KUDELSKI
SECURITY @

Common Wallet Mobile Application
Secure Code Review

Technical Report

Cardinal Cryptography

24 March 2025
Version: 2.0

Kudelski Security — Nagravision Sarl

Corporate Headquarters

Kudelski Security — Nagravision Sarl
Route de Genéve, 22-24

1033 Cheseaux sur Lausanne
Switzerland

For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

DOCUMENT PROPERTIES

File Name: Kudelski_Security Cardinal_Cryptography_Common_Wallet_

Mobile_Application_Secure_Code_ Review_v2.0.pdf

For Public Release
Jakub Kocikowski

Copyright Notice

Kudelski Security, a business unit of Nagravision Sarl, is a member of the Kudelski Group of Companies.

This document is the intellectual property of Kudelski Security and contains confidential and privileged
information. The reproduction, modification, or communication to third parties (or to other than the addressee)
of any part of this document is strictly prohibited without the prior written consent from Nagravision Sarl.

© 2025 Nagravision Sarl / All Rights Reserved Page 2 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

TABLE OF CONTENTS

1. PROUJECT SUMMARY ...ttt ettt e et e e et e e aneee 5
LR B 070 o (= SRRSO 5
LS Tolo] o = SRR 5
1.3 REMAIKS . 5
1.4 AdItioNal NOTE ... 6
2. TECHNICAL DETAILS OF SECURITY FINDINGSccooeiiiiiiiiee e 7
3. OBSERVATIONS ...ttt ettt e e ettt e e e et e e e e e ate e e e e amneeeeeeanbeeaeaanneeeaas 8
3.1 KS-CWM-0-1 Cryptographic Keys Stored as String.........c.ccoooeeviviiiiiiiiiieeneeenns 9
3.2 KS-CWM-0-2 Default Lockout Case Should be Different..............cccccooeiinnnnnnn. 10
3.3 KS-CWM-0-3 Best Secure Code PractiCes...........ceueeiiiiiiiiiiiiiiiiiee e 11
3.4 KS-CWM-0—4 Lack of Zeroization of Sensitive Data.............ccccoeeeveiiiiiiininnn. 12
3.5 KS-CWM-0-5 Auto-lock uses Device Global Timeoccccuiiiieiiieiiniiiiien, 13
4. METHODOLOGY ...ttt ettt ettt e ea et e et e e e s bee e e e nnbeeaeeae 15
4. KICKOFT. ..t 15
N X | o] o LU o RSP 15
4.3 REBVIBW....oiiiiii ittt e e 15
4.4 REPOIING - s 16
Y4 1 TR 16
5. VULNERABILITY SCORING SYSTEMooiiiiiiiiiiiiiiiiie e 17
6. CONCLUSIONottt ettt e e et e e e e em e e e e e nnbe e e e e anneeeeeeannees 19
DOCUMENT RECIPIENTS ...ttt et e e 20
KUDELSKI SECURITY CONTACTS ... eeiii ettt ettt e e ea e e aseea e e anneeeeas 20
DOCUMENT HISTORY ...ttt et e e et a e e e ens e e e e e anneeeaeaanseeaeeannneeans 20
© 2025 Nagravision Sarl / All Rights Reserved Page 3 of 21

For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI

24 March 2025 SECURITY "&

EXECUTIVE SUMMARY

Cardinal Cryptography (“the Client”) engaged Kudelski Security (“Kudelski’, “we”) to perform
the Secure Code Review.

The assessment was conducted remotely by the Kudelski Security Team.

The review took place between 19 February 2025 and 06 March 2025, and focused on the
following objectives:

¢ Provide the customer with an assessment of their overall security posture and any risks
that were discovered.

e To provide a professional opinion on the maturity, adequacy, and efficiency of the
security measures that are in place.

¢ To identify potential issues and include improvement recommendations based on the
result of our tests.
Key Findings
The following are the major themes and issues identified during the testing period.

These, along with other items within the findings section, should be prioritized for remediation
to reduce to the risk they pose.

¢ Cryptographic keys declared as strings

Critical
High
Medium
Low
0 1 2 3 4 5
mInformational mLow mMedium mHigh mCritical
Findings ranked by severity.
© 2025 Nagravision Sarl / All Rights Reserved Page 4 of 21

For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

1. PROJECT SUMMARY

This report summarizes the engagement, tests performed, and findings. It also contains
detailed descriptions of the discovered vulnerabilities, steps the Kudelski Security Team took
to identify and validate each issue, as well as any applicable recommendations for
remediation.

1.1 Context

The application being audited is Common Wallet, a mobile application self-custody wallet for
Aleph Zero EVM.

1.2 Scope
The scope consisted in specific TypeScript files and folders located at:

¢ Git Repository: https://github.com/Cardinal-Cryptography/common-wallet-mobile

e Commit hash: 807e194c123527203841183912f17ba9c8ae71
The files and folders in scope are:
e common-wallet-mobile/src/setup/storage/*
e common-wallet-mobile/src/stores/wallets/*
e common-wallet-mobile/src/hooks/useBiometrics/*
e common-wallet-mobile/src/stores/auth/*
e common-wallet-mobile/src/stores/autoLock.ts
e common-wallet-mobile/src/utils/secureStore/*
e common-wallet-mobile/src/screens/SignInScreen/*
e common-wallet-mobile/src/components/organisms/AuthorizeModal/*
e common-wallet-mobile/src/screens/CreatedWalletScreen/*
e common-wallet-mobile/src/screens/SecurityAndPrivacyScreen/*

e common-wallet-mobile/src/screens/AppSplashScreen/*

1.3 Remarks

During the code review, the following positive observations were noted regarding the scope of
the engagement:

¢ The developers have made a careful and in-depth analysis of their project.
e The repository is well structured, and the quality of the code is good.

e Finally, we had regular and very enriching technical exchanges on various topics.

© 2025 Nagravision Sarl / All Rights Reserved Page 5 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

1.4 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit
assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained by
resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease
of exploitability and the potential damage caused by an exploit.

While assessing the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. This is a solid baseline for severity determination. Information
about the severity ratings can be found in Chapter Vulnerability Scoring System of this
document.

© 2025 Nagravision Sarl / All Rights Reserved Page 6 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

2. TECHNICAL DETAILS OF SECURITY FINDINGS

This chapter provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable
references. The following table provides an overview of the findings.

¢ No security issue was identified during the testing period.

© 2025 Nagravision Sarl / All Rights Reserved Page 7 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

3. OBSERVATIONS

This chapter contains additional observations that are not directly related to the security of the

code, and as such have no severity rating or remediation status summary. These observations

are either minor remarks regarding good practice or design choices or related to

implementation and performance. These items do not need to be remediated for what
concerns security, but where applicable we include recommendations.

— SEVERITY TITLE STATUS

KS-CWM-0-1 Informational Cryptographic Keys Stored as String Informational

KS-CWM-0-2 Informational Default Lockout Case Should be Different = Informational

KS-CWM-0-3 Informational Best Secure Code Practices Informational

KS—-CWM-0-4 Informational Finding Lack of Zeroization of Sensitive Informational
Data

KS-CWM-0-5 | Informational Auto-lock uses Device Global Time Informational

Observations overview.

© 2025 Nagravision Sarl / All Rights Reserved Page 8 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

3.1 KS-CWM-0-1 Cryptographic Keys Stored as String

Description

The provided codes for the mobile application stores cryptographic keys in a string. Declaring
such data as a string in TypeScript could pose security risks due to the immutability of strings
and their handling in memory. Strings persist until garbage collection occurs, and there is no
possibility to manually clear them from memory. This could leave them vulnerable to
unauthorized access. For example, accidental logging or exposure through debugging could
lead to the cryptographic keys being compromised.

Evidence

export const encryptData = async (data: string, key: string) => {
const cryptoKey = await getCryptoKeyFromStringKey(key);
const iv = window.crypto.getRandomValues(new Uint8Array(12));
const encodedData = encodeUTF8(data);

const encryptedBuffer = await window.crypto.subtle.encrypt(
{
name: "AES-GCM",
iv,
}s
cryptoKey,
encodedData

)5

const encryptedData = base64Encode(encryptedBuffer);
const ivString = base64Encode(iv);

return " ${ivString}:${encryptedData} ;
}s

common-wallet-
mobile/src/components/custom/PolkadotWebviewBridge/webview/methods/accounts/utils/
wallets.ts lines 3-20

export const mmkviWalletsStorage: StateStorage = {
setItem: async (key: string, value: string) => {
try {
const encryptionKey = await getEncryptionKey();
const encryptedData await encryptData(value, encryptionKey);

walletsStorage.set(key, encryptedData);
} catch (error) {
// @todo: handle error
// eslint-disable-next-Line no-console
console.error("Error storing data", error);
}
}s

common-wallet-mobile/src/setup/storage/index.ts line 65-77

© 2025 Nagravision Sarl / All Rights Reserved Page 9 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

Affected Resources
This is valid for the whole project and requires verification through all files.
. common-wallet-mobile/src/setup/storage/index.ts
. common-wallet-mobile/src/components/custom/PolkadotWebviewBridge/webview/

methods/accounts/utils/wallets.ts

Recommendation

Use Buffer for sensitive data instead of Strings. Buffers are mutable, which allows for manual
clearing from memory. This finding is particularly important for cryptographic keys stored in
Strings.

References

. [1] Buffer in JavaScript
. [2] String vs Buffer

3.2 KS—-CWM-0-2 Default Lockout Case Should be Different

Description

In the getLockoutTime function, there is a switch returning the lockout time, based on the
number of attempts. The default case, which will trigger for the values 0-2 and 7+, returns O.
While this is the expected return value for the case 0-2, the application is meant to lock after
6 attempts.

Evidence

// Returns time in milliseconds to lLockout user based on number of Login attempts
and labelId for translation
export const getLockoutTime = (

loginAttempts: number
): { time: number; labelId: string } => {

if (loginAttempts < 3) {

return { time: @, labelld: "global.time.xMinutes" };
}

switch (loginAttempts) {

case 3:

return { time: 30000, labelld: "global.time.xSeconds" }; // 36 seconds
case 4:

return { time: 300000, labelld: "global.time.xMinutes" }; // 5 minutes
case 5:

return { time: 900000, labelld: "global.time.xMinutes" }; // 15 minutes
case 6:

return { time: 3600000, labelld: "global.time.xHours" }; // 1 hour

© 2025 Nagravision Sarl / All Rights Reserved Page 10 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

default:
return { time: O, labelld: "global.time.xMinutes" };
};
common-wallet-mobile/src/utils/getLockoutTime.ts lines 1-21.
Affected Resources

. common-wallet-mobile/src/utils/getLockoutTime.ts lines 1-21.

Recommendation

The application should lock permanently in case of more than 6 incorrect logins, so the case
7+ should never trigger in the current version of the code. To prevent problems to occurs as
the implementation evolves, it would be best to split the default case as follows. In the case of
0,1, or 2 unsuccessful logins, return 0 (no waiting time). In the case of 7+ attempts, return
some “large” (for example, one hour/day/month/year).

References

. [1] CWE-447: Unimplemented or Unsupported Feature in Ul

3.3 KS—-CWM-0-3 Best Secure Code Practices

Deprecated Constant

In common-wallet-mobile/src/utils/secureStore/index.ts, the constant
ALWAYS_THIS_DEVICE_ONLY is used. According to Expo SecureStore Documentation, this is
deprecated and not secure:

The data in the keychain item can always be accessed regardless of
whether the device is locked. This is the least secure option.

Recommendation

Use WHEN_UNLOCKED_THIS_ DEVICE_ONLY,AFTER_FIRST_UNLOCK_THIS DEVICE_ONLY, or another
alternative.

TODOs in code

In the mobile application, several comments are marked as //@todo, identifying incomplete or
unimplemented features.

Recommendation

Implement the missing features and then remove the commment.

© 2025 Nagravision Sarl / All Rights Reserved Page 11 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

3.4 KS-CWM-0-4 Lack of Zeroization of Sensitive Data

Description

The provided code handles sensitive data, such as mnemonics and cryptographic keys, but
does not include mechanisms to zeroize (clear) this data from memory after it is no longer
needed. Zeroization is a security practice that ensures sensitive data is overwritten in memory
to prevent it from being recovered by unauthorized parties.

The lack of memory zeroization for sensitive data can lead to potential security vulnerabilities.
If the memory containing the private key is not zeroized, it may be possible for an attacker to
recover the private key through memory dumps or other techniques. It is important to notice
that TypeScript relies on a garbage collector to manage memory, this reduce the above
mentioned risk, but does not nulify it.

Evidence

export const mmkvWalletsStorage: StateStorage = {

setItem: async (key: string, value: string) => {
try {

const encryptionKey

const encryptedData

await getEncryptionKey();
await encryptData(value, encryptionKey);

walletsStorage.set(key, encryptedData);
} catch (error) {
// @todo: handle error
// eslint-disable-next-line no-console
console.error("Error storing data", error);

}
}s

common-wallet-mobile/src/setup/storage/index.ts line 65-77

Affected Resources
This finding is valid for the entire projects as zeroization was never done.

. common-wallet-mobile/src/setup/storage/index.ts

Recommendation

To mitigate this risk, it is recommended to zeroize the memory used to store sensitive data,
such as cryptographic keys after they are no longer needed.

References

. [1] CWE-226: Sensitive Information in Resource Not Removed Before Reuse

. [2] Stack Overflow, clearing memory in JavaScript

© 2025 Nagravision Sarl / All Rights Reserved Page 12 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

3.5 KS—-CWM-0O-5 Auto-lock uses Device Global Time

Description

The wallet features auto-lock, which logs out the user over a predetermined amount of time
(configurable by the user). It uses Date.now() to compute the current time and the time
until/that has elapsed since the autolock time, which is something like Date.now() +
time_interval.The global time can be modified either by the user, or by external events
(daylight savings time, travelling across timezones). For example, let's assume the user sets
the lockout time to 1 hour, then sets his phone back one month. By using the global device
time, he will stay logged in for 1 month and 1 hour, much longer than intended or expected.

Evidence

export const useAutoLockStore = create<AutoLockTimerStore>()(
persist(
(set, get) => ({
.. INITIAL_VALUES,
set: (key: AutoLockTime) => {
const seconds = timeMap[key];

set({
selected: key,
autoLockDate: dayjs().add(seconds, "seconds").toDate(),

})s
}s

reset: () => {
const seconds = timeMap[get().selected];

set({
autoLockDate: dayjs().add(seconds, "seconds").toDate(),
islLocked: false,
})s
})

setIsLocked: (value: boolean) => {
set({ isLocked: value });
}J
})J
{

name: "autolock-storage",

partialize: (state) =>
Object.fromEntries(

Object.entries(state).filter(([key]) => !["isLocked"].includes(key))

)>

storage: createlSONStorage(() => mmkvAutolockStorage),

}
)
)

common-wallet-mobile/src/src/stores/autoLock.ts lines 37-71

© 2025 Nagravision Sarl / All Rights Reserved Page 13 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

Affected Resources

. common-wallet-mobile/src/src/stores/autolLock.ts lines 37-71

Recommendation

A possible mitigation is to use a second source to verify the time, compare both values, and
lock the wallet if the difference exceeds an acceptable margin. While this would not fully
resolve the issue, it would add an extra hurdle for an attacker.

© 2025 Nagravision Sarl / All Rights Reserved Page 14 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

4. METHODOLOGY

For this engagement, Kudelski Security used a methodology that is described at a high level
in this chapter. This is broken up into the following phases.

4.1 Kickoff

The Kudelski Security Team set up a kickoff meeting where project stakeholders were
gathered to discuss the project as well as the responsibilities of participants. During this
meeting, we verified the scope of the engagement and discussed the project activities.

4.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.
This included the steps required for gaining familiarity with the codebase and technological
innovations utilized.

4.3 Review

The review phase is where most of the work on the engagement was performed. In this
phase we have analyzed the project for flaws and issues that could impact the security
posture. The review for this project was performed using manual methods and utilizing the
experience of the reviewer. No dynamic testing was performed, only the use of custom-built
scripts and tools was used to assist the reviewer during the testing. We discuss our
methodology in more detail in the following subsections.

Code Review

Kudelski Security Team reviewed the code within the project utilizing an appropriate IDE.
During every review, the team spends considerable time working with the client to determine
correct and expected functionality, business logic, and content, to ensure that findings
incorporate this business logic into each description and impact. Following this discovery
phase, the team works through the following categories:

* authentication (e.g. A07:2021, CWE-306)
. authorization and access control (e.g. A01:2021, CWE-862)

. auditing and logging (e.g. A09:2021)

. injection and tampering (e.g. A03:2021, CWE-20)
. configuration issues (e.g. A05:2021, CWE-798)

. logic flaws (e.g. A04:2021, CWE-190)

. cryptography (e.g. A02:2021)

© 2025 Nagravision Sarl / All Rights Reserved Page 15 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

These categories incorporate common weaknesses and vulnerabilities such as the OWASP
Top 10 and MITRE Top 25.

4.4 Reporting

Kudelski Security delivered to the Client a preliminary report in PDF format that contained an
executive summary, technical details, and observations about the project.

In the report we not only point out security issues identified but also observations for
improvement. The findings are categorized into several buckets, according to their overall
severity: Critical, High, , Low.

Observations are considered to be Informational. Observations can also consist of code
review, issues identified during the code review that are not security related, but are general
best practices and steps, that can be taken to lower the attack surface of the project.

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.
4.5 Verify

After the preliminary findings have been delivered, we verify the fixes applied by the Client.
After these fixes were verified, we updated the status of the finding in the report.

The output of this phase is the final report with any mitigated findings noted.

© 2025 Nagravision Sarl / All Rights Reserved Page 16 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

5. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based
primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined
below. The overall severity score is then computed as described in the next section.

Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact
and Likelihood. Other factors, such as availability of tools and exploits, number of instances
of the vulnerability and ease of exploitation might also be taken into account when computing
the final severity score.

Compute overall severity from Impact and Likelihood. The final severity factor might vary depending on a
project's specific context and risk factors.

e Critical The identified issue may be immediately exploitable, causing a strong and
major negative impact system-wide. They should be urgently remediated or mitigated.

¢ High The identified issue may be directly exploitable causing an immediate negative
impact on the users, data, and availability of the system for multiple users.

e Medium The identified issue is not directly exploitable but combined with other
vulnerabilities may allow for exploitation of the system or exploitation may affect
singular users. These findings may also increase in severity in the future as techniques
evolve.

¢ Low The identified issue is not directly exploitable but raises the attack surface of the
system. This may be through leaking information that an attacker can use to increase
the accuracy of their attacks.

¢ Informational findings are best practice steps that can be used to harden the
application and improve processes. Informational findings are not assigned a severity
score and are classified as Informational instead.

© 2025 Nagravision Sarl / All Rights Reserved Page 17 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI a
24 March 2025 SECURITY "&

Impact

The overall effect of the vulnerability against the system or organization based on the areas
of concern or affected components discussed with the client during the scoping of the
engagement.

o High The vulnerability has a severe effect on the company and systems or has an
effect within one of the primary areas of concern noted by the client.

. It is reasonable to assume that the vulnerability would have a measurable
effect on the company and systems that may cause minor financial or reputational
damage.

e Low There is little to no effect from the vulnerability being compromised. These
vulnerabilities could lead to complex attacks or create footholds used in more severe
attacks.

Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold
varies based on a variety of factors including compensating controls, location of the
application, availability of commonly used exploits, difficulty of exploitation and institutional
knowledge.

o High It is extremely likely that this vulnerability will be discovered and abused.

° It is likely that this vulnerability will be discovered and abused by a skilled
attacker.

e Low ltis unlikely that this vulnerability will be discovered or abused when discovered.

© 2025 Nagravision Sarl / All Rights Reserved Page 18 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI a
24 March 2025 SECURITY "&

6. CONCLUSION

The objective of this Secure Code Review was to evaluate whether there were any
vulnerabilities that would put Cardinal Cryptography or its customers at risk.

The Kudelski Security Team identified 0 security issue: On average, the effort needed to
mitigate these risks is estimated as low.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team
recommends applying the following best practices:

¢ Avoid the use of string for cryptographic keys

An additional recommendation is to perform an offensive security assessment (Pentest) once
the mobile application is completed.

Kudelski Security remains at your disposal should you have any questions or need further
assistance.

Kudelski Security would like to thank Cardinal Cryptography for their trust, help and support
over the course of this engagement and is looking forward to cooperating in the future.

© 2025 Nagravision Sarl / All Rights Reserved Page 19 of 21
For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

DOCUMENT RECIPIENTS

“ POSITION CONTACT INFORMATION

Adrian Dudko Project Manager adrian.dudko@pagepro.co
Jakub Kocikowski Head of Product jakub.kocikowski@cardinals.cc
Joanna Chmiel Front-end Engineer joanna.chmiel@pagepro.co

KUDELSKI SECURITY CONTACTS

“ POSITION CONTACT INFORMATION

Jean-Sebastien Application and jean-sebastien.nahon@kudelskisecurity.com
Nahon Blockchain Security
Practice Manager

Ana Acero Project Manager/ ana.acero@kudelskisecurity.com
Operations
Coordinator

DOCUMENT HISTORY
VERSION DATE STATUS/ COMMENTS
1.0 6 March 2025 Draft version
1.1 12 March 2025 New version
1.2 17 March 2025 Updated version
1.3 24 March 2025 Approved version
2.0 24 March 2025 Public version
© 2025 Nagravision Sarl / All Rights Reserved Page 20 of 21

For Public Release

Cardinal Cryptography | Secure Code Review KUDEI.SKI A
24 March 2025 SECURITY "&

© 2025 Nagravision Sarl / All Rights Reserved Page 21 of 21
For Public Release

