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Deep learning with everything
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Unwelcome news recently…

How can this happen if we have 99.9% accuracy?

https://www.youtube.com/watch?v=B2pDFjIvrIU
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Should we worry about safety?

Red light classified as green with (a) 68%, (b) 95%, (c) 78% 
confidence after one pixel change.

− TACAS 2018, https://arxiv.org/abs/1710.07859

Can we verify that such behaviour cannot occur?

https://arxiv.org/abs/1710.07859
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit
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German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit

Confidence    0.999964           0.99
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Aren’t these artificial?

Real traffic signs in Alaska!

Need to consider physical attacks, not only digital…
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This talk

• Progress in developing methodology to provide provable
guarantees of safety of classification decisions

• Focus on local robustness against adversarial 
manipulations

• Automated verification
− search/SMT: CAV 2017, https://arxiv.org/abs/1610.06940
− game: TACAS 2018, https://arxiv.org/abs/1710.07859

• Reachability analysis
− global optim: IJCAI 2018, https://arxiv.org/abs/1805.02242

• Testing with coverage guarantees
− concolic: ASE 2018, https://arxiv.org/abs/1805.00089

• Probabilistic safety
− Bayesian GP: AAAI 2019, https://arxiv.org/abs/1809.06452   

https://arxiv.org/abs/1610.06940
https://arxiv.org/abs/1710.07859
https://arxiv.org/abs/1805.02242
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Safety of classification decisions

• Safety assurance process is complex
• Here focus on safety at a point as part of such a process

− same as pointwise robustness… η

• Assume given
− trained network f : D → {c1,…ck} 
− diameter for support region η
− norm, e.g. L2, L∞

• Define safety as invariance of classification decision
− i.e. ∄y ∈ η such that f(x) ≠ f(y)

• Also wrt family of safe manipulations
− e.g. scratches, weather conditions, camera angle, etc

x

y
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Safety verification

• Automated verification (= ruling out adversarial examples)
− discretise the region, exhaustively search for misclassifications
− provable guarantee of decision safety if adv. example not found
− (assumptions needed to ensure finiteness of search)

• The approach
− reduction to linear arithmetic (counting problem), use SMT
− propagate verification layer by layer

• This differs from heuristic search for adversarial examples
− no guarantee of precise adversarial examples
− no guarantee of exhaustive search even if we iterate

• But scalability remains an issues, employ various heuristics…

• CAV 2017, https://arxiv.org/abs/1610.06940

https://arxiv.org/abs/1610.06940
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Feature-based representation

• Employ the SIFT algorithm to extract features
• Reduce dimensionality by focusing on salient features
• Use a Gaussian mixture model in order to assign each pixel 

a probability based on its perceived saliency

TACAS 2018, https://arxiv.org/abs/1710.07859

https://arxiv.org/abs/1710.07859
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Game-based search

• Goal is finding adv. example, reward inverse of distance
• Player 1 selects the feature that we will manipulate

• Each feature represents a possible move for player 1
• Player 2 then selects the pixels in the feature to manipulate
• Use Monte Carlo tree search to explore the game tree, 

while querying the network to align features
• Method black/grey box, can approximate the maximum 

safe radius for a given input
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MCTS: selection/expansion

• The root of the tree represents the original image, and each 
child represents a potential manipulated image

• First, select a manipulation based on each player’s strategy
• If the child has never been selected from previously then 

we “expand” the tree to select a new leaf.
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MCTS: simulation

• After a new child has been added to the tree, we 
approximate the reward of visiting this child by 
continuously searching the tree until we have either timed 
out or hit an adversarial example

• These nodes are not recorded as a part of the partial tree
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MCTS: backpropagation

• After we have terminated the tree, we calculate the reward, 
and backpropagate that reward up the tree to update our 
exploration policy (update each player’s strategies)



16

Tree expands until example is found
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Now also lower bounds (MNIST)

• Convergence of lower and upper bounds on maximum safe
radius

• See arXiv:1807.0357
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Evaluating safety-critical scenarios: Nexar

• Using our Game-
based Monte Carlo 
Tree Search method 
we were able to 
reduce the accuracy 
of the network form 
95% to 0%

• On average, each 
input took less than a 
second to manipulate 
(.304 seconds)

• On average each 
image was vulnerable 
to 3 pixel changes
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Alternative approach: reachability analysis

• Rather than search the discretized region, can we compute the 
reachable values?

• Under assumption of Lipschitz continuity
− for x ∈ η, compute maximum/minimum value of f(η)
− using global optimisation
− anytime fashion

• Gives provable guarantees
− best/worst case confidence values
− pointwise confidence diameter
− can average over input distribution

• Method NP-complete
− wrt the number of input dimensions, not number of neurons

• IJCAI 2018, https://arxiv.org/abs/1805.02242

x

y
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https://arxiv.org/abs/1805.02242
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Global optimization: main idea

• Adaptive nested optimization, asymptotic convergence
− construct a series of lower and upper bounds

• K – Lipschitz constant
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MNIST example

• Take an image and select a feature within it

99.95%                             74.36% 99.98%

confidence                       lower bound                     upper bound

• Safety verification for the feature
− manipulating the feature can only reduce confidence to 74.36%
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MNIST network comparison

DNN-1
Unsafe

DNN-2
Unsafe

DNN-3
Unsafe

DNN-4
Safe

DNN-5
Unsafe

DNN-6
Safe

DNN-7
Unsafe
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• Showing pointwise confidence diameter 
• Can obtain global robustness evaluation by averaging wrt the 

test data distribution 
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Safety testing, guaranteed coverage

• Often provable guarantees on network outputs beyond 
reach

• Concolic testing 
(concrete+symbolic) 
− for test goal,

generate test cases
− alternating between

concrete execution 
& symbolic analysis

• Test coverage criteria
− specified in quantified linear arithmetic over rationals

• Range of coverage metrics
− neuron coverage (NC), neuron boundary coverage (NBC), 

modified condition/decision (MC/DC), Lipschitz continuity, etc

ASE 2018, https://arxiv.org/abs/1805.00089
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Probabilistic guarantees

• Requiring that no adversarial examples exist too strict
• Need to probabilistic guarantees: probability that local 

perturbations result in predictions that are close to original

• Work with Bayesian inference and
• Gaussian processes
• Define safety with prob 1-!

"#$%(∃y ∈ η s.t. ||f(x)-f(y)||>( | D) ≤ !

• i.e. conditioned on training data D
• NB differs from pointwise thresholding in Bayesian deep 

learning

AAAI 2019, https://arxiv.org/abs/1809.06452

x
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Probabilistic guarantees for NNs

• Computation for general stochastic processes intractable
• For GPs, can obtain tight upper bounds by

− approximating extrema of mean and variance for a test point
− using Borell-TIS inequality
− and solving optimization problems (analytical or convex opt)

• Applies to fully-connected (and convolutional) neural 
networks in the limit of infinitely many neurons…

• Scalability continues to be an issue for NNs
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Conclusion

• Deep learning should be more critically evaluated when put 
into practice in safety- and security-critical situations

• Adversarial examples help in understanding the robustness 
of DNN decision boundaries

• Overviewed methods for safety verification/testing of deep 
neural networks
− search-based and feature-guided exploration, with 

guarantees
− reachability computation for Lipschitz continuous networks
− test coverage guarantees
− probabilistic guarantees in a Bayesian framework

• Future work
− how best to use adversarial examples: training vs logic
− scalability for probabilistic guarantees
− more complex properties
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