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Scaling ML pretraining on web data has produced impressive results, such as models that can win gold medals
at IMO [A] and accurately predict protein structures [20]. However, when faced with tasks that are not well-
represented in available datasets (e.g., time-series data in finance [25]), models can falter and hallucinate incorrect
answers [B]. These shortcomings echo long-standing failures in deep learning where models fail arbitrarily
under atypical inputs (e.g., adversarial perturbations [5] or distribution shifts [8]). In contrast, humans solve
unseen challenges and reason about uncertainties with more time available to “think” and “interact” with the
test environment. This hints at an alternative paradigm of learning, where trained models can spend more
computation on difficult test instances and thus perform better on them, i.e., models that can adapt at test-time.

My work aims to develop foundation tools for test-time adaptation (TTA) Learning models that are fixed at test-time
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TTA: YouTube adapts per-user recommendations on the fly [C], AlphaGO e ..
and AlphaFold implement a form of test-time search [19], and modern '—eaming models that can adapt at test-time
large language models (LLMs) like OpenAl-03/DeepSeek-R1 [18] scale o o+ . My /\/W
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more tokens. While these systems benefit from TTA, their core Al
components are still trained using ML paradigms which produce models
that do not adapt (“static predictors”), and this often limits TTA to fixed adaptation procedures with ad hoc
design choices (e.g., recommender systems still handcraft user features). My work identifies and solves key
barriers that exist to realize the full potential of the TTA paradigm. First, we need expressive models that can
easily implement sophisticated test-time procedures (e.g., self-verifying a prediction, backtracking). Second, we
lack training data that can teach models “how to adapt” (e.g., how to search through different solutions for a
math problem), as opposed to “what to predict” directly (final answer). Third, we don’t have scalable algorithms
for TTA and the bitter lesson [D] tells us that, for an algorithm to work well, it must be effective at scaling data
and compute (like scaling maximum likelihood estimation (MLE) on web data). To address these issues, my
work thus far has considered how to collect training data and develop learning algorithms for TTA (Figure 1).

Figure 1: Learning to adapt at test-time.

To begin with, I demonstrated how TTA can overcome longstanding ML challenges like robustness to distribution
shifts [17, 3, 32, 13, 14, 4] and data privacy [15, 26]. My recent works [34, 35] use principled frameworks to
build LLMs that adapt at test-time and outperform some industry trained models. Concretely, my work answers:

* What training data teaches adaptation? Most datasets are suited for old-school static prediction, i.e., data
that maps inputs to labels. But for TTA, we need data that explains how to arrive at the prediction, or what
information to seek before making one. For this, I explored the avenue of synthetic/model-generated data to
expose patterns of desired test-time behaviors like querying, checking, and refining [16, 6, 31, 34].

* Which learning algorithms enable TTA? First, I studied parameterizations (e.g., modern day LLMs/VLMs)
that let a fixed model ingest arbitrary context (e.g., few-shot exemplars) and adapt freely. Second, I used
insights from algorithms that train static predictors to develop scalable algorithms for TTA (my work was the
first to show the benefits of scaling RL [33] and use it to train LLMs that can implement test-time search [35]).
Third, I pushed on test-time efficiency and information-seeking: allocating compute where it matters (e.g., fewer
tokens in LLMs) and proactively querying for informative feedback before answering [33, 35, 27, 10, 34, 21].

Impact of my work. My work on data [16] and algorithms [34, 33] for TTA is built upon by empirical [12, 24] and
theory communities [29]. My blog [E] (38k+ views) was the first to formalize TTA as a meta-RL optimization
problem and generated strong interest from teams at Cursor, ServiceNow, and Meta, who reached out for
discussion. I also developed LLMs that scaled test compute to discover knowledge beyond training data [F],
culminating in the best <2B math-reasoning model e3-1.7B [35] with 10k+ downloads (Aug—Oct °25). My
algorithms for TTA are taught in ML courses (CMU 10-703, 10-605) and my works have won multiple spotlights
at ICML, ICLR conferences and orals, best-paper awards at top ICML, ICLR and NeurIPS workshops in 2025.

Looking forward, building on my work, I aim to develop unified analysis, practical workflows and algorithmic
tools that make test-time adaptation a principled, reliable, and scalable capability. Despite the initial success of
TTA in applications (e.g., AlphaGo and “thinking” models like 03), we are just scratching the surface of methods
for effective TTA. My ultimate goal is to develop training-sample efficient algorithms that can learn test-compute
efficient models, i.e., models that can persist and keep trying safely and robustly until they solve hard problems
that demand open-ended exploration in applications such as drug discovery and materials design (Section 2).
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1 Past Research

Early promise of TTA. Early in my Ph.D., I worked on the robustness of static predictors to train/test mismatch
and found a hard limit: elaborate algorithms (e.g., DRO [17], contrastive learning on web data [3, 32]) remained
provably susceptible to spurious features: correlations that hold during training but not at test-time (e.g.,
background may correlate with the bird in the training images [11]). I showed that test-time adaptation can
breach this limit and unlearn spurious features memorized during training, if we can design domain-specific
test-time procedures (e.g., prompt VLMs to label the spurious feature [32], linear probe over trained features
at test-time [13], or self-train on randomly augmented inputs to attenuate spurious features [3]). Motivated by
my work [13, 31, 3,4, 1, 17], I pushed to make TTA a generally applicable, scalable and performant capability.
Before that, a fundamental question: what data provides the best signal to train models that can adapt at test-time?

1.1 What Kind of Training Data Enables Learning to Adapt at Test-Time?

For learning models that can adapt at test-time, the “go-to” approach is to collect training data with intermediate
steps that teach models how to meaningfully adapt (i.e., they describe the sequence of test-time operations that
can make the final prediction of the model more accurate); but existing datasets provide only the final label, and
not the operations that led to them. To fill this gap, I used model-generated synthetic data. 1 realized the promise
of synthetic data in my work [31] on how loss-maximizing perturbations can generate synthetic data that can
make it easy to unlearn spurious features. I also extended this idea to reduce data memorization in LLMs [23, 6].

For TTA of LLMs, in [16] I used the instruction-following capa-  grnched
bilities of the modern-day LLMs and prompted them to collect [ Rellouts | - Data
synthetic data that outline the test-time operations (e.g., steps
that lead to the correct answer on math problems). If a synthetic >é-
trace ends in a correct final answer, we call it positive; otherwise  Partial
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negative. The obvious way of training solely on positive synthetic
data surprisingly doesn’t scale: because only the final answer is
verified, and intermediate operations can be spurious (incorrect,
repetitive, or derailing). Inspired by advantage-weighted RL [9] and my work [7] on counterfactual data aug-
mentation to combat spurious correlations, I scaled positive and negative synthetic data via branched rollouts,
i.e., rolling out the LLM from intermediate steps (Fig. 2) to identify and prune spurious steps by solving the
credit assignment problem. This improved performance by 8. Applying my insights on synthetic data to larger
models, Google later showed that scaling test-time compute can outperform scaling pre-training model size [12].

1.2 Which Data-Driven Algorithms Enable Test-Time Adaptation?
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Figure 2: Scaling branched synthetic data — 8x gains.
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Meta-RL: A principled framework for TTA algorithms. To develop models
that can adapt more freely and without any preset biases on the adaptation Generate  Verify Gen. Summarize
procedure, I moved towards foundation models (LLMs/VLMs): (i) in theory Test-time token budget

their auto-regressive generative nature enables them to adapt more eXpres- gjoyre 3: (a) LLMs can scale test-time
sively (including running gradient descent [22] on in-context examples); (i) compute to implement in-context search.
I showed they can be fine-tuned to reliably invoke useful test-time skills such  (b) To be effective the LLM should re-
as self-verification [33] and planning [10]. My blog [E] was the first to show duce cumulative regret with more tokens.
that LLMs, if trained properly can perform test-time search by simply sampling more tokens, i.e., repeatedly plan,
generate responses, and verify them, until a final answer can be produced with greater confidence (see Fig. 3a),
and that learning such LLMs requires solving a meta-RL problem [27]. Equipped with a more principled framing
of learning TTA through meta-RL, in [27] I showed that we can learn LLMs that optimally use test-time compute
by minimizing a common metric in sequential decision making: the cumulative regret over the sampled tokens,
measured against an oracle that makes maximal progress with every new token (Fig. 3b). Next, I used these
insights to develop scalable (with more training data/compute) and practical algorithms for TTA.

Cumulative Regret
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Scalable algorithms for TTA. In [33], I proved a theoretical separation between two classes —

of algorithms to train LLMs for TTA: (i) verification-free or SFT that trains models by RL 1 cogons
maximizing likelihood on expert traces; and (ii) verification-based or RL that trains the [
models on self-generated traces scored against a verifier learned on suboptimal data. I showed o
that RL is more sample-efficient than SFT and the performance gap between them grows |+ SFT/distillation
as we increase the test-time compute (token) budget available to the trained LLM (Fig. 4),  *Sranng datan = ct
implying that RL is better suited to learn LLMs that can benefit from larger test-time budgets  Figure 4: Gap b/w
(also shown by industry labs that train models to use over 100k tokens [18]). But, the true RL and SFT grows.
promise of TTA is in improving performance as we sample far more tokens than seen during training, i.e., as we
extrapolate test-time compute (e.g., an LLM that can search over solutions by simply sampling for longer [E]).
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verify—generate—revise) to discover the right answer. In the absence of these,
in [10] I showed that we can also build new skills into the pre-trained LLM like  {1,)" e3vs. open-source models
generating useful abstractions (plans, hints). Now that the model can explore over g 49 Exapolaion =4, o ———A
the chaining of skills, as opposed to raw tokens, in [35] I proved that negative ’ |
gradients in RL can amplify the chaining of these skills in diverse ways, and we
can further structure this exploration via a curriculum over token budgets and

task sets. Together, this resulted in e3-1.7B: the best <2B math-reasoning model -

that can extrapolate compute better than much larger 7B/32B models trained at 4k 8k 16k 24k 32k
industry scale (Fig. 5b). In [34, 27], I also showed that dense rewards in RL are Test-time compute (tokens)

. . . . Figure 5: (a) Naive RL only sharp-
key to improving exploration on hard problems failed by the base model. ens the distribution over Known So-

lutions. My work [35] gets RL to
TTA that is efficient and information-seeking. ldeally we want TTA models discover new solutions, yielding

to spend test compute efficiently (e.g., LLMs don’t oversample tokens on easy the best <2B model (b).
problems) and that for every unit of compute spent (e.g., a reasoning step) they make progress, i.e., improve
the likelihood of future success. We also want them to be information-seeking and query the test environment
whenever they can’t make progress. My work on process advantage verifiers [34] formalized automated, step-
level rewards via a class of process rewards that measure progress under a separate prover policy. This improved
RL’s rate of convergence by 6%, trained LLM’s test compute efficiency by 10x, and was the first result to show
the benefit of dense rewards for RL training of LLMs. In [21], we explored a new axis of scaling: test-time
interactions (TTI). Here, an LLLM is trained to not just sample more tokens to solve a problem, but also query the
environment to collect informative feedback (e.g., navigate and explore web pages on a site before answering a
user query). Extending ideas in [35] to the TTI setting, we built a state-of-the-art open-source web agent [21].

agentica-1.5B
—e— qwen3-1.7B
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2 Future Research Agenda

My work on test-time adaptation (TTA) provides a principled framework for practical learning algorithms, and
tools for analyzing models that can improve performance with reasoning, search, and test-time interaction. But
several core questions remain before TTA becomes fully dependable and a “first-class” capability in modern-day
Al systems. To close these gaps, [ will lead a research program organized into the following synergistic thrusts:

Best-practices and easy-to-deploy TTA. Predictable scaling laws have powered progress in training static
predictors (e.g., laws that predict optimal batch size and model size for LLM pre-training). To make TTA equally
dependable, we need analogous laws that inform us about best and stable hyper-parameter configurations for
nuanced algorithms like dense-reward RL. This means diagnosing and fixing failure modes such as RL-induced
diversity collapse [28] and turning them into actionable design principles. Building on my work [30, 23, 3] [F], I
will develop algorithms with practitioner-oriented workflows (e.g., default configs, safety checks, diagnostics).
Ultimately, success is real-world usability: methods that run out-of-the-box, and tune predictably.

Open-ended exploration, lifelong TTA & continual learning. In open-ended domains like materials science
and drug discovery, exploration gets extremely challenging for TTA models since: (i) the learning signal from
costly verifiers like wet-lab tests is very weak and labeled data is too limited to learn reliable reward models; (ii)
with access to limited guidance, models need to continually learn about new test domains through interactions
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and search that runs for days (e.g., over a large space of crystal and protein compositions); and (iii) open-ended
domains are less present in internet data, requiring us to leverage synthetic data, and build autonomous models
with information-seeking capabilities. I will make TTA models applicable in open-ended settings by building
on my works on synthetic data [16, 31, 6, 23], dense reward models [34, 27], information-seeking LLMs [21],
structured exploration in RL [33, 35, 10], and guided exploration for scaling LLM RL on hard problems [G].

Pre-training for TTA. Today’s recipe for adaptive models is somewhat paradoxical: we just post-train models
pre-trained to be good static predictors (e.g., post-train LLMs with RL) and hope they magically adapt at test
time. This two-stage approach breaks down when the pre-trained model lacks useful test-time skills [35, 10] (like
self-verification) for post-training to amplify. Going beyond human data imitation, I will make TTA intrinsic by
studying data, model architectures, and learning objectives to pre-train models from scratch on internet data with
the goal of explicitly teaching them how to adapt to unseen test domains. Grounded in my meta-RL view of
TTA [E] [27], I will build on my works on scaling test-time compute [33, 34], and synthetic data [31, 16].

Advancing real-world applications. 1 will iterate on applications in lockstep with algorithms. I already witnessed
impactful results when I used ideas from my early research on TTA [3, 32, 13] (with fixed test-time adaptation
procedures like linear probing) to improve the utility of privacy-preserving algorithms [15, 26]. Similarly,
in the case of foundation models (that can adapt more broadly [35]), I will build on my work in LLM math
reasoning [34, 10, 16] and web agents [21]. Concretely, I will extend it to harder domains such as drug discovery
and protein design where exploration is combinatorial and verification is costly/noisy. TTA is broadly applicable
across sequential decision-making systems that power robots, nuclear reactors, and power grids. Traditionally,
these are solved via RL that yields domain-specific specialists and demands large-scale online/offline data
collection. By using TTA’s connection to meta-RL [27, 33] [E], I intend to train generalist models on internet
data that can solve sequential decision-making problems with minimal data collected from the test environment.
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