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Abstract

Programs offer compactness and structure that makes
them an attractive representation for visual data. We ex-
plore how code rewriting can be used to improve systems
for inferring programs from visual data. We first propose
Sparse Intermittent Rewrite Injection (SIR1), a framework
for unsupervised bootstrapped learning. SIRI sparsely ap-
plies code rewrite operations over a dataset of training pro-
grams, injecting the improved programs back into the train-
ing set. We design a family of rewriters for visual pro-
gramming domains: parameter optimization, code pruning,
and code grafting. For three shape programming languages
in 2D and 3D, we show that using SIRI with our family
of rewriters improves performance: better reconstructions
and faster convergence rates, compared with bootstrapped
learning methods that do not use rewriters or use them
naively. Finally, we demonstrate that our family of rewrit-
ers can be effectively used at test time to improve the output
of SIRI predictions. For 2D and 3D CSG, we outperform
or match the reconstruction performance of recent domain-
specific neural architectures, while producing more parsi-
monious programs that use significantly fewer primitives.

1. Introduction

Visual data is often highly structured: manufactured
shapes are produced by assembling parts; vector graphics
images are built from layers of primitives; detailed textures
can be created via intricate compositions of noise functions.
Visual programs, i.e. programs that produce visual out-
puts when executed, are a natural approach to capturing this
complexity in a structure-aware fashion. Access to well-
written visual programs supports downstream applications
across visual computing domains, including editing, gen-
erative modeling, and structural analysis. But how can we
obtain a program which generates a given visual datum?

Visual Program Inference (VPI) methods aim to solve
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Figure 1. Our method SIRI (top row) generates highly compact
yet accurate programs, in contrast to CSG-Stump [24] (bottom
row), which generates programs with numerous primitives. Here,
we show shapes rendered with colored primitives.

this problem by automatically inferring programs that rep-
resent visual inputs. Solving this search problem is very
difficult: the space of possible programs is often vast, even
when constrained by a domain-specific language (DSL). To
overcome this challenge, recent works have investigated
learning-based solutions, where a neural network is em-
ployed to guide the search. When a dataset of visual pro-
grams exist, such networks can be trained in a supervised
fashion [36, 33, 37, 38, 13]. Unfortunately, most domains
lack such data, so recent works have investigated how to
train VPI networks in an unsupervised fashion.

Learning to infer visual programs without supervision is
challenging: programs usually contain discrete and continu-
ous elements, which complicates end-to-end learning. Var-
ious solutions have been proposed to work around this is-
sue: end-to-end learning is possible with neural architec-
tures that act as a smooth relaxations of program execu-
tors [24], while policy gradient reinforcement learning [26]
and bootstrapped learning methods [15] are able to treat
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program executors as (potentially non-differentiable) ‘black
boxes.” These solutions come with downsides: designing
differentiable relaxations is challenging (or even impossi-
ble) for some domains; reinforcement learning suffers from
noisy gradients and slow convergence; bootstrapped learn-
ing methods are prone to getting stuck in local minima.

Moreover, a seldom acknowledged limitations of these
latter methods is that they treat programs as just sequences
of tokens. We argue that this view is suboptimal: programs
are structured objects that support domain-specific reason-
ing to meaningfully constrain and guide the VPI search pro-
cess. One example of such reasoning is the use of domain-
specific operations that modify programs toward optimizing
an objective—we call such operations rewrites. Rewrites
have been explored in the context of VPI tasks, but primar-
ily as a test-time optimization, e.g. finding better continu-
ous parameters for a fixed program structure. While such
optimization is useful, our claim is that other rewrite opera-
tions are similarly useful, especially when used in tandem,
and that they can be employed to benefit VPI network learn-
ing, not only as test-time optimization schemes.

In this paper, we investigate how to use code rewrit-
ing to improve visual program inference. Unlike prior
work, we focus on families of code rewriters, each of
which makes improvements to a program with some goal
in mind. We propose Sparse Intermittent Rewrite Injec-
tion (SIRI), a bootstrapped learning algorithm that sparsely
applies rewriters and injects rewritten programs into a
search-train loop at intermittent intervals. To realize SIRI,
we design a family of rewrites applicable to multiple vi-
sual programming DSLs: gradient-based parameter opti-
mization (Parameter Optimization), removing spurious sub-
programs (Code Pruning), and sub-program substitutions
from a cache (Code Grafting). We also propose a test-
time rewriting scheme that searches for improved programs
through interleaved rewrites that is well-suited to the types
of programs inferred by SIRI-trained networks.

We evaluate SIRI and our family of rewriters (PO, CP,
CG) on three shape program DSLs: 2D Constructive Solid
Geometry (CSG), 3D CSG, and ShapeAssembly [13]. We
compare VPI networks trained with SIRI to VPI networks
trained by PLAD, a recently-proposed bootstrapped learn-
ing method [15], and find that SIRI both increases recon-
struction performance and converges significantly faster.
We further show that naively combining our rewrite fam-
ilies with PLAD performs much worse than SIRI, and in
some domains even worsens performance compared with
PLAD. Finally, we demonstrate that combining SIRI with
our test-time rewriting scheme infers visual programs that
can match (3D CSG [24]) or surpass (2D CSG [16]) re-
construction performance of domain-specific neural archi-
tectures while producing significantly more parsimonious
programs (see number of primitives, Figure 1).

In summary, we make the following contributions:
1. Sparse Intermittent Rewrite Injection, a framework for
unsupervised visual program inference that leverages
a family of code rewriters.
2. A family of code rewriters applicable to multiple DSLs
that benefit VPI learning methods and can be used in a
test-time rewriting scheme.

2. Related Work

Visual program inference (VPI) is a sub-problem within
program synthesis. Program synthesis is a storied field, with
roots back to the inception of Artificial Intelligence, where
the objective is to produce programs that meet some spec-
ification [11]. Under our framing, the specification is an
input visual datum that the synthesized program should re-
construct when executed. In the rest of this section, we first
overview VPI learning paradigms and then summarize prior
work that looks at visual-program rewriting.

Learning to infer visual programs: End-to-end learning
methods train by propagating reconstruction loss gradients
directly to a network via differentiable execution. Though
such approaches can yield impressive reconstruction accu-
racy, they either require a soft relaxation of the program ex-
ecution [16, 24, 41, 40, 25, 4] which is infeasible for many
languages, or require training domain-specialized neural
executors [29, 12], which can introduce approximation er-
rors. In SIRI, we instead leverage a ‘partially’ differen-
tiable execution of visual programs, bypassing the need of
program relaxation or neural executors.

Reinforcement learning has also been used by prior VPI
approaches [26, 8, 30]. Usually, the inference network
is treated as an ‘agent’ maximizing a reward signal tied
to its reconstruction accuracy. The high variance of pol-
icy gradient methods has limited the application of such
techniques to toy datasets, especially for 3D data. Simi-
lar in spirit to SIRI, other programmatic RL methods for
non-visual domains have explored blends of program op-
timization and learning [31, 32]. Also related are non-
programmatic RL methods that explore episode modifica-
tion, through episode relabeling or neurally-guided search
[1, 19, 10, 18, 23]. Like SIRI, these approaches aim to im-
prove learning targets through local search, but they do so
for vastly different domains (often much simpler than com-
plex 3D shape-programs), employ simplistic rewriting tech-
niques, and don’t target bootstrapped learning frameworks.

Bootstrapped learning is an attractive alternative that can
avoid the pitfalls of RL and end-to-end learning [15, 17].
Such approaches alternate between Search phases, that dis-
cover ‘good’ programs, and Train phases, that use discov-
ered programs to train a network. While these approaches
have demonstrated improvements over RL, they are still
limited by treating each program as a sequence of tokens,
rather than a structured object. Our work bridges this gap
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data-structure. Naive rewrite integration applies a family of rewriters to each entry in BP, and overwrites each entries when a rewrite is
successful. Our method SIRI, instead applies the rewriters to a subset of BP entries and overwrites entries only when their sources S;

match.

by offering an effective way of integrating a family of code
rewriters into a recent bootstrapped learning paradigm [15].

Rewriting visual programs: Gradient-based optimization
is a common approach for optimizing visual programs. For
neural architectures that serve as a relaxation of the execu-
tor, this can be achieved via test-time fine-tuning. While
such approaches achieve impressive reconstruction perfor-
mance, they are expensive to run and often produce messy
program structure [41, 40]. This fine-tuning can take pro-
hibitively long to converge, requiring anywhere from 3 min-
utes [41] to even 30 minutes [24] per sample.

Typically, visual program executors can be made piece-
wise differentiable with respect to parameters of an input
program (up to control flow decisions), which supports test-
time gradient-based optimization [26, 27, 28]. Yet, as this
rewriting scheme does not change program structure, re-
liance on only gradient-based optimization is vulnerable to
getting stuck in local minima. We employ a Parameter Op-
timization rewriter (Sec. 4.1) as one member of a rewrite
family, where other rewriters can make structural program
changes, to avoid getting stuck in these local minima. Crit-
ically, our implementation is highly-efficient, and we can
apply each member of our rewrite family multiple times in
under 20 seconds during test-time optimization.

Gradient-free optimization techniques have been inves-
tigated that leverage domain heuristics to develop rewriting
strategies that modify the control flow decisions of visual
programs. For 3D CAD languages, these operations have
been explored for non-learning based reverse-engineering
methods [6, 20]. Recently, E-graphs [34] have been em-
ployed to efficiently search for rewritten programs that op-
timize criteria such as program length [21] or fabrication
cost [42, 35]. While these methods do not consider learn-
ing from rewritten programs, it would be possible to inte-
grate these types of techniques into our family of rewriters.

Abstraction discovery is a special form of rewriting,

where common subcomputations shared across many pro-
grams are factored out into subroutines (i.e. abstractions),
and programs are rewritten to use these subroutines. When
a dataset of programs is given as input, this step can be de-
coupled from visual program inference [ 14, 39, 3, 2]. Alter-
natively, some methods have investigated how abstraction
discovery (AD) phases can improve visual program infer-
ence performance [9, 7]. In an iterative procedure, an ab-
straction phase greedily rewrites a dataset of programs with
abstractions, then a recognition model learns on rewritten
programs to discover higher-order abstractions and solve
more complex inference problems. Such methods are not
yet able to scale to the complex 3D shape domains we study
in this work, as they employ simplistic recognition mod-
els and rely on expensive enumerative search. Furthermore,
we find that naively integrating rewriter outputs, as done
in past AD approaches, can in fact be detrimental to the
bootstrapping process. We instead propose SIRI, a non-
deleterious procedure for integrating rewriters under boot-
strapped learning paradigms, described in Sec. 3.2, which
may prove similarly beneficial for AD approaches.

3. Method

In this section, we explore how families of code rewrit-
ers can be employed to improve visual program inference.
In section 3.1, we formalize our task specification, objec-
tive function, and rewriter assumptions. We then present
Sparse Intermittent Rewrite Injection (SIRI), an unsuper-
vised learning paradigm for visual program inference (VPI)
in Section 3.2. SIRI employs a family of rewriters to im-
prove reconstruction performance for VPI tasks while main-
taining a parsimonious program representation. Finally, we
describe how these operations can also be used in a test-time
rewriting scheme, that is especially well-suited to the out-
puts of SIRI (Sec. 3.3). We describe the family of rewriters
we employ for shape-program domains in Section 4.



3.1. Task Specification

We define the visual program inference task as follows:
given a target distribution .S of visual inputs (e.g. shapes),
we want to learn a model pg(z|z), where € S, which
infers a program z whose execution E(z) reconstructs the
input shape z. Following Occam’s razor, we seek programs
that are parsimonious. More formally, we seek a py- that
maximizes our objective function O:

0" = arg max [ {Z 0($,2)pe(2|$)}, (1

zeSL ,
O(xaz) :R(Z7E(Z)) 7C¥|Z|, ()

where R measures the reconstruction accuracy between x
and E(z), |z| measures the length of the program, and «
modulates the strength of these two terms. Our method
takes in a family of rewriters, RWS, to help with this task.
Though each rewriter may leverage different domain prop-
erties, they are all tied to the same objective O. For-
mally, they aim to perform rewrites RW (z,2) — 27 s.t.
2B~ arg max, cqi(,) O(z, 2), where Q' (2) represents the
set of all programs rewriter ¢ can create from z.

3.2. Sparse Intermittent Rewrite Injection

One way to use rewriters to improve VPI models is to
incorporate them into bootstrapped learning schemes. One
such recent bootstrapped learning paradigm is proposed by
PLAD [15]. PLAD alternates between search and train
phases, where a best-program (BP) data-structure modu-
lates how these phases communicate (Figure 2, left). In
the search step, a VPI network p(z|x) is fed visual inputs
from S and aims to predict programs that optimize O (e.g
through beam-search). The results of this neurally-guided
search (NS) are used to populate the fields of BP, where
each key corresponds to a unique shape x, and each value
corresponds to the best program (in terms of O, for x) seen
so far. In the train step, the entries of BP are used to con-
struct paired training sets (X, Z) which are then used to
optimize pp(z|z) with maximum likelihood loss.

How can rewrites be integrated into such a framework?
We demonstrate a naive approach, termed Naive Rewrite In-
tegration (NRI), in Figure 2, middle. In this naive version,
a Rewrite step takes place between each search and train
step, that modifies the entries of BP. Specifically, for every
(z, z) entry in BP, each rewriter is applied to z, and if 2%
improves the O, then (z, zR) is entered into BP, overwriting
the (x, z) entry. Empirically, we find that this approach can
in fact be worse than PLAD. While the rewriters perform a
local search to optimize O for the given (z, z) pair, there is
no guarantee that a discovered z® will make a better train-
ing target for py(z|x) as well. NRI has a deleterious effect
on the entries of BP, as only one program value is main-
tained for each shape key, so indiscriminate applications of

rewriters can get easily stuck in local minima with respect
to p(z|z). Prior works which incorporate program rewriting
strategies [7, 9] update training programs in this way.

Sparse Intermittent Rewrite Injection (SIRI) also em-
ploys a Rewrite step, but avoids this issue with a more ju-
dicious application of rewriters from RWS (Figure 2, right).
Instead of applying rewriters on each shape, rewrites are
only applied to a subset of BP entries. SIRI also adds a
source field to each BP key that indicates what produced a
given program: either neurally-guided search (NS) or some
RW € RWS . Critically, this allows SIRI to add programs
into BP in a way that can only ‘forget’ (shape, program)
pairs from the same source: NS programs replace NS pro-
grams, and each RW can only bump out RW sourced entries.

During the search-step, each (z,z) pair produced by
the neurally-guided search populates the (z, Syg, z) entry
of BP. Then for each RW € RWS , SIRI samples a per-
centage of BP entries, (z, src, ), and adds (x, RW, 2F) if
the rewriter successfully improves the objective. Note that
rewrites can sample inputs from any source, not just Syg.
Not only does this scheme ensure that rewriters only over-
write their own previous predictions, but it is also more
efficient versus NRI: some rewriters have high computa-
tional costs, and excessively applying them can slow down
training. Instead, we find that training p(z|x) on BP entries
with sparsely rewritten programs, both converges faster and
reaches better final end-states, as useful rewriting strategies
get amortized by the network weights.

As only a subset of entries are updated in each Rewrite
phase, some rewrite entries in BP (potentially from previous
Rewrite phases) may store programs which are worse than
the program inferred by py(z|z) during Search. Therefore,
before each train step, SIRI purges all stale (z, RW, z*) en-
tries from BP whenever O(z, 2*) < O(x, z), where z is the
program inferred for x during the Search phase.

3.3. Test-time Rewriting

Our family of rewriters, RWS can also be employed
at inference time to find better programs for a particular
visual target. With a slight abuse of notation, given an
(z, z) pair, our test-time rewrite (TTR) approach aims to
find a sequence seq® of at-most k rewrite operations from
RWS, such that seq™ ~ arg max,,cgwse O(7*, seq(z, 2)),
where 2" = seq*(z, z) would be the result of applying
each rewrite in seq™ to z iteratively.

We realize this formulation with a greedy search. We ini-
tialize 2% as z, and then for k steps, we iterate through each
RW € RWS, compare O (z,2'"") to O (z, RW(2'")), and
replace 2" with RW(z%") if O improves. To avoid redun-
dant work, if a RW has already tried to improve a particular
z, and failed to do so, we instead pass in the next best ob-
served z (in terms of ) that the RW has not operated over.
The final 2" is then returned as the output.
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Figure 3. SIRI uses rewrites to improve VPI networks. We depict three rewrites in action that: optimize continuous parameter values
(Parameter Optimization), remove extraneous code (Code Pruning), and substitute sub-expressions from a cache (Code Grafting).

This procedure can in theory be applied to programs pro-
duced by any source (e.g. networks that acts as a differen-
tiable language executor [24]). However, we find that there
are unique benefits to applying this procedure to the predic-
tions made by a pg(z|x) network trained with SIRI. Some
rewrites build a cache of partial results during bootstrapped
learning that can be quickly and effectively applied at infer-
ence time (CG, Section 4.3). Furthermore, some rewrites
are too expensive to run on very complex programs, con-
suming massive amounts of memory, but are well-suited to
the parsimonious programs produced by SIRI. For instance,
one rewriter (PO, Section 4.1) was not able to operate on
the highly complex programs output by CSG-Stump [24]
(cf. supplemental material).

4. Rewriting Visual Programs

As our method relies on an input family of rewriters,
RWS, we identify three rewrite operators that generalize
across multiple shape-program domains. Figure 3 depicts
these rewriters in action. In the rest of this section, we pro-
vide a high-level description and motivation for the differ-
ent rewriters we use during SIRI and test-time rewriting:
Parameter Optimization (Section 4.1), Code Pruning (Sec-
tion 4.2), and Code Grafting (Section 4.3). We provide the
implementation details in the supplemental material.

4.1. Parameter Optimization

Visual languages often contain continuous (and differen-
tiable) parameters such as the scale and position of prim-
itives, and discrete parameters such as control flow (e.g.
how to combine primitives). While keeping the discrete pa-
rameters fixed, Parameter Optimization (PO) rewriter aims
to improve the continuous parameters of a given program
using gradient-based optimization. Given a program z
with continuous parameters ¢ inferred for a shape x € S,
PO adjusts ¢ to maximizes the reconstruction accuracy
R between x and the program execution E(z4): ¢* ~
argmax, R(x, £(zy)).

To propagate gradients back from a reconstruction met-
ric to the continuous parameters of z4, PO requires that the
program executor E is partially differentiable: one or more
continuous parameters should have well-defined derivatives
for a given program structure (though the program execu-
tion may itself be only piecewise continuous). We highlight
that PO is useful even under such constraints, precisely be-
cause PO is not the only rewriter we consider: other rewrit-
ers in RWS can influence structural changes, along with
SIRI’s Search phase. PO’s requirements on E differ signif-
icantly from the differentiable executors employed by neu-
ral relaxation architectures. These works [16, 24] often at-
tempt to differentiate through both discrete and continuous
decisions, which leads to noisy gradients and poor program
quality.

Although the design of executors is domain-dependant,
we outline our procedure for converting the outputs of E
into an equivalent signed-distance field representation com-
patible with our reconstruction metric R. For each language
we consider, we map outputs from E into a tree-like repre-
sentation, where each leaf represents a primitive (spheres,
etc.) and each intermediate node represents a transforma-
tion (position, etc.) or a combinator (union, etc.). For CSG-
like languages, we can directly map from program param-
eters ¢ to this representation. It is also possible to convert
the output of more complex program executors that produce
collections of primitives into this format [13]. Then, we
perform boolean combinations of the parameterized primi-
tives, and apply the transformation operators, to obtain the
program’s implicit equivalent. With the program’s implicit
equivalent, we now uniformly sample points ¢ € R", and
convert the signed distance at the points into soft-occupancy
to yield a differentiable execution of the program. This
framing should be extensible to other visual-programming
domains of interest: where either this mapping may be ex-
plicitly extracted from the input program (SVG) or parsed
from primitives created by a more complex executor [22].
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4.2. Code Pruning

One drawback of bootstrapping techniques is their ten-
dency to reinforce spurious patterns [|7]. The Code Prun-
ing (CP) rewriter mitigates this problem by identifying and
removing program fragments that negatively contribute to
our objective O. Given a shape x and input z, CP rewrites
z st 2P~ argmaxger O(z, 2), where Q°F(2) =
{z * |zx C z} represents the set of all valid sub-programs
of z. A naive CP rewriter that considers every valid sub-
expression would be prohibitively slow. We instead imple-
ment a greedy version of CP designed for declarative, func-
tional languages. We describe our general approach below,
and provide further details in the supplemental material.

Our implementation of CP employs two greedy searches,
a top-down pass and a bottom-up pass, to approximate 2.
At each pass, we identify and prune nodes which decrease
the overall objective score O. The top-down traversal rela-
bels the highest objective scoring node as the root, pruning
all but the tree starting at that node. The bottom-up traversal
then checked each node’s contribution to the final execution
and prunes branches with negligible contribution.

4.3. Code Grafting

A key feature of symbolic representations is the ability
to perform part-based reasoning, e.g. compose parts from
different instances. The Code Grafting (CG) rewriter ex-
ploits this feature to improve programs. Specifically, the CG
rewriter replaces sub-expressions of a particular program
with a better sub-expression (in terms of ). The primary
challenge is specifying what to replace a sub-expression
with, as the space of potential replacements is enormous. To
make the search tractable, CG builds a program cache pop-
ulated by sub-expressions discovered while running SIRI,
and searches for replacement candidates within the cache.

When the cache is large, searching for good replace-
ment expressions can become expensive. Our CG imple-
mentation makes this search tractable by focusing on execu-
tion equivalence, i.e. equivalence is measured by compar-

ing their executions (stored as an n-dimensional occupancy
grid). But finding cache entries which would improve re-
construction performance requires some notion of the de-
sired execution, i.e. what sub-expression execution would
make the program better match the target shape x?

We develop a procedure for calculating such desired ex-
ecution through masked function inversion; an example is
depicted in Figure 4. We provide the high-level insight by
walking through this figure; further details are in the supple-
mental material. In this example, T' denotes the target shape
(the desired final execution), which is a union of two subex-
pressions. Suppose we wish to replace subexpression A.
Given the current state of its sibling subexpressions (B, in
this case), we can invert the Union to produce the desired-
execution A*. A* can be broken into sub-regions: (black
and white) areas where the optimal execution behavior is
known and (gray) areas where the optimal execution behav-
ior is unknown (for example, due to the non-invertibility of
some operators). CG uses such ternary desired-executions
to search for cache entries that are likely to improve recon-
struction accuracy and substitutes the most suitable candi-
date.

5. Results

We evaluate the efficacy of our rewriters over a collec-
tion of VPI domains for two tasks: improving bootstrapped
learning (Section 5.2), and improving VPI with test-time
rewrites (Section 5.3). First, we provide the details con-
cerning our experiments in Section 5.1.

5.1. Experimental Design

Domain-Specific Languages: We consider three VPI do-
mains: 2D Constructive Solid Geometry (CSG), 3D CSG,
and ShapeAssembly [13]. Shapes are formed in CSG by
declaring primitives such as cylinders, applying transfor-
mations, and composition via boolean operations. Sha-
peAssembly produces hierarchies of cuboid part proxies
(which can themselves contain sub-programs) assembled
through attachment operations. Please see the supplemental
for the complete DSL grammars.

To ease learning, past approaches have used simplified
versions of these languages, e.g. restricting CSG to contain
only primitive-level transformations or removing hierarchi-
cal sub-programs from ShapeAssembly [16, 15, 26]. For
fair comparison, we match our DSLs to prior work.

Shape Datasets: We evaluate 2D CSG on the CAD dataset
introduced in CSGNet [26]. It contains front and side views
of chairs, desks and lamps from the Trimble 3D warehouse.
This dataset is divided into 10K training, 3K validation and
3K testing shapes. We evaluate 3D CSG and ShapeAssem-
bly on the 3D CAD dataset released in [15] containing
shapes from chair, table, couch, and bench categories of



Chamfer Distance ({) ToU (1)
2DCSG 3D CSG ShapeAssembly 2D CSG 3D CSG  ShapeAssembly
PLAD [15] 0.24 1.75 1.98 90.8 74.65 63.1
NRI 0.36 1.25 1.53 88.4 74.43 66.89
SIRI 0.22 1.10 1.44 91.7 76.77 67.8

Table 1. We report the Test-set performance across 3 VPI domains. Naively integrating the rewriters into PLAD (NRI) can detoriorate the
model’s performance (IoU on 2D & 3D CSG). In contrast, SIRI consistently improves over PLAD on all the three VPI domains.
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Figure 5. We plot the objective O (Y-axis) as a function of training
time (X-axis), measured by iterations (left) and wall-clock time
(including time taken for rewriting) (right) on 3D CSG domain. By
amortizing the rewrite-cost, and keeping the training data diverse,

SIRI achieves higher performance and does so faster.

ShapeNet dataset [5] in a voxel grid format. This dataset is
split into 10k training, 1k validation and 1k testing shapes.
Model Architecture: Our model p(z|x) synthesizes pro-
grams as a sequence of tokens, where each token specifies
a command type or its parameters. Numeric parameters
are normalized and discretized into 33 bins. Each p(z|z)
uses a domain-specific feature extractor (e.g. a 2D or 3D
CNN), and a decoder-only transformer module. For 2D lan-
guages, the feature extractor takes a 642 image as input; for
3D languages, it takes a 323 voxel grid. We use the same
transformer architecture for all experiments, varying only
the last layer output size to model the different number of
commands in each language.

Metrics: We measure reconstruction accuracy with two
metrics: Intersection Over Union (IoU) and point cloud
Chamfer-Distance (CD). We use 642 and 322 resolution
occupancy grid for calculating 2D and 3D IoU respec-
tively. We follow the same methodology as CSGNet [26]
for measuring 2D CD; 3D CD is measured between 2048
points sampled on the ground-truth ShapeNet meshes and
the meshes produced by executing the inferred programs.

Training details: Following [26, 15, 8], we pretrain our
models on a large corpus of synthetically generated pro-
grams until it converges. We generate the synthetic pro-
grams via the sampling procedure proposed in PLAD [15].
After pretraining, the model is finetuned on the target distri-
bution S, following the procedure outlined in Section 3.2.
During each Rewrite phase, we apply PO, CP and CG to
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Figure 6. Due to data-independent rewriters, SIRI remains ef-
fective at training the network even with a fraction of the data. In
comparison, since PLAD’s Search phase is tied to the inference
network’s performance, data scarcity deteriorates its performance.

50%, 50%, 15% of programs respectively. CG is applied to
only 15% of data due to its higher computational cost. For
our training objective O (c.f. equation 2), we fix o to 0.015.
For 3D we set R to IoU, and for 2D we set R to CD. For
test-time rewriting (TTR), we perform interleaved applica-
tion of each rewriter thrice, unless specified otherwise (i.e.
for Table 4).

5.2. Training with SIRI

We first evaluate the benefit of intermittent rewriting
for bootstrapped learning. We compare our method SIRI
against 2 baselines, namely PLAD [15], and Naive Rewrite
Integration (NRI) which naively integrates the rewriters
into PLAD (cf. Section 5.2). Note that prior work on inte-
grating code rewriting [7, 9] follow this strategy.

As shown in Table 1, SIRI outperforms both the base-
lines on all domains. While PLAD performs well on sim-
ple domains such as 2D CSG, it is less effective on harder
domains such as ShapeAssembly. Naively integrating the
rewriters (NRI) can in fact even be detrimental to boot-
strapped learning, as can be seen for 2D & 3D CSG (w.r.t.
IoU). Excessive use of the rewriters and the lack of training
data diversity leads the model trained with NRI to over-
fit to a local minima, i.e. the Search and Rewrite phases
become ineffective at generating useful better programs to
learn from. SIRI resolves this issue by its frugal usage of
the rewriters and by training py on a diverse set of programs
obtained from both the Search and Rewrite phases. We see
a similar trend on other visual languages, which we discuss



CD({) N.Prim.(}) N.ops.({)
CSG-Stump 32 1.90 19.03 5.95
CSG-Stump 256 1.22 154.47 52.85
CSG-Stump 256 (cs) 0.78 191.38 72.52
SIRI 1.101 3.90 2.90
SIRI + TTR 0.83 8.47 7.42

Table 2. SIRI outperforms CSG-Stump 256 with a fraction fewer
primitives. Applying test-time-rewrites to SIRI makes its perfor-
mance comparable to that of class-specific (cs) CSG-Stump while
remaining relatively parsimonious.

in the supplemental material. Finally, we note that with
0.22 CD on 2D CSG domain, SIRI out-performs UCSG-
Net [16] (0.32 CD), the previous state-of-the art method for
2D CSG.

We also evaluate how SIRI impacts the training conver-

gence in Figure 5, plotting the Objective O against itera-
tions (left) and wall-clock time (right). Wall-clock time in-
cludes the time required to execute the rewriters. Though
NRI starts with a high performance, it eventually converges
to a lower value of O despite expending a lot of time for
rewriting. In contrast, SIRI is able to achieve a higher
performance while also amortizing the cost of rewriting all
the programs as the model generalizes the useful patterns
present in the rewritten training programs.
Data Scarcity: Often, large datasets of example shapes are
not easily available. Thus, we probe the efficacy of SIRI
and PLAD under data scarcity. We present our experiment
in Figure 6, plotting the validation set CD for PLAD and
SIRI. With 100% data, SIRI surpasses PLAD by 0.29 CD,
where as at 10% data, SIRI outperforms PLAD by a margin
of 1.33 CD. Since PLAD relies solely on neurally-guided
search to discover good programs, which is dependant on
the dataset size, reduction in dataset size hurts their perfor-
mance. In contrast, as SIRI employs rewriters such as PO
and CP which are invariant to the training dataset size, it
outperforms PLAD in low-data regimes.

5.3. Test-Time Rewriting

We now show how combining SIRI with additional
rewriting at test-time allows performance that matches
state-of-the-art methods specialized for 3D CSG recon-
struction, while producing much more parsimonious pro-
grams. Specifically, we now compare SIRI against CSG-
Stump [24], a state-of-the-art method with a neural archi-
tecture designed specifically for CSG reconstruction.

We train CSG-StumpNet with the author-released code
on our dataset. We compare against two versions: CSG-
Stump 32 with 32 intersection and union nodes and CSG-
Stump 256 with 256 intersection and union nodes. Since
the authors originally trained their model independently for

PLAD SIRI

SIRI+TTR

Ground Truth
Figure 7. We present qualitative examples of our method and

PLAD [15]. SIRI outperforms PLAD and test-time rewriting im-
proves it further.

each class, we also compare against a class-specific (cs)
version of CSG-Stump 256, where we use pretrained class-
specific models released by the authors.

We show our results in Table 2. We see that SIRI
achieves 0.1 CD lower than CSG-Stump 256, despite being
domain agnostic. More importantly, it achieves this with a
fraction of primitives and operations. Secondly, when ac-
companied by test-time rewrites, SIRI achieves similar CD
to CSG-Stump 256 (cs), which has models trained individu-
ally for each class. SIRI achieves this while having an order
of magnitude fewer primitives and operators (yielding more
interpretable and editable programs). In Figure 1, we visu-
alize the difference in inferred program size by rendering
their executed shapes with colored primitives.

As the programs inferred by SIRI are parsimonious, ap-
plying TTR to the inferred programs takes only 14.6 sec-
onds per shape on an average. In contrast, the over parame-
terized programs inferred by CSG-Stump are not amenable
to fast test-time-optimization (cf. supplemental). Instead,
prior-works [41, 40] fine-tune the network itself for each
test-shape, which, for CSG-Stump, requires ~ 30 minutes
per shape [40]. Moreover, while network fine-tuning can
increase reconstruction accuracy, the inferred programs re-
main incomprehensibly large.

Test-time rewrites are beneficial for PLAD inferred pro-
grams as well. However, we find it best to both (i) train with
rewriters and (ii) use them at inference time. We compare
test-time rewrites on models trained with PLAD and SIRI
and report the results in Table 3. For both 3D CSG and Sha-



3D CSG ShapeAssembly
CD Length CD  Length

PLAD+TTR 1.13 15.80 1.66 8.78
SIRI + TTR 0.83 1596 1.46 8.80

Table 3. Using test-time rewrites with SIRI is superior to using it
with PLAD across domains.

Search only PO only CP only CG 1-TTR 3-TTR

IoU 76.8 81.6 76.8 81.98 87.7 90.5
Length 6.81 6.81 6.62 14.6 13.52  15.95
Time (s) 1.44 1.54 0.12 2.81 4.6 14.6

Table 4. Applying only a single rewriter during test-time, though
beneficial, has limited value. Interleaved application of the rewrit-
ers which we propose results in a larger improvement. Here, n-
TTR denotes interleaved application of each rewriters n times.

peAssembly, using test-time rewrites on SIRI is more bene-
ficial than using them on PLAD. Apart from yielding better
initialization for the inferred programs, training with SIRI
also equips the CG rewriter with a program cache filled with
useful sub-expressions; this cache bolsters CG’s efficacy at
test-time rewriting. Note that SIRI + TTR programs have
only a marginal increase in length over PLAD + TTR.

As described in Section 3.3, we interleave the applica-
tion of our three rewriters for test-time rewriting, allowing
changes to both the structure and continuous parameters of
the program. In Table 4, we evaluate the impact of each in-
dividual rewriter. Both PO and CG improve upon the pro-
gram inferred by beam search while taking only a few sec-
onds. Combining them further improves performance while
keeping the programs relatively parsimonious.

6. Conclusion

We introduced Sparse Intermittent Rewrite Injection
(SIRI), a paradigm for improving unsupervised training of
visual-program inference models with code rewriting. We
implemented a family of code rewriters that generalized
across multiple 2D and 3D shape-program domains. With
this family of code rewriters, SIRI learns better VPI net-
works compared with bootstrap learning methods that ig-
nore rewriters, or use them in a naive fashion. Beyond this,
we demonstrated that our rewriters can be employed in a
test-time rewriting (TTR) scheme to improve predictions
made by SIRI. We found that this SIRI + TTR paradigm
is able to match or surpass the reconstruction performance
of specially designed neural VPI architectures, while main-
taining a much more parsimonious program representation.

In future work, we would like to explore how additional
code-rewriting operations could be effectively integrated
into our family of rewrites for SIRI + TTR paradigms.
While we find SIRI empirically effective for bootstrapped

learning, it remains unclear how code rewriting families can
best aid RL and end-to-end learning paradigms. Looking
forward, we believe that principled use of code-rewriters is
a promising way to guide the search of learning-based VPI
models, merging domain-specific preferences with neural
guidance, and would be a key component of VPI systems
designed for complex, real-world domains.
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