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The aim of staged compilation is to enable metaprogramming in a way such that we have guarantees about the
well-formedness of code output, and we can also mix together object-level and meta-level code in a concise and
convenient manner. In this work, we observe that two-level type theory (2LTT), a system originally devised
for the purpose of developing synthetic homotopy theory, also serves as a system for staged compilation
with dependent types. 2LTT has numerous good properties for this use case: it has a concise specification,
well-behaved model theory, and it supports a wide range of language features both at the object and the meta
level. First, we give an overview of 2LTT’s features and applications in staging. Then, we present a staging
algorithm and prove its correctness. Our algorithm is “staging-by-evaluation”, analogously to the technique of
normalization-by-evaluation, in that staging is given by the evaluation of 2LTT syntax in a semantic domain.
The staging algorithm together with its correctness constitutes a proof of strong conservativity of 2LLT over
the object theory. To our knowledge, this is the first description of staged compilation which supports full
dependent types and unrestricted staging for types.
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1 INTRODUCTION

The purpose of staged compilation is to write code-generating programs in a safe, ergonomic and
expressive way. It is always possible to do ad-hoc code generation, by simply manipulating strings
or syntax trees in a sufficiently expressive programming language. However, these approaches
tend to suffer from verbosity, non-reusability and lack of safety. In staged compilation, there are
certain restrictions on which metaprograms are expressible. Usually, staged systems enforce typing
discipline, prohibit arbitrary manipulation of object-level scopes, and often they also prohibit
accessing the internal structure of object expressions. On the other hand, we get guarantees about
the well-scoping or well-typing of the code output, and we are also able to use concise syntax for
embedding object-level code.

Two-level type theory, or 2LTT in short, was described in [Annenkov et al. 2019], building on
ideas from [Voevodsky 2013]. The motivation was to allow convenient metatheoretical reasoning
about a certain mathematical language (homotopy type theory), and to enable concise and modular
ways to extend the language with axioms.
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110:2 Andras Kovacs

It turns out that metamathematical convenience closely corresponds to metaprogramming
convenience: 2LTT can be directly and effectively employed in staged compilation. Moreover,
semantic ideas underlying 2LTT are also directly applicable to the theory of staging.

1.1 Overview & Contributions

e In Section 2 we present an informal syntax of two-level type theory, a dependent type theory
with support for two-stage compilation. We look at basic use cases involving inlining control,
partial evaluation and fusion optimizations. We also describe feature variations, enabling
applications in monomorphization and memory layout control.

In Section 3, we specify the formal notion of models and syntax for the variant of 2LTT used
in this paper. We mostly work with a high-level algebraic presentation, where the syntax is
quotiented by conversion. However, we also explain how to extract functions operating on

non-quotiented syntax, by interpreting type-theoretic constructions in a setoid model.
In Section 4, we review the standard presheaf model of 2LTT [Annenkov et al. 2019, Sec-
tion 2.5.3], which lies over the syntactic category of the object theory. We show that evaluation
in this model yields a staging algorithm for closed types and terms. We then extend staging
to open types and terms which may depend on object-level variables. We show stability of
staging, which means that staging is surjective up to conversion, and we also show that stag-
ing strictly preserves all type and term formers. Finally, we discuss efficiency and potential
practical implementations of staging.

In Section 5 we show soundness of staging, which roughly means that the output of staging

is convertible to its input. Staging together with its stability and soundness can be viewed as

a strong conservativity theorem of 2LTT over the object theory. This means that the same

constructions can be expressed in the object theory and the object-level fragment of 2LTT, up

to conversion, and staging witnesses that meta-level constructions can be always computed
away. This strengthens the weak notion of conservativity shown in [Capriotti 2017] and

[Annenkov et al. 2019].

In Section 6, we discuss possible semantic interpretations of intensional code analysis, i.e.

the ability to look into the structure of object-level code.

e We provide a small standalone implementation of elaboration and staging for a two-level
type theory [Kovacs 2022].

e To our knowledge, this work is the first formalization and implementation of staged compila-
tion in the presence of full dependent types, with universes and large elimination. In particular,
we allow unrestricted staging for types, so that types can be computed by metaprograms at
compile time.

2 ATOUR OF TWO-LEVEL TYPE THEORY

In this section, we provide a short overview of 2LTT and its potential applications in staging.
We work in the informal syntax of a dependently typed language which resembles Agda [Agda
developers 2022]. We focus on examples and informal explanation here; the formal details will be
presented in Section 3.

Notation 1. We use the following notations throughout the paper. (x : A) — B denotes a dependent
function type, where x may occur in B. We use A x. ¢ for abstraction. A 3-type is written as (x : A)XB,
with pairing as (t, u), projections as fst and snd, and we may use pattern matching notation on
pairs, e.g. as in A (x, y). t. The unit type is T with element tt. We will also use Agda-style notation
for implicit arguments, where ¢ : {x : A} — B implies that the first argument to ¢ is inferred by
default, and we can override this by writing a t{u} application. We may also implicitly quantify
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Staged Compilation with Two-Level Type Theory 110:3

over arguments (in the style of Idris and Haskell), for example when declaring id : A — A with the
assumption that A is universally quantified.

2.1 Rules of 2LTT

2.1.1 Universes. We have universes U; j, where i € {0,1}, and j € N. The i index denotes stages,
where 0 is the runtime (object-level) stage, and 1 is the compile time (meta-level) stage. The j index
denotes universe sizes in the usual sense of type theory. We assume Russell-style universes, with
U;; : Uj js1. However, for the sake of brevity we will usually omit the j indices in this section, as
sizing is orthogonal to our use-cases and examples.

e Uy can be viewed as the universe of object-level or runtime types. Each closed type A : Uy can
be staged to an actual type in the object language (the language of the staging output).

e U; can be viewed as the universe of meta-level or static types. If we have A : Uy, then A is
guaranteed to be only present at compile time, and will be staged away. Elements of A are
likewise computed away.

2.1.2 Type Formers. Uy and U; may be closed under arbitrary type formers, such as functions,
3-types, identity types or inductive types in general. However, all constructors and eliminators in
type formers must stay at the same stage. For example:

e Function domain and codomain types must be at the same stage.
e If we have Naty : Uy for the runtime type of natural numbers, we can only map from it to a
type in Uy by recursion or induction.

It is not required that we have the same type formers at both stages. We will discuss variations of
the object-level languages in Section 2.4.

2.1.3  Moving Between Stages. At this point, our system is rather limited, since there is no interaction
between the stages. We enable such interaction through the following operations. Note that none of
these operations can be expressed as functions, since function types cannot cross between stages.
e Lifting: for A : Uy, we have A : U;. From the staging point of view, {JA is the type of
metaprograms which compute runtime expressions of type A.
e Quoting:for A : Ugandt : A, we have (t) : A. A quoted term (¢) represents the metaprogram
which immediately yields ¢.
o Splicing:for A : Up and t : A, we have ~t : A. During staging, the metaprogram in the splice
is executed, and the resulting expression is inserted into the output.

Notation 2. Splicing binds stronger than any operation, including function application. For
instance, ~f x is parsed as (~f) x. We borrow this notation from MetaML [Taha and Sheard
2000].

e Quoting and splicing are definitional inverses, i.e. we have ~(t) = t and (~t) = t as definitional
equalities.

Informally, if we have a closed program ¢ : A with A : Uy, staging means computing all
metaprograms and recursively replacing all splices in ¢ and A with the resulting runtime expressions.
The rules of 2LTT ensure that this is possible, and we always get a splice-free object program after
staging.

Remark. Why do we use the index 0 for the runtime stage? The reason is that it is not difficult
to generalize 2LTT to multi-level type theory, by allowing to lift types from U; to U;;;. In the
semantics, this can be modeled by having a 2LTT whose object theory is once again a 2LTT, and
doing this in an iterated fashion. But there must be necessarily a bottom-most object theory; hence
our stage indexing scheme. For now though, we leave the multi-level generalization to future work.
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Notation 3. We may disambiguate type formers at different stages by using 0 or 1 subscripts. For
example, Nat; : Uj is distinguished from Nat, : Uy, and likewise we may write zeroy : Naty and so
on. For function and ¥ types, the stage is usually easy to infer, so we do not annotate them. For
example, the type Naty, — Nat, must be at the runtime stage, since the domain and codomain
types are at that stage, and we know that the function type former stays within a single stage. We
may also omit stage annotations from A and pairing.

2.2 Staged Programming in 2LTT
In 2LTT, we may have several different polymorphic identity functions. First, consider the usual
identity function at each stage:

idg:(A:Uy) o A—> A idi:(A:U)) DA—> A

idy = AAx.x idi = AAx.x
An id, application will simply appear in staging output as it is. In contrast, id; can be used as
a compile-time evaluated function, because the staging operations allow us to freely apply id;

to runtime arguments. For example, id; (]} Boolp) (trueg) has type {|Booly, which implies that
~(id; (ff Boolp) (truey)) has type Booly. We can stage this expression as follows:

~(idy (T Booly) {truey)) = ~(truey) = trueg

There is another identity function, which computes at compile time, but which can be only used on
runtime arguments:

idy: (A:Up) = N1~A—-N~A

idy = AAx.x
Note that since A : JUg, we have ~A : Uy, hence ] ~A : Uy. Also, fU : Uy, so all function domain and
codomain types in the type of idj are at the same stage. Now, we may write ~(idy (Booly) (trueg))
for a term which is staged to trueo. In this specific case idy has no practical advantage over id;, but
in some cases we really have to quantify over U. This brings us to the next example.

Assume Listy : Uy — Uy with nilg : (A : Ug) — Listg A, consg : (A : Ug) > A — ListgA —
Listg A and foldrg : (AB : Uy) - (A - B — B) — B — Listy A — B. We define a mapping
function which inlines its function argument:

map : (AB: Uy) — (1 ~A — 1 ~B) — (Listy ~A) — f}(Listy ~B)
map := AAB f as. (foldrg ~A (Listg~B) (A a bs. consy ~B~(f {(a)) bs) (nily ~B) ~as)
This map function can be defined with quantification over U, but not over U;, because Listy
expects type parameters in Uy, and there is no generic way to convert from U; to Uy. Now, assuming
-+ - : Naty — Naty — Natg and ns : Listy Natq, we have the following staging behavior:
~(map (Naty) (Naty) (An. (~n +¢ 10)) (ns))
= ~<f0|dl’0 ~(Nat0) (LiSto ~(Nat0))
(A a bs. consy ~{Naty) ~{~{a) +¢ 10) bs) (nily ~(Naty)) ~(ns))
= foldrg Natg (Listy Natg) (A abs. consg Natg (a +¢ 10) bs) (nilg Natg) ns
By using meta-level functions and lifted types, we already have control over inlining. However,

if we want to do more complicated meta-level computation, it is convenient to use recursion or
induction on meta-level type formers. A classic example in staged compilation is the power function
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for natural numbers, which evaluates the exponent at compile time. We assume the iterator function
iter; : {A:U;} — Nat; > (A — A) > A — A, and runtime multiplication as — s —.
exp : Nat; — f{Naty — fINaty
exp := Axy.iter; x (An. (~y %o ~n)) (1)
Now, ~(exp3 (n)) stages to n xy n *y n *y 1 by the computation rules of iter; and the staging
operations.
We can also stage types. Below, we use iteration to compute the type of vectors with static length,
as a nested pair type.
Vec : Nat1 4 ﬂUo - ﬂUo
Vec := AnA.iter; n (AB. (~A X ~B)) (Ty)

With this definition, ~(Vec3 (Naty)) stages to Naty X (Naty X (Naty X Tp)). Now, we can use
induction on Nat; to implement a map function. For readability, we use an Agda-style pattern
matching definition below (instead of the elimination principle).

map : (n: Nat;) = (I ~A = 1 ~B) — [(Vecn A) — }(Vecn B)

map zero;  f as = (ttp)

map (sucy n) f as = ((~(f (fstg ~as)), ~(mapn f (sndy ~as))))
This definition inlines the mapping function for each projected element of the vector. For instance,
staging ~(map 2 (An. (~n +¢ 10)) (ns)) yields (fsto ns +¢ 10, (fsto(sndy ns) +¢ 10, tty)). Sometimes,
we do not want to duplicate the code of the mapping function. In such cases, we can use let-insertion,
a common technique in staged compilation. If we bind a runtime expression to a runtime variable,
and only use that variable in subsequent staging, only the variable itself can be duplicated. One
solution is to do an ad-hoc let-insertion:

letg f :=An.n+y 10 in ~(map2 (An. {f ~n)) (ns))
= lety f:= An.n+ 10 in (f (fstg ns), (f (fsto(sndg ns)), tty))
We include examples of more sophisticated let-insertion in the supplementary code [Kovacs 2022].
More generally, we are free to use dependent types at the meta-level, so we can reproduce more

complicated staging examples. Any well-typed interpreter can be rephrased as a partial evaluator,
as long as we have sufficient type formers. For instance, we may write a partial evaluator for a

simply typed lambda calculus. We sketch the implementation in the following; the full version can
be found in the supplementary code. First, we inductively define types, contexts and terms:

Ty : Uy Con : U; Tm:Con — Ty — Uy
Then we define the interpretation functions:

EvalTy : Ty — U
EvalCon : Con — U;
EvalTm : TmT' A — EvalConT — | ~(EvalTy A)

Types are necessarily computed to runtime types, e.g. an embedded representation of the natural
number type is evaluated to (Naty). Contexts are computed as follows:

EvalCon empty =T
EvalCon (extendI' A) := EvalConT x (f]~(EvalTy A))
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This is an example for the usage of partially static data [Jones et al. 1993]: semantic contexts are
static lists storing runtime expressions. This allows us to completely eliminate environment lookups
in the staging output: an embedded lambda expression is staged to the corresponding lambda
expression in the object language. This is similar to the partial evaluator presented in Idris 1 [Brady
and Hammond 2010]. However, in contrast to 2LTT, Idris 1 does not provide a formal guarantee
that partial evaluation does not get stuck.

2.3 Properties of Lifting, Binding Time Improvements

We describe more generally the action of lifting on type formers. While lifting does not have defini-
tional computation rules, it does preserve negative type formers up to definitional isomorphism
[Annenkov et al. 2019, Section 2.3]:

M((x:A) = Bx) = ((x: 1A4) = T (B~x))
M((x: A) x Bx) = ((x : TA) X (B ~x))

TTo=T
For function types, the preservation maps are the following:

pres_, : T((x: A) > Bx) = ((x : 1A) — 1 (B~x))
pres_, f = Ax. (~f ~x)
pres”) f = (Ax. ~(f (x)))

With this, we have that pres_, (pres_! f) is definitionally equal to f, and also the other way around.
Preservation maps for ¥ and T work analogously.

By rewriting a 2LTT program left-to-right along preservation maps, we perform what is termed
binding time improvement in the partial evaluation literature [Jones et al. 1993, Chapter 12]. Note
that the output of pres_, uses a meta-level A, while going the other way introduces a runtime binder.
Meta-level function types and X-types support more computation during staging, so in many cases
it is beneficial to use the improved forms. In some cases though we may want to use unimproved
forms, to limit the size of generated code. This is similar to what we have seen with let-insertion.
For a minimal example, consider the following unimproved version of idy:

idg : (A:Up) — M(~A — ~A)
idy = 1A. (Ax.x)

This can be used at the runtime stage as ~(idy (Booly)) trueo, which is staged to (A x. x) trueo. This
introduces a useless f-redex, so in this case the improved version is clearly preferable.

For inductive types in general we do not get full preservation, only maps in one direction. For
example, we have Bool; — f|Booly, defined as Ab. if b then (truey) then (falseq). In the staging
literature, this is called “serialization” or “lifting” [Sheard and Jones 2002; Taha and Sheard 2000].
In the other direction, we can only define constant functions from {}Booly to Bool;.

The lack of elimination principles for A means that we cannot inspect the internal structure of
expressions. We will briefly discuss ways to lift this restriction in Section 6.

In particular, we have no serialization map from Nat; — Nat; to ff(Naty — Naty). However,
when A : U, is finite, and B : U; can be serialized, then A — B can be serialized, because it is
equivalent to a finite product. For instance, Bool; — Nat; =~ Nat; X Nat;. In 2LTT, A is called
cofibrant [Annenkov et al. 2019, Section 3.4]: this means that for each B, A — (| B is equivalent to
NC for some C. This is the 2LTT formalization of the so-called “trick” in partial evaluation, which
improves binding times by n-expanding functions out of finite sums [Danvy et al. 1996].
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2.3.1 Fusion. Fusion optimizations can be viewed as binding time improvement techniques for
general inductive types. The basic idea is that by lambda-encoding an inductive type, it is brought to
a form which can be binding-time improved. For instance, consider foldr-build fusion for lists [Gill
et al. 1993], which is employed in GHC Haskell. Starting from f(List, A), we use Bohm-Berarducci
encoding [Bohm and Berarducci 1985] under the lifting to get

T(L:Uy) >A—>L—>L)—>L—>1L)
= ((L:U) > MA->N~L > N~L) > N ~L > ~L).

Alternatively, for stream fusion [Coutts et al. 2007], we embed List A into the coinductive colists (i.e.
the possibly infinite lists), and use a terminal lambda-encoding. The embedding into the “larger”
structure enables some staged optimizations which are otherwise not possible, such as fusion for
the zip function. However, the price we pay is that converting back to lists from colists is not
necessarily total.

We do not detail the implementation of fusion in 2LTT here; a small example can be found in the
supplementary code. In short, 2LTT is a natural setting for a wide range of fusion setups. A major
advantage of fusion in 2LTT is the formal guarantee of staging, in contrast to implementations where
compile-time computation relies on ad-hoc user annotations and general-purpose optimization
passes. For instance, fusion in GHC relies on rewrite rules and inlining annotations which have to
be carefully tuned and ordered, and it is possible to get pessimized code via failed fusion.

2.3.2 Inferring Staging Operations. We can extract a coercive subtyping system from the staging op-
erations, which can be used for inference, and in particular for automatically transporting definitions
along preservation isomorphisms. One choice is to have A < A, A < A, a contravariant-covariant
rule for functions and a covariant rule for ¥. During bidirectional elaboration, when we need to
compare an inferred and an expected type, we can insert coercions. We implemented this feature
in our prototype. It additionally supports Agda-style implicit arguments and pattern unification, so
it can elaborate the following definition:

map : {AB: fUp} — (1A — 11B) — (Listg A) — fI(Liste B)

map = A f as. foldrg(A a bs. consy (f a) bs) nily as
We may go a bit further, and also add the coercive subtyping rule Uy < Uy, witnessed by f}. Then,
the type of map can be written as {AB : Uy} — (A — B) — Listg A — Listg B. However, here

the elaborator has to make a choice, whether to elaborate to improved or unimproved types. In this
case, the fully unimproved type would be

{AB: U} — N((~A — ~B) — Listg ~A — Listg ~B).

It seems that improved types are a sensible default, and we can insert explicit lifting when we want
to opt for unimproved types. This is also available in our prototype.

2.4 Variations of Object-Level Languages

In the following, we consider variations on object-level languages, with a focus on applications
in downstream compilation after staging. Adding restrictions or more distinctions to the object
language can make it easier to optimize and compile.

2.4.1  Monomorphization. In this case, the object language is simply typed, so every type is known
statically. This makes it easy to assign different memory layouts to different types and generate
code accordingly for each type. Moving to 2LTT, we still want to abstract over runtime types at
compile time, so we use the following setup.
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110:8 Andras Kovacs

o We have a jugdment, written as A type, for well-formed runtime types. Runtime types may
be closed under simple type formers.

e We have a type Ty, : U; in lieu of the previous fJUj.

e For each Atype,, we have A : Ty,.

e We have quoting and splicing for types and terms. For types, we send A type, to (A) : Ty,.
For terms, we send ¢ : A to (t) : JA.

Despite the restriction to simple types at runtime, we can still write arbitrary higher-rank polymor-
phic functions in 2LTT, such as a function with type ((A: Ty,) = 1 ~A — ]~A) — | Booly. This
function can be only applied to statically known arguments, so the polymorphism can be staged
away. The main restriction that programmers have to keep in mind is that polymorphic functions
cannot be stored inside runtime data types.

2.4.2 Memory Representation Polymorphism. This refines monomorphization, so that types are
not directly identified with memory representations, but instead representations are internalized in
2LTT as a meta-level type, and runtime types are indexed over representations.

e We have Rep : U; as the type of memory representations. We have considerable freedom in
the specification of Rep. A simple setup may distinguish references from unboxed products,
i.e. we have Ref : Rep and Prod : Rep — Rep — Rep, and additionally we may assume any
desired primitive machine representation as a value of Rep.

e We have Russell-style Uy j : Rep — Ug j;1 7, where r is some chosen runtime representation
for types; usually we would mark types are erased. We leave the meta-level U; ; hierarchy
unchanged.

e We may introduce unboxed X-types and primitive machine types in the runtime language.
Forr:Rep,r’ : Rep, A: Uyrand B: A — Uyr’, we may have (x : A) X Bx : Uy (Prodrr’).
Thus, we have type dependency, but we do not have dependency in memory representations.

Since Rep is meta-level, there is no way to abstract over it at runtime, and during staging all Rep
indices are computed to concrete canonical representations. This is a way to reconcile dependent
types with some amount of control over memory layouts. The unboxed flavor of X ends up with a
statically known flat memory representation, computed from the representations of the fields.

3 FORMAL SETUP

In this section we describe our approach to formalizing staging and also the extraction of algorithms
from the formalization. There is a tension here:

e On one hand, we would like to do formal work at a higher level of abstraction, in order to
avoid a deluge of technical details (for which dependent type theories are infamous).

e On the other hand, at some point we need to talk about lower-level operational aspects and
extracted algorithms.

In the following, we describe our approach to interfacing between the different levels of abstraction.

3.1 The Algebraic Setting

When defining staging and proving its soundness and stability, we work internally in a constructive
type theory, using types and terms that are quotiented by conversion. In this setting, every con-
struction respects syntactic conversion, which is very convenient technically. Here, we use standard
definitions and techniques from the categorical and algebraic metatheory of type theories, and
reuse prior results which rely on the same style of formalization. Concretely, we use categories with
families [Castellan et al. 2019] which is a commonly used specification of an explicit substitution
calculus of types and terms.
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In the rest of the paper we will mostly work in this setting, and we will explicitly note when we
switch to a different metatheory. We summarize the features of this metatheory in the following.

Metatheory. The metatheory is an intensional type theory with a cumulative universe hierarchy
Set;, where i is ordinal number such that i < w+ 1. The transfinite i levels are a convenience feature
for modeling typing contexts, where sometimes we will need universes large enough to fit types at
arbitrary finite levels. We also assume uniqueness of identity proofs and function extensionality.
We will omit transports along identity proofs in the paper, for the sake of readability. The missing
transports can be in principle recovered due to Hofmann’s conservativity result [Hofmann 1995];
see also [Winterhalter et al. 2019]. We assume II, 3, T and N types in all universes, and reuse
Notation 3. We also assume certain quotient inductive-inductive types, to represent the syntax of
2LTT and the object theory. We will detail these shortly in Sections 3.3 and 3.4.

3.2 Algorithm Extraction

In the algebraic setting we can only talk about properties which respect syntactic conversion.
However, the main motivation of staged compilation is to improve performance and code abstraction,
but these notions do not respect conversion. For instance, rewriting programs along f-conversion
can improve performance. Hence, at some point we may want to “escape” from quotients.

Fortunately, our specified meta type theory can be interpreted in setoids, as most recently
explained in [Pujet and Tabareau 2022]. A setoid is a set together with an equivalence relation on
it. We interpret closed types as setoids, and dependent types as setoid fibrations. For inductive
base types such Bool or Nat, the equivalence relation is interpreted as identity. Functions are
interpreted as equivalence-preserving functions, and two functions are equivalent if they are
pointwise equivalent. A quotient type A/R is interpreted by extending the semantic notion of
equivalence for A with the given R relation. We will sketch the interpretation of the 2LTT syntax
(given as a quotient inductive-inductive type) in Section 3.3.3.

In particular, from f : A/R — A/R we can extract a function which acts on the underlying set of
A’s interpretation. Note that an extracted function can be only viewed as an algorithm if the setoid
interpretation is itself defined in a constructive theory, but that is the case in the cited work [Pujet
and Tabareau 2022].

Definition 3.1. Assume a closed function f : A — B defined in the mentioned type theory. The
extraction of f is the underlying function of f’s interpretation in the setoid model.

In other words, we can view quotients as a convenient shorthand for working with explicit
equivalence relations. We can work with quotients when we want to enforce preservation of
equivalence relations, but at any point we have the option to switch to an external view and look
at underlying sets and functions.

3.3 Models and Syntax of 2LTT

We specify the notion of model for 2LTT in this section. The syntax of 2LTT will be defined as the
initial model, as a quotient inductive-inductive type, following [Altenkirch and Kaposi 2016]. This
yields an explicit substitution calculus, quotiented by definitional equality. A major advantage of
this representation is that it only includes well-typed syntax, so we never have to talk about “raw”
types and terms.

We provide an appendix to this paper, where we present a listing of all rules and equations
of 2LTT in two styles: first, in a more traditional style with derivation rules, and also in a very
compact manner using a second-order algebraic signature.
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First, we define the structural scaffolding of 2LTT without type formers, mostly following
[Annenkov et al. 2019]. The specification is agnostic about the sizes of sets involved, i.e. we can
model underlying sorts using any metatheoretic Set;.

Definition 3.2. A model of basic 2LTT consists of the following.

o A category C with a terminal object. We denote the set of objects as Conc : Set and use capital
Greek letters starting from I' to refer to objects. The set of morphisms is Subc : Conc —
Congc — Set, and we use o, § and so on to refer to morphisms. The terminal object is written
as ¢ with unique morphism € : Subc I' s. We omit the C subscript if it is clear from context.
In the initial model, an element of Con is a typing context, an element of Sub is a parallel sub-
stitution, e is the empty typing context and € is the empty list viewed as a parallel substitution.
The identity substitution id : SubI' T maps each variable to itself, and o o § can be computed
by substituting each term in o (which is a list of terms) with §.

e Foreachi € {0,1} and j € N, we have Ty, ; : Con — Set and Tm; ; : (I': Con) — Ty, ;' —
Set, as sets of types and terms. Both types and terms can be substituted:

—[—] : Tyi,j A — SubT A — Tyl,_]r
~[-]:Tm;;AA — (0 :SubT A) — Tm;; T (A[o])

Additionally, we have A[id] = A and A[o o §] = A[0][J], and we have the same equations
for term substitution as well.
We also have a comprehension structure: for each I' : Con and A : Ty, ; T, we have the
extended context I' > A : Con such that there is a natural isomorphism SubT (A » A) ~
(o : SubT' A) x Tm;; T (A[o]). We will sometimes use - — and -»; - to disambiguate
object-level and meta-level context extensions.

e For each j we have a lifting structure, consisting of a natural transformation f : Ty, ; I' —
Ty, ; I',and an invertible natural transformation (- ) : Tmo; ' A — Tmy ; I' (A), with inverse

~—

The following notions are derivable:

e By moving left-to-right along SubT' (A»> A) = (o : SubT' A) x Tm;; I' (A[c]), and starting
from the identity morphism id : Sub (T' > A) (I'> A), we recover the weakening substitution
p : Sub (I'> A) I and the zero variable q : Tm; ; (I'> A) (A[p]).

e By weakening q, we recover a notion of variables as De Bruijn indices. In general, the n-th
De Bruijn index is defined as q[p"], where p” denotes n-fold composition of p.

e By moving right-to-left along SubT (A»> A) = (o : SubT'A) X Tm; ; T (A[o]), we recover the
operation which extends a morphism with a term. In the initial model, this extends a parallel
substitution with an extra term, thus justifying the view of substitutions as lists of terms. We
denote the extension operation as (o, t) for 0 : SubI' A and ¢ : Tm;; ' (A[c]).

Notation 4. De Bruijn indices are rather hard to read, so we will sometimes use nameful notation
for binders and substitutions. For example, we may write I' > (x : A) » (y : B) for a context, and
subsequently write B[x + t] for substituting the x variable for some term ¢ : Tm;; I' A. Using
nameless notation, we would instead have B : Ty, ; (I'> A) and B[id, ] : Ty, ; I'; here we recover
single substitution by extending the identity substitution id : SubT' I" with ¢.

We may also leave weakening implicit: if a type or term is in a context I', we may use it in an
extended context I' > A without marking the weakening substitution.

Definition 3.3. A model of 2LTT is a model of basic 2LTT which supports certain type formers.
For the sake of brevity, we specify here only a small collection of type formers. However, we will
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argue later that our results extend to more general notions of inductive types. We specify type
formers in the following. We omit substitution rules for type and term formers; all of these can be
specified in an evident structural way, e.g. as in (A)[o] = N(A[o]).

e Universes. For each i and j, we have a Coquand-style universe [Coquand 2019] in Ty, ;. This
consists of U; j : Ty, ;,; T, together with El : Tm; ;1 ' U;; — Ty, ; I’ and Code, where Code
and El are inverses.

e Z-types. We have 2 (x : A) B: Ty, ; T for A: Ty; ;T and B : Ty, ; (I'> (x : A)), together with a
natural isomorphism consisting of pairing and projections:

Tmi,jl"(Z (X A)B) ~ (t : Tmi!j I‘A) XTmi!jT(B[x — t])

We write (¢, u) for pairing and fst and snd for projections.
Function types. We have IT (x : A) B : Ty, ;I'for A: Ty, ;T and B : Ty, ; (I'> (x : A)), together
with abstraction and application

lam:Tm;; (> (x: A)) B — Tm;; I' (I (x : A) B)

app : Tm;; T (Il (x : A)B) — Tm; ; (I'>(x: A)) B

such that lam and app are inverses. Since we have explicit substitutions, this specification of
app is equivalent to the “traditional” one:
app’ : (t: Tm;; T (I (x: A)B)) = (u:Tm;; TA) = Tm;; T (B[x — u]).

The traditional version is definable as (app t)[id, u]. We use the app-lam isomorphism
because it is formally more convenient.
Natural numbers. We have Nat; j : Ty, ; T, zero; j : Tm; ;I Nat; ;, and suc; j : Tm; ; I Nat; ; —
Tm;; T’ Nat; ;. The eliminator is the following.
NatElim : (P: Ty, (I'> (n: Nat;;)))

(z : Tm;x T (P[n — zero;;]))

(s : Tm; (T> (n: Nat; ;) > (pn: P[n > n])) (P[n  suc;;n]))

(t : Tmi,j T Nati,j)

— Tm T (P[n—t]))

We also have the f-rules:

NatElimPzszero;; =z

NatElimPzs (suc;jt) = s[n+ t, pn+— NatElimPzst]
Note that we can eliminate from a level j to any level k.

Definition 3.4. The syntax of 2LTT is the initial model of 2LTT, defined as a quotient inductive-
inductive type [Kaposi et al. 2019b]. The signature for this type includes four sorts (Con, Sub,
Ty, Tm), constructors for contexts, explicit substitutions and type/term formers, and equality
constructors for all specified equations. The syntax comes with an induction principle, from which
we can also derive the recursion principle as a non-dependent special case, witnessing the initiality
of the syntax.

3.3.1 Comparison to Annekov et al. Comparing our models to the primary reference on 2LTT
[Annenkov et al. 2019], the main difference is the handling of “sizing” levels. In ibid. there is a
cumulative lifting from Ty, ; to Ty, ;,,, which we do not assume. Instead, we allow elimination from
Nat; ; into any k level. This means that we can manually define lifting maps from Nat; ; to Nat; j.;
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by elimination. This is more similar to e.g. Agda, where we do not have cumulativity, but we can
define explicit lifting from Nat; : Set; to Naty : Sety.

In ibid., “two-level type theory” specifically refers to the setup where the object level is a homotopy
type theory and the meta level is an extensional type theory. In contrast, we allow a wider range
of setups under the 2LTT umbrella. Ibid. also considers a range of additional strengthenings and
extensions of 2LTT [Annenkov et al. 2019, Section 2.4], most of which are useful in synthetic
homotopy theory. We do not assume any of these and stick to the most basic formulation of 2LTT.

3.3.2  Elaborating Informal Syntax. The justification for the usage of the informal syntax in Section
2 is elaboration. Elaboration translates surface notation to the formal syntax (often termed “core
syntax” in the implementation of dependently typed programming languages). Elaboration is partial:
it may throw error on invalid input. Elaboration also requires decidability of conversion for the
formal syntax, since type checking requires comparing types for conversion, which in turn requires
comparing terms. We do not detail elaboration in this paper, we only make some observations.

e Decidability of conversion can be shown through normalization. Since 2LTT is a minor

variation on ordinary MLTT, we expect that existing proofs for MLTT can be adapted

without issue [Abel et al. 2018; Coquand 2019].

We need to elaborate the surface-level Russell-style universe notation to Coquand-style

universes with explicit El and Code annotations. It is likely that this can be achieved with

the use of bidirectional elaboration [Dunfield and Krishnaswami 2021], using two directions

(checking and inference) both for types and terms, and inserting El and Code when switching

between types and terms.

e The formal complexity of elaboration varies wildly, depending on how explicit the surface
syntax is. For example, Agda-style implicit arguments require metavariables and unification,
which dramatically increases the difficulty of formalization.

3.3.3 The Setoid Interpretation of the Syntax. We need to show that the 2LTT syntax, as a particular
inductive type, can be modeled in setoids. Unfortunately, there is no prior work which presents the
setoid interpretation of quotient types in the generality of quotient induction-induction. We sketch
it for our specific use case, but we argue that the interpretation is fairly mechanical and could be
adapted to any quotient inductive-inductive type. We focus on contexts and types here.

We mutually inductively define Con : Set, Con™ : Con — Con — Prop, Tyi’j : Con — Set and
Ty” :Ty;;I — Ty;; A = Con™I' A — Prop, where Con™ and Ty~ are proof-irrelevant relations.
Note that Ty™ is heterogeneous, since we can relate types in different (but provably convertible)
contexts.

We specify ¢ and — » — in Con. To Con™ we add that e and - > — are congruences, and also that
Con~ is reflexive, symmetric and transitive.

We add all type formation rules to Ty, ;, and add all quotient equations to Ty~ as homo-
geneously indexed rules. For example, the substitution rule for Naty is specified as Naty[]
Ty~ (Nato[o]) Natg refl™, where o : SubT A and refl™ : Con™I'T. We also add all congruences
and reflexivity, symmetry and transitivity to Ty™.

We add a coercion rule to types, as coerce : Con”"I'A — Ty, ;I' — Ty, ; A. This is probably
familiar from the traditional specifications of type theories that use conversion relations. However,
we additionally need a coherence rule which witnesses Ty~ A (coerce p A) p for each A : Ty, ; I' and
p : Con™ I' A. In short, coherence says that coercion preserves conversion.

The concise description of this setup is that (Con, Con™) is a setoid, and (Ty; ;, Ty™) is a setoid
fibration over (Con, Con™), for each i and j. This notion of setoid fibration is equivalent to the
ordinary notion of fibration, when setoids are viewed as categories with proof-irrelevant invertible
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morphisms. This is appropriate, since types in general are interpreted as setoid fibrations in the
setoid model of a type theory.

This scheme generalizes to substitutions and terms in a mechanical way. Sub is indexed over two
contexts, so it is interpreted as a fibration over the setoid product of Con and Con. Tm is indexed
over (I': Con) X Ty, ; T', so it is interpreted as a fibration over a setoid 2-type. In every conversion
relation we take the congruence closure of the specified quotient equations. Finally, we can use the
induction principle for the thus specified sets and relations to interpret the internal elimination
principle for the 2LTT syntax.

3.4 Models and Syntax of the Object Theory

We also need to specify the object theory, which serves as the output language of staging. In
general, the object theory corresponding to a particular flavor of 2LTT is simply the type theory
that supports only the object-level Ty, ; hierarchy with its type formers.

Definition 3.5. A model of the object theory is a category-with-families, with types and terms
indexed over j € N, supporting Coquand-style universes U;, type formers II, ¥ and Nat;, with
elimination from Nat; to any level k.

Definition 3.6. Like before, the syntax of the object theory is the initial model, given as a
quotient inductive-inductive type, and it can be also interpreted in setoids.

Notation 5. From now on, by default we use Con, Sub, Ty and Tm to refer to sets in the syntax
of 2LTT. We use O to refer to the object syntax, and Cong, Subg, Tyy and Tmg to refer to its
underlying sets.

Definition 3.7. We recursively define the embedding of object syntax into 2LTT syntax, which
preserves all structure strictly and consists of the following functions:
-7:Cong — Con F—7:SubgT’'A — Sub™T'"'TA™
=" Tyg,; I = Ty,,; "I T=":Tmg;TA— Tmg; "TTTA™

r

4 THE STAGING ALGORITHM

In this section we specify what we mean by a staging algorithm, then proceed to define one.

Definition 4.1. A staging algorithm consists of two functions:
Stage : Ty, ; "I — Tyg; T’ Stage : Tmg; "T7 A — Tmg; I' (Stage A)

Note that we can stage open types and terms as long as their contexts are purely object-level. By
closed staging we mean staging only for closed types and terms.

Definition 4.2. The following properties are of interest when considering a staging algorithm:

(1) Soundness: "Stage A" = A and "Staget™ = t.

(2) Stability: Stage™A™ = A and Stage "t = 1.

(3) Strictness: the function extracted from Stage preserves all type and term formers strictly (not
just up to conversion).

Soundness and stability together state that embedding is a bijection on types and terms (up to
conversion). This is a statement of conservativity of 2LTT over the object theory. In [Annenkov
et al. 2019] a significantly weaker conservativity theorem is shown, which only expresses that
there exists a function from Tmg; "I'" "A™ to Tmg; I A.

Strictness tells us that staging does not perform any computation in the object theory; e.g. it
does not perform f-reduction. This is practically quite important; for instance, full normalization of
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2LTT is a sound and stable staging algorithm, but it is not strict, and it is practically not useful,
since it does not provide any control over inlining and f-reduction in code generation.

Note that staging necessarily preserves type and term formers up to conversion, since it is defined
on quotiented types and terms. More generally, staging respects conversion because every function
must respect conversion in the meta type theory.

4.1 The Presheaf Model

We review the presheaf model described in [Annenkov et al. 2019, Section 2.5.3]. This will directly
yield a closed staging algorithm, by recursive evaluation of 2LTT types and terms in the model.

We give a higher-level overview first. Presheaves can be viewed as a generalization of sets,
as “variable sets” which may vary over a base category. A set-based model of 2LTT yields a
standard interpreter, where every syntactic object is mapped to the obvious semantic counterpart.
The presheaf model over the category of contexts and substitutions in O generalizes this to an
interpreter where semantic values may depend on object-theoretic contexts. This allows us to
handle object-theoretic types and terms during interpretation, since these necessarily depend on
their contexts.

In the presheaf model, every semantic construction must be stable under object-level substitution,
or using alternative terminology, must be natural with respect to substitution. Semantic values
can be viewed as runtime objects during interpretation, and naturality means that object-theoretic
substitutions can be applied to such runtime objects, acting on embedded object-theoretic types
and terms. Stability underlies the core trade-off in staging:

e On one hand, every syntactic rule and construction in 2LTT must be stable, which restricts
the range of metaprograms that can be written in 2LTT. For example, we cannot make
decisions based on sizes of the object-theoretic scopes, since these sizes may be changed by
substitution.

e On the other hand, if only stable constructions are possible, we never have to prove stability,
or even explicitly mention object-theoretic contexts, substitutions and variables. The tedious
details of deep embeddings can be replaced with a handful of staging operations and typing
rules.

In principle, the base category in a 2LTT can be any category with finite products; it is not required
that it is a category of contexts and substitutions. If the base category has more structure, we get
more interesting object theories, but at the same time stability becomes more onerous, because we
must be stable under more morphisms. If the base category is simpler, with fewer morphisms, then
the requirement of stability is less restrictive. In Section 6, we will look at a concrete example for
this.

We proceed to summarize the key components of the model in a bit more detail. We denote the
components of the model by putting hats on 2LTT components, e.g. as in Con.

Notation 6. In this section, we switch to naming elements of Cong as a, b and ¢, and elements of
Subg as f, g, and h, to avoid name clashing with contexts and substitutions in the presheaf model.

4.1.1 The Syntactic Category and the Meta-Level Fragment.

Definition 4.3. Con : Set,,; is defined as the set of presheaves over O. T : Con has an action
on objects |I'| : Cong — Set,, and an action on morphisms —[-] : |[I'| b — Subg ab — |I'| a, such

that y[id] = y and y[f o g] = y[f]lg].

Notation 7. Above, we reused the substitution notation — [ -] for the action on morphisms. Also,
we use lowercase y and § to denote elements of |I'| a and |A| a respectively.
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Definition 4.4. SubT A : Set,, is the set of natural transformations from T to A. & : SubT A has
action |o| : {a: Cong} — |T'|a — |A]a such that |o| (y[f]) = (lo]y)[f]

Definition 4.5. ﬂu I' : Set,, is the set of displayed presheaves over I'; see e.g. [Huber 2016,
Chapter 1.2]. This is equivalent to the set of presheaves over the category of elements of T, but it is
usually more convenient in calculations. An A : 'Fy I has an action on objects |A| : {a: Cong} —
II'| @ — Set; and an action on morphisms —[~] : |A]y — (f : Subg ab) — |A| (y[f]), such that

alid] = @ and a[f o g] = a[f1[g].
Notation 8. We write « and f respectively for elements of |A| y and |B| y.

Definition 4.6. 'TEL ;T A : Set,, is the set of sections of the displayed presheaf A. This can be
viewed as a dependently typed analogue of a natural transformation. A t : Tmy ; I' A has action
|t]: {a} —= (v : IT|a) — |Aly such that [¢| (y[f]) = (It| ) [f].

We also look at he empty context and context extension with meta-level types, as these will
appear in subsequent definitions.

Definition 4.7. s : Con is defined as the presheaf which is constantly T,ie. [¢] _=T.

Definition 4.8. For A : ﬁll,j T, we define T' > A pointwise by [T 5A|a := (y : [T|a) x |A| y and
(. Of1:= (v[f], alfD).

Using the above definitions, we can model the syntactic category of 2LTT, and also the meta-level
family structure and all meta-level type formers. For expositions in previous literature, see [Huber
2016, Chapter 1.2] and [Hofmann 1997, Section 4.1].

4.1.2 The Object-Level Fragment. We move on to modeling the object-level syntactic fragment
of 2LTT. We make some preliminary definitions. First, note that types in the object theory yield
a presheaf, and terms yield a displayed presheaf over them; this immediately follows from the
specification of a family structure in a cwf. Hence, we do a bit of a name overloading, and have
Tyg; Con and Tmg; : 'FyTij.

Definition 4.9. ﬁo,j I' : Set, is defined as S/u\bI“Tij, and ﬂoJl‘A : Set,, is defined as
TmT (Tmg; [A]).

For illustration, if A : ﬂ’o,j I, then A : gaBFTy@j, so |A| : {a: Cong} — [I'|a — Tyg; a. In other
words, the action of A on objects maps a semantic context to a syntactic object-level type. Likewise,

fort: fr\nolj I' A, we have |t| : (y : |T|a) = Tmg; a (JA]y), so we get a syntactic object-level term
as output.

Definition 4.10. For A : Ty, ; T, we define T >Aas|T5Ala:=(y:|I|a) x Tmgja(JA]y) and
(v, ©Lf]1 = (y[f], t[f]). Thus, extending a semantic context with an object-level type appends an
object-level term.

Using the above definitions and following [Annenkov et al. 2019], we can model all type formers
in Ty, ;. Intuitively, this is because Ty, ; and Tmy,; return types and terms, so we can reuse the type
and term formers in the object theory.

413 Lifting.
Definition 4.11. TA: ﬂu I is defined as Tmg;[A]. With this, we get that T’r\no,j I' Ais equal to

'Ifr?ll, ;T (ﬁA). Hence, we can define both quoting and splicing as identity functions in the model.
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4.2 Closed Staging

Definition 4.12. The evaluation morphism, denoted [E is a morphism of 2LTT models, between
the syntax of 2LTT and Q. It is defined by recursion on the syntax (that is, appealing to the initiality
of the syntax), and it strictly preserves all structure.

Definition 4.13. Closed staging is defined as follows.
Stage : Ty, ;o — Tyg; Stage : Tmgj e A — Tmg; « (Stage A)
Stage A := [EA| {o} tt Staget := |Et| {o} tt
Note that e is defined as the terminal presheaf, which is constantly T. Also, |[EA|{e} : [Ee| e —
Tyg; therefore [EA|{e} : T — Tyg; e and [Et|{e} : T — Tmg; « ([EA| tt).
What about general (open) staging though? Given A : Ty, ; "T'", we get [EA[{T'} : |'T7|T —
Tyg;- We need an element of |"T'7| T, in order to obtain object-level type. Such “generic” semantic
environments should be possible to construct, because elements of |"T 7| T are essentially lists of

object-level terms in I, by Definitions 4.8 and 4.7, so |"T' 7| I should be isomorphic to Subg I'T. It
turns out that this falls out from the stability proof of E.

4.3 Open Staging, Stability and Strictness
We define a family of functions —¥ by induction on object syntax, such that the interpretation of a
context yields a generic semantic environment. The induction motives are as follows.
(T : Cong)? :|[ETT7|T (0 :Subg T A : AP[6] = [ETo7| TP
(A:Tyg,D)" A= [ETAYTY  (t:Tmg;TA)’ :t=[E7t7|T”
We look at the interpretation of contexts.

P

e For ¥, we need an element of |E "« 7| ¢, hence an element of T, so we define o as tt.

e For (I'> A)”, we need an element of
(y: |ETTY (> A)) x Tmg; (T'>A) (JETA7y).

We have I'” : |[ETT7| T, which we can weaken as T [p] : [E'T7| (T » A), so we set the first
projection of the result as I’ [p]. For the second projection, the goal type can be simplified

as follows:
Tmo; (I'> A) (IETA7| (T [p]))
=Tmg; (T'> A) ((|[ETA7| %) [p]) by naturality of E"A™
= Tmg; (I'> A) (A[p]) by A”
Wf;)have the zero de Bruijn variable q : Tmg; (I' > A) (A[p]). Hence, we define (T > A)F as
(T p], ).

Thus, a generic semantic context I’ : |[ETT7| T is just a list of variables, corresponding to the
identity substitution id : Subg I' T which maps each variable to itself.

The rest of the — interpretation is straightforward and we omit it here. In particular, preservation
of definitional equalities is automatic, since types, terms and substitutions are all interpreted as
proof-irrelevant equations.

Definition 4.14. We define open staging as follows.
Stage : Ty, ; "I — Tyg; T’ Stage : Tmg; "T7 A — Tmg; I' (Stage A)
Stage A := [EA|T? Staget := |Et| T
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THEOREM 4.15. Open staging is stable.

Proor. For A : Tyg;, Stage "A™ is by definition [E"A™| I'?, hence by AP it is equal to A. Likewise,
Stage "t is equal to t by t7. O

THEOREM 4.16. Open staging is strict.

Proor. This is evident from the definition of the presheaf model, where the action of each type
and term former in Ty, ; and Tmo; I A is defined using the corresponding type or term former in
the object syntax. O

4.4 Implementation and Efficiency

We discuss now the operational behavior of the extracted staging algorithm and look at potential
adjustments and optimizations that make it more efficient or more convenient to implement. Recall
the types of the component functions in E:

|-|oE:Ty,;;I = {A:Cong} — [ET|A — Set;

|=|oE:Tyy; I = {A:Cong} — [ET|A — Tyg; A
|-|oEB:Tmy;TA— {A:Cong} — (y:|[ET|A) — |EA|y
|[-|oE:Tmg;TA— {A:Cong} — (y:|ET|A) = Tmg; A (JEA|y)

We interpret syntactic types or terms in a semantic environment y : [ET| A. These environments
are lists containing a mix of object-level terms and semantic values. The semantic values are
represented using metatheoretic inductive types and function types.

e |Naty| _ is simply the set of natural numbers N.

e |2, AB|y is simply a set of pairs of values.

e A non-dependent function type A= B is defined as the presheaf exponential. The computa-
tional part of |A= B| {A} y is given by a function with type

(©: Cong) — (0 : Subg ®A) — |A| (y[o]) — IB| (y[a])

This may be also familiar as the semantic implication from the Kripke semantics of intuition-
istic logics. Whenever we evaluate a function application, we supply an extra id : Subg A A.
This may incur cost via the y[id] restrictions in a naive implementation, but this is easy to
optimize, by introducing a formal representation of id, such that y[id] immediately computes
to y. The case of dependent functions is analogous operationally.

In summary, in the meta-level fragment of 2LTT, E yields a reasonably efficient computation of
closed values, which reuses functions from the ambient metatheory. Alternatively, instead of using
ambient functions, we could use our own implementation of function closures during staging.

In contrast, we have a bit of an efficiency problem in the handling of object-level binders: when-
ever we go under such binder we have to weaken the current semantic environment. Concretely,
when moving from A to A > A, we have to shift y : |[ET| A to y[p] : |[ET| (A > A). This cannot be
avoided by an easy optimization trick. For object-level entries in the environment, this is cheap,
because we just add an extra explicit weakening, but for semantic values weakening may need to
perform deep traversals.

The same efficiency issue arises in formal presheaf-based normalization-by-evaluation, such as
in [Altenkirch and Kaposi 2017] and [Coquand 2019]. However, in practical implementations this
issue can be fully solved by using De Bruijn levels in the semantic domain, thus arranging that
weakening has no operational cost on semantic values; see [Coquand 1996], [Abel et al. 2011] and
[Abel and Coquand 2007] for implementations in this style. We can use the same solution in staging.
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It is a somewhat unfortunate mismatch that indices are far more convenient in formalization, but
levels are more efficient in practice.

In our prototype implementation, we use the above optimization with De Bruijn levels, and
we drop explicit substitutions from the 2LTT core syntax. In the object-level syntax, we use De
Bruijn levels for variables and closures in binders. This lets us completely skip the weakening of
environments, which is slightly more efficient than the more faithfully extracted algorithm.

Additionally, we use an untyped tagged representation of semantic values, since in Haskell (the
implementation language) we do not have strong enough types to represent typed semantic values.
For example, there are distinct data constructors storing semantic function values, natural number
literals and quoted expressions.

Caching. In a production-strength implementation we would need some caching mechanism, to
avoid excessive duplication of code. For example, if we use the staged map function multiple times
with the same type and function arguments, we do not want to generate separate code for each
usage. De-duplicating object-level code with function types is usually safe, since function bodies
become closed top-level code after closure conversion. We leave this to future work.

5 SOUNDNESS OF STAGING

In this section we prove soundness of staging. We build a proof-relevant logical relation between
the evaluation morphism E and a restriction morphism, which restricts 2LTT syntax to object-level
contexts. The relational interpretations of Ty, ; and Tmo,; will yield the soundness property.

5.1 Working in 0]

We have seen that 2LTT can be modeled in the presheaf topos Q. Additionally, O supports all type
formers of extensional type theory and certain other structures which are stable under object-level
substitution. As all constructions in this section must be stable, it makes sense to work internally
to O. This style has been previously used in normalization proofs [Coquand 2019] and also in the
metatheory of cubical type theories [Cavallo et al. 2020; Licata et al. 2018; Orton and Pitts 2016].

When we work internally in a model of a type theory, we do not explicitly refer to contexts,
types, and substitutions. For example, when working in Agda, we do not refer to Agda’s typing
contexts. Instead, we only work with terms, and use functions and universes to abstract over types
and semantic contexts. Hence, we have to convert along certain isomorphisms when we switch
between the internal and external views. In the following, we summarize features in O and also the
internal-external conversions.

We write Set ; for ordinal-indexed Russell-style universes. Formally, we have Coquand-style
universes, but for the sake of brevity we omit El and Code from internal syntax. Universes are
cumulative, and closed under II, ¥, extensional identity — = — and inductive types. We use the
same conventions as in Notation 1.

The basic scheme for internalization is as follows:

T:Con is internalized as T : S’\et(D
o:SubT'A isinternalizedas o :T — A
A: ﬁ/l’j r is internalizedas A:T — S/\etj
t: f-r;n,j I'A isinternalizedas t¢:(y:T) — Ay
5.1.1 Object-Theoretic Syntax. The syntax of the object theory is clearly fully stable under object-

theoretic substitution, so we can internalize all of its type and term formers. We internalize
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object-level types and terms as Ty, : Set, and Tmo; : Tyg; — Set,. Tyg; is closed under type
formers. For instance, we have

Nat; :Ty@j zero;j : Tmgj Nat;  suc; : Tmg; Nat; — Tmg; Nat;
together with NatElim, and likewise we have all other type formers.

5.1.2 Internal E. We also use an internal view of E which maps 2LTT syntax to internal values; i.e.
we compose E with internalization. Below, note that the input to E is external, so we mark E as
being parameterized by external input.

E(T : Con) : Set,,
E(o:SubTA) :ET - EA
E(A:Ty,;T) :ET — Set;
E(t :Tmy;T) :(y:ET) > EAy
E(A:Ty,;T) ET — Tyg,
E(t :Tmg;TA): (y:ET) — Tmg; (EAy)
5.1.3 Object-Level Fragment of 2LTT. The purely object-level syntactic fragment of 2LTT can

be internalized as follows. We define externally the presheaf of object-level types as [Ty, ;| T =
Ty, "T7, and the displayed presheaf of object-level terms over Ty, ; as [Tmg,;| {T'} A := Tmo ; "I A.

Hence, internally we have Ty,, ; : Sety and Tmo,; = Tyy; — Set,. Ty, ; is closed under all type formers,
analogously as we have seen for Tyg;.

5.1.4 Embedding. Now, the embedding operation " -7 can be also internalized on types and terms,
as"—":Tyg; = Ty, and " =" : Tmg j A — Tmg ; "A™. Embedding strictly preserves all structure.

5.2 The Restriction Morphism

We define a family of functions R from the 2LTT syntax to objects in Q. We will relate this to the
evaluation morphism E in the relational interpretation. In short, R restricts 2LTT syntax so that it
can only depend on object-level contexts, which are given as "'

Definition 5.1. We specify the types of the restriction operations internally, and the |-
components of the operations externally. The naturality of | -| is straightforward in each case.

R (T : Con) : Set, R(o:SubT A):RT > RA
IRT|A :=Sub"A7T [Ro|ly:=0coy
R(A:Ty,;T): Ry — Set, R(t:Tmy;TA): (y:RT) > RAy

[RA[{A}y =Tmy; "A™ (Aly]) IRtly :=t[y]

R(A: Ty, I:RT — Ty, R(t:Tmg,;T'A):(y:RT) — Tmg; (RAY)
IRA[y :=Aly] IRty :=t[y]

5.2.1 Preservation Properties of R. First, we note that R strictly preserves id, — o — and type/term
substitution, and it preserves e and — »; — up to isomorphism. We have the following isomorphisms
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internally to O:

R, :RexT
R, :R(T>1 A) = ((y:RT)xRAYy)

Notation 9. When we have an isomorphism f : A ~ B, we may write f for the functionin A — B,
and f~!: B — A for its inverse.

Notation 10. We can use a pattern matching notation on isomorphisms. For example, if f : A ~ B,
then we may write (1 (f a).t) : B — C, and likewise (A (f~!b).t) : A — C, where the function
bodies can refer to the bound a : A and b : B variables.

The preservation properties R, and R, mean that R is a pseudomorphism in the sense of [Kaposi
et al. 2019a], between the syntactic cwf given by (Ty, ;, Tmy ;) and the corresponding cwf structure
in O. In ibid. there is an analysis of such cwf morphisms, from which we obtain the following
additional preservation properties:

o Meta-level 2-types are preserved up to isomorphism, so we have
Ry :R(ZSAB)y = ((a: RA) xRB(R' (v, a))).

The semantic values of R (X A B) y are 2LTT terms with type (2 A B)[y], restricted to object-
level contexts. We can still perform pairing and projection with such restricted terms; hence
the preservation property.

Meta-level II-types and universes are preserved in a lax way. For II, we have

Rapp : R(TAB)y — (¢ : RAy) - RB(RZ! (1, @))

such that Rap, (Rty) @ =R (appt) (R;ll (y, @)). In this case, we can apply a restricted term
with a II-type to a restricted term, but we cannot do lambda-abstraction, because that would
require extending the context with a meta-level binder. For U, ;, we have

Re : RUyjy — Set;

such that R (Rty) = R (El ) y. Here, we only have lax preservation simply because Set |
is much larger than the the set of syntactic 2LTT types, so not every semantic Set j has a
syntactic representation.

e Meta-level positive (inductive) types are preserved in an oplax way. In the case of natural
numbers, we have

Ry : N — R Naty ;y.

This is a “serialization” map: from a metatheoretic natural number we compute a numeral as a
closed 2LTT term. This works analogously for other inductive types, including parameterized
ones. For an example, from a semantic list of restricted terms we would get a syntactic term
with list type, containing the same restricted terms.

5.2.2 Action on Lifting. We have an isomorphism R (TA) y = Tmg; (RAy). This is given by
quoting and splicing: we convert between restricted meta-level terms with type I A and restricted
object-level terms with type A. Hence, we write components of this isomorphism as ~— and (-),
as internal analogues of the external operations. With this, we also have R(t)y = (Rty) and
R~ty=~Rty).
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5.2.3 Action on — >y —. We have preservation up to isomorphism:
Rey :R(TppA) = ((y:RT)xTmg; (RAY))

This is because substitutions targeting I' >y A are the same as pairs of substitutions and terms, by
the specification of —»g —.

5.24  Action on Object-Level Types and Terms. R preserves all structure in the object-level fragment
of 2LTT. This follows from the R specification: an external type A : Ty, ; I is directly internalized
as an element of Ty, ;, and the same happens for t : Tmg; I A.

5.3 The Logical Relation

Internally to O, we define by induction on the syntax of 2LTT a proof-relevant logical relation

interpretation, written as —~. The induction motives are specified as follows.
(T : Con)~ :ET — RT — Set,,

(6 :SubTA)® :T¥yy - A*(Eoy) Roy’)

(A:Ty,;T)° :Tyy >EAy > RAy — Set;

(t :Tmy;TA)T: (7 :T7yy') = A7y™ (Bty) (Rey')

(A:Ty,; 1) :TTyy > TEAy"=RAY

(t :Tmo;TA)~: T yy - "Ety? =Rty
For Con, Sub and meta-level types and terms, this is a fairly standard logical relation interpretation:
contexts are mapped to relations, types to dependent relations, and substitutions and terms respect
relations. We will only have modest complications in meta-level type formers because we will
sometimes need to use the lax/oplax preservation properties of R. For object-level types and terms,

we get soundness statements: evaluation via E followed by embedding back to 2LTT is the same as
restriction to object-level contexts. We describe the —~ interpretation in the following.

5.3.1 Syntactic Category and Terminal Object. Here, we simply have id™ y~ := y~ and (6 00)¥ y~ :=
0~ (87 y™). The terminal object is interpreted as ¢~ yy’ := T.

5.3.2 Meta-Level Family Structure. We interpret context extension and type/term substitution as
follows. Note the usage of the pattern matching notation on the R ! isomorphism.

T A () RN, ) = : T yy ) x Ay~ ad
AleD)¥y ad’ =AY (T y)ad
(tleD™y~ =1 (c7y)

It is enough to specify the —~ action on extended substitutions (o, t) : SubI' (A»A),p : Sub (I'>A) T,
p:Sub(I'>A)T and q:Tmy; (I'> A) (A[p]). The category-with-families equations hold evidently.

(o, )"y =(c"y" t7y")  p () =y" gLt =1
5.3.3  Meta-Level Natural Numbers. First, we have to define a relation:
(Naty ;) :T7yy" > N —> RNaty; Y — S’\etj
(Naty;)¥y“nn" .= (Ryn=n’)

Note that evaluation sends Nat; ; to the semantic type of natural numbers, i.e. E Nat; ; = N. We
refer to the serialization map Ry : N — R Naty ; y’ above. In short, (Naty ;)™ expresses canonicity:
n’ is canonical precisely if it is of the form Ry n for some n.
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For zero™ and suc™, we need to show that serialization preserves zero and suc respectively, which
is evident.
Let us look at elimination. We need to define the following:

(NatElimPzsn)~y™ : P¥ (y~, n~y~) (E (NatElimPzsn) y) (R (NatElimPzsn)y’)
Unfolding E, we can further compute this to the following:
(NatElimPzsn)™y~ :

P¥ (y%, n¥ y¥) (NatElim (An.EP (y, n)) (Ezy) (Anpn.Es ((y, n), pn))(Eny))
(R (NatElimPzsn)y’)

In short, we need to show that NatElim preserves relations. Here we switch to the external view
temporarily. By Definition 5.1, we know that

IR (NatElimPzsn)|y’ = (NatElimPzsn))[y'].

At the same time, we have n™ y~ : Ry (Eny) = Rny’, hence we know externally that |En|y =
n[y’]. In other words, n[y’] is canonical and is obtained as the serialization of E n y. Therefore,
(NatElim Pzs n)[y’] is definitionally equal to |E n| y-many applications of s to z, and we can use
|E n| y-many applications of s™ to z™ to witness the goal type. The f-rules for NatElim are also
respected by this definition.

5.3.4 Meta-Level -Types. We define relatedness pointwise. Pairing and projection are interpreted
as meta-level pairing and projection.

(SAB)™y*: ((a:EAy) XEB(y, @) » R(SAB)y' — Set;
(CAB)y™ (@, f) RN, f) = (a” : ATy  ad’) x B~ (v, ™) B

5.3.5 Meta-Level II-Types. We again use a pointwise definition. Note that we need to use R, to
apply t’ : R(IIAB)y’ to o'.

(MAB)*y™: ((a: EAy) > EB(y, a)) > R(IIAB)y’ — Set;
(MAB)y~tt' = (a:EAy)(@ :RAY)(a” : A%y ad’) = B (y~, &) (ta) (Rgpp ' &)
For abstraction and application, we use a curry-uncurry definition:
(lamt)~y~ =Adaad a7 (Y, o)
(app )~ (v*, a”) =17y  aa’ o™
5.3.6  Meta-Level Universes. We interpret Uy ; as a semantic relation space:
(Up)"y™ : Set; > RUy;y — Setji
(Up)¥y tt' =t — R t’ — Set;
Note that we have
(E1)° (T yy) > Bty > R(EID)y - Set;
(Codet)”: (y*:T%yy) > Ety > R(Elt)y — §\eztj.
The types coincide because of the equation R (El t) y’ = Rg (Rt y”). Therefore we can interpret El

and Code as identity maps, as (Elt)™ := ¢ and (Code t)~ := t~.
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5.3.7 Object-Level Family Structure. We interpret extended contexts as follows.
TroA)™ (o) R} (v, @) =T yy) x (Ta" =a)

Note that & : Tmg; (EAy),so "a™ : Tmg; "EAy™, but since Ay~ : "TEAy™ = RAy’, we also
have "a™ : Tmg; (RAYy’). Thus, the equation "™ = o’ is well-typed. For type substitution, we
need

(AleD)™y™ : TE(A[o]) y" =R (Alo]) v
The goal type computes to "EA (Eoy)” = RA (Roy’). This is obtained directly from A~ (6™ y™).
Similarly,
(tleDy™ =17 (a7y7) pr( %) =yT

5.3.8 Lifting Structure.

(MA):T"yy —Tmg; (EAy) > R(TA)y - Set;

MA Yt = ("t7 =~t")
This is well-typed by Ay~ : "EAy™ = RAy’, which implies that "¢t : Tmg; (RAy’). For (), we
need

Oy TE@yT =~R@D)Y).
The goal type can be further computed to "Ety™ = Rt y’, which we prove by ¢~ y~. For splicing,
we need
(~)¥y* :TE~ty " =R~ty

where the goal type computes to "Fty™ = ~(Rty’), but this again follows directly from ¢~ y~.
5.3.9 Object-Level Type Formers. Lastly, object-level type formers are straightforward. For types,
we need "EAyT =R Ay’, and likewise for terms. Note that E and " - 7 preserve all structure, and
R preserves all structure on object-level types and terms. Hence, each object-level A and ¢ case in

-~ trivially follows from induction hypotheses.
This concludes the definition of the —~ interpretation.

5.4 Soundness

Definition 5.2. First, we introduce shorthands for external operations that can be obtained from

For T :Con we get [I™|:{A:Cong} — |[ET|A — Sub"A™T' — Set;
For A:Ty,;T we get |A%]:|T¥|yy — "EAy™ = A[y]
For t :Tmg;TA weget [f7] :|T7|yy — "Ety™ =t[y]

Since -~ was defined in O, we also know that the above are all stable under object-theoretic
substitution.

THEOREM 5.3 (SOUNDNESS FOR GENERIC CONTEXTS). For eachT : Cong, we have T?™ : |T~| TP id.

Proor. We define -F~ by induction on object-theoretic contexts. /" : T is defined trivially
as tt. For (I'»> A)"~, we need (y* : [T|* (FP[p]) p) x ("q™ = q). We get I~ : [T¥| TP id. Because
of the naturality of ||, this can be weakened to I'”’~ [p] : [T¥| (TP [p]) p. Also, "q™ = q holds
immediately. O

THEOREM 5.4 (SOUNDNESS OF STAGING). The open staging algorithm from Definition 4.14 is sound.
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ProOF.
e For A : Ty, ;"T'"", we have that "Stage A" = T|EA] I'’7 by the definition of Stage, and
moreover we have |[A¥| TP~ : T|[EA| TP = A[id], hence "Stage A7 = A.
e For t : Tmg; "T" A, using [t*|TP~ : T|E¢|TP7 = t[id], we likewise have "Staget™ =
CIE¢ TP =¢[id] =¢.
[m]

COROLLARY 5.5 (CONSERVATIVITY OF 2LTT). From the soundness and stability of staging, we get
that " =7 is bijective on types and terms, hence Tyg; I' =~ Ty, ; "I'"" and Tmg; ' A ~ Tmg; "T7TA™.

Alternative presentations. The above conservativity proof could be rephrased as an instance of
more modern techniques which let us implicitly handle stability under 2LTT substitutions as well,
not just O substitutions. This amounts to working in a modal internal language, where modalities
control the interaction of the different base categories.

e Using synthetic Tait computability [Sterling 2021], we work in the internal language of the
glued category Idg | R.

o Using relative induction [Bocquet et al. 2021], we work in the modal type theory obtained
from the dependent right adjoint functor R* : 2LTT — O, where 2LTT denotes presheaves
over the syntactic category of 2LTT.

We do not use either of these in this paper, for the following reasons. First, the author of the paper
is not sufficiently familiar with the above techniques. Second, the task at hand is not too technically
difficult, so using advanced techniques is not essential. Contrast e.g. normalization for cubical type
theories, which is not feasible to handle without the more synthetic presentations [Sterling and
Angiuli 2021].

6 INTENSIONAL ANALYSIS

We briefly discuss intensional analysis in this section. This means analyzing the internal structure
of object-level terms, i.e. values of | A. Disallowing intensional analysis is a major simplification,
which is sometimes enforced in implementations, for example in MetaML [Taha and Sheard 2000].

If we have sufficiently expressive inductive types in the meta-level language, it is possible to
simply use inductive deeply embedded syntaxes, which can be analyzed; our example in Section
2.2 for embedding a simply typed lambda calculus is like this. However, native metaprogramming
features could be more concise and convenient than deep embeddings, similarly to how staged
programming is more convenient than code generation with deeply embedded syntaxes.

In the following, we look at the semantics of intensional analysis in the standard presheaf models.
We only discuss basic semantics here, and leave practical considerations to future work.

Definition 6.1. The Yoneda embedding is a functor from O to o} sending I" : Cong to yT': Con,
such that |[yI'| A = Subg AT. We say that I' : Con is representable if it is isomorphic to a Yoneda-
embedded context.

LEMMA 6.2 (YONEDA LEMMA). We have Sub (yI') A = |A|T [Mac Lane 1998, Section II1.2]. Also, we
have Tmyj (yI') A = |A| id, where id : Subg I'T".

The Yoneda lemma restricts possible dependencies on representable contexts. For example,
consider the staging behavior of t : Tm; (e > (x : Boolp)) Bool;. Staging t yields essentially a
natural transformation Sub (E(e > Boolp)) B, where B is the metatheoretic type with two elements,
considered as a constant presheaf. Now, if E(e > Bool) is representable, then Sub (E(e>Booly)) B =
B, so t can be staged in at most two different ways.
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Which contexts are representable? In the specific 2LTT in this paper, "T ™ is always representable
in the presheaf model. |E"T 7| A contains lists of object-theoretic terms, hence E'T'™ =~ yI'. This
implies that intensional analysis is not compatible with the standard presheaf model, for our 2LTT.

Consider a very basic feature of intensional analysis, decidability of definitional equality for
object-level Boolean expressions.

decEq: (xy: T Booly) = (x =1 ) +1 (x #1 1)

The Yoneda lemma says that decEq cannot actually decide definitional equality. We expect that
decEq lets us define non-constant maps from f} Bool, to Booly, but the Yoneda lemma implies that
we only have two terms with distinct semantics in Tmj (e > Booly) Bool;.

A more direct way to show infeasibility of decEq in O is to note that definitional inequality for
object-level terms is not stable under substitution, since inequal variables can be mapped to equal
terms.

Stability under weakening only. We can move to different 2LTT setups, where stability under
substitution is not required. We may have weakenings only as morphisms in O. A weakening from
T to A describes how I' can be obtained by inserting zero or more entries to A. A wide range of
intensional analysis features are stable under weakenings. For example, decEq now holds in O
whenever object-theoretic definitional equality is in fact decidable. We also dodge the Yoneda
lemma, since E "T 7 is not necessarily representable anymore: |E "T' 7| A is still a set of lists of terms,
but weakenings from A to I' are not lists of terms.

As a trade-off, if there is no notion of substitution in the specification of the object theory, it is
not possible to specify dependent or polymorphic types there. We need a substitution operation to
describe dependent elimination or polymorphic instantiation.

However, stability under weakening is still sufficient for many practical use cases, for example
the monomorphization setup in Section 2.4.1. Here, we only have weakening as definitional equality
in the object theory, and we do not have fSn-rules.

Closed modalities. Another option is to add a closed or crisp modality for modeling closed object-
level terms [Licata et al. 2018]. Since closed terms are not affected by substitution, we are able to
analyze them, and we can also recover open terms by explicitly abstracting over contexts [Hofmann
1999; Hu et al. 2022]. Function pointers in the style of the C programming language could be also an
interesting use case, since these must become closed after staging (as they cannot capture closure
environments).

7 RELATED WORK

The work Annekov et al. on two-level type theory [Annenkov et al. 2019], building on [Capriotti
2017] and [Voevodsky 2013], is the foremost inspiration in the current work. Interestingly, the
above works do mention metaprogramming as a source of intuition for 2LTT, but they only briefly
touch on this aspect, and in [Annenkov et al. 2019] the main focus is on extensions of basic
2LTT which do not have staging semantics anymore. Ibid. conjectures the strong conservativity of
2LTT in Proposition 2.18, and suggests categorical gluing as proof strategy. In this work, we do
essentially that: our presheaf model and the logical relation model could be merged into a single
instance of gluing along the R morphism; this merges staging and its soundness proof. We split
this construction to two parts in order to get a self-contained presentation of the staging algorithm.

[Hofmann 1999] models higher-order abstract syntax of simply typed object languages in
presheaves over various syntactic categories. The main difference between HOAS and 2LTT is
that the former represents object-level binders using meta-level functions while the latter has a
primitive notion of object-level binding.
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The multi-stage calculus in [Kawata and Igarashi 2019] supports staging operations and type
dependencies. However, there are major differences to the current work. First, ibid. does not have
large elimination, hence it does not support computing types by staging. Second, it does not
support staged compilation in the sense of Definition 4.1; there is no judgment which ensures that
staging operations can be eliminated and a purely “object-level” program can be extracted from
a multi-stage program. Rather, the system supports runtime code generation. There are several
modal multi-stage systems which support runtime code generation but not staged compilation,
such as those based on S4 modalities (e.g. [Davies and Pfenning 2001]) or contextual modalities
(Uang et al. 2022]).

Idris 1 supports compile-time partial evaluation, through static annotations on function argu-
ments [Brady and Hammond 2010]. This can be used for dependently typed code generation, but
Idris 1 does not guarantee that partial evaluation adequately progresses. For example, we can pass
a neutral value as static argument in Idris 1, while in 2LTT static function arguments are always
canonical during staging.

Our notation for quoting and splicing is borrowed from MetaML [Taha and Sheard 2000]. In the
following, we compare 2LTT to MetaML, MetaOCaml [Kiselyov 2014] and typed Template Haskell
[Xie et al. 2022].

2LTT explicitly tracks stages of types, in contrast to the mentioned systems. There, we have type
lifting (usually called Code), quoting and splicing, but lifting does not change the universe of types.
We can write a function with type Bool — Code Bool, and the two Bool occurrences refer to the
exact same type.

This causes some operational confusion down the line, and additional disambiguation is needed
for stages of binders. For example, in typed Template Haskell, top-level binders behave as runtime
binders when used under a quote, but behave as static binders otherwise. Given a top-level definition
b = True, if we write a top-level definition expr = [|| b||], then b is a variable in the staging output,
but if we write expr = if bthen [|| True||] else [|| False ||], then b is considered to be a static value.
In contrast, 2LTT does not distinguish top-level and local binders, and in fact it has no syntactic or
scope-based restrictions; everything is enforced by typing.

2LTT supports staging for types and dependent types, while to our knowledge no previous
system for staged compilation does the same. It appears to the author that the main missing
component in previous systems is dependent types at the meta level, rather than staging operations;
staging operations in 2LTT and MetaOCaml are already quite similar. For example, any interesting
operation on the static-length vectors in Section 2.2 requires meta-level dependent types, even if
the object language is simply typed.

In MetaOCaml, there is a run function for evaluating closed object-level terms, however, this can
fail during staging since closedness is not statically ensured. In our setting, this could be reproduced
in a safe way using a closed modality; this is part of future work.

Additionally, 2LTT only supports two stages, while the other noted systems allow countable
stages. It remains future work to develop NLTT (N-level type theory), but this extension does
appear to be straightforward. In the specification of NLTT, we would simply need to move from
i € {0,1} to i € N, although in the semantics there could be more subtleties.

Many existing staged systems also support side effects at compile time, while our version of 2LTT
does not. Here, general considerations about the mixing of dependent types and effects should
apply; see e.g. [Pédrot and Tabareau 2020]. However, it should be possible to use standard effect
systems such as monads at the meta level.
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8 CONCLUSIONS AND FUTURE WORK

We developed the foundational metatheory of 2LTT as a system of two-stage compilation. We view
the current results as more like a starting point to more thorough investigation into applications
and extensions; in this paper we only sketched these.

We emphasize that variants of 2LTT can serve as languages where staging features can be
practically implemented, and also as metatheories, not only for the formalization for staging
techniques, but also more generally for reasoning about constructions in object languages. This
purpose is prominent in the original 2LTT use case in synthetic homotopy theory. The meta-level
language in a 2LTT can be expressive enough to express general mathematics, and the meta-level
propositional equality — =; — can be used to prove ffn-equality of object-level types and terms.

For example, we could use object theories as shallowly embedded target languages of optimization
techniques and program translations. In particular, we may choose a low-level object theory without
higher-order functions, and formalize closure conversion as an interpretation of an embedded
meta-level syntax into the object theory.

There is much future work in adapting existing staging techniques to 2LTT (which, as we
mentioned, can double as formalization of said techniques), or adding staging where it has not
been available previously.

o Let-insertion techniques. These allow more precise control over positions of insertion, or
smarter selection of such positions. In 2LTT, meta-level continuation monads could be
employed to adapt some of the features in [Kameyama et al. 2011]. The automatic let-floating
feature of MetaOCaml [Kiselyov and Yallop 2022] requires strengthening of terms, which
is not stable under substitution, but it is stable under weakening, so perhaps it could be
implemented as an “intensional analysis” feature.

e Generic programming with dependent types. There is substantial literature in this area (e.g.
[Chapman et al. 2010; Dagand 2017; Diehl 2017; Loh and Magalhdes 2011]), but only in
non-staged settings. 2LTT should immediately yield staging for these techniques, assuming
that the meta level has sufficient type formers (e.g. induction-recursion). We could also try to
adapt previous work on generic treatment of partially static data types [Yallop et al. 2018];
fully internalizing this in 2LTT would also require dependent types.

There are also ways that 2LTT itself could be enhanced.

o More stages, stage polymorphism. Currently, there is substantial code duplication if the object-
level and meta-level languages are similar. Stage polymorphism could help reduce this. A
simple setup could include three stages, the runtime one, the static one, and another one
which supports polymorphism over the first two stages.

Modalities. We mentioned the closed modality in Section 6. More generally, many multimodal
[Gratzer et al. 2020] type theories could plausibly support staging. 2LTT itself can be viewed
as a very simple multimodal theory with {] as the only modality, which is also degenerate
(because it entails no structural restriction on contexts). We could support multiple object
theories, with modalities for lifting them to the meta level or for representing translations be-
tween them. We could also have modalities for switching between stability under substitution
and stability under weakening.

Intensional analysis. We only touched on the most basic semantics of intensional analysis
in Section 6. It remains a substantial challenge to work out the practicalities. For good
ergonomics, we would need something like a “pattern matching” operation on object-level
terms, or some induction principle which is more flexible than the plain assumption of
decidable object-level equality.
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9 DATA AVAILABILITY STATEMENT

A standalone prototype implementation is available as [Kovacs 2022]. It implements elaboration
and staging for a 2LTT. It includes a tutorial and code examples that expand on the contents of
Section 2.
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