Kernelizing Algorithms

by Alvin Wan . alvinwan.com/cs189

This document summarizes approaches to kernelizing algorithms. Original sources, across
course materials and notes, are cited. In general, we can perform the following steps, where
w is our model.

e Consider the original objective function.

e Plug in w = XTa+wy, where X is an n x d matrix and Xwy = 0. This decomposition
always exists, by the fundamental theorem of linear algebra.

e Convert the objective into an optimization over a. You should find that wg = 0
yields the optimal a.

e Solve for the closed-form solution by taking the derivative and setting it equal to

0.
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1 Kernelizing Least Squares

1.1 Ridge Regression Derivation

The following derivation can be found in Homework 1.

Take our original objective function, apply the fundamental theorem of linear algebra, and
replace X X7 with K, where X is n x n.

min [ Xw — yl3 + A}

We first define w = XTa + wy, where Xwy = 0. In the third step, note that wl X7 =
(Xwp)T = 0 and that |Jwp||3 is minimized when wy = 0. Thus, we take wy = 0, and continue
computing our optimal model.

minimize,, || Xw — y||5 + Mw||3
= minimize,, | X (X a +wo) — y||3 + M| X o + wol|3
= minimize,, | X XTa — y||3 + M| X |3 + |Jwo||5 + 2wl XTa)

= minimize, | XX a — y||2 + M| X a2

Take the gradient and set equal to 0 for our optimal model.

2XXT(XXTa—y) + 20X XTa =0
(XXT + A XXTa = XXy
a=(XXT+ M)y
a=(K+)y

Plug back in to get w*.

w* = XTa*

To predict, using w*, we use z7w*.

%

§=alw =" X"a* = Z k(x,z;)a;
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1.2 Kernelized Ridge Regression Algorithm
e Compute kernel matrix K.
e Compute a* = (K + )™ 1y.

o To predict z, y = >, k(z,z;)a".

2 Kernelizing K-Means

2.1 Kernelized K-means Derivation 1

The following derivation can be found in the Final Review slides.

Take the original objective function, expand, and replace all dot products with the kernel
function k(-,-).

minimizec, Z 2 — a3
{:EZEC]C}

We simply expand and replace. Assume there are K clusters and N z;.

K
minimizec, Z Z |z — Nk:”%

k=1 {ZECk}

K
= minimizec, » . Y |lzill5 + luell3 — 227
k=1 {ieCy}

K
= minimizec, Z Z k(xi, x;) + k(pg, i) — 2(x;, pix)
k=1 {ieCy}
N K
= minimizec, k(px, 1) + Z k(x;, x;) — 22 Z 2(zy, )

i=1 k=1 {ieCy}



2.2 Kernelized Alternating Minimization Derivation II
2.2.1 Minimizing Over

Take our original objective function, apply the fundamental theorem of linear algebra, and
replace X X7 with K.

minimizec, Z 2 — |l
{ieCk }

Plug in p = XTa + pg, where Xpg = 0. In the third step below, the cross-term goes to
zero, because ul z; and pl X7 = (Xpuo)T = 0. We also note that ||uo||3 is minimized when
1o is 0, so we set g = 0 and continue with our computation for the optimal clusters.

Z s — k]l

{i€C}

= > lwi— X" — paolf3
{ieCyx}

= >l = X all3 + [lpoll3 — 205 (2 — X )
{ieC’k}

= > llzi— XTal

{ieCy}

Now, take the gradient and set equal to 0. In the third step, note that

Xa; = [k(wi, 21), k(s ), k(i 7))

, 50 Xx; = k;, where K = XX For the fourth step, note that K ~'k; is 1 when dotting the
ith row of K~ with k; and 0 elsewhere.



> —2X(z - X"a)=0

{i€Cy}
> Xay=|CyXX"a
{ieCy}

*

Z (XX Xz
eCr}

Plugging back in,

2.2.2 Minimizing Over z;

For each x;, assign the cluster that minimizes the following quantity:
minimizey, ||2; — X7 oy |3
= minimizey, ||z;||3 + [| X7 a3 — 227 X o

= minimizey, ||z;||3 + of XX ay, — 2(X2;) o

= minimizey, |2;||3 + arKay — 2K oy

2.3 Kernelized K-means Algorithm

We effectively run Lloyd’s algorithm.



Initialize cluster means .

Compute kernel matrix K.

Compute the new cluster index for each sample, by taking minimizey, ||z; — pu/3.

Update the cluster centers.

Repeat until convergence.

3 Kernelizing PCA

See Stephen’s notes for the derivation. The following algorithm is taken straight from his
notes.

e Compute kernel matrix K.
e Take the first p eigenvectors of K.

e Compute ¢(z); = k(z;, 2)T ay.
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