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ABSTRACT

Camouflaged object detection (COD) aims to segment objects
assimilating into their surroundings. The key challenge for
COD is that there are existing high intrinsic similarities be-
tween the target object and the background. To solve this
challenging problem, we propose the Cascaded Decamou-
flage Module to progressively improve the prediction map,
where each decamouflage module is composed of the region
enhancement block and the reverse attention mining block to
accurately detect the camouflaged object and obtain complete
target objects. In addition, we introduce the classification-
based label reweighting to produce the gated label maps as
the supervision for assisting the network to capture the most
conspicuous region of a camouflaged object and obtain the
target object entirely. Extensive experiments on three chal-
lenging datasets demonstrate that the proposed model out-
performs state-of-the-art methods under different evaluation
metrics.

Index Terms— Camouflaged object detection, label
reweighting

1. INTRODUCTION

Camouflaged Object Detection (COD) aims at identifying the
concealed objects in an image, which has a wide range of
valuable applications, e.g., medical diagnosis [1], art [2], and
security [3]. There are several early methods [4, 5, 6] that ad-
dress camouflaged object detection with hand-crafted features
like texture, 3D convexity, and motion to detect camouflaged
objects. However, such low-level features are designed to seg-
ment the most discriminative object in an image, which may
not be effective features for detecting camouflaged objects.

Recently, convolutional neural networks (CNNs) have
demonstrated powerful capabilities of feature representation.
Even if deep learning methods have shown a great perfor-
mance [7, 8, 9], we observe that existing approaches usually
only capture parts of the camouflaged objects. To demon-
strate this problem, we calculated the error only for the cam-
ouflaged object regions to analyze whether a method fully
localizes the camouflaged object. Table 1 shows the results
of two state-of-the-art methods on COD10K dataset [9] and

Table 1. Compared two SOTA methods with our method
by MAE and MAE-CA. All the networks below are using
ResNet-50 as the same backbone.

COD10K [9] CAMO [8]
MAE MAE-CA MAE MAE-CA

SINet v2 [10] 0.046 0.263 0.085 0.273
PFNet [11] 0.04 0.279 0.085 0.263

Ours 0.033 0.221 0.075 0.224

Fig. 1. An illustrative example with MAE and MAE-CA.

CAMO dataset [8] in terms of the mean absolute error of cam-
ouflaged objects (excluding the background region), abbre-
viated by MAE-CA. The results shown that although these
methods obtain small errors in global prediction, they per-
form much worse in camouflaged object areas, showing that
predicting the whole camouflaged object is still challenging.
In addition, Fig. 1 further exhibits two examples, which also
manifests that it is challenging for the state-of-the-art meth-
ods to detect camouflaged objects completely, something our
proposed approach is capable of doing better.

Therefore, we propose the cascaded decamouflage mod-
ule (CDM) and introduce the classification-based label
reweighting (CLR) to better detect camouflaged object. The
key idea is to first find the most salient part of the camou-
flaged objects (Achilles heel) and refine the region progres-
sively. Our contributions are summarized as the following:

• We propose the cascaded decamouflage module to pro-
gressively amend and improve the prediction map by
refining the predicted camouflaged object areas and



mining the overlooked camouflaged object regions.

• Classification-based label reweighting is proposed to
generate the gated label maps for the additional super-
vision. This helps the network focus more on the no-
ticeable region of a camouflaged object and detect the
more target object regions.

• Experimental results on three benchmark datasets
demonstrate that the proposed model outperforms the
state-of-the-art methods.

2. RELATED WORK

Salient object detection is similar to COD but aims to detect
and segment the most attention-grabbing object(s) in an im-
age. Inspired by Fully Convolutional Networks (FCN) [12],
different methods are proposed to directly output pixel-wise
saliency maps [13, 14, 15]. For example, Chen et al. [14]
integrated multi-level features and generated the global con-
text information at different stages to learn the relationship
among different salient regions. Pang et al. [15] integrated
similar resolution features of adjacent levels in the encoder
to reduce the noise and extracted the multi-scale information
from a single level feature for the decoder. Compared with
COD, salient object detection usually does not suffer from
partially-detected objects since the salient objects are distin-
guishable from the background.

Recently, several datasets related to camouflaged object
detection [7, 8, 9] have been proposed. For example, Le et
al. [8] proposed an end-to-end network, called ANet, which
integrates classification information into segmentation to ac-
curately capture the camouflaged object. Fan et al. [9] in-
troduced SINet consisting of two main modules, namely the
search module and the identification module, to look for po-
tential target object(s) and identify it. Furthermore, they im-
proved their network, SINet v2 [10], with neighbor connec-
tion decoder and group-reverse attention. Mei et al. [11] pre-
sented a distraction mining strategy to refine the segmentation
results. However, these methods can not completely predict
the whole camouflaged object. As a result, we propose a new
framework and a classification-based label reweighting to as-
sist the model from learning conspicuous region to the whole
object.

3. METHODOLOGY

In this section, we propose the cascaded decamouflage
module to progressively refine the prediction map. Then,
classification-based label reweighting is introduced to pro-
duce the weighted label maps for assisting the network to
capture the camouflaged object entirely. The overview of the
proposed model is shown in Fig. 3

Fig. 2. An illustrative example of classification-based la-
bel reweighting (CLR). The second column represents the
coarse localization map obtained from GradCAM with the
pre-trained classifier. The third column is the weighted la-
bel map produced by conducting the multiplication operation
between GT and heatmap. The last two columns represents
the gated label map with different thresholds.

3.1. Feature Extraction and Fusion

To extract the features, we first leverage ResNet-50 [16] as
our backbone network and utilize the Receptive Field (RF)
component [17] to incorporate more discriminative feature
representations. According to previous work, the low-level
features greatly increase computation cost, but bring limited
performance improvement. Thus, we only utilize features
{f1, f2, f3, f4}. Afterward, these features are respectively
fed into four RF components to enlarge the receptive field.
The output features are represented as {rf1, rf2, rf3, rf4},
and cross feature module (CFM) [18] is then utilized to adap-
tively select complementary components from input features
before fusion, which can effectively avoid introducing too
much redundant information. Specifically, given two feature
maps {rfi, rfi+1|i = 1, 2, 3}, these features are transformed
through convolutional layers and fused by multiplication to
share the properties of both of them. Each CFM is defined as:

w = ΦG
i (rfi)⊙ ΦG

i+1(rfi+1),

rf c
i = rfi +ΦG

i (w),

rf c
i+1 = rfi+1 +ΦG

i+1(w),

(1)

where ΦG is the combination of convolution, batchnorm,
and ReLU activation. We aggregate the features by CFM
from high level to low level to obtain the refined features
{rf c

1 , rf
c
2 , rf

c
3 , rf

c
4}.

3.2. Cascaded Decamouflage Module

Since multi-level features may contain some redundant parts,
we propose the Cascaded Decamouflage Module (CDM) con-
sisting of multiple decamouflage modules (DMs) to progres-
sively amend and refine the output segmentation map by in-
tegrating the features of deeper layers. Each decamouflage
module (DM) contains a region enhancement block (REB)
and a reverse attention mining block (rAMB) to effectively
refine the coarse segmentation map. REB improves the pre-
diction map provided by high-level features through integrat-
ing the low-level features. However, REB could lose the cor-



Fig. 3. An overview of our proposed progressive identification network (PINet). ResNet-50 [16] is used as our backbone feature
extractor. The cascaded decamouflage module (CDM) is proposed to progressively amend and refine the coarse prediction map.

rect camouflaged object when the coarse map classifies the
true camouflaged objects as background. rAMB is introduced
to discover complementary regions and find the overlooked
camouflaged object areas by erasing the camouflaged object
region which is already detected by high-level features. The
erasing strategy driven by reverse attention is proposed to re-
call the overlooked camouflaged objects and refine the coarse
estimation into a complete prediction map.

Specifically, as REB and rAMB take a segmentation map
as an input, we take the coarse prediction map P5 produced
from the feature map rf4 as the initial map. Formally, REB
is defined as:

Ri = ΦREB
i (Cat(Pi+1, rf

c
i )), (2)

where i = 1, . . . , 4, Cat(·) is the concatenation operation,
ΦREB

i consists of several convolutional layers. rAMB is then
defined as:

rAi = 1− (σ(Pi+1)),

Ci = ΦrAMB
i (rf c

i ⊙ rAi),
(3)

where σ(·) is the Sigmoid function, and ⊙ represents the
element-wise multiplication. Finally, two output features Ri

and Ci are added with Pi+1 in an element-wise way to obtain
the prediction map Pi.

Pi = Pi+1 +Ri + Ci. (4)

While obtaining Pi, we directly output the prediction map
through a sigmoid function. Equipped with the decamouflage
module, the network could refine the prediction map by en-
hancing the detected camouflaged object region and discover-
ing the overlooked object areas.

3.3. Classification-Based Label Reweighting

Due to the high similarities between the target object and
background, it is hard to detect the whole camouflaged ob-
ject. Instead of detecting the whole target object directly, we
supervise the model for detecting the object from its conspic-
uous region. Accordingly, we propose to generate weighted
label maps from the original label map, as shown in Fig. 2.
Specifically, we first train a network to predict the probability
of containing camouflaged objects in an image. Then, Grad-
CAM [19] is adopted to discover the localization of a cam-
ouflaged object. However, the coarse localization map is not



accurate enough to be used for the pseudo label. Thus, we
conduct the element-wise multiplication operation between
the localization map and the ground-truth map to suppress
false-positives. As shown in Fig. 2, given the localization
map from GradCAM and the ground-truth map, we obtain
different gated label maps by setting different thresholds. In-
tuitively, as the threshold is lower, the region of the weighted
map is larger and closer to the ground-truth map.

Specifically, to obtain the localization map M c ∈ RW×H

of width W and height H for the camouflaged object class c,
the gradient of the score of class c, yc, with respect to feature
map F k is calculated. These gradient maps are globally av-
eraged to obtain the weights αc

k. Then, M c is obtained by a
weighted combination of feature maps, i.e.,

αc
k =

1

H ×W

W∑
i=1

H∑
j=1

∂yc

∂F k
ij

,

M c = ReLU(
∑
k

αc
kF

k).

(5)

We then normalize the pixel values in M c by using a lin-
ear function M c = Mc−min(Mc)

max(Mc)−min(Mc) to rescale the original
value to [0,1]. To eliminate the false positives, we multiply
this map with the ground-truth map S = M c ⊙G to suppress
those misclassified pixels. By setting different thresholds t,
we can obtain different segments of a camouflaged object,
which represents the gated label maps St, i.e.,

St(i, j) =

{
1, if S(i, j) ≥ t

0, otherwise.
(6)

The gated label maps are utilized for additional supervision,
which assists the model to detect the conspicuous region and
then progressively include more target objects.

3.4. Loss Function

Binary cross entropy (BCE) is commonly-used as the loss
function, which treats all pixels equally and could be diluted
if the background is dominant in an image. In addition, BCE
calculates the loss for each pixel independently and ignores
the structure of the camouflaged object. To fix these prob-
lems, inspired by [18], we utilize the weighted binary cross
entropy loss (Lw

BCE) and weighted IoU loss (Lw
IoU ). In addi-

tion, we introduce a gated structure-aware loss similar to [27]
for reducing the distraction caused by the background as fol-
lows,

Lg =
∑
i,j

∑
d∈−→x ,−→y

Ψ(|∂dP (i, j)|e−α|∂d(I
g(i,j))|), (7)

where Ψ is defined as Ψ(s) =
√
s2 + 1e−6, Ig(i, j) is the

gray-scale image intensity value at (i, j), d indicates the par-
tial derivatives on the −→x ,−→y directions. We adopt deep su-
pervision strategy with the five outputs (P1, P2, P3, P4, P5).

Each map is up-sampled to the same size as the ground-truth
map G. As such, the total loss can be calculated by:

Li =

{
Lw
BCE(Pi, G) + Lw

IoU (Pi, G) + Lg(Pi, G), for i=1, 2,

LBCE(Pj ⊙ St, G⊙ St), for i=3, 4, 5,
(8)

where St is the gated label maps with threshold t.1 The total
loss is obtained by summarizing all the losses as follows.

Ltotal =

5∑
i=1

λiLi, (9)

where λi is the weight of each loss for Li.

4. EXPERIMENTAL RESULTS

Dataset. To evaluate the proposed method, the training sets
with 4,640 images (CAMO [8] + COD10K [9] + EXTRA)
provided by [9] are used to conduct on the experiment. Three
popular benchmark datasets are adopted for testing, including
the whole CHAMELEON dataset with 76 images, the test sets
of CAMO with 250 images, and COD10K with 2,026 images.
Evaluation Metric. Five metrics are utilized to evaluate the
performance of our model, i.e., S-measure (Sα), E-measure
(Eϕ), weighted F -measure (Fω

β ), mean absolute error (M ),
and mean absolute error of camouflaged objects (MAE-CA).
The MAE and MAE-CA can be calculated as follows:

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|G(i, j)− P(i, j)|

MAE-CA =
1

R

W∑
i=1

H∑
j=1

|G(i, j) · P(i, j)− G(i, j)|

(10)

where W and H are the width and height of the map, re-
spectively, Gij is the label of the pixel (i, j), Pij is the prob-
ability of being camouflaged objects, and R is defined as∑W

i=1

∑H
j=1 G(i, j).

Implementation Details. For data augmentation, we use
horizontal flip, random crop and multi-scale input images.
ResNet-50 [16] pre-trained on ImageNet is used as the back-
bone network. Maximum learning rate is set to 0.001 for the
backbone network and 0.01 for other parts. Warm-up and lin-
ear decay strategies are used to adjust the learning rate. The
whole network is trained end-to-end, with the stochastic gra-
dient descent (SGD) as the optimizer. Momentum and weight
decay are set to 0.9 and 0.0005, respectively. Batchsize is set
to 36 and maximum epoch is set to 64. The hyperparame-
ters λ1, λ2, λ3, λ4, and λ5 are respectively set to 1, 1

2 , 1
3 ,

1
6 , and 1

12 . During the inference, each input image is resized
to 544 × 544, and the output map is predicted without any
post-processing.

1For i = 3, 4, 5, we respectively set t to 0.3, 0.5, and 0.7.



Table 2. Quantitative results on different datasets. The best results are highlighted in bold. Note that Sα, Eϕ, Fω
β , M ,

and MAE-CA denote S-measure, mean E-measure, F-measure, mean absolute error, and mean absolute error of camouflaged
objects, respectively. All the networks below are using ResNet-50 as the same backbone.

CHAMELEON [7] CAMO [8] COD10K [9]
Baseline Models Sα ↑ Eϕ ↑ Fω

β ↑ M ↓ MAE-CA↓ Sα ↑ Eϕ ↑ Fω
β ↑ M ↓ MAE-CA↓ Sα ↑ Eϕ ↑ Fω

β ↑ M ↓ MAE-CA↓
BASNet [20] 0.687 0.721 0.474 0.118 0.349 0.618 0.661 0.413 0.159 0.512 0.634 0.678 0.365 0.105 0.426
CPD [21] 0.853 0.866 0.706 0.052 0.235 0.726 0.729 0.550 0.115 0.420 0.747 0.770 0.508 0.059 0.403
HTC [22] 0.517 0.489 0.204 0.129 0.779 0.476 0.442 0.174 0.172 0.832 0.548 0.520 0.221 0.088 0.750
MSRCNN [23] 0.637 0.686 0.443 0.091 0.571 0.617 0.669 0.454 0.133 0.557 0.641 0.706 0.419 0.073 0.522
PFANet [24] 0.679 0.648 0.378 0.144 0.442 0.659 0.622 0.391 0.172 0.488 0.636 0.618 0.286 0.128 0.437
PoolNet [25] 0.776 0.779 0.555 0.081 0.375 0.702 0.698 0.494 0.129 0.466 0.705 0.713 0.416 0.074 0.467
EGNet [26] 0.848 0.870 0.702 0.050 0.260 0.732 0.768 0.583 0.104 0.407 0.737 0.779 0.509 0.056 0.418
GCPANet [14] 0.848 0.851 0.682 0.054 0.241 0.748 0.750 0.578 0.110 0.369 0.764 0.771 0.522 0.058 0.369
MINet [15] 0.852 0.906 0.760 0.038 0.239 0.734 0.772 0.616 0.093 0.401 0.769 0.826 0.603 0.042 0.370
SINet [9] 0.872 0.936 0.806 0.034 0.168 0.745 0.804 0.644 0.092 0.356 0.776 0.864 0.631 0.043 0.317
SINet v2 [10] 0.869 0.92 0.78 0.04 0.127 0.786 0.839 0.684 0.085 0.263 0.781 0.854 0.615 0.046 0.273
PFNet [11] 0.882 0.931 0.81 0.033 0.15 0.782 0.842 0.695 0.085 0.279 0.800 0.877 0.660 0.040 0.263
Ours 0.897 0.948 0.834 0.027 0.129 0.814 0.868 0.737 0.073 0.221 0.825 0.891 0.704 0.035 0.224

Fig. 4. Qualitative results comparing to previous state-of-the-art methods. Each row represents one image and corresponding
prediction maps. Each column represents several predictions of one method. Obviously our approach is capable of locating the
camouflaged object well and obtaining the complete target objects.

4.1. Comparison with State-of-the-art

Quantitative Comparisons. Table 2 compares our method
with 12 state-of-the-art models in terms of Sα, Eϕ, Fω

β ,
MAE (M ), and MAE-CA. The results manifest that our ap-
proach outperforms all state-of-the-art methods on all test-
ing datasets. Although the improved margin in terms of M
is slight on several testing datasets, the proposed approach
significantly outperforms state-of-the-art methods in terms of
MAE-CA, demonstrating that the proposed CLR and erasing
strategy are effective for recall the objects.

Qualitative Comparisons. Fig. 4 shows that our model can
handle challenging scenarios in the camouflaged object de-
tection. Specifically, our model not only captures the cor-
rect camouflaged objects, but also obtains the whole target
objects. For example, in first row, other models cannot pre-

dict the woman’s arms clearly, but our method can completely
detect it. In the second row, our method can totally find the
right foot of the object as compared with others. In the last
row, although others can roughly detect the body of the man,
they cannot distinguish the head from the rock. In contrast,
our method can accurately obtain the whole object.

Table 3. The ablation study for different modules in two
benchmark datasets.
ResNet-50 CDM CFM CLR

CAMO COD10K
Sα ↑ Eϕ ↑ MAE-CA↓ Sα ↑ Eϕ ↑ MAE-CA↓√
0.577 0.564 0.595 0.615 0.623 0.577√ √
0.800 0.856 0.244 0.821 0.889 0.238√ √ √
0.804 0.851 0.244 0.826 0.892 0.230√ √ √ √
0.814 0.868 0.221 0.825 0.891 0.224



4.2. Ablation Study

To evaluate the different modules, we conduct an ablation
study by using ResNet-50 as the backbone network and se-
quentially adding CDM, CFM and CLR modules. Table 3
shows the performance with different modules on CAMO
and COD10K datasets. Compared with the baseline using
ResNet-50 only, the model with CDM obtains a large per-
formance gain in all evaluation metrics. It is because CDM
could progressively amend and refine the coarse prediction
map. In addition, CFM makes good use of feature fusion
and allows our CDM to perform well in all evaluation metrics
on COD10K dataset. The last row demonstrates the effec-
tiveness of the gated label maps produced by CLR. Although
the S-measure and E-measure are almost same on COD10K,
it makes improvements in MAE-CA because the model with
CLR detects the camouflaged objects from the most conspic-
uous region of them and detects the target objects completely.

5. CONCLUSIONS

In this paper, to detect camouflaged objects accurately and
completely, we design the cascaded decamouflage module
consisting of region enhancement blocks (REB) and reverse
attention mining blocks (rAMB) to progressively refine the
prediction. In addition, we introduce classification-based la-
bel reweighting (CLR) to assist the network to detect the con-
spicuous parts of camouflaged object and to obtain camou-
flaged objects completely. In the future, we plan to leverage
the contrastive learning for better capturing the patterns of
camouflaged objects and reduce the amount of required data.
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