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This document summarizes approaches to kernelizing algorithms. Original sources, across
course materials and notes, are cited. In general, we can perform the following steps, where
w is our model.

• Consider the original objective function.

• Plug in w = XTα+w0, where X is an n×d matrix and Xw0 = 0. This decomposition
always exists, by the fundamental theorem of linear algebra.

• Convert the objective into an optimization over α. You should find that w0 = 0
yields the optimal α.

• Solve for the closed-form solution by taking the derivative and setting it equal to
0.
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1 Kernelizing Least Squares

1.1 Ridge Regression Derivation

The following derivation can be found in Homework 1.

Take our original objective function, apply the fundamental theorem of linear algebra, and
replace XXT with K, where X is n× n.

min
w
‖Xw − y‖22 + λ‖w‖22

We first define w = XTα + w0, where Xw0 = 0. In the third step, note that wT0X
T =

(Xw0)
T = 0 and that ‖w0‖22 is minimized when w0 = 0. Thus, we take w0 = 0, and continue

computing our optimal model.

minimizew ‖Xw − y‖22 + λ‖w‖22
= minimizew ‖X(XTα + w0)− y‖22 + λ‖XTα + w0‖22
= minimizew ‖XXTα− y‖22 + λ(‖XTα‖22 + ‖w0‖22 + 2wT0X

Tα)

= minimizeα ‖XXTα− y‖22 + λ‖XTα‖22

Take the gradient and set equal to 0 for our optimal model.

2XXT (XXTα− y) + 2λXXTα = 0

(XXT + λI)XXTα = XXTy

α = (XXT + λI)−1y

α = (K + λI)−1y

Plug back in to get w∗.

w∗ = XTα∗

To predict, using w∗, we use xTw∗.

ŷ = xTi w
∗ = xTXTα∗ =

∑
i

k(x, xi)α
∗
i
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1.2 Kernelized Ridge Regression Algorithm

• Compute kernel matrix K.

• Compute α∗ = (K + λI)−1y.

• To predict x, ŷ =
∑

i k(x, xi)α
∗.

2 Kernelizing K-Means

2.1 Kernelized K-means Derivation I

The following derivation can be found in the Final Review slides.

Take the original objective function, expand, and replace all dot products with the kernel
function k(·, ·).

minimizeCk

∑
{xi∈Ck}

‖xi − µk‖22

We simply expand and replace. Assume there are K clusters and N xi.

minimizeCk

K∑
k=1

∑
{i∈Ck}

‖xi − µk‖22

= minimizeCk

K∑
k=1

∑
{i∈Ck}

‖xi‖22 + ‖µk‖22 − 2xTi µk

= minimizeCk

K∑
k=1

∑
{i∈Ck}

k(xi, xi) + k(µk, µk)− 2(xi, µk)

= minimizeCk
k(µk, µk) +

N∑
i=1

k(xi, xi)− 2
K∑
k=1

∑
{i∈Ck}

2(xi, µk)
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2.2 Kernelized Alternating Minimization Derivation II

2.2.1 Minimizing Over µk

Take our original objective function, apply the fundamental theorem of linear algebra, and
replace XXT with Ki.

minimizeCk

∑
{i∈Ck}

‖xi − µk‖22

Plug in µk = XTα + µ0, where Xµ0 = 0. In the third step below, the cross-term goes to
zero, because µT0 xi and µT0X

T = (Xµ0)
T = 0. We also note that ‖µ0‖22 is minimized when

µ0 is 0, so we set µ0 = 0 and continue with our computation for the optimal clusters.

∑
{i∈Ck}

‖xi − µk‖22

=
∑
{i∈Ck}

‖xi −XTα− µ0‖22

=
∑
{i∈Ck}

‖xi −XTα‖22 + ‖µ0‖22 − 2µT0 (xi −XTα)

=
∑
{i∈Ck}

‖xi −XTα‖22

Now, take the gradient and set equal to 0. In the third step, note that

Xxi = [k(xi, x1), k(xi, x2), · · · k(xi, xn)]T

, so Xxi = ki, where K = XXT . For the fourth step, note that K−1ki is 1 when dotting the
ith row of K−1 with ki and 0 elsewhere.
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∑
{i∈Ck}

−2X(xi −XTα) = 0

∑
{i∈Ck}

Xxi = |Ck|XXTα

α∗ =
1

|Ck|
∑
{i∈Ck}

(XXT )−1Xxi

α∗ =
1

|Ck|
∑
{i∈Ck}

K−1ki

α∗ =
1

|Ck|
∑
{i∈Ck}

ei

Plugging back in,

µ∗k = XTα∗ = XT 1

|Ck|
∑
{i∈Ck}

ei =
1

|Ck|
∑
{i∈Ck}

xi

2.2.2 Minimizing Over xi

For each xi, assign the cluster that minimizes the following quantity:

minimizek ‖xi −XTαk‖22
= minimizek ‖xi‖22 + ‖XTαk‖22 − 2xTi X

Tαk

= minimizek ‖xi‖22 + αTkXX
Tαk − 2(Xxi)

Tαk

= minimizek ‖xi‖22 + αkKαk − 2KT
i αk

2.3 Kernelized K-means Algorithm

We effectively run Lloyd’s algorithm.
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• Initialize cluster means µk.

• Compute kernel matrix K.

• Compute the new cluster index for each sample, by taking minimizek ‖xi − µk‖22.

• Update the cluster centers.

• Repeat until convergence.

3 Kernelizing PCA

See Stephen’s notes for the derivation. The following algorithm is taken straight from his
notes.

• Compute kernel matrix K.

• Take the first p eigenvectors of K.

• Compute φ(z)i = k(xi, z)
Tαi.
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