900, we find words such as engine, electricity, and
wire to be mainly associated with this topic. For modern
articles, we may find devices, gates, and silicon among the
top words. In applications as this, we want to be able to as-
sociate documents with similar topic proportions with each
other over large time spans. But at the same time, we want to
allow topics to “modernize’, meaning to dynamically adjust
their vocabulary. This is achieved in dynamic topic mod-
els (DTMs) (Blei and Lafferty, 2006; Wang and McCallum,
2006; Wang et al., 2008). DTMs model the evolution of
topics as a continuous Wiener process. This dynamic prior
determines how strongly topics may change their vocabulary.
This way, DTMs share statistical strengths over all times,
while giving the topics enough flexibility to change.

Current formulations of dynamic topic models are subject
to the major limitation that they are restricted to a particular
type of stochastic process for the latent topical dynamics,
namely Wiener processes. This formulation does not al-
low us to analyze long-term effects, events, or other more
complicated temporal dependencies. Second, relying on
the forward-backward algorithm, they lack scalability. If
the data are distributed across many different time-stamps,
they require a full pass through the data in every iteration.
This lack of scalability may be the reason why DTMs have
been much less used in large-scale scientific or industrial
applications than their static counterparts. In this paper, we
generalize dynamic topic models in two ways: first we ex-
tend the class of tractable priors from Wiener processes to
the more general class of Gaussian processes. Second, we
derive a scalable approximate Bayesian inference algorithm
based on inducing points. This allows us to apply our model
to contemporary large text collections. In more detail, our
main contributions are as follows:

e We formulate DTMs in terms of latent Gaussian pro-
cess priors on topic evolution. This opens a wealth of
possibilities for new models in which the topics display
different types of temporal (or even spatial) correlations.

! Example from David Blei’s tutorial slides on topic
modeling, http://www.cs.columbia.edu/~blei/talks/Blei__
ICML_ 2012.pdf
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Going beyond the typical Wiener processes, we ana-
lyze Ornstein-Uhlenbeck processes for event detection,
Gaussian processes with Cauchy kernels (for long-term
memory effects) and squared exponential kernels (for
rather short-term memory effects).

e We derive a scalable variational inference algorithm
for this new model class. Our approach relies on in-
ducing points for Gaussian process inference (Snelson
and Ghahramani, 2006; Titsias, 2009; Hensman et al.,
2013). All natural gradients are given in closed-form
and do not rely on numerical optimization or sampling
approaches. Natural gradients have the advantage that
they are invariant to reparameterization of the vari-
ational family (Amari and Nagaoka, 2007; Martens,
2017) and provide effective second-order optimization
updates (Hoffman et al., 2013; Wenzel et al., 2018).
While a naive implementation would scale cubically in
the number of time stamps, our approach scales cubi-
cally in the number of inducing points, which is typi-
cally much smaller.

e In our experiments, we investigate dynamic topics using
different kernels. These new priors allow us to find
patterns which were not accessible before. For instance,
we filter time-localized topics in a set of speeches on
the State of the Union and in news articles as published
in the New York Times.

This paper is organized as follows. In section 2 we discuss
related work. We describe the novel generalized dynamic
topic model in section 3 and present an efficient variational
inference algorithm for our model in section 4. Section 5
concludes with experiments. For implementation details,
we refer readers to the website of the first author of this
paper”.

2 Background and Related Work

We connect to dynamic and correlated topic models, sparse
GPs and stochastic variational inference (SVI).

Dynamic Topic Models. DTMs form the basis of our ap-
proach. While Blei and Lafferty (2006) originally proposed
a model with equidistant time slices, Wang et al. (2008)
extended the approach to continuous time. Both rely on
a latent Wiener process and use the forward-backward al-
gorithm for learning, which requires full passes through
the data in every iteration if the number of time stamps is
comparable with the total number of documents. Wang and
McCallum (2006) proposed a different approach where time
is an observed variable with some prior over a finite time
interval. While in principle being scalable, the resulting
topics are non-smooth. Finally, Bhadury et al. (2016) pro-
posed a new approach for learning in topic models based on
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stochastic gradient MCMC (Welling and Teh, 2011; Mandt
et al., 2016). Their approach similarly is restricted to latent
Wiener processes.

Correlated and GP Topic Models. This class of modified
static topic models breaks the independence assumptions
of the per-document topic proportions. Instead, the topic
proportions are jointly drawn from some prior which induces
correlations (Blei and Lafterty, 2007). If this prior is a Gaus-
sian process, this leads to the kernel topic model (Hennig
et al., 2012) or Gaussian process topic model (Agovic and
Banerjee, 2012). Note that both approaches assume that the
topics themselves are static and only the topic proportions
change. In contrast, we treat the proportions as indepen-
dent and identically distributed (iid) and impose dynamics
on the topics themselves. None of these models have been
formulated in a scalable manner.

Stochastic Variational Inference and sparse GPs.
Our algorithm builds on stochastic variational inference
(SVI) (Hoffman et al., 2013), which combines variational
inference with stochastic optimization. SVI can normally
only applied if the data are iid conditioned on a global set
of paramaters, which is an assumption that is typically bro-
ken in Gaussian process modelling setups. Hensman et al.
(2013, 2012) have shown that one can derive a tractable
lower bound to the marginal likelihood of the data that al-
lows for data subsampling. This so-called inducing point
or sparse approach dates back to earlier work by Titsias
(2009); Snelson and Ghahramani (2006) and Csat6 and Op-
per (2002) and has been successfully applied to a variaty of
GP models (e.g. Hensman et al., 2015; Wenzel et al., 2017).
None of this work has been applied in the context of topic
models.

3 Generalized Dynamic Topic Models

Dynamic topic models are mixed-membership bag-of-words
models which allow their mixture components—the topics—
to drift over time. This allows to dynamically fade-in new
words, and fade-out old words which loose their semantic
significance in a topic. In the classic DTM this continuity is
achieved by imposing a Wiener process prior on the topic
matrices (Blei and Lafferty, 2006; Wang et al., 2008) (see
also (Bamler and Mandt, 2017) for a related approach for
word embeddings).

In this paper, we propose Gaussian processes as priors on the
topic matrices. Since the Wiener process is a specific type
of GP, our approach is a strict generalization of dynamic
topic models but covers a much richer class of dynamics. We
introduce the generalized dynamic topic model in section 3.1
and present a scalable version in section 3.2.
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3.1 Generalized DTMs

For what follows, we borrow notation from the topic mod-
eling literature (Blei et al., 2003). We assume that we ob-
serve a corpus of D documents, each of which is associated
with a time stamp 7;, with index t4 € {1,...,T}. Fora
simpler notation we denote the number of words in a docu-
ment as N. For a given document d with time index ¢, let
wy1, -+ ,wqn be the words it contains, 6; be a K-vector
of topic proportions and zg, the assignment of word wg,
to a topic. The model consists of K time dynamic topics
whereby (.; denotes a topic’s V' -dimensional distribution
over the vocabulary at time ¢.

Our model exhibits the following joint distribution:

T K
p(w, 2,6, 8) = H H (w, 21, 0|7 (Bre))- - (1)

The function (+) is the softmax function which normalizes
the topic [x.; over the vocabulary indices. The remaining
likelihood,

p(we,ze, 0|m(B..1)) =
H p(od H weln|7'r Bzdn ))p(Z(hLWd),

d:tg=t n

is just a regular LDA model (at time ¢), where
P(an|T(Beyy)) = Mult(m(Bey,0)). pleanlds) =
Mult(64), p(84) = Dir(«). The graphical model is shown
in Figure 1.

The distinctive feature of dynamic topic models is their dy-
namic prior p(8). In our model each of the V' words out
of K topics is a latent function over time, drawn from a
GP with kernel function . This GP is observed at times
71, -+, 77 and can thus be described as a T'-dimensional
multivariate normal distribution’:

Brw- ~ GP(0, k) © Brw,1.7 ~ Nr(0, Kr1),  (2)
K, =k(r,7), 77 €{n, - ,mr} 3)
Using a Wiener kernel function in our model results in the
classic DTM of Wang et al. (2008). However, due to the
model’s flexibility we can model any stochastic process that
falls into the class of GPs by simply altering the covariance
function k. As an aside, this setup not only covers the dy-
namic setup, but also allows for incorporating other types of
meta data as e.g. spatial modeling if the text documents are
associated with location coordinates.

In this paper, we focus on the time-specific setup. In more
detail, we consider several different kernels commonly used
for time-series modeling (Roberts et al., 2012).

3We call attention to the slight overloading of notation: a plain
K always is the number of topics, using subscripts or a tilde it
denotes a kernel/covariance matrix.
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Figure 1: The generalized dynamic topic model.

o Wiener kernels, ki (7, 7') = 0 min(r, 7’). Using a

Wiener kernel (Brownian motion kernel) in our model
recovers the typical DTM setup. This serves as our
baseline.

e Ornstein-Uhlenbeck kernels, rou(7,7') =

The Ornstein-Uhlenbeck (OU)

process is essentially a Wiener process in the presence
of a mean-reverting force which pulls the process
state back to its mean and thus acts like a regularizer.
An effect of this is that topics may die-off and other
topics may dynamically emerge (using a zero-mean
process). As we show in our experiments, this leads to
temporally localized changes in topics.

jr=r'|
l

% exp (—

KSE(T, ’7'/) =

Squared exponential (SE) ker-

e Squared exponential kernels,

"2
o2 exp (7 (T;sz )

nels have the property that the resulting trajectories are
smoother compared to Wiener kernels. The resulting
prior functions are infinitely often differentiable. The
exponential decay of the temporal correlations leads
to memory effects that can be parameterized by the
kernel’s length scale [. With a suitable chosen [ this
allows for temporally localized topics.

e Cauchy Kernels, rcy(7,7') = 02 (1 + (7_1727/)2 '
Cauchy kernels are constructed similarly as SE kernels,
but instead of using the Gaussian density one uses a
Cauchy density. This kernel has long-range memory,
which means that temporal correlations decay not ex-
ponentially but polynomially, which in some cases is
more realistic.

Note that any additive or multiplicative combination of co-
variance functions again results in a valid covariance func-
tion again and so can similarly be used. This adds consider-
able to the flexibility of the proposed prior.

We again stress that all these kernels use the same infer-
ence algorithm. The problem is that a naive implementation
would scale cubicly in the number of time stamps. We there-
fore propose a more efficient version based on the concept
of sparse GPs.
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3.2 Sparse DTMs

The bottleneck of inference in the model introduced in sec-
tion 3.1 is the inversion of the T" x I" kernel matrix K7r. One
solution is to bin time stamps into groups, thus artificially
reducing T'. But this way we loose valuable information,
especially when the number of distinct time stamps is com-
parable to the number of observed documents themselves,
ie. T~ D.

Instead, we present a scalable version of the generalized
dynamic topic model based on inducing points (Hensman
et al., 2013). This is a low-rank approximation to the 7-
dimensional GPs based on T artificial time stamps (inducing
points) where T < T. The inversion necessary for inference
is only based on the T x T covariance matrix of the approxi-
mating GP and can therefore be computed efficiently.

Following Hensman et al. (2013), let K71 be the kernel
evaluated at all training points (i.e. the full rank kernel as
in (2)), K the kernel evaluated at inducing points, and
K. and K. be kernels evaluated in-between these sets
of points. Furthermore, let u be a T-dimensional variable.
‘We make use of the following Gaussian integral:

N(O, KTT) = /N(KTTK%%U’ R)N(U, 0, KTT)du’
4)

where K = Krr — K K ;%KTT Thus, we introduce
latent auxiliary variables wg,, for every (i, such that the
resulting marginal distribution of 3, does not change (when
integrating over uy,,). Defining p(ug.,) = N (0, K74), we
obtain

p(ﬂkwl”kw) = N(KTTK;%ukwv R)> (5)

and perform approximate inference over u. Also note that
conditioning of GPs involves inversion of the kernel matrix.
In our approach, inverting a 7" x T matrix is now replaced
by inverting one of size TxT.

The augmented joint distribution is

p(B,w, z,0,u) = p(w|B, 2)p(z|0)p(Blu)p(u).  (6)

This summarizes our model (the discussion of marginalizing
over f3 is deferred to the next section). Next, we present
details about the inference procedure. Readers primarily in-
terested in experimental results may therefore skip section 4
and continue with section 5.

4 Inference

In Bayesian latent variable models such as DTMs, our goal
is to compute the posterior distribution over the latent vari-
ables. This quantity is intractable and we have to resort to
approximate methods. We use variational inference, which

maps the inference problem to an optimization problem,
minimizing Kullback-Leibler divergence between a simple
proxy distribution and the posterior. This is equivalent to
optimizing a lower bound to the marginal likelihood of the
model, termed evidence lower bound (ELBO) (Jordan et al.,
1999). In particular, we use stochastic variational inference
(SVI) (Hoffman et al., 2013), which optimizes the ELBO
using stochastic gradient descent.

We first carry-out the approximate marginalization over (3,
lower-bounding the likelihood term. We then show how we
can decompose the ELBO into a part which is equivalent to
LDA, and into another part which contains the GP prior and
therefore is more complex. We list all modified updates on
the local and global parameters, with detailed calculations
given in the appendix.

Approximate marginalization. We first marginalize over
£ in the augmented joint distribution (6). Unfortunately, the
marginal likelihood term cannot be computed in closed-form.
We use Jensen’s inequality to obtain a lower bound on the
log likelihood,

log p(wan|zdn = k, u,tq) (7
= IOg Ep(ﬁkfdm) [p(wdn|zdn = k7 Bkrtd]
> Ep((8y.r,lu) [log Mult (wan|m(By-1,))]

= K, K71 uktwan — Ep((gy,, ) [logz eXp(ﬂkwt)] :
3

where uy, is a T x V matrix and K b T is the t4-th row of
K ;. The remaining expectation in (8) is still intractable
due to the sum inside of the logarithm. Following Blei and
Lafferty (2006), we introduce additional free variational
parameters (i (see appendix). This results in a lower bound
to Ing(wdn‘zdn = ku u, td):

logﬁ(wdn|zdn = k7 u, td) (9)

_ Cpo—1
= thTKTT“kwd”

K,
—1 —1 tat
— ¢t Zexp (thTKTTU’k'LUtcL + 2,1 d)

w

- IOg(thd) + 1.

Next, we use this lower bounded log-likelihood to de-
rive a tractable variational objective which we can opti-
mize.

Stochastic Variational Inference. We follow a variational
structured mean-field approach (Wainwright and Jordan,
2007) and impose the following variational distributions
on the latent variables, q(64|\q) = Dir(Aq), ¢(zdan|ddan) =

Mult(¢dn) and q(ukw ‘,ukun ka) = NT(,Ukun Ekw) Eq
(9) gives rise to the following tractable lower bound of the
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marginal likelihood:

LA, ¢, 1,5, Q) =Eq[log p(wlu, 2)] (10)
Ly
+ Eq[log(p(2|0)p(0)p(w))] + H(q) -
——
Lo Entropy

The entropy term and £, consist of standard results and a
part that can be computed similarly as in standard LDA (see
appendix). We also compute £; in closed form:

Ly = Z Z ndw¢dwk{mkwt —log(Cre) +1

t,k,awditqg=t
— 1 -
_Ck:tl Z €xp (mku/t + §(Akw’t + Ktt)) } >

with

-1
Mpwt = KtTKTTMkw

—1 —1
At = Koo K2 Sk K L K g

Objective L is optimized using SVI (Hoffman et al., 2013),
i.e. for global variational parameters, we follow noisy natural
gradients based on minibatches. Local variational parameter
updates are similar to those in (Wang et al., 2008) and we
do not replicate them here. Further details are provided in
the appendix.

Global updates. We consider the Gaussian distributions
q(uyw ) in natural parameterization, i.e. using the parame-
ters 77,23 = Z,;ul) Mk and 771(51), = —%Z;ul), where (i, are the
Gaussian means and Y, the covariances. In SVI, we up-
date these global parameters using stochastic estimates of the
natural gradient and it turns out that in this case natural pa-

rameters result in simpler and more effective updates.

More specifically, for a Gaussian distribution, properties
of the Fisher information matrix expose the simplification
that the natural gradient w.r.t. the natural parameters can
be expressed in terms of the Euclidean gradient w.r.t. the
canonical parameters (i.e. mean and covariance). Namely, in
general it holds for objectives F that depend on a Gaussian
distribution that

Vimm F@) = (VuF () = 2VsF (), VsF(n)),
(11

where V denotes the natural gradient and V the Euclidean
gradient. Applying (11) to the variational objective (10), we
obtain

@nl(cl)ﬁ = Ekw + Bku) o (mkw - ]-) - 77](611),7
N 1 1 (2)
Vo £ = =58 = 5 e

(12)

We used the following abbreviations:

= “1
Epw = K7 E E K3, ngw®dwk

t ditg=t
Biw=Y_ Y G nawPduwk
t ditg=t
Mgt + K _
X exp (mkwt + % KT%KTt’

-1
Crw = BkwKtTKff'

Above, o denotes the Hadamard product. Details are pro-
vided the appendix. Iterating through those updates com-
pletes the algorithm.

S Experiments

We evaluate our method on three time-stamped text cor-
pora. Compared to standard DTMs with Wiener kernels,
we find that incorporating other dynamic priors may lead to
improved predictive likelihoods and perplexity on held-out
data. Using different kernel functions within our framework,
we find new insights in the data that could not be found us-
ing the classic DTM of Wang et al. (2008), which uses the
Wiener kernel and thus results in an unbounded variance
over the time span. This promotes topics that are consistent,
albeit relatively static.

By making use of the greater flexibility that comes with
general GPs, we show how to extend and enhance an anal-
ysis. For instance, by using the OU kernel, we introduce a
mean reverting force that quickly "draws" word probabili-
ties towards zero, resulting in topics that are consistent and
constrained in time and more sensitive to changes. Further,
in situations in which the classic approach collapses most of
the probability mass to single words per time stamp, we com-
pensate by using Cauchy kernels, which place a smooth filter
on word probabilities onto the topic over time. On the other
hand, more fine-grained temporal dynamics can be captured
by RBF kernels, due to their short-range memory.

Data and preprocessing.

1. We use the “The New York Times Annotated Cor-
pus” (NYT) (Sandhaus, 2008), which consists of over 1.8
million articles published between 1987 and 2007 with
T = 7475 unique time stamps. We subsample 100000
documents.

2. We use the NIPS dataset that contains 2711 papers from
the NIPS conferences between 1987 and 2006* resulting in
T = 19 time stamps.

3. We use the “State of the Union” (SoU) addresses of U.S.
presidents, which span more than two centuries, resulting in

*nttp://www.datalab.uci.edu/author-topic/NIPs.htm


http://www.datalab.uci.edu/author-topic/NIPs.htm

Scalable Generalized Dynamic Topic Models

world
— power [
peace

0.05
0.075

e i
—— policy N

|

|

— hope VI
|
|

0.04

— political !

Probability in topic
0.02 0.03
T
7
Probability in topic
0.025 0.050

0.01

—— defense

—— citizens
international

—— interest

0.06

international | .
—— defense
—— citizens
—— interest

0.04

Probability in topic

0.02

2009
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kernel (right). The Cauchy kernel provides smoother trajectories yet the OU kernel is able to provide a better resolution in

time. Both outperform the baseline in terms of perplexity.
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Figure 3: NYT: Learned word trajectories of the "election campaign" topic using the Wiener kernel (left), OU kernel
(middle) and Cauchy kernel (right), which results in the smoothest curves.

T = 224 different time stamps °>. We increase the number of
documents to 4428 by treating every chunk of ten paragraphs
in a speech as a separate document.

For preprocessing, we filtered the raw data using a standard
stop word list. After collecting word statistics, we remove
words that appear less than 25 times across a whole corpus.
We further shrink the vocabulary by removing words whose
score is less than a certain threshold, resulting in dictionar-
ies of reasonable size (see appendix). After this step, we
remove documents with effective lengths less than ten word
occurrences. We initialize our models by randomly selecting
K documents for any given time stamp and setting proba-
bilities in topic k of occurring words proportional to their
frequencies in the k-th document.

Hyperparameters. In our experiments we select the hy-
perparameters via grid search but they could also be directly
learned in our inference scheme using the approximate em-
pirical Bayes approach (Maritz and Lwin, 1989).

Qualitative Results. We now discuss the qualitative re-
sults obtained from applying our model on all three cor-
pora. For certain example topics, we plot and discuss the

Shttp://www.presidency.ucsb.edu/sou.php

probabilities of the most important words in this topic over
time. As a general tendency, we find that our proposed
Ornstein-Uhlenbeck and Cauchy kernels outperform the stan-
dard Wiener kernel in terms of interpretability and in terms
of usefulness for detecting events.

SoU. We consider a topic of with war and peace, found when
fitting our generalized DTM to the state-of-the-union corpus.
Figure 2 shows the word probabilities within this topic over
time for all three considered kernels. The Wiener kernel is
able to find a semantically coherent word distribution for this
topic. We observe a relatively high probability of the term
"war" over the whole time span with a sharp peak around
1939 (World War II). Using the Cauchy kernel, we are able to
gain a better resolution of the dynamics for the importance of
this term. We observe two separate high-probability periods
of the word "war". One is matching the time of the American-
Mexican war 1846-1848, the other one the World Wars and
Vietnam war. We attribute this finding to the fact that the
Cauchy kernel shares more statistical strength over time due
to its long-term memory property.

While this model already provides a better insight into ac-
tive time periods of the topic, additionally introducing a
mean-reverting force via the OU kernel provides a mean
to "super-resolve" topic activity quite accurately to certain
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(middle) and Cauchy kernel (right). All three approaches identify terms that gain or loose importance within the topic over
time. Since the Cauchy kernel shares statistical strength over a broader time horizon, its word trajectories are smoother.

events. We observe high probability for the term "war” again
around 1848, a small plateau in the 1910s (World War I)
rising to a high value in 1939 (World War II) and the 1960s
(Vietnam war). We even observe a small bump in the begin-
ning and through the 1980s (possibly the war in Afghanistan)
and another peak in the mid 2000s (second Afghanistan war).
Additionally, when looking at the words with highest prob-
ability at these times, we observe that the model is able
to place probability mass on terms relating to the different
wars, e.g. "fexas" for the American-Mexican war (which
was fought over Texas) or "attack” and "japanese” in 1942
(where the attack on Pearl Harbor took place). Based on
these findings, the Ornstein-Uhlenbeck kernel seemed most
appropriate for this task.

NYT. Another interesting use case scenario is the analysis
of news texts. One of the topics identified when analyzing
the New York Times corpus deals with presidential elec-
tion campaigns. Figure 3 shows probability trajectories of
terms in that topic for the Wiener (left), Ornstein-Uhlenbeck
(middle), and Cauchy (right) kernels, respectively. We ob-
serve, that the baseline model (Wiener kernel) is able to
capture meaningful terms. Going beyond this, the OU ker-
nel arguably reflects the election campaigns in 1992 and
1996. The Cauchy kernel results in even smoother trajec-
tories. These findings, however, deserve a more thorough
investigation and interpretation. Nevertheless, this exam-
ple shows that different kernels reveal qualitatively different
phenomena.

NIPS. Applying generalized DTMs on the NIPS corpus al-
lows us to track trends in machine learning over the last 20
years. We present probability trajectories of a topic related to
classification and function approximation. Again, we show
results for Wiener, OU, and Cauchy kernels (Figure 4, left
to right). We observe from the baseline model that neural
networks gained attention in the late 1980s and early 1990s.
However, excitement subsided in the late 1990s and Bayesian
methods were on the rise (our data set is not recent enough to
detect the uptrend of neural networks in the last 5-10 years).

While the Wiener kernel models overall development, the
Ornstein-Uhlenbeck process is able to better react to small
scale changes, resulting in a more realistic representation of
term development. Additionally, it finds more general terms,
such as "network”, "classification" and "system”. Using the
Cauchy kernel with its long-term memory prevents from
placing large probability mass on the rapidly rising term
"gaussian”. The Cauchy kernel is also able to identify more
general terms.

Quantitative Results. We show that using our approach
not only leads to interesting dynamic topics but also general-
izes better to unseen data. We use all documents associated
with time stamps T4, as training set and analyze the predic-
tive held-out likelihoods on remaining documents (associ-
ated with the time stamps Tiese = T'\ Tirain)- We experiment
on the NYT dataset and randomly select Ty, to hold 85%
of the unique time stamps.

ELBOs

10000000 -1

lower bound on marginal likelihood

15000000

—— Wiener kernel

—— Cauchy kernel

—— Ornstein Uhlenbeck kernel
RBF kernel

2000 4000 6000 8000 10000
# documents seen

Figure 5: SoU: Evidence lower bound against the number of
documents seen. On all used kernels, the objective function
converges to an optimum.
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Data | ¢cDTM ¢eDTM ¢DTM eDTM
(baseline) | OU Cauchy | RBF
NYT | 1.42323 1.42073 | 1.42129 | 1.42374
NIPS | 1.4931 1.48149 | 1.48105 | 1.4821
SoU 1.46854 1.45594 | 1.45575 | 1.46023

Table 1: Per-word predictive perplexities (lower numbers
are better). We constantly outperform the baseline on all
data sets.

Table 1 shows that our method outperforms the baseline in
terms of per-word predictive perplexity (e.g. Blei and
Lafferty, 2007). We observe that the perplexity on both the
NIPS and SoU dataset is best when the dynamics are
modeled by a GP with Cauchy kernel while the NYT
dataset is best captured by a OU kernel. This shows again
the advantage of using our approach over the
state-of-the-art. Having the flexibility of modeling the
dynamics by a GP we can account for the different
dynamics that may underlie different datasets. Additionally,
Figure 5 shows the ELBO objective function when fitting a
model to the SoU data set, eventually reaching an optimum.
Results on the different data sets were similar.

Remarks. We argue that as always in probabilistic
modeling, the prior should not be chosen based on
predictive likelihood alone. Instead, a prior is a modeling
choice that helps reveal the effects that one searches for.
Depending on the problem at hand, a practitioner would
choose the suitable kernel, be it the Wiener kernel,
Ornstein-Uhenbeck kernel, RBF kernel or Cauchy kernel.
The Ornstein-Uhlenbeck kernel has the favorable property
of localizing topics in time, which may be a promising tool
for event detection. However, if the length scale is too
small, topics change their word distributions at a frequency
which is too high, in which case the results are less
interpretable. On the other hand, the RBF kernel (and even
more so the Cauchy kernel) has long-time memory and is
generally more data efficient, which has advantages if the
data set is small. Ultimately, many other kernels may be
designed for different purposes.

6 Conclusion and Future Work

We presented the generalized dynamic topic model, which
allows for dynamic topic modeling with a broader class of
dynamic priors, and which easily scales up to very large
text collections. In particular, we generalized dynamic topic
models from Brownian motion priors to arbitrary Gaussian
process priors. We showed in our experiments that our
approach leads to better predictive likelihoods on held-out
documents, and to interesting new qualitative findings, such
as temporally localized topics, and topics that display
long-range temporal dependencies. As a possible future
extensions, we plan to consider periodic kernels for
repeating events, and to extend dynamic topic modeling
from the time domain to the geo-spatial domain, such as
text equipped with location information.
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