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Fig. 1. ReStyle3D Overview. Given an interior design image (style image) and a 3D scene captured by video or multi-view images, ReStyle3D first transfers
the appearance based on semantic correspondences to a single view, then lifts the stylization to multiple viewpoints using 3D-aware style lifting, achieving
multi-view consistent appearance transfer with fine-grained details.

We introduce ReStyle3D, a novel framework for scene-level appearance
transfer from a single style image to a real-world scene represented by
multiple views. The method combines explicit semantic correspondences
with multi-view consistency to achieve precise and coherent stylization.
Unlike conventional stylization methods that apply a reference style globally,
ReStyle3D uses open-vocabulary segmentation to establish dense, instance-
level correspondences between the style and real-world images. This ensures
that each object is stylized with semantically matched textures. ReStyle3D
first transfers the style to a single view using a training-free semantic-
attention mechanism in a diffusion model. It then lifts the stylization to
additional views via a learnedwarp-and-refine network guided bymonocular
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depth and pixel-wise correspondences. Experiments show that ReStyle3D
consistently outperforms prior methods in structure preservation, perceptual
style similarity, and multi-view coherence. User studies further validate its
ability to produce photo-realistic, semantically faithful results. Our code,
pretrained models, and dataset will be publicly released, to support new
applications in interior design, virtual staging, and 3D-consistent stylization.
Project page and code at https:// restyle3d.github.io/ .
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1 INTRODUCTION
Generative diffusion models have recently spurred significant ad-
vances in image stylization and broader generative applications, en-
abling the seamless synthesis or editing of images with remarkable
visual fidelity. While existing image stylization approaches [Chung
et al. 2024; Li 2024] often excel at transferring well-known artistic
styles (e.g., Van Gogh paintings) onto photographs, they fall short
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when it comes to practical and realistic style applications, such as
virtual staging or professional interior decoration, where transfer-
ring the style of one image (style image) to another (source image)
entails transferring the individual appearance of objects (see Fig. 1).

These methods tend to treat the style image globally, ignoring the
semantic correspondence between individual objects or regions in
the images. This coarsely aligned stylization not only misrepresents
object appearances but also fails to adapt fine-grained textures to
semantically matched regions (e.g., transferring couch textures only
to couches). This is crucial for real-world use cases where style is
defined by the unique characteristics (e.g., color, material, shape)
of design elements (i.e., furniture, decor, lighting, and accessories)
that give it its signature look [Park and Hyun 2022]. Another line
of work pursues semantic correspondence for transferring object
appearances [Cheng et al. 2024; Zhang et al. 2023a]. While these
methods show promise in aligning single objects or small regions
via deep feature matching, they typically operate at low spatial
resolutions (often 64 × 64) and therefore struggle to handle com-
plex scenes with strong perspective and multiple object instances.
Extending them to scene-level stylization remains a challenging
problem due to both semantic and geometric complexity.
Moreover, when a scene is represented by multiple images (e.g.,

for larger coverage), ensuring multi-view consistency in scene-level
appearance transfer further complicates the task. Existing multi-
view editing methods [Dong and Wang 2023; Fujiwara et al. 2024;
Liu et al. 2024b; Patashnik et al. 2024] commonly require known
camera poses and an existing 3D scene representation (e.g., a neural
radiance field [Mildenhall et al. 2021] or 3DGaussian splatting [Kerbl
et al. 2023]), which needs a dense set of input views and consider-
able compute time. These methods struggle with sparse or casually
captured views, and their specialized 3D pipelines hinder plug-and-
play use. A pixel-space approach preserving geometric cues without
heavy 3D modeling is preferable but remains under explored.
We propose ReStyle3D, a novel framework for scene-level ap-

pearance transfer that combines semantic correspondence andmulti-
view consistency, addressing limitations of 2D stylization and 3D-
based editing methods. Our key insight is that the inherent but
implicit semantic correspondences from pretrained diffusion mod-
els or vision transformers (e.g., StableDiffusion [Rombach et al. 2022]
and DINO [Caron et al. 2021; Oquab et al. 2024]) are insufficient for
fine-grained, scene-level appearance transfer, especially when differ-
ent objects or viewpoints are involved. We tackle this by explicitly
matching open-vocabulary panoptic segmentation predictions be-
tween the style and source images, while ensuring that unmatched
parts of the scene still receive a global style harmonization. This
open-vocabulary labeling (with no predefined semantic categories)
helps us robustly align semantically corresponding regions even
in cluttered indoor scenes. By integrating these explicit correspon-
dences into the attention mechanism of a diffusion process, we
achieve more accurate and flexible stylization of multi-object scenes.

To further ensure 3D awareness and view-to-view consistency, we
adopt a two-stage pipeline. First, we achieve training-free semantic
appearance transfer in a single view by injecting our correspondence-
informed attention into a pretrained diffusion model. Second, a
warp-and-refine diffusion network that efficiently propagates the

stylized appearance to additional views in an auto-regressive man-
ner, guided by monocular depth and pixel-level optical flows. Our
method does not require explicit pose or 3D modeling, and we show
that the final stylized frames are fully compatible with off-the-shelf
3D reconstruction tools, enabling complete 3D visualizations and
consistent multi-view stylization with minimal overhead.

In summary, our contributions are as follows:
• We introduce SceneTransfer, a new task of compositionally
transferring multi-object appearance from a single style im-
age to a 3D scene captured in multi-view images or video.

• We propose ReStyle3D, a two-stage pipeline that (i) repur-
poses a pretrained diffusion model with semantic attention for
instance-level stylization, and (ii) trains a warp-and-refine
novel-view synthesis module to propagate the style across
all views, maintaining global consistency.

• We create the SceneTransfer benchmark with 25 interior de-
sign images and 31 indoor scenes (243 style-scene pairs) from
different categories (e.g. bedroom, living room, and kitchen).
Our results show strong improvements in structure preserva-
tion, style fidelity, and cross-view coherence.

2 RELATED WORK
Image Stylization. The goal is to transfer artistic styles to images

while preserving structural content. Early CNN-based methods [Du-
moulin et al. 2017; Gatys et al. 2016; Huang and Belongie 2017]
laid the groundwork by capturing style and content representa-
tions. With the advent of diffusion models [Ho et al. 2020; Rombach
et al. 2022], recent approaches leverage pretrained architectures
and textual guidance for high-quality stylization [Chung et al. 2024;
Everaert et al. 2023; Li 2024; Li et al. 2023; Šubrtová et al. 2023; Yang
et al. 2023; Zhang et al. 2023b]. InST [Zhang et al. 2023b] employs
textual inversion to encode styles in dedicated text embeddings,
achieving flexible transfer. StyleDiffusion [Li et al. 2023] further
refines style-content separation through a CLIP-based disentangle-
ment loss applied during fine-tuning. StyleID [Chung et al. 2024]
adapts self-attention in pretrained diffusion models to incorporate
artistic styles without additional training. While these methods pro-
duce compelling results, they focus on overall style transfer without
explicitly modeling semantic correspondences. In contrast, we at-
tempt to inject semantic matching in stylization, thereby enabling
precise style transfer according to semantically matching regions.

Semantic Correspondence. Foundational works and recent inno-
vations have shaped the evolution of semantic correspondence.
SIFT-Flow [Liu et al. 2011] pioneered dense image alignment with
handcrafted SIFT descriptors [Lowe 2004]. Self-supervised vision
transformers like DINO [Caron et al. 2021] and DINO-V2 [Darcet
et al. 2024; Oquab et al. 2024] improved feature representation for
semantic matching without labeled data [Tumanyan et al. 2023a,
2022]. Recent methods, such as [Hedlin et al. 2023; Zhang et al.
2023a], DIFT [Tang et al. 2023], cross-image-attention [Alaluf et al.
2024], and [Go et al. 2024], integrate diffusion models with these
transformers, achieving superior zero-shot correspondence. Tech-
niques like Deep Functional Maps [Cheng et al. 2024] further refine
correspondences by enforcing global structural consistency, demon-
strating the potential of advanced representations in addressing
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correspondence challenges. The development of these techniques
enables the extraction of semantic correspondences using interme-
diate representations.

Attention-based Control in Diffusion Models. The attention mod-
ules in pretrained diffusion models are essential in controlling the
generated content, allowing various image editing tasks through at-
tention mask manipulation. Prompt-to-Prompt [Hertz et al. 2022] pi-
oneered text-based local editing by manipulating cross-attention be-
tween text prompts and image regions. Similarly, Plug-and-play [Tu-
manyan et al. 2023b] leverages the original image’s spatial features
and self-attention maps to preserve spatial layout while generating
text-guided edited images. Epstein et al. [2023] introduced Diffusion
Self-Guidance, a zero-shot approach that leverages internal represen-
tations for fine-grained control over object attributes. While these
methods focus on text-to-image attention control, recent works like
Generative Rendering [Cai et al. 2024] explore cross-image atten-
tion by injecting 4D correspondences from meshes into attention
for stylized video generation. MasaCtrl [Cao et al. 2023] proposed
text-based non-rigid image synthesis by injecting attention masks
between text and image. In contrast, we propose a direct image-to-
image semantic attention mechanism that transfers appearances
across all semantic categories simultaneously through explicit cor-
respondence masks, enabling efficient and accurate scene-level styl-
ization without text prompts or 3D priors.

Diffusion-based Novel-View Synthesis (NVS). NVS of general scenes
typically requires inferring and synthesizing new regions that are
either unobserved or occluded in the original viewpoint. A common
strategy in prior work [Koh et al. 2022; Liu et al. 2021; Rockwell
et al. 2021; Wiles et al. 2020] is to follow a warp-and-refine approach:
estimate a depthmap from the input image, warp the image to the de-
sired viewpoint, and then fill in occluded or missing areas through a
learned refinement stage. More recent research [Jin et al. 2024; Rom-
bach et al. 2021; Yu et al. 2023] avoids explicit depth-based warping
by directly training generative models that handle view synthesis
in a single feed-forward pass. StoryDiffusion [Zhou et al. 2024]
proposes consistent self-attention to boost long-term consistency.
Another line of work [Cai et al. 2023; Chung et al. 2023; Deng et al.
2024; Ouyang et al. 2023; Seo et al. 2024; Shriram et al. 2025; Sun et al.
2024; Tseng et al. 2023; Yu et al. 2024] integrates diffusion models
such as StableDiffusion [Rombach et al. 2022], making it possible to
extrapolate plausible new views that are far from the input image for
in-the-wild contents. ReconX [Liu et al. 2024a] and ViewCrafter [Yu
et al. 2024] both harness powerful video diffusion models combined
with coarse 3D structure guidance to mitigate sparse-view ambigui-
ties, achieving improved 3D consistency for novel-view synthesis.
Motivated by recent success in the warp-and-refine paradigm [Seo
et al. 2024], we adopt a similar strategy but with a focus on style
lifting, incorporating historical frames through adaptive blending
to consistently propagate our style transfers across multiple views.

3 RESTYLE3D
We present ReStyle3D, a framework for fine-grained appearance
transfer from a style image I𝑠𝑡𝑦𝑙𝑒 ∈ R𝐻×𝑊 ×3, to a 3D scene cap-
tured by unposed multi-view images or video X𝑠𝑟𝑐 := {I𝑖𝑠𝑟𝑐 ∈

Open-vocabulary 
Segmentation

DD
PM

 
In

ve
rs

io
n

Style

Source

…
…

Source Masks
Style Masks

Self-Attention in UNet

Q …

K

…
…

V

Denoising

Style

Stylized Output

Matching

…

Fig. 2. Semantic Appearance Transfer. The style and source images
are first noised back to step 𝑇 using DDPM inversion [2024]. During the
generation of the stylized output, the extended self-attention layer transfers
style information from the style to the output latent. This process is further
guided by a semantic matching mask, which allows for precise control.

R𝐻×𝑊 ×3}𝑁
𝑖=1. Specifically, ReStyle3D aims to transfer the appear-

ance of each region in I𝑠𝑡𝑦𝑙𝑒 to its semantically corresponding region
inX𝑠𝑟𝑐 , while maintaining multi-view consistency across all images.
We assume spatial overlap between two consecutive frames in X𝑠𝑟𝑐 .

3.1 Preliminaries
Diffusion models. Diffusion processes progressively add noise to

an image I0 sampled from a data distribution 𝑝data (I), transforming
it into Gaussian noise I𝑇 over𝑇 steps, following a variance schedule
{𝛼𝑡 }𝑇𝑡=1:

𝑝 ( I𝑡 | I0 ) = N( I𝑡 ;
√
𝛼𝑡 I0, 1 − 𝛼𝑡 I ), (1)

where I𝑡 represents the noisy image at timestep 𝑡 . The reverse pro-
cess is performed by a denoising model 𝜖𝜃 (·) that gradually removes
noise from I𝑡 to obtain cleaner I𝑡−1. Here 𝜃 is the learnable parame-
ters of the denoising model. During training, the denoising model
is trained to remove noise following the objective function [2020]:

L = EI0,𝑡∼U(𝑇 ),𝜖∼N(0,𝐼 ) | |𝜖𝜃 − 𝜖 | |22, (2)

where 𝜖𝜃 = 𝜖𝜃 (I𝑡 , 𝑡, 𝑐), and 𝑐 is an optional input condition such
as text, image mask, or depth information. At inference stage, a
clean image I := I0 is reconstructed from a randomly sampled
Gaussian noise I𝑇 ∼ N(0, 𝐼 ) through an iterative noise-removal
process. The cornerstone of modern image-based diffusion models
is the latent diffusion model [Rombach et al. 2022] (LDM), where
the diffusion process is brought to the latent space [Esser et al. 2021]
of a variational autoencoder (VAE). This approach is significantly
more efficient compared to working directly in the pixel space.

Attention layers. Attention layers are fundamental building blocks
in LDM. Given an intermediate feature map 𝐹 ∈ R𝐿×𝑑ℎ , where 𝐿
denotes the feature length and 𝑑ℎ represents the feature dimension,
the attention layer captures the interactions between all pairs of
features through query-key-value operations:

𝜙 = softmax

(
𝑄 ′ · 𝐾 ′𝑇√︁

𝑑ℎ

)
·𝑉 ′

𝑄 ′ = 𝑄 ·𝑊𝑞, 𝐾 ′ = 𝐾 ·𝑊𝑘 , 𝑉 ′ = 𝑉 ·𝑊𝑣,

(3)
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where 𝜙 is the updated feature map, 𝑄 ′, 𝐾 ′, and 𝑉 ′ are linearly pro-
jected representations of the inputs via𝑊𝑞 ,𝑊𝑘 , and𝑊𝑣 , respectively.
In self-attention, the key, query, and value originate from the same
feature map, enabling context exchange within the same domain.
For cross attention, the key and value come from a different source,
facilitating information exchange across domains. In ReStyle3D, we
tailor the self-attention layers specifically for semantic appearance
transfer, while leaving the cross-attention layers unchanged.

3.2 Appearance Transfer via Semantic Matching
To transfer the appearance of I𝑠𝑡𝑦𝑙𝑒 to I𝑠𝑟𝑐 , prior attempts also em-
ploying diffusion models [Alaluf et al. 2024; Cheng et al. 2024; Zhang
et al. 2023a] have primarily focused on single objects, and strug-
gle with scene-level transfer involving multiple instances. Our key
observation is that the implicit semantic correspondences in founda-
tion models [Oquab et al. 2024; Rombach et al. 2022] are insufficient
for more complex multi-instance semantic matching. To address this
limitation, ReStyle3D explicitly establishes and leverages semantic
correspondences throughout the transfer process.

Open-vocabulary Semantic Matching. We leverage the open vo-
cabulary panoptic segmentation model ODISE [Xu et al. 2023] for
semantic matching. For a given input image, ODISE generates seg-
mentation mapsM ∈ {1, . . . ,𝐶}𝐻×𝑊 , assigning each pixel to one
of 𝐶 semantic categories. These maps enable semantic correspon-
dences between the style and source images (detailed below). By
matching open-vocabulary semantic predictions, ReStyle3D is not
limited by predefined semantic categories in a scene. The correspon-
dences are injected into the diffusion process to guide appearance
transfer between matched regions.

Injecting Correspondences in Self-attention. ReStyle3D enables
training-free style transfer by extending the self-attention layer
of a pretrained diffusion model (Fig. 2). This approach injects style
information from I𝑠𝑡𝑦𝑙𝑒 into I𝑠𝑟𝑐 while preserving its structure.
Specifically, we first encode both the style and source images into
the latent space of Stable Diffusion [Rombach et al. 2022], produc-
ing z𝑠𝑡𝑦𝑙𝑒0 and z𝑠𝑟𝑐0 . These latent representations are then inverted
to Gaussian noise, z𝑠𝑡𝑦𝑙𝑒

𝑇
and z𝑠𝑟𝑐

𝑇
, using edit-friendly DDPM in-

version [Huberman-Spiegelglas et al. 2024]. To enhance structural
preservation and mitigate LDM’s over-saturation artifacts, we in-
corporate monocular depth estimates [Yang et al. 2024] of the input
images through a depth-conditioned ControlNet [Zhang et al. 2023c]
during the inversion process. The stylized image latent is then ini-
tialized as z𝑜𝑢𝑡

𝑇
= z𝑠𝑟𝑐

𝑇
.

Next, we transfer the style from z𝑠𝑡𝑦𝑙𝑒
𝑇

to z𝑜𝑢𝑡
𝑇

by de-noising them
along parallel paths [Alaluf et al. 2024]. At each de-noising step 𝑡 ,
we extract style features (𝐾𝑠𝑡𝑦𝑙𝑒 ,𝑉𝑠𝑡𝑦𝑙𝑒 ) and query features 𝑄𝑜𝑢𝑡

from individual self-attention layers. The semantic-guided attention
for the output feature 𝜙𝑜𝑢𝑡 is computed by combining the attention
features with the attention mask𝑀 as follows:

𝜙𝑜𝑢𝑡 = softmax ©­«
𝑄𝑜𝑢𝑡 · 𝐾𝑇𝑠𝑡𝑦𝑙𝑒√︁

𝑑ℎ

⊙ 𝑀ª®¬ ·𝑉𝑠𝑡𝑦𝑙𝑒 , (4)

where ⊙ denotes element-wise multiplication and 𝜙𝑜𝑢𝑡 ∈ R𝑑
2×𝑑ℎ is

passed to the next layer after self-attention.
To obtain the attention mask 𝑀 ∈ R𝑑

2×𝑑2
, we flatten and bilin-

early downsample the semantic masks M𝑠𝑡𝑦𝑙𝑒 and M𝑠𝑟𝑐 to match
the resolution of attention feature maps, which is 𝑑 × 𝑑 . The atten-
tion mask is defined as 𝑀 (𝑖, 𝑗) = 1 if the 𝑖-th region in the source
and the 𝑗-th region in the style image share the same semantic
class; otherwise, 𝑀 (𝑖, 𝑗) = 0. This formulation ensures that each
region in the output image samples its appearance solely from se-
mantically corresponding regions in the style image. For example
(Figure 3), a rug in the source image is only cross-attended to its
counterpart in the style image, inheriting its appearance. If multiple
instances in the style image share the same semantic class, attention
is distributed across them based on sampling weights determined
by softmax attention scores. This mechanism naturally extends to
support user-specified correspondences. Regions without semantic
matches attend to the entire style image to preserve global harmony.
While semantic attention effectively transfers appearance, it may
compromise realism and structure, requiring further refinement.
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Fig. 3. AttentionQuery Visualization. We visualize the attention score
at two query positions, coffee table and rug. Raw attention in [Alaluf et al.
2024] spilled across regions (red arrows) due to multi-instance ambiguity,
semantic attention effectively confines the activation in the matched region.

Guidance and Refinement. We draw inspiration from [Alaluf et al.
2024; Ho and Salimans 2021] and incorporate classifier-free guid-
ance (CFG) combined with semantic and depth-conditioned genera-
tion. At each denoising step 𝑡 , we compute three noise predictions:
𝜖𝑡 , 𝜖𝑑𝑡 and 𝜖𝑠𝑡 . Here, 𝜖

𝑠
𝑡 represents the predicted noise from the se-

mantic attention path, 𝜖𝑑𝑡 is obtained from the depth-conditioned
ControlNet [Zhang et al. 2023c], and 𝜖𝑡 is the unconditional noise
prediction. The final noise prediction is then calculated as follows:

𝜖𝑡 = (1 − 𝛼)𝜖𝑡 + 𝛼 (𝜆𝑠𝜖𝑠𝑡 + 𝜆𝑑𝜖𝑑𝑡 ), (5)

where 𝜆𝑠 and 𝜆𝑑 are the respective guidance weights (𝜆𝑠 +𝜆𝑑 = 1) for
semantic and depth guidance. (1 − 𝛼) is the classifier-free guidance
scale, which balances conditional and unconditional predictions,
improving image realism.
To enhance image quality, we employ a two-stage refinement

process. First, we upscale the initial stylized image from 512×512 to
1024×1024 resolution. Then, following SDEdit [Meng et al. 2022],
we add high-frequency noise to this upscaled image and denoise it
for 100 steps with SDXL [Podell et al. 2024]. This refinement process
enhances local details while maintaining the overall style, producing
our final single-view output Î𝑠𝑟𝑐 .
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Fig. 4. Multi-view Inconsistency Caused by Separate Transfer. When
stylizing each view separately, we observe inconsistencies in the results
(highlighted by red arrows) due to high variance in generative modeling.
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Fig. 5. Multi-view Style Lifting. Stereo correspondences are extracted
from the original image pair (I𝑖𝑠𝑟𝑐 , I

𝑗
𝑠𝑟𝑐 ) and used to warp the stylized image

Î𝑖 to the second image, I𝑗𝑤 . To address missing pixels from warping, we train
a warp-and-refine model to complete the stylized image Î𝑗 . This model is
applied across multiple views within our auto-regressive framework.

3.3 Multi-view Consistent Appearance Transfer
While our semantic attention module effectively transfers the ap-
pearance for a single view, applying this independently to each view
may cause inconsistent artifacts (see Fig 4). Thereby, we develop an
approach to transfer the appearance of the stylized image Î𝑖𝑠𝑟𝑐 to all
remaining views, while maintaining multi-view consistency.

Flow-guided StyleWarping. Given a pair of source images (I𝑖𝑠𝑟𝑐 , I
𝑗
𝑠𝑟𝑐 ),

we first leverage the stereo matching method [Wang et al. 2024] to
extract the dense point correspondence and the camera intrinsics.
Using these, the optical flowW𝑖→𝑗 ∈ R𝐻×𝑊 ×2 is calculated by pro-
jecting the pointmaps of 𝑖-th image to the 𝑗-th image. Next, given
the optical flow and the stylized 𝑖-th image Î𝑖𝑠𝑟𝑐 , we employ softmax
splatting [Niklaus and Liu 2020] to obtain the initial stylized image
Î𝑗𝑤 and its warping mask M𝑗

𝑤 , which indicates missing pixels in the
𝑗-th frame after forward warping.

Learning View-to-View Style Transfer. Given the source image I𝑗𝑠𝑟𝑐
and its initial stylized version Î𝑗𝑤 , we train a 2-view warp-and-refine
model 𝜖𝜃 = 𝜖𝜃 (z𝑡 , 𝑡, 𝑐) to generate a complete and consistent stylized
image following conditions 𝑐 : the initial stylized image, the inpaint-
ing mask, and the monocular depth map D𝑗 of the source image
I𝑗𝑠𝑟𝑐 (Fig. 5). The final condition 𝑐 = concat(z( Î

𝑗
𝑤 ) , z(M

𝑗
𝑤 ) , z(D

𝑗 ) ), z∗
denotes individual latent representations. To harness the power of a
pretrained diffusion model [Podell et al. 2024], like [Ke et al. 2024],

we modify the input channels of its initial convolution layer to ac-
commodate additional conditions and zero-initializing the additional
weights. Following Eq. (2), we train the model using quadruplets of
the warped and incomplete image, depth map, mask, and the clean
and complete image. The model learns to complete missing pixels,
while globally refining all pixels to address warping artifacts.

Auto-regressive Multi-view Stylization. We propose an autoregres-
sive approach to extend two-view stylization to handle multiple
views or even videos, ensuring global coherence across the scene
(Fig. 5). Stylizing the 𝑗-th frame using only the previous frame ( 𝑗−1)
can lead to inconsistencies with earlier frames while warping all
historical frames could produce blurry outputs. Instead, we warp the
stylized frame ( 𝑗 − 1) along with two randomly selected historical
frames. In overlapping regions, where multiple pixels are warped
to the same location, we adopt an exponential weighted averaging
to blend pixels, prioritizing pixels from frame ( 𝑗 − 1). This adaptive
weighting ensures temporal consistency while preserving sharp de-
tails in the resulting warped image Î1:𝑗−1𝑤 . Finally, our model refines
the output, producing a fully stylized frame.

4 EXPERIMENTS
Implementation Details. We base our semantic attention module

on Stable Diffusion 1.5 [Rombach et al. 2022] and the refinement
and 2-view warp-and-refine model on SDXL [Podell et al. 2024].
To train our two-view warp-and-refine model (Sec. 3.3), we use 4
NVIDIA A100 40GB GPUs with an effective batch size of 256 for
20K iterations, using the AdamW optimizer [Loshchilov and Hutter
2019] with learning rate 10−4. We randomly drop out half of the
text prompt during training to make our model agnostic to text
conditions. The model is trained on a dataset with 57K house tour
images featuring 57 different houses and apartments.

4.1 Evaluation Setting
Dataset. Our SceneTransfer benchmark comprises 31 distinct in-

door scenes captured as short video clips, totaling 15,778 frames
across multiple room categories, including living rooms, kitchens,
and bedrooms, all disjoint from our training data. To evaluate styl-
ization capabilities, we curated a set of 25 interior design reference
images, enabling 243 unique style-scene combinations. Evaluation
is performed on 1,109 keyframes sampled from these clips. For more
details on data, please refer to the supplementary material (Supp.).

Evaluation Metrics. We evaluate multiple different aspects of our
pipeline. First, we assess the appearance transfer performance us-
ing source images on two aspects: structure preservation and style
transfer quality. For structure preservation, we compare depth maps
predicted by DepthAnythingV2 [Yang et al. 2024] between styl-
ized and original images using standard metrics: Absolute Relative
Error (AbsRel), 𝛿1 accuracy, and Squared Relative Error (SqRel),
following established protocols [Ke et al. 2024; Yang et al. 2024]. For
style transfer quality, we measure perceptual similarity between
the stylized output and the style image using DINOv2 [Oquab et al.
2024], CLIP, and DreamSim [Fu et al. 2023] scores. We evaluate this
task on the stylized source images of each scene. Next, we evaluate
our two-view lifting model (Sec. 3.3). We assess its warp-and-refine
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Table 1. Quantitative Comparison of ReStyle3D and Baseline Methods on 2D Appearance Transfer. Our method achieves the best overall performance
for both structure preservation and perceptual similarity, benefiting from its explicit semantic guidance and two-stage refinement.

Method Depth Metrics (Structure) Perceptual Similarity (Style) Avg. Rank
AbsRel↓ SqRel↓ 𝛿1↑ DINO↑ CLIP↑ DreamSim↓

Cross-Image-Attn. [Alaluf et al. 2024] 22.47 7.944 5.78 0.553 0.709 0.414 4.8
IP-Adatper SDXL [Ye et al. 2023] 9.38 1.847 79.29 0.570 0.752 0.371 3.0
StyleID [Chung et al. 2024] 11.25 2.59 93.44 0.546 0.741 0.332 3.2

ReStyle3D (Ours w/o refinement) 11.30 2.65 89.11 0.586 0.778 0.319 2.5
ReStyle3D (Ours w/ refinement) 8.34 1.67 88.45 0.584 0.783 0.316 1.5

Source Image Style Image ReStyle3D (Ours) Cross-Image-Attn. IP-Adapter SDXL StyleID

Fig. 6. Image Appearance Transfer Results. Our method enables precise appearance transfer between semantically corresponding elements, evidenced by
the green rug and glass table (first row), textured cabinet (second row), and bedsheets (third row). Unlike baselines that either apply global style transfer or fail
to preserve structure, ReStyle3D maintains both semantic fidelity and structural integrity.

quality using PSNR, SSIM [Wang et al. 2004], and LPIPS [Zhang
et al. 2018] while also reporting FID [Heusel et al. 2017] to quan-
tify the realism of generated frames under challenging viewpoint
extrapolation. We evaluate using pairs of the source images per
scene and their warped projections on the rest of the frames in each
scene—we exclude pairs without correspondences. We do not use
any stylization to train or evaluate since there is no ground truth. To
evaluate global consistency, we leverage DUSt3R [Wang et al. 2024]
to extract poses by aligning point maps from stylized sequences and
compute cumulative error curve (AUC) by comparing recovered
camera poses against those from original images.

4.2 Results
Image Appearance Transfer. We compare with three state-of-the-

art methods on image-conditioned stylization and appearance trans-
fer: Cross Image Attention [Alaluf et al. 2024], IP-Adapter [Ye et al.
2023], and StyleID [Chung et al. 2024]. For a fair comparison, we
add depth ControlNet [Zhang et al. 2023c] to SDXL IP-Adapter [Ye
et al. 2023] and use the style image as the image prompt. As shown
in Tab. 1, our method achieves superior performance on both struc-
ture preservation and style transfer metrics. Notably, our explicit
semantic attention mechanism in the diffusion UNet enhances the
perceptual similarity between stylized outputs and style images, as
evidenced by better DINO, CLIP, DreamSim scores, and attention
visualization (Fig. 3). The refinement step further improves structure

preservation, reducing AbsRel from 11.30 to 8.34 and SqRel from 2.65
to 1.67. Qualitative comparisons (Figs. 6 and 9) reveal the limitations
of existing approaches. Cross Image Attention effectively captures
style textures but fails to maintain scene structure due to the lack of
semantic guidance. IP-Adapter SDXL preserves overall structure but
struggles with local detail transfer, as it compresses style informa-
tion into a global feature vector. While StyleID achieves the second-
best performance, its results tend to keep high-frequency details
from the source image while applying style changes more globally,
showing limited capability in fine-grained appearance transfer.
We conduct a user study with 27 participants who were shown

examples of a source and style image with outputs from four meth-
ods. Participants selected the result that best preserved the structure
while faithfully transferring the style. Out of 252 evaluations (Tab. 2),
ReStyle3D was the most preferred, achieving the highest preference
(42.4%) and demonstrating its effectiveness in balancing structure
preservation with appearance transfer under human perception.

Table 2. Image Appearance Transfer User Study. We show user prefer-
ence rates (%) for different methods, where participants selected the result
that best preserved the original scene structure while closely matching the
reference style. ReStyle3D achieves the highest preference rate.

Method ReStyle3D (Ours) Cross Image Attn. IP-Adapter StyleID
Preferred Rate (%) 42.4 16.3 4.4 36.9
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Frame 1 Frame 2 Frame 3 3D Reconstruction

Fig. 7. Results on Video/Multi-view Appearance Transfer of ReStyle3D. We show the style images, three frames stylized by ReStyle3D, followed by a 3D
reconstruction of these outputs using an off-the-shelf pipeline. Despite challenging camera motion and multiple objects in the scene, our method preserves
consistent geometry and seamlessly transfers the reference style across all frames.

Table 3. Results on Two-viewNovel-view Synthesis. ReStyle3D achieves
the highest scores on all metrics, indicating more accurate view synthesis
and visually pleasing outputs compared to existing methods.

Method Res. PSNR↑ SSIM↑ LPIPS↓ FID↓
GenWarp [Seo et al. 2024]

5122

13.503 0.465 0.435 59.965
StoryDiffusion [Zhou et al. 2024] 14.023 0.481 0.502 203.83
SDXL Inpainting [Podell et al. 2024] 16.228 0.535 0.389 89.502
ViewCrafter [Yu et al. 2024] 17.178 0.594 0.278 56.127
ReStyle3D (Ours) 18.614 0.677 0.246 34.138

GenWarp [Seo et al. 2024]

10242

13.491 0.565 0.440 60.540
StoryDiffusion [Zhou et al. 2024] 14.014 0.583 0.476 198.32
SDXL Inpainting [Podell et al. 2024] 16.153 0.565 0.426 89.537
ViewCrafter [Yu et al. 2024] 17.137 0.652 0.317 57.898
ReStyle3D (Ours) 18.568 0.711 0.283 35.721

Two-view NVS.. We compare our approach to: i) SDXL inpaint-
ing model [Podell et al. 2024] with depth-conditioned Control-
Net [Zhang et al. 2023c], ii) GenWarp [Seo et al. 2024], an image-
based diffusion model for single view NVS, iii) StoryDiffusion [Zhou
et al. 2024], a model with consistent self-attention for long-range
image and video generation and iv) ViewCrafter [Yu et al. 2024], a
video-diffusion model for NVS. Note that the proposed task differs
from traditional NVS as it leverages geometry information from the
novel view itself. We employ DUSt3R [Wang et al. 2024] to extract
the correspondences and provide the initial warped image as input
to all methods. As shown in Tab. 3, ReStyle3D outperforms across
all metrics, achieving a superior reconstruction ability as evidenced
by the best PSNR, SSIM, and LPIPS metrics. Additionally, it exhibits

Table 4. Pose Deviation from Real-world Estimates.We measure the
fraction of camera poses within certain rotation (at 5◦, 10◦, 15◦) and
translation (at 1, cm, 2, cm, 5, cm) error thresholds, reporting area-under-
curve (AUC) values. ReStyle3D achieves significantly higher AUC in both,
showing superior multi-view geometric consistency vs. existing methods.

Method Rotation AUC↑ Translation AUC↑
@5◦ @10◦ @15◦ @1cm @2cm @5cm

GenWarp [Seo et al. 2024] 25.89 46.70 58.89 58.38 59.39 70.05
SDXL Inpainting [Podell et al. 2024] 34.52 52.79 66.50 61.42 65.99 74.11
ViewCrafter [Yu et al. 2024] 37.56 55.33 68.53 60.91 65.99 77.16
ReStyle3D (Ours) 52.79 69.54 79.70 66.50 77.66 83.25

strong capability in extending style to unseen regions, evidenced
by the lowest FID score (Fig. 10). Notably, the second best method
ViewCrafter [Yu et al. 2024], requires a predefined camera trajectory
as input to video diffusion and runs 10× slower than ours.

Multi-view Consistency Evaluation. We further evaluate the multi-
view consistency of the stylized results through a proxy task Specifi-
cally, we input the original and stylized images to DUSt3R [2024] and
estimate the camera poses, separately. By evaluating the agreement
with the poses from the original images, we analyze whether the ge-
ometry is preserved in the stylized images. As shown in Tab. 4, our
adaptive auto-regressive approach effectively mitigates inconsisten-
cies while preserving image sharpness, significantly outperforming
the baselines on all pose metrics. Figs. 10 and 11 show multi-view
results, including the 3D reconstruction of stylized outputs with
estimated camera poses, demonstrating both geometric and style
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Table 5. Ablation Study. We separately remove the guidance strategy and
the semantic attention module to evaluate their impact on both structure
preservation and style fidelity. Removing either significantly degrades per-
formance, highlighting the importance of both components in achieving
robust scene geometry and perceptually faithful stylization.

AbsRel↓ SqRel↓ 𝛿1 ↑
Ours w/o guidance 16.72 4.36 67.46
Ours w/ guidance 8.34 1.67 88.45

(a) Ablation on Guidance

DINO↑ CLIP↑ DreamSim↓
Ours w/o Sem. Attn. 0.492 0.682 0.419
Ours w/ Keep. Attn. 0.549 0.737 0.359
Ours w/ Sem. Attn. 0.584 0.783 0.316

(b) Ablation on Semantic Attention

consistency despite camera motion and multiple objects. StoryDif-
fusion [Zhou et al. 2024] does not support multi-view stylization.

Ablation Study. In Tab. 5(a), we run ReStyle3D without our guid-
ance strategy and observe significant degradation in structure preser-
vation (AbsRel from 8.34 to 16.72). In (b), removing semantic atten-
tion hurts performance on perceptual similarity w.r.t. style image,
showing that both components are crucial for semantic-accurate
style transfer while maintaining structural integrity. Attending un-
matched instance to the style image globally provides better style
fidelity compared to keeping to original image, noted as Keep. Attn..

5 CONCLUSION
We presented ReStyle3D, a framework for compositional semantic
appearance transfer from a design image to multi-view scenes. Our
two-stage approach combines training-free semantic attention in
diffusion models with a multiview style propagation network to
ensure semantic and geometric consistency across views. ReStyle3D
avoids assumptions about scene semantics or geometry, making it
suitable for real-world interior design and virtual staging.
Limitations and Future Work. ReStyle3D faces several chal-

lenges: i) Drastic lighting changes between style and source images
can confuse appearance transfer, ii) Small objects are missed by the
segmentation model. We discuss more in supplementary material.
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Source Image Style Image w/o refinement w/ refinement

Fig. 8. Qualitative Comparison on refinement module of ReStyle3D. Results w/o refinement module present visually unpleasant artifacts on small
objects and edge of the objects (e.g., candles on the coffee table in the first row, kettle and toaster in the second row.). Our proposed refinement module (right)
can effectively improve the quality in both color and geometry, while maintaining the global style consistent.

Source Image Style Image ReStyle3D (Ours) Cross Image Attn. IP-Adapter SDXL StyleID

Fig. 9. Additional results on 2D appearance transfer. Each example shows the source image, the reference style image, and the stylized outputs. While the
baseline methods either disrupt scene structure or misalign local style details, ReStyle3D consistently preserves geometric fidelity and correctly maps the
reference appearance to each semantic region. Subtle details like furniture textures and decorative elements are accurately adapted to match the style.

Input View GenWarp SDXL Inpainting Viewcrafter ReStyle3D (Ours) Reference View

Fig. 10. Results on two-view NVS with warp-and-refine. Given a single input view and a target viewpoint, each method attempts to synthesize the target
frame by warping and refining the source image. ReStyle3D recovers more accurate geometry and fewer artifacts, while also preserving finer scene details. By
contrast, baseline methods struggle with consistent edge alignment and realism, showing noticeable artifacts and incomplete regions.
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Frame 1 Frame 2 Frame 3 3D Reconstruction

Fig. 11. Additional Results on Video/Multiview Appearance Transfer. We showcase three frames from a new indoor sequence stylized by ReStyle3D,
followed by a 3D reconstruction of these stylized images using an off-the-shelf algorithm. Despite dynamic viewpoint changes and scene complexity, ReStyle3D
consistently enforces semantic correspondences and preserves geometric integrity across all frames, enabling high-quality multi-view edits for practical
applications such as interior design or virtual staging.
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