

Minimum Viable Tests

Chris Hartjes

This book is for sale at http://leanpub.com/minimumviabletests

This version was published on 2017-10-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2017 Chris Hartjes

http://leanpub.com/minimumviabletests
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Testing Basics . 1
What Is a Test? . 1
Testing FizzBuzz . 2
Handling Non-Integers . 2
Testing for Fizz . 6
Make Buzz Work . 9
Check That FizzBuzz is Correctly Detected . 12
Data Providers to Reduce Repetition . 14
Things to Look out For . 16

Testing Basics
What Is a Test?

There are several ways we can answer this question, to be honest. When I was first learning to write
tests, I didn’t really think much about it. I wrote some code, used the test runner, and looked to see
if I got the expected results. If we back up a bit, I think we can get a much more useful answer.

From a very high level, a test is code you have written which confirms the code you are trying to
test is behaving as expected. A very simple concept. Everything else used to describe what a test is,
builds on this foundation.

If you look at it another way, there’s a question you should ask yourself every time you write code:
How can I prove this code works the way I am expecting it to?

Many people test using the old-school “code-save-refresh” method of testing. Some folks are lucky
enough to use languages which allow you to try things out using a REPL1 (Read-Eval-Print Loop).
The problem with using this approach is you end up throwing away your tests. Using tools like
PHPUnit can help you keep those tests around, and get the computer to run them for you. Computers
are great at endlessly running tests for you. Far better to spend your mental energy solving problems,
than manually running tests.

PHPUnit, being part of the xUnit2 family of testing tools uses the idea of an assertion as a central
concept.

In computer programming, an assertion is a statement a predicate (Boolean-valued
function, a true-false expression) is expected to always be true at that point in the code.
If an assertion evaluates to false at run time, an assertion failure results, which typically
causes the program to crash, or to throw an assertion exception.

With a few exceptions, tests you write will look like this:

• do some test setup
• run the code you’re trying to test
• assert that you have gotten an expected result

I can’t think of any better way to help you learn the basics of writing a test than actually writing
some code using tests to guide us.

1https://en.wikipedia.org/wiki/Read-eval-print_loop
2https://en.wikipedia.org/wiki/XUnit

https://en.wikipedia.org/wiki/Read-eval-print_loop
https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/Read-eval-print_loop
https://en.wikipedia.org/wiki/XUnit

Testing Basics 2

Testing FizzBuzz

For those who are not familiar with it, the FizzBuzz algorithm is a common ‘programming interview’
question. While I’m not generally a fan of asking people to solve problems during interviews, I feel
like FizzBuzz is really good to use for testing examples. It covers iterating over collections, loops,
and conditional statements.

Here’s how FizzBuzz is supposed to work:

• you have a list of positive integers
• you iterate through the list, examining each item
• if the integer is divisible by 3, you return ‘Fizz’
• if the integer is divisible by 5, you return ‘Buzz’
• if the integer is divisible by both 3 and 5, you return ‘FizzBuzz’
• otherwise just return the integer

Let’s build this together using Test-Driven Development. I cannot recommend enough you following
along with me and actually typing in all the code and watching the output of PHPUnit. Over the
years I have found that to get good at testing requires a lot of actually writing tests and learning
what works and doesn’t. Every code base is different, and theory only takes you so far.

With that out of the way, let’s start with writing a test which assumes the code is already working.

Handling Non-Integers

Assuming you have PHPUnit installed already (refer back to the chapter on PHPUnit basics for
more details), let’s write a test. How should we respond if the collection we’re sent doesn’t contain
integers? Maybe throw an exception? This seems better than providing mixed result types.

There are two ways we can test exceptions. We can either use the @expectedException annotation,
or we can use the built-in setExpectedException() method. Let’s try the annotation way first.

1 require './vendor/autoload.php';

2

3 class FizzBuzzTest extends \PHPUnit_Framework_TestCase

4 {

5 /**

6 * @test

7 * @expectedException Exception

8 */

9 public function handlesNonIntegersCorrectly()

Testing Basics 3

10 {

11 $fizz_buzz = new FizzBuzz();

12 $collection = ['A', 1, 'B', 'C', 1.234];

13 $fizz_buzz->process($collection);

14 }

15 }

Save this file as FizzBuzzTest.php.

Now run the test:

./vendor/bin/phpunit FizzBuzzTest.php

It should fail because we haven’t written any of our FizzBuzz code yet.

Test Fails Because No FizzBuzz Exists

I know what some of you are thinking–how can you write a test before you’ve actually written the
code? If you’ve never done things the TDDway, it is definitely intimidating and likely very different
from how you typically do things.

In this case, I am using TDD to design the interfaces we’re going to use. Often, I change what the
final product looks like, but the tests guide me towards a working implementation of code. Okay, so
what is our process method going to look like?

How about we take the collection being sent in and filter out anything which isn’t an integer. Then
we can compare this filtered list to the original, throwing an exception if they don’t match.

1 class FizzBuzz

2 {

3 public function process($collection)

4 {

5 $filtered_collection = array_filter($collection, function($item) {

6 if (is_int($item)) {

7 return true ;

8 }

9

10 return false;

11 });

12

Testing Basics 4

13 if ($filtered_collection !== $collection) {

14 throw new \Exception("Did not receive collection of integers");

15 }

16

17 return $filtered_collection;

18 }

19 }

Now let’s add a test to look for the exception.

1 require './vendor/autoload.php';

2 require './FizzBuzz.php';

3

4 class FizzBuzzTest extends \PHPUnit_Framework_TestCase

5 {

6 /**

7 * @test

8 * @expectedException \Exception

9 */

10 public function handlesNonIntegersCorrectly()

11 {

12 $fizz_buzz = new FizzBuzz();

13 $collection = ['A', 1, 'B', 'C', 1.234];

14 $fizz_buzz->process($collection);

15 }

16 }

Run the test the same way as before and it should pass.

Testing Basics 5

Exception is correctly thrown

If we wanted to use setExpectedException(), it’s a simple change: you remove the annotation, then
specify the type of exception and the message the exception gives.

1 require './vendor/autoload.php';

2 require './FizzBuzz.php';

3

4 class FizzBuzzTest extends \PHPUnit_Framework_TestCase

5 {

6 /**

7 * @test

8 */

9 public function handlesNonIntegersCorrectly()

10 {

11 $this->setExpectedException(

12 "Exception",

13 "Did not receive collection of integers"

14);

15 $fizz_buzz = new FizzBuzz();

16 $collection = ['A', 1, 'B', 'C', 1.234];

17 $fizz_buzz->process($collection);

18 }

19 }

Run the test again and you should see it has passed.

Testing Basics 6

Testing for Fizz

Okay, now time to create a test verifying we’ve handled the Fizz case properly. Add the following
test method to your class:

1 /**

2 * @test

3 */

4 public function handlesFizzCorrectly()

5 {

6 $fizz_buzz = new FizzBuzz();

7 $collection = [1, 2, 3, 4, 6, 7, 9];

8 $expected_result = [1, 2, 'Fizz', 4, 'Fizz', 7, 'Fizz'];

9 $result = $fizz_buzz->process($collection);

10 $this->assertEquals(

11 $expected_result,

12 $result,

13 "FizzBuzz did correctly find Fizz values"

14);

15 }

In this test, we are using an assertion to verify our results. In plain English we are asking PHPUnit
“We want the result coming from our code to match our expected result”.

There are a very large number of assertions built into PHPUnit (39 last I counted) for you to use. I
have found in most cases you will be using a very small selection of them:

• $this->assertTrue(...)

• $this->assertFalse(...)

• $this->assertEquals(...)

Each assertion has its own required number of parameters, but every single one takes an optional
final parameter which is a message you want to be displayed by the test runner if your test happens
to fail. Having human-readable messages when things go wrong is always good.

Run your test again and it should fail; there is a lot more information here for you to see.

Testing Basics 7

Fizz not correctly found

Out of the box, PHPUnit provides us with some good information to go on. Let’s break it down a
little bit.

First, it tells us we ran two out of two tests and one of them failed. That’s what the ‘F’ means.

Next, it tells us how long the test took to run and how much memory was used. This is useful when
you are following the path of “make it work, then make it work better.”

Finally, it highlights what test actually failed and tries to show us the differences between what
we expected to happen and what really happened. If you’ve done some work with version control
systems such as Git, the way PHPUnit shows you is familiar.

You can clearly see it is showing us in the places where we expected ‘Fizz’ we got the number back.
Let’s fix it.

Testing Basics 8

1 require './vendor/autoload.php';

2 require './FizzBuzz.php';

3

4 class FizzBuzzTest extends \PHPUnit_Framework_TestCase

5 {

6

7 /**

8 * @test

9 */

10 public function handlesNonIntegersCorrectly()

11 {

12 $this->setExpectedException(

13 "Exception",

14 "Did not receive collection of integers"

15);

16 $fizzBuzz = new FizzBuzz();

17 $collection = ['A', 1, 'B', 'C', 1.234];

18 $fizzBuzz->process($collection);

19 }

20

21 /**

22 * @test

23 */

24 public function handlesFizzCorrectly()

25 {

26 $collection = [1, 2, 3, 4, 6, 7, 9];

27 $expected_result = [1, 2, 'Fizz', 4, 'Fizz', 7, 'Fizz'];

28 $fizz_buzz = new FizzBuzz();

29 $result = $fizz_buzz->process($collection);

30 $this->assertEquals(

31 $expected_result,

32 $result,

33 "FizzBuzz did not correctly find Fizz values"

34);

35 }

36 }

When you run the test, it should be failing in the same place.

Now, let’s add code to our FizzBuzz class to correctly handle turning integers which are a multiple
of 3 into Fizz

Let’s use an array map to iterate through the collection. Add the following code to replace the
statement returning our filtered collection.

Testing Basics 9

1 $result = array_map(function($item) {

2 if ($item % 3 === 0) {

3 return 'Fizz';

4 }

5

6 return $item;

7 }, $filtered_collection);

8

9 return $result;

Functional programming is the future! All kidding aside, I do like to use the built-in array_*methods
when I have to manipulate a collection in an array. It looks nicer than a conditional statement inside
a foreach loop, which should make Rafael Dohms proud3.

Run the test and it should pass:

Fizz correctly found

Make Buzz Work

Feeling great about having some tests pass? Let’s add one which checks to make sure we handle the
Buzz case correctly.

Add this test after the one for Fizz:

3http://www.slideshare.net/rdohms/bettercode-phpbenelux212alternate

http://www.slideshare.net/rdohms/bettercode-phpbenelux212alternate
http://www.slideshare.net/rdohms/bettercode-phpbenelux212alternate

Testing Basics 10

1 /**

2 * @test

3 */

4 public function handlesBuzzCorrectly()

5 {

6 $collection = [4, 5, 7, 8, 10];

7 $expected_result = [4, 'Buzz', 7, 8, 'Buzz'];

8 $fizz_buzz = new FizzBuzz();

9 $result = $fizz_buzz->process($collection);

10 $this->assertEquals(

11 $expected_result,

12 $result,

13 "FizzBuzz did not correctly find Buzz values"

14);

15 }

When you run the test, you should see it fail similarly to this:

Testing Basics 11

Buzz fails

We could expand our anonymous function inside the array_map to look for the Buzz case.

1 $result = array_map(function($item) {

2 if ($item % 3 === 0) {

3 return 'Fizz';

4 }

5

6 if ($item % 5 === 0) {

7 return 'Buzz';

8 }

9

10 return $item;

11 }, $filtered_collection);

That should pass.

Testing Basics 12

Buzz passes

Check That FizzBuzz is Correctly Detected

We have the final case we need to worry about. Integers which are multiples of three and five need
to return FizzBuzz. First, as in this entire chapter, we write a test assuming it all works.

Add the following test method after our Buzz one:

1 /**

2 * @test

3 */

4 public function handlesFizzAndBuzzCorrectly()

5 {

6 $collection = [14, 15, 30, 31, 45];

7 $expected_result = [14, 'FizzBuzz', 'FizzBuzz', 31, 'FizzBuzz'];

8 $fizz_buzz = new FizzBuzz();

9 $result = $fizz_buzz->process($collection);

10 $this->assertEquals(

11 $expected_result,

12 $result,

13 "FizzBuzz did not correctly find FizzBuzz values"

14);

15 }

Make sure the test fails.

Testing Basics 13

FizzBuzz failes

Now, isn’t this output interesting? Given our collection, it did correctly figure out 15, 30, and 45 are
multiples of Fizz. I think a quick change will make it work. Refactor the code inside our anonymous
function which is part of our map to look like this:

1 $result = array_map(function($item) {

2 $response = '';

3

4 if ($item % 3 === 0) {

5 $response .= 'Fizz';

6 }

7

8 if ($item % 5 === 0) {

9 $response .= 'Buzz';

10 }

11

Testing Basics 14

12 if ($response === '') {

13 $response = $item;

14 }

15

16 return $response;

17 }, $filtered_collection);

The test passes.

FizzBuzz failes

So now we have a completely working implementation FizzBuzz and we built it using TDD.
Remember, we do the bare minimum to make our tests pass. But we now have a slightly different
problem–there is a lot of repetition in our tests. Let’s get rid of some of it.

Data Providers to Reduce Repetition

PHPUnit offers a very handy feature allowing you to create a test which accepts multiple sets of
data for testing purposes. It’s perfect for those situations when you find yourself writing a series of
tests only differing in minor ways.

Data providers are public functions which return arrays of arrays. To make one for our FizzBuzz
transform tests, add this class function just before our first test method.

1 public function collectionDataProvider()

2 {

3 return [

4 [

5 [1, 2, 3, 4, 6, 7, 9],

6 [1, 2, 'Fizz', 4, 'Fizz', 7, 'Fizz']

7],

8 [

9 [4, 5, 7, 8, 10],

10 [4, 'Buzz', 7, 8, 'Buzz']

Testing Basics 15

11],

12 [

13 [14, 15, 30, 31, 45],

14 [14,'FizzBuzz','FizzBuzz',31,'FizzBuzz']

15]

16];

17 }

We have an array of arrays inside the data provider method. Each ‘root’ array contains one array
full of numbers we want transformed and one array containing what the transformed results should
look like.

We can just add more items to the data provider if we want even more assurance our transforms
are correct. It also saves us from duplicating code which sets what our test collections and expected
results are.

Now, we have to create a new, more generic test using the data provider. Add this code to
replace handlesFizzCorrectly(), handlesBuzzCorrectly() and handlesFizzAndBuzzCorrectly()
respectively. There are a few new things going on here, and I will explain them.

1 /**

2 * @test

3 * @dataProvider collectionDataProvider

4 */

5 public function transformsCollectionsCorrectly($collection, $expected)

6 {

7 $fizz_buzz = new FizzBuzz();

8 $result = $fizz_buzz->process($collection);

9 $this->assertEquals(

10 $expected,

11 $result,

12 "FizzBuzz did not correctly transform values"

13);

14 }

First, you’ll see we added an annotation to the doc block to let PHPUnit know which data provider
we want. The annotation is case sensitive (I remember spending 30 minutes debugging a problem
caused by this), and the associated value is simply the name we gave our data provider method.

Next, we add two parameters to the test method matching what the data provider will be giving us
as inputs.

Run the test and you should see something similar to the following:

Testing Basics 16

Tests with a data provider pass

I think we’ve pretty much covered the basics of writing a test. It’s a very straight-forward process
and definitely not something you should be intimidated by. After all, if you can write tests you can
write code.

Things to Look out For

One of the advantages of writing code using TDD is you are forced to determine dependencies
up front. Will I need a database connection? How will I get a value from global registry into this
method? Often these are important decisions, but most of the time they are not.

Once you do have a large number of tests for your application, you can go back and correct some
earlier decisions which have turned out to not quite be right. Make a change, run the tests, see what
broke, and cheer when it all works!

As with our initial steps through implementing FizzBuzz, don’t be worried to go back and change
things as you use tests to guide your design. Use the tests to explore different ways of solving the
same problem.

Pay close attention to what your tests are telling you about the code you are writing. Watch for
duplication in your tests and consider if you can use a data provider and a refactored, more generic
test case to cover way more potential outputs.

We’ve covered the first steps in your path to writing Minimum Viable Tests. Next, we’re going to
spend some time talking about a powerful tool which has generated some very strong opinions
regarding its use.

	Table of Contents
	Testing Basics
	What Is a Test?
	Testing FizzBuzz
	Handling Non-Integers
	Testing for Fizz
	Make Buzz Work
	Check That FizzBuzz is Correctly Detected
	Data Providers to Reduce Repetition
	Things to Look out For

