
Appendix - Complete Examples
Library Module for iOS
library module com.livecode.platform.sensors.battery.ios

   use com.livecode.wrapped_apis_v1.livecode.objc
   use com.livecode.wrapped_apis_v1.apple.uikit.uidevice

   /* State querying functions */

   public handler isBatteryMonitoringEnabled() returns Boolean
      return UIDeviceGetBatteryMonitoringEnabled(UIDeviceGetCurrentDevice())
   end handler

   public handler isBatteryMonitoringDisabled() returns Boolean
      return not isBatteryMonitoringEnabled()
   end handler

   public handler batteryState() returns String
      variable tState as Integer
      put UIDeviceGetBatteryState(UIDeviceGetCurrentDevice()) into tState
      if tState is UIDeviceBatteryStateUnplugged then
         return "unplugged"
      else if tState is UIDeviceBatteryStateCharging then
         return "charging"
      else if tState is UIDeviceBatteryStateCharged then
         return "charged"
      end if
      return ""
   end handler

   public handler batteryLevel() returns optional Number
      variable tLevel as Number
      put UIDeviceGetBatteryLevel(UIDeviceGetCurrentDevice()) into tLevel
      if tLevel is -1.0 then
         return nothing
      end if
      return tLevel
   end handler



   /* Service start and stop commmands */

   variable mBatteryStateCookie as optional LiveCodeObjCNotificationCookie
   variable mBatteryLevelCookie as optional LiveCodeObjCNotificationCookie

   public handler startMonitoringBattery()
      if mBatteryStateCookie is not nothing then
         return
      end if
      LiveCodeObjCRegisterNotification(UIDeviceBatteryStateChanged, \
                                       handleBatteryStateChanged, \
                                       mBatteryStateCookie)
      LiveCodeObjCRegisterNotification(UIDeviceBatteryLevelChanged, \
                                       handleBatteryLevelChanged, \
                                       mBatteryLevelCookie)
      UIDeviceSetBatteryMonitoringEnabled(UIDeviceGetCurrentDevice(), true)
   end handler

   public handler stopMonitoringBattery()
      if mBatteryLevelCookie is nothing then
         return
      end if
      UIDeviceSetBatteryMonitoringEnabled(UIDeviceGetCurrentDevice(), false)
      LoveCodeCObjCDeregisterNotification(mBatteryStateCookie)
      put nothing into mBatteryStateCookie
      LiveCodeObjCDeregisterNotification(mBatteryLevelCookie)
      put nothing into mBatteryLevelCookie
   end handler

   private handler handleBatteryStateChanged(in pInfo as Pointer)
      variable tTargetObject as ScriptObject
      resolve script object "this card" into tTargetObject
      post "batteryStateChanged" to tTargetObject
   end handler

   private handler handleBatteryLevelChanged(in pInfo as Pointer)
      variable tTargetObject as ScriptObject
      resolve script object "this card" into tTargetObject
      post "batterySChanged" to tTargetObject
   end handler



end module /* com.livecode.platform.sensors.battery.ios */

Foreign Module for iOS
foreign module com.livecode.wrapped_apis_v1.apple.uikit.uidevice

   use com.livecode.wrapped_apis_v1.apple.foundation.nsobject
   use com.livecode.wrapped_apis_v1.apple.foundation.nsuuid

   pointer type UIDevice is an NSObject

   /* Getting the Shared Device Instance */

   handler UIDeviceGetCurrentDevice() \
         returns UIDevice
      wrap objc UIDevice +(UIDevice *)currentDevice
      return result
   end handler

   /* Determining the Available Features */

   handler UIDeviceGetMultitaskingSupported(in pDevice as UIDevice) \
         returns Boolean
      wrap objc UIDevice -(BOOL)multitaskingSupported
      return result
   end handler

   /* Identifying the Device and Operating System */

   handler UIDeviceGetName(in pDevice as UIDevice) \
         returns String
      wrap objc UIDevice -(NSString *)name
      return result
   end handler

   handler UIDeviceGetSystemName(in pDevice as UIDevice) \
         returns String
      wrap objc UIDevice -(NSString *)systemName
      return result
   end handler

   handler UIDeviceGetSystemName(in pDevice as UIDevice) \



         returns String
      wrap objc UIDevice -(NSString *)systemName
      return result
   end handler

   handler UIDeviceGetSystemVersion(in pDevice as UIDevice) \
         returns String
      wrap objc UIDevice -(NSString *)systemVersion
      return result
   end handler

   handler UIDeviceGetModel(in pDevice as UIDevice) \
         returns String
      wrap objc UIDevice -(NSString *)model
      return result
   end handler

   handler UIDeviceGetLocalizedModel(in pDevice as UIDevice) \
         returns String
      wrap objc UIDevice -(NSString *)localizedModel
      return result
   end handler

   enum UIUserInterfaceIdiom
      case Unspecified is -1
      case Phone
      case Pad
      case TV
      case CarPlay
   end enum

   handler UIDeviceGetUserInterfaceIdiom(in pDevice as UIDevice) \
         returns UIUserInterfaceIdiom
      wrap objc UIDevice -(UIUserInterfaceIdiom)userInterfaceIdiom
      return result
   end handler

   handler UIDeviceGetIdentifierForVendor(in pDevice as UIDevice) \
         returns NSUUID
      wrap objc UIDevice -(NSUUID *)identifierForVendor
      return result



   end handler

   /* Getting the Device Orientation */

   enum UIDeviceOrientation
      case Unknown
      case Portrait
      case PortraitUpsideDown
      case LandscapeLeft
      case LandscapeRight
      case FaceUp
      case FaceDown
   end enum

   handler UIDeviceGetOrientation(in pDevice as UIDevice) \
         returns UIDeviceOrientation
      wrap objc UIDevice -(UIDeviceOrientation)orientation
      return result
   end handler

   handler UIDeviceGeneratesOrientationNotifications(in pDevice as UIDevice) \
         returns Boolean
      wrap objc UIDevice -(BOOL)generatedDeviceOrientationNotifications
      return result
   end handler

   handler UIDeviceBeginGeneratingDeviceOrientationNotifications(in pDevice as 
UIDevice) \
         returns nothing
      wrap objc UIDevice -(void)beginGeneratingDeviceOrientationNotifications
      return nothing
   end handler

   handler UIDeviceEndGeneratingDeviceOrientationNotifications(in pDevice as 
UIDevice) \
         returns nothing
      wrap objc UIDevice -(void)endGeneratingDeviceOrientationNotifications
      return nothing
   end handler

   notification UIDeviceOrientationDidChangeNotification



   /* Getting the Device Battery State */

   handler UIDeviceGetBatteryLevel(in pDevice as UIDevice) \
         returns Number
      wrap objc UIDevice -(float)batteryLevel
      return result
   end handler

   handler UIDeviceGetBatteryMonitoringEnabled(in pDevice as UIDevice) \
         returns Boolean
      wrap objc UIDevice -(BOOL)batteryMonitoringEnabled
      return result
   end handler

   handler UIDeviceSetBatteryMonitoringEnabled(in pDevice as UIDevice, \
                                                in pEnabled as Boolean) \
         returns nothing
      wrap objc UIDevice -(void)setBatteryMonitoringEnabled: (BOOL)enabled
      in pEnabled into enabled
      return nothing
   end handler

   enum UIDeviceBatteryState
      case Unknown
      case Unplugged
      case Charging
      case Full
   end enum

   handler UIDeviceGetBatteryState(in pDevice as UIDevice) \
         returns UIDeviceBatteryState
      wrap objc UIDevice -(UIDeviceBatteryState)batteryState
      return result
   end handler

   notification UIDeviceBatteryLevelDidChangeNotification
   notification UIDeviceBatteryStateDidChangeNotification

   /* Using the Proximity Sensor */



   handler UIDeviceGetProximityMonitoringEnabled(in pDevice as UIDevice) \
         returns Boolean
      wrap objc UIDevice -(BOOL)proximityMonitoringEnabled
      return result
   end handler

   handler UIDeviceSetProximityMonitoryEnabled(in pDevice as UIDevice, \
                                                in pEnabled as Boolean) \
         returns nothing
      wrap objc UIDevice -(void)setProximityMonitoringEnabled:(BOOL)enabled
      in pEnabled into enabled
      return nothing
   end handler

   handler UIDeviceGetProximityState(in pDevice as UIDevice) \
         returns Boolean
      wrap objc UIDevice -(BOOL)proximityState
      return result
   end handler

   notification UIDeviceProximityStateDidChangeNotification

end module /* com.livecode.wrapped_apis_v1.apple.uikit.uidevice */

Library Module for Android
library module com.livecode.platform.sensors.battery.android

   use com.livecode.wrapped_apis_v1.livecode.android
   use com.livecode.wrapped_apis_v1.android.content.intent
   use com.livecode.wrapped_apis_v1.android.os.batterymanager

   /* State querying functions */

   variable mBatteryChangedIntent as optional AndroidContentIntent
   variable mBatteryChangedCookie as optional LiveCodeAndroidReceiverCookie

   public handler isBatteryMonitoringEnabled() returns Boolean
      return mBatteryChangedCookie is not nothing
   end handler

   public handler isBatteryMonitoringDisabled() returns Boolean



      return not isBatteryMonitoringEnabled()
   end handler

   public handler batteryState() returns String
      if mBatteryChangedCookie is nothing then
         return ""
      end if

      variable tPresent as Boolean
      put AndroidContentIntentGetBooleanExtra(mBatteryChangedIntent, \
 
                                            ANDROID_OS_BATTERY_MANAGER_EXTRA_PRE
SENT, \
                                             true) \
                                             into tPresent

      variable tPlugged as Integer
      put AndroidContentIntentGetIntExtra(mBatteryChangedIntent, \
 
                                         ANDROID_OS_BATTERY_MANAGER_EXTRA_PLUG
GED,
                                          -1) \
                                          into tPlugged

      if not tPresent or tPlugged is -1 then
         return ""
      end if

      variable tState as Integer
      put AndroidContentIntentGetIntExtra(mBatteryChangedIntent, \
 
                                         ANDROID_OS_BATTERY_MANAGER_EXTRA_STAT
US, \
                                          -1) \
                                          into tState

      if not tPresent or tPlugged is -1 then
         return ""
      end if

      if tState is 



ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_FULL then
         return "charged"
      end if

      if tPlugged is not -1 then
         return "charging"
      end if

      return "unplugged"
   end handler

   public handler batteryLevel() returns optional Number
      if mBatteryChangedCookie is nothing then
         return ""
      end if

      variable tCurrent as Integer
      put AndroidContentIntentGetIntExtra(mBatteryChangedIntent, \
 
                                         ANDROID_OS_BATTERY_MANAGER_EXTRA_LEVE
L, \
                                          -1) \
                                          into tCurrent

      variable tMax as Integer
      put AndroidContentIntentGetIntExtra(mBatteryChangedIntent, \
 
                                         ANDROID_OS_BATTERY_MANAGER_EXTRA_LEVE
L, \
                                          -1) \
                                          into tMax

      variable tLevel as Number
      put tCurrent / tMax into tLevel
      if tLevel < 0.0 or tLevel > 1.0 then
         put 1.0 into tLevel
      end if

      return tLevel
   end handler



   /* Service start and stop commmands */

   public handler startMonitoringBattery()
      if mBatteryChangedCookie is not nothing then
         return
      end if

 
     LiveCodeAndroidRegisterReceiver(AndroidContentIntent.ACTION_BATTERY_
CHANGED, \
                                       handleBatteryChanged,
                                       mBatteryChangedIntent, \
                                       mBatteryChangedCookie)
   end handler

   public handler stopMonitoringBattery()
      if mBatteryChangedCookie is nothing then
         return
      end if

      LiveCodeAndroidDeregisterReceiver(mBatteryChangedIntent, \
                                          mBatteryChangedCookie)
      put nothing into mBatteryChangedIntent
      put nothing into mBatteryChangedCookie
   end handler

   private handler handleBatteryChanged(in pIntent as AndroidContentIntent)
      variable tTargetObject as ScriptObject
      resolve script object "this card" into tTargetObject
      post “batteryStateChanged” to tTargetObject

      variable tTargetObject as ScriptObject
      resolve script object "this card" into tTargetObject
      post “batteryLevelChanged” to tTargetObject
   end handler

end module /* com.livecode.platform.sensors.battery.android */

Foreign Module for Android
foreign module com.livecode.wrapped_apis_v1.android.os.batterymanager



   use com.livecode.wrapped_apis_v1.java.lang.object

   pointer type AndroidOsBatteryManager is a JavaLangObject

   constant ANDROID_OS_BATTERY_MANAGER_ACTION_CHARGING is 
"android.os.action.CHARGING"
   constant ANDROID_OS_BATTERY_MANAGER_ACTION_DISCHARGING is 
"android.os.action.DISCHARGING"

   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_COLD 
is 7
   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_DEAD 
is 4
   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_GOOD 
is 2
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_OVERHEAT is 3
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_OVER_VOLTAG
E is 5
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_UNKNOWN is 1
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_HEALTH_UNSPECIFIED_F
AILURE is 6

   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_PLUGGED_AC is 
1
   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_PLUGGED_USB 
is 1
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_PLUGGED_WIRELESS is 1

   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_PROPERTY_CAPACITY is 
4
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_PROPERTY_CHARGE_CO
UNTER is 1
   constant 



ANDROID_OS_BATTERY_MANAGER_BATTERY_PROPERTY_CURRENT_A
VERAGE is 3
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_PROPERTY_CURRENT_N
OW is 2
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_PROPERTY_ENERGY_CO
UNTER is 5

   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_CHARGING is 2
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_DISCHARGING is 
3
   constant ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_FULL is 
5
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_NOT_CHARGIN
G is 4
   constant 
ANDROID_OS_BATTERY_MANAGER_BATTERY_STATUS_UNKNOWN is 1

   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_HEALTH is "health"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_ICON_SMALL is 
"icon small"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_LEVEL is "level"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_PLUGGED is 
"plugged"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_PRESENT is 
"present"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_SCALE is "scale"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_STATUS is "status"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_TECHNOLOGY is 
"technology"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_TEMPERATURE is 
"temperature"
   constant ANDROID_OS_BATTERY_MANAGER_EXTRA_VOLTAGE is 
"voltage"

   handler AndroidOsBatteryManagerGetIntProperty(in pId as Integer) \



         returns Integer
      wrap java int android.os.BatteryManager.getIntProperty(int id)
      in pId into id
      return result
   end handler

   handler AndroidOsBatteryManagerGetLongProperty(in pId as Integer) \
         returns Integer
      wrap java long android.os.BatteryManager.getLongProperty(int id)
      in pId into id
      return result
   end handler

   handler AndroidOsBatteryManagerIsCharging() \
         returns Boolean
      wrap java boolean android.os.BatteryManager.isCharging()
      return result
   end handler

end module


