Git Cheat Sheet

01 Git configuration

git

config --global

user.name “Your Name”

git

user.email “you@example.
com”

git

config --global

config --global

color.ui auto

Set the name that will be attached to your commits and tags.

Set the e-mail address that will be attached to your commits
and tags.

Enable some colorization of Git output.

02 Starting a project

git

git

init [project name]

clone <project url>

Create a new local repository in the current directory. If
[project name] is provided, Git will create a new directory
named [project name] and will initialize a repository inside it.

Downloads a project with the entire history from the remote
repository.

03 Day-to-day work

git

git

git

git

git

git

git

status

add [file]

diff [file]

diff --staged [file]

checkout -- [file]
reset [<path>...]
commit

Displays the status of your working directory. Options include
new, staged, and modified files. It will retrieve branch name,
current commit identifier, and changes pending commit.

Add a file to the staging area. Use. in place of the full file path
to add all changed files from the current directory down into
the directory tree.

Show changes between working directory and staging area.

Shows any changes between the staging area and the
repository.

Discard changes in working directory. This operation is
unrecoverable.

Revert some paths in the index (or the whole index) to their
state in HEAD.

Create a new commit from changes added to the staging area.

The commit must have a message!

git rm [file]

Remove file from working directory and staging area.

04 Storing your work

git stash

git stash pop

git stash drop

05 Git branching

git branch [-a]

git branch [branch_name]

git rebase [branch_name]

git checkout [-b]
[branch_namel

git merge [branch_name]

git branch -d [branch_
name]

Commit
Branch
Tag
HEAD

Put current changes in your working directory into stash for
later use.

Apply stored stash content into working directory, and clear
stash.

Delete a specific stash from all your previous stashes.

model

List all local branches in repository. With -a: show all branches
(with remote).

Create new branch, referencing the current HEAD.

Apply commits of the current working branch and apply them
to the HEAD of [branch] to make the history of your branch
more linear.

Switch working directory to the specified branch. With -b: Git
will create the specified branch if it does not exist.

Join specified [branch_name] branch into your current branch
(the one you are on currently).

Remove selected branch, if it is already merged into any other.
-D instead of -d forces deletion.

a state of the code base
a reference to a commit; can have a tracked upstream
a reference (standard) or an object (annotated)

a place where your working directory is now



06 Inspect history

List commit history of current branch. -n count limits list to last

git log [-n count] n commits.

git log --oneline
--graph --decorate

An overview with reference labels and history graph. One
commit per line.

List commits that are present on the current branch and not

git log ref.. merged into ref. A ref can be a branch name or a tag name.

List commit that are present on ref and not merged into current

git log ..ref [——

List operations (e.g. checkouts or commits) made on local

git reflog repository.

07 Tagging commits
git tag List all tags.

git tag [name]
[commit shal

Create a tag reference named name for current commit. Add
commit sha to tag a specific commit instead of current one.

git tag -a [name]

X Create a tag object named name for current commit.
[commit sha]

git tag -d [name] Remove a tag from local repository.

08 Reverting changes

Switches the current branch to the target reference, leaving
a difference as an uncommitted change. When --hard is used,
all changes are discarded. It's easy to lose uncommitted
changes with --hard.

git reset [--hard]
[target referencel

Create a new commit, reverting changes from the specified

git revert [commit sha] : . K
commit. It generates an inversion of changes.

09 Synchronizing repositories

Fetch changes from the remote, but not update tracking

git fetch [remote] branches.

git fetch --prune Delete remote Refs that were removed from the remote
[remote] repository.

Fetch changes from the remote and merge current branch with

git pull [remote] its upstream.

git push [--tags]

Lol Push local changes to the remote. Use --tags to push tags.

git push -u [remote] Push local branch to remote repository. Set its copy as an
[branch] upstream.

10 Git installation

For GNU/Linux distributions, Git should be available in the standard system repository. For
example, in Debian/Ubuntu type in the terminal:

sudo apt-get install git

If you need to install Git from source, you can get it from git-scm.com/downloads.

An excellent Git course can be found in the great Pro Git book by Scott Chacon and Ben Straub.
The book is available online for free at git-scm.com/book.

11 Ignoring files
cat <<EOF > .gitignore
/logs/*

11logs/.gitkeep

/tmp

*.SWp

EOF

To ignore files, create a .gitignore file in your repository with a line for each pattern. File ignoring will
work for the current and sub directories where .gitignore file is placed. In this example, all files are
ignored in the logs directory (excluding the .gitkeep file), whole tmp directory and all files *.swp.


https://git-scm.com/downloads
https://git-scm.com/book/en/v2
Kati Paizee
For GNU/Linux distributions, Git should be available in the standard system repository. For example, in Debian/Ubuntu type in the terminal:


