

Educator Guide

Develop in Swift Tutorials introduce app
development with Swift and Xcode to
anyone learning to build apps for Apple
platforms.

In each chapter, learners will complete:

Articles
• Review of concepts

• Ideas for extending an app

• Suggestions for how to apply
skills in a different context,
often by creating a new project

Choose your approach:

You can present the content linearly, or
you can incorporate other text,
documentation, tutorials, videos, and
projects to fit your needs. One option is
to have learners complete the tutorial
independently, then choose items from
the “Continue practicing” section to
complete together, allowing learners to
work collaboratively and ask questions.

Tutorials

• Coding a project, ranging from
an app prototype to a fully
functioning app

• Building on prior knowledge,
getting progressively more
challenging

􀈿 􀛭􀭞

App design

Discovery Prototypes Testing and validation Iteration

Ask questions, listen to your users,
and define a list of features.

Create an interactive prototype that
looks and feels like a fully developed
iOS app and is ready for testing.

Improve the clarity and usability of
your app design by observing how
people interact with your prototype.

Revisit and strengthen your app
design using insights from testing
and validation.

Topics and skills Topics and skills Topics and skills Topics and skills

• App design cycle
• Defining goals
• Low-fidelity sketches
• Planning navigation
• Prioritizing features

• High-fidelity sketches
• Modals
• Prototypes
• SF Pro font
• SF Symbols
• Tab bars
• Toolbars

• Identifying conclusions
and root causes

• Selecting features for iteration
• Task flows
• Test scripts
• User testing

• Accessibility
• Built-in views vs.

custom components
• Color
• Content presentation
• Dark Mode
• Dynamic Type
• Typography
• Visual consistency

Plan, prototype, and design your app.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-app-design
https://developer.apple.com/tutorials/develop-in-swift/build-an-interactive-prototype
https://developer.apple.com/tutorials/develop-in-swift/test-your-app
https://developer.apple.com/tutorials/develop-in-swift/iterate-on-your-design

SwiftUI

Explore Xcode Views, structures,
and properties

Layout and style

Get to know Xcode and SwiftUI by creating a
prototype of a messaging app. Learn about syntax
for Swift and how to use the source editor and
preview.

Learn how to build a custom view to create a
multiday weather forecast. In your view, you’ll use
properties to customize the display for each day.

Build two onboarding screens for an iOS app to
learn useful tools for putting views where you want
them onscreen and inspecting their size. Define
new colors in the asset catalog and use them to
create gradient backgrounds.

Topics and skills Topics and skills Topics and skills

• Background
• Color
• Creating a new

project
• Dot notation
• Modifiers
• Padding

• String
• Swift syntax
• Text
• Views
• Xcode error

messages
• Xcode Library

• Arguments and
parameters

• Bool
• Computed properties
• Custom subviews
• Font
• Foreground style
• Image
• Initializers

• Int
• HStack and VStack
• Returning a value
• SF Symbols
• Stored properties
• String interpolation
• Structures
• Subviews
• Type annotation

• Accent color
• Arrays
• Borders
• Brightness
• Color assets
• Customizing a

preview
• Font
• Frames

• Gradient
• Image
• Pinning a preview
• Shape
• Spacer
• TabView
• Transparency
• Type inference
• ZStack

Get familiar with some of the tools and technologies you’ll use to create apps.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-swiftui
https://developer.apple.com/tutorials/develop-in-swift/customize-views-with-properties
https://developer.apple.com/tutorials/develop-in-swift/design-an-interface

SwiftUI

Buttons and state Lists and text fields

Explore adding buttons to your apps. Learn about
Swift closures and their relationship to buttons.
Use state properties to update the user interface
automatically.

Create a dynamic interface that stores a set of
items in an array and displays them using lists. Use
text fields and bindings to let people enter text.

Topics and skills Topics and skills

• Animation
• Aspect ratio
• Assignment operator
• Button
• Button styles
• Closures
• Color
• Disabling controls
• Dynamic sizing
• Equality operator

• ForEach
• Hierarchical SF

Symbols
• Randomization
• Range operator
• Resizable images
• @State
• Trailing closure

syntax
• View tint

• Arrays
• Adding and removing

from arrays
• Bindings
• Buttons with custom

labels
• Disabling

autocorrection
• Clip shapes

• ForEach
• List
• Not (!) operator
• Symbol rendering

modes
• Ternary conditional

operator
• TextField
• Toggle

Get familiar with some of the tools and technologies you’ll use to create apps.

https://developer.apple.com/tutorials/develop-in-swift/update-the-ui-with-state
https://developer.apple.com/tutorials/develop-in-swift/create-dynamic-content

Custom types and
Swift Testing

Models and
persistence

Navigation, editing,
and relationships

Observation and shareable
data models

Define your first data model by
making your own custom types, and
prove they work correctly with unit
tests. Then use your custom types
to keep track of scores in a game.

Build a list of your friends’
birthdays, using SwiftData to save
and retrieve that data across
launches.

Create an app to track friends and
their favorite movies using SwiftData
to manage the model objects. Use a
query to display the items in a list, and
make a detail view to edit them. Then
learn how to create and display
relationships between friends and
movies, and explore how to create
advanced queries.

Power an alphabet game using
Observation. Share a complex data
model with many independent views.

Topics and skills Topics and skills Topics and skills Topics and skills

• Creating a type to contain
your app’s logic

• Creating enum types
• Creating struct types
• Creating unit tests
• Fixing test failures
• Grid and GridRow
• Identifiable and UUID
• .opacity and .disabled
• Running tests
• Swift file creation 	

• Calendar
• Classes
• Data models
• Date
• Date formatting
• DatePicker
• @Environment
• Frameworks
• @Model macro
• NavigationStack
• @Query macro
• Safe area
• SwiftData context

• @Bindable
• ContentUnavailableView
• Creating sample data
• Custom view initializers
• Environment dismiss

value
• Form
• Group
• Modal interfaces
• Multiple previews
• ModelConfiguration
ModelContainer

• Model relationships
• Navigation hierarchies
• NavigationLink
• NavigationSplitView

• Or (| |) operator
• Picker
• Predicate
• Property

wrappers
• Refactoring
• Schema
• Search
• Section
• Sheets
• Sorting arrays
• Toolbars
• View tags

• Dictionary
• Documentation comments
• @Observable
• onChange
• Sharing your types through the

environment
• Task.sleep
• Xcode’s Quick Help and jump bar
• zip

Data modeling
Model real-world concepts and relationships by creating and testing your own custom types.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-data-modeling
https://developer.apple.com/tutorials/develop-in-swift/save-data
https://developer.apple.com/tutorials/develop-in-swift/work-with-relationships
https://developer.apple.com/tutorials/develop-in-swift/complete-a-game-with-logic

App development

Views and data storage User experience features App refinement

Build a screen to capture text and photo data. Use
SwiftData to save entries and build a custom view
to display them.

Use your knowledge of Swift and data modeling to
make the app more engaging with user experience
features.

Add localization and accessibility features to your
app. Then debug the app so it's ready to test.

Topics and skills Topics and skills Topics and skills

• confirmationDialog
• Laying out and modifying SwiftUI components
• Mask
• PhotosPicker/PhotoKit
• scaledToFill()
• Transferable

• Creating and reusing SwiftUI views
• Creating, updating, and querying using SwiftData
• FetchDescriptor
• reversed
• scrollTransition
• textSelection(.enabled)

• AttributedString
• Dark Mode
• defaultScrollAnchor
• Dynamic Type
• fixedSize
• Locale
• scrollBounceBehavior()
• print
• Xcode console

Build and debug a fully functioning habit-tracking app. Apply coding fundamentals
and accessibility principles.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-app-development
https://developer.apple.com/tutorials/develop-in-swift/create-an-algorithm-for-badges
https://developer.apple.com/tutorials/develop-in-swift/add-inclusive-features

Natural language Recognize text in images Model training with Create ML

Build a sentiment analysis app and use the Natural
Language framework to analyze responses to an
open-ended survey prompt.

Create an app that uses the Vision Framework and
the Translation API to translate text on signs.

Use Xcode’s Create ML tool to train a model to
estimate the anticipated difficulty of a hike using
provided data.

Topics and skills Topics and skills Topics and skills

• @FocusState wrapper
• Chart
• chartProxy
• Charts framework
• GeometryReader
• insert versus append
• Natural Language framework
• NLTagger
• Plottable protocol
• ScrollView
• Sentiment analysis
• Textfield.axis

• Alert for app processing time
• ImageResource
• Overlays
• RecognizedTextObservation and
RecognizeTextRequest

• Shape
• Translation framework
• .translationPresentation
• ViewModifier protocol
• Vision framework

• Create ML tool in Xcode
• CSV files
• Machine learning algorithms
• Model accuracy
• Previewing output
• Training, validation, and testing data
• Xcode developer tools

Machine learning and AI
Enhance your apps with machine learning and AI.

https://developer.apple.com/tutorials/develop-in-swift/analyze-sentiment-in-text
https://developer.apple.com/tutorials/develop-in-swift/extract-text-from-images
https://developer.apple.com/tutorials/develop-in-swift/train-a-core-ml-model

Custom models
with Core ML

Image generation with Image
Playground

Intelligent features with
Foundation Models

Integrate a custom machine learning model into an
app that predicts the difficulty of an upcoming
hike.

Create an app that lets users generate and modify
images using the Image Playground framework.

Create a quiz app using streaming responses and
guided generation.

Topics and skills Topics and skills Topics and skills

• Adding a Core ML model to an app
• CaseIterable protocol
• Core ML framework
• Generic views
• Segmented pickers
• View builders

• AsyncSequence
• CommandMenu
• .controlSize
• Defer
• Creating macOS apps
• ImageCreator
• Image Playground framework
• Keyboard shortcuts
• NSImage
• ProgressView

• Foundation Models framework
• @Generable macro
• @Guide macro
• LanguageModelSession
• partiallyGenerated

Machine learning and AI
Enhance your apps with machine learning and AI.

ttps://developer.apple.com/tutorials/develop-in-swift/import-models-with-core-ml
https://developer.apple.com/tutorials/develop-in-swift/utilize-image-generation-features
https://developer.apple.com/tutorials/develop-in-swift/generate-structured-content

Spatial computing

Windows in visionOS Ornaments and
multiple windows

Volumes in visionOS

Create your first visionOS app with a window
using SwiftUI.

Create multiple windows in visionOS using SwiftUI.
Use ornaments to provide access to frequently
used controls without crowding or obscuring
window contents.

View 3D content from any angle in the Shared
Space using Reality Composer Pro and SwiftUI.

Topics and skills Topics and skills Topics and skills

• Circle
• ColorPicker
• Double
• Grid
• GridRow
• Padding for 3D views
• Remainder (%) operator
• Slider
• visionOS simulator
• Window resizability
• Windows

• @Environment isEnabled
• @Environment openWindow
• .glassBackgroundEffect
• @Previewable previews
• TextField word wrapping
• visionOS .ornament
• WindowGroup, .windowStyle,

and .windowResizability

• Arrays
• DragGesture
• Environment openWindow value
• Model3D
• NavigationSplitView
• Reality Composer Pro
• Rotation in three dimensions
• Toolbars
• Volumes
• WindowGroup

Design app experiences for spatial computing.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-spatial-computing
https://developer.apple.com/tutorials/develop-in-swift/present-common-controls-in-an-ornament
https://developer.apple.com/tutorials/develop-in-swift/create-3d-models-in-the-shared-space

App distribution

Preparation for distribution Testing and feedback Review and distribution

Collect the necessary information to get your
project ready for testing and publishing.

Test your beta app using TestFlight to receive
feedback.

Get your app ready for review and publishing.

Topics and skills Topics and skills Topics and skills

• App category
• App icon
• Bundle ID
• Supported devices and SDKs
• Supported orientations
• Version and build numbers

• Creating and uploading an archive
• Creating a tester group in App Store Connect
• Sharing your beta app with testers using TestFlight
• Responding to feedback
• Incrementing your build and uploading a newer

version

• App metadata
• App review
• Common review issues
• Product page
• Submitting to the App Store

Use TestFlight to test your beta app, get feedback, and make improvements. Learn how to
prepare your app for publishing when it's ready.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-app-distribution
https://developer.apple.com/tutorials/develop-in-swift/test-your-beta-app
https://developer.apple.com/tutorials/develop-in-swift/submit-your-app

	In each chapter, learners will complete:

