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Abstract

Suppose you visit an e-commerce site, and see that 50 users
each reviewed almost all of the same 500 products several
times each: would you get suspicious? Similarly, given a
Twitter follow graph, how can we design principled mea-
sures for identifying surprisingly dense subgraphs? Dense
subgraphs often indicate interesting structure, such as net-
work attacks in network traffic graphs. However, most ex-
isting dense subgraph measures either do not model normal
variation, or model it using an Erd&s-Renyi assumption - but
this assumption has been discredited decades ago. What is
the right assumption then? We propose a novel application of
extreme value theory to the dense subgraph problem, which
allows us to propose measures and algorithms which evalu-
ate the surprisingness of a subgraph probabilistically, with-
out requiring restrictive assumptions (e.g. Erdds-Renyi). We
then improve the practicality of our approach by incorporat-
ing empirical observations about dense subgraph patterns in
real graphs, and by proposing a fast pruning-based search
algorithm. Our approach (a) provides theoretical guarantees
of consistency, (b) scales quasi-linearly, and (c) outperforms
baselines in synthetic and ground truth settings.

Introduction

Given an undirected, possibly weighted graph, how can we
measure how surprising or anomalous a subgraph is? How
can we do this in a way that exonerates subgraphs that are
within the range of normal variation, but catches only sub-
graphs which are truly surprising? Dense subgraph detection
is useful for detecting social network communities, protein
families (Saha et al. 2010), follower-boosting on Twitter, and
rating manipulation (Hooi et al. 2016). In these situations, it
is useful to measure how surprising a dense subgraph is, to
focus the user’s attention on surprising or anomalous sub-
graphs.

Many measures exist for identifying dense subgraphs,
such as average degree, modularity, etc. However, knowing
that a subgraph has, for example, an average degree of 10,
does not tell us how surprising it is, since we do not know
if this is plausible under normal variation. To quantify how
surprising a subgraph is, we need a probabilistic measure,
that tells us, e.g., that the probability of a random subgraph

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the same size being as dense as this one is 10~°. Such a
probabilistic measure is useful for decision making: if a sub-
graph is very unlikely under normal variation, we can more
confidently take action such as investigating these users.

The key challenge in this process is to accurately model
subgraph densities under normal behavior. In other words,
what is a good null model? The simplest approach would
be to assume an Erd&s-Renyi model, as in (Jiang et al.
2016). However, the Erdds-Renyi model does not accu-
rately model density patterns of real graphs: it ignores the
clustering structure of graphs, as well as dense subgraphs
caused by high degree nodes, such as ‘hyperbolic communi-
ties’ (Araujo et al. 2014) observed in real graphs.

Instead, our approach uses a novel application of extreme
value theory to the dense subgraph problem, with the goal of
probabilistically measuring how ‘extreme’ a dense subgraph
is. Extreme value theory is an elegant statistical approach
for modelling the distribution of extreme (or rare) events.
It was initially proposed to model the distribution of flood
heights, with the goal of finding the minimal dike height
which would be tall enough to withstand floods with high
probability. Since then, it has been applied to many types
of extreme events, such as earthquakes, financial crashes,
and network attacks. Extreme value theory allows us to ac-
curately estimate the extreme tail of a distribution without
making strong assumptions about the distribution itself. This
allows us to theoretically characterize dense subgraph pat-
terns without restrictive assumptions.

To improve its practicality, our method further makes use
of two novel empirical findings about the distribution of sub-
graph densities in real graphs. We use these empirical find-
ings in our measure which assesses how surprising a sub-
graph is, then propose a fast pruning-based algorithm for de-
tecting dense subgraphs using this measure, in quasi-linear
time. Figure la shows that our measure outperforms base-
lines in its accuracy of identifying injected subgraphs. Fig-
ure 1b shows that our search algorithm is fast and scales
quasi-linearly: it took 0.41s per subgraph to find, on a graph
with 49 million edges, on a laptop computer.

Our contributions are:

e Theoretical underpinnings: we propose a probabilis-
tic framework (Definition 5) for finding dense subgraphs
based on extreme value theory. Theorem 2 provides a
guarantee of consistency.
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Figure 1: (a) Our measure outperforms baselines in accuracy
of detecting injected blocks. (b) Our search algorithm scales
quasi-linearly.

e Discoveries: We make 2 novel empirical observations on
dense subgraph patterns in real graphs, which we use to
speed up our measure.

o Effectiveness: Our approach outperforms baselines in
finding injected (Figure 1a) and ground truth dense sub-
graphs (Table 3 and 4).

e Algorithm: Our TELLTAIL+ search algorithm scales
quasi-linearly, and we further speed it up using a safe
pruning step (based on Theorem 1).

Reproducibility: Our code and datasets are available at
https://bhooi.github.io/projects/telltail.

Related Work

Measures based on internal connectivity: average de-
gree (Goldberg 1984) is a common measure for dense sub-
graph detection. Variants allow for size restrictions (An-
dersen and Chellapilla 2009) or local subgraphs (Andersen
2010). Other measures include edge surplus (Tsourakakis et
al. 2013), triangle and k-clique density (Tsourakakis 2015),
discounted average degree (Yanagisawa and Hara 2018),
and minimum internal degree, which defines k-cores (Shin,
Eliassi-Rad, and Faloutsos 2016). Related measures under-
lie k-plexes (Seidman and Foster 1978) and k-trusses (Cohen
2008). (Almeida et al. 2012) evaluates density by subtract-
ing the expected density of similar clusters.

Measures based on internal and external connectivity:
external connectivity refers to the edges between the sub-
graph and the rest of the graph. These measures find sub-
graphs which are dense internally but sparsely connected ex-
ternally. These include modularity (Newman 2006), Maxi-
mum, Average, and Flake-ODF (Flake, Lawrence, and Giles
2000), local density (Qin et al. 2015), and cut-based mea-
sures, such as expansion (Radicchi et al. 2004) and conduc-
tance (Shi and Malik 2000). (Miller et al. 2015) considers a
spectral norm-based approach to detecting anomalous sub-
graphs.

Model-based measures: (Stumpf, Wiuf, and May 2005)
studies the sampling properties of a network’s degree distri-
bution, particularly for scale-free networks. (Koyutiirk, Sz-

pankowski, and Grama 2007) defines two-level Erdés-Renyi
(ER)-based models to assess significance of clusters in pro-
tein interaction networks. Closely related to our approach is
van Leeuwen (2016) (van Leeuwen et al. 2016), which pro-
poses a subgraph interestingness measure relative to a user’s
prior beliefs, where interestingness is based on the ratio of
a pattern’s information content over its description length.
Also closely related is Jiang (2016) (Jiang et al. 2016):
which uses an ER null model. In contrast, our approach uses
a probabilistic framework based on extreme value theory,
which allows more accurate modelling and theoretical re-
sults without relying on the Erdés-Renyi assumption (Theo-
rem 2).

Background: Extreme Value Theory

In this section we introduce the Generalized Pareto (GP)
Distribution, a family of probability distributions commonly
used within extreme value theory.

The Generalized Pareto (GP) distribution has 3 parame-
ters: its location i, its scale o, and its shape & (Coles et al.
2001). Its CDF is:
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for o > 0. The GP distribution generalizes several well-
known distributions:

e For £ > 0 it is a Pareto distribution with « = 1/¢;

e For ¢ = 0 and o = 0 it is an exponential distribution with
mean o.

Pareto distributions exhibit heavy-tailed decay (power law
tails) while exponential distributions exhibit light-tailed de-
cay (exponential tails), while the GP distribution interpolates
smoothly between the two regimes. The GP distribution also
has a ‘universality’ property (Balkema and De Haan 1974):
intuitively, GP distributions can approximate the tails of al-
most any distribution, with error approaching zero. This
makes GP distributions uniquely suitable for modeling the
upper tail of subgraph mass distributions, as we will do.

Given any random variable X, let { € R and define a new
random variable X, which intuitively represents the tail of
X past threshold ¢: thus, define F} as the distribution of X —¢
conditioned on X > t.

Definition 1. The conditional excess at threshold t has
CDF Fy(y) = P(X —t<y| X >1).

The universality property, or Pickands-Balkema-de Haan
theorem (Balkema and De Haan 1974), then states that the
GP distribution can approximate the tails of an arbitrary dis-
tribution:

Property 1 (Universality). Let F' be any distribution func-
tion from a broad class of distributions (Embrechts, Klup-
pelberg, and Mikosch 1999). There exists &, o (t) such that:

tkrtn sup |Ft($) - GPDO,o(t),ﬁ(x” = Oa (2)

where t,,,, is the right endpoint of F' (t.x can be ), and
GPD represents the CDF of a GP distribution.
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Figure 2: TAILF avoids size bias: it detects the injected clique. Red triangles show the subgraph detected using each measure.

Intuitively, the error of approximating the tails of a ran-
dom variable by a GP distribution approaches zero as the
threshold defining the tail gets larger. This justifies using GP
distributions for modeling the upper tail of subgraph mass
distributions, and will also allow us to prove theoretical re-
sults about our dense subgraph measure.

Problem Definition

Table 1 summarizes the symbols used in this paper.

Symbol Interpretation

G(V,E)  Graph, with its vertex and edge set
n,m  Number of nodes (rep. edges)
S Subset of nodes
k  Size of subset (i.e. |S|)
A Adjacency matrix of G
d n x 1 vector of node degrees
B Modularity matrix: B = A —d - d” /(2m)
e(S)  Number of edges in induced subgraph of S
(also called its mass)
é(S)  Adjusted mass of induced subgraph of S
w,0,&  Location, scale, shape parameters of GP distribution

Table 1: Symbols and Definitions

Given a graph G = (V| E), our first goal is to estimate
how surprising a subgraph induced by S C V' is by defining
a score f, which quantifies the probability of observing a
subgraph at least as dense as this one:

Problem 1 (Scoring Function).

Given: graph G = (V, E), subgraph induced by S C'V
Output: f(S), an estimate of how surprising the mass (i.e.
edge count) of S is compared to the distribution of sub-
graphs of the same size.

Our second goal is to develop a fast and effective algo-
rithm for optimizing such a measure, so as to provide a prac-
tical approach for detecting surprisingly dense subgraphs.

Proposed Approach
Introductory Example

Consider an Erd6s-Renyi graph G of size 50 with edge prob-
ability 0.2. We select 10 random nodes and add all the edges
between them to G, creating an injected clique, shown cir-
cled in Figure 2. To detect the clique, we optimize each of
three measures (average degree, modularity, and TAILF) us-
ing a standard greedy local search approach (Jiang et al.
2016). Figure 2a shows that the highest average degree sub-
graph (red triangles) contains almost all the nodes; Figure 2b
shows that the highest modularity subgraph contains around
half the nodes; and Figure 2c shows that under TAILF, the
densest subgraph is the injected clique.

Why does this happen? Consider average degree,
2¢(S)/|S|. The average degree of the entire graph (i.e. set-
ting S = V) is 2|E|/|V|, while the average degree of
any subgraph of k£ nodes cannot exceed £ — 1, even for a
clique. Hence, average degree is biased in favor of larger
subsets. Similarly, modularity tends to select subgraphs of
size around n /2, as also observed by (Leskovec, Lang, and
Mahoney 2010). This problem is not specific to these mea-
sures: the key issue is many measures are size-biased, in
that their values are not comparable across sizes in a prin-
cipled way. Hence a highly surprising subgraph may have a
lower score than a less surprising subgraph, due to size dif-
ferences. In contrast, TAILF handles this by controlling for
size: it evaluates a subgraph by comparing it to the distribu-
tion of subgraphs of the same size. Specifically, it estimates
the probability that a random subgraph of the same size
would have higher density than the given subgraph. Since
the measure values are in ‘units’ of probability, they can be
compared across sizes in a principled way.

Empirical Observations

Figure 3 shows the distribution of subgraph masses in 3
real graphs. The crosses show the empirical CCDF (i.e.
1— CDF) of the mass of 5000 random subgraphs of size
k = |v/n]. The colored lines are maximum likelihood fits
of 3 distributions to these masses. The Poisson distribution
underestimates how many dense subgraphs we should ob-
serve. This makes sense, as (Jiang et al. 2016) shows that
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Figure 3: The GP distribution closely fits mass distributions of real graphs: Black crosses indicate the empirical distribution
of subgraph masses for subgraphs of size k = |/n], in the form of its complementary CDF.

approximately Poisson mass distributions occur under an
Erd6s-Renyi model. However, the Erdés-Renyi model ig-
nores the clustering effects present in real graphs. Hence,
in real graphs, much denser subgraphs exist. Figure 3 shows
that Gaussian distributions also decay too quickly, while the
GP distribution fits the empirical distribution closely, due to
its ‘universality’ property. For space reasons, plots for our
other datasets are in our supplement!. To summarize:

Observation 1. Upper tails of subgraph mass distributions
of real graphs closely follow a GP distribution.

Proposed Measures

Hence, we now propose measures which approximate a sub-
graph mass distribution using a GP distribution, and use it to
estimate the surprisingness of each subgraph.

TAIL Measure

TAIL estimates this GP distribution via sampling. Given a
subgraph S of size |S| = k and mass e(.S), we sample N
uniformly random subsets of V' of size k. For ¢ = 0.1, we
fit a GP distribution using maximum likelihood (Grimshaw
1993) to the largest |eN | masses. The surprisingness of S is
the CDF of this GP distribution, evaluated at e(.S):

Definition 2 (TAIL Measure).
£(S) = GPD,,, 4(e(9))
where [i, G, é are the maximum likelihood GP fit.

Adjusting for Degree: the TAILD Measure

How do we identify subgraphs that are not just dense, but
also sparsely connected to the rest of the graph? For exam-
ple, in a user-product review graph, such subgraphs could
suggest rating manipulation.

Instead of mass e(.S) of a subset S, we compute its ad-
justed mass é(.5), its mass minus its expectation if edges

"https://bhooi.github.io/projects/telltail/supplement.pdf

are rewired randomly. As in the modularity measure (New-
man 2006), the expectation of e(S) is d(S)?/(4m), where
d(S) is the sum of degrees of nodes in S.

Definition 3 (Adjusted mass). The adjusted mass of sub-
graph S is:

&(S) = e(S) — d(S)?/ (4m)

TAILD differs from TAIL only in that it uses adjusted
mass instead of mass:

Definition 4 (TAILD Measure).
f(8) = GPD, , (&(S))

.6
where ﬂ,&,é are maximum likelihood GP parameters for
the distribution of adjusted masses.

Dense Subgraph Power Laws

TAIL and TAILD require a time-consuming sampling step.
How do we speed them up? We first observe near-power law
empirical patterns, which we use to greatly speed up TAILD.
Let (k) be the GP location parameter as a function of sub-
graph size k (and similarly define o(k)). For GP distribu-
tions fitted to adjusted mass €(.S), we observe near-power
law patterns for (k) and o (k):

(k) = pok® 3)
o(k) = ookP. )

where 119, 09, & and 3 are constants to be determined.

Plotting u(k) and o(k) against k on a log-log plot, this
takes the form of a straight line. Figure 4 shows such plots
for the InternetAS graph. u(k) and o(k) closely follow
the near-power law patterns in Eq. (3) and (4), with R? of
1.00 and 0.99 (where R? 1 indicates a perfect linear
fit). Table 2 shows that the same pattern holds across many
datasets, with R? very near 1. « and (3 are close to 0.9 and
0.8, while £ is close to —0.1.

Observation 2 (Dense Subgraph Power Laws). GP param-
eters of adjusted mass distributions in real graphs closely
follow (k) = puok®® and o (k) = ook,
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Figure 4: Power law patterns in GP parameters: in the
InternetAS graph.

Dataset pslope  R? ‘aslope R? ‘ 13

UCForum 0.87 0.99 0.63 0.98 | -0.02
Email 0.82 0.99 0.74 098 | -0.12
Blogs 0.87 0.99 0.76 0.99 | -0.05

Petster 0.85 0.99 0.78 0.99 | -0.11

PGP 0.86 0.99 0.81 0.99 | -0.11
AstroPh 0.88 0.99 0.85 0.99 | -0.12
DBLP 0.87 0.99 0.81 0.99 | -0.13
InternetAS 0.98 1.00 0.76 0.99 | -0.07

Table 2: Power law patterns across multiple datasets: as
a function of k, u(k) and o(k) closely follow the power-
law patterns, (3) and (4). Dataset information is given in our
supplementary information.

TAILF: Fast Scoring using Power Laws

Using Observation 2, we now propose our main TAILF mea-
sure, which avoids sampling, providing large speedup. We
ignore strictly increasing transformations of the measure
(e.g. multiplication by a constant), as they do not change
the relative order of different subsets.

As in TAILD, the surprisingness of S is the CDF of a
GP distribution, evaluated at the adjusted mass of S. As ob-
served previously, £ remains fairly constant empirically, so
we approximate it as a constant in k. Then GPD¢ ,, ,(€(.5))

e(S)=p.

is a function of ~—F; moreover, it is strictly increasing
function of @ within its support (0, —¢). Thus, we
é(S)—n

can use =~ in place of GPD¢ , ,(&(S)). Substituting the
power law patterns (3) and (4) and ignoring the constant o
gives our TAILF expression:

Definition 5 (Proposed TAILF Measure).

f(s) = Skt

Following Observation 2, for simplicity we use o = 0.9
and 8 = 0.8 as fixed default values, though in practice these
values could also be set by estimating them as in Table 2 for
any given graph. For space reasons, we explain our approach
for estimating po in our supplementary material.

TELLTAIL Search Algorithm

TELLTAIL uses randomized local search on the TAILF mea-
sure, starting from random seeds. Let S be the current set of
nodes. To efficiently find good candidates for insertion, we
use a max-heap H; storing all neighbors of nodes in S. The
key (or priority) of node i is eg (i) — d(i)/n, where eg(7) is
the number of neighbors of ¢ in .S, and d(¢) is the degree of
1. Intuitively, we prefer to insert nodes with many neighbors
in S, and secondarily prefer nodes with lower degree (the
latter is typically less important, so the division by n means
that it is only used to break ties). For deletions, we want the
reverse, so we use a min-heap Hp storing all nodes in S
instead, with the same keys.

TELLTAIL is given in Algorithm 1, omitting the steps in
green. We first initialize the heaps (Line 9 to 10). In each
iteration we extract the candidate insertions and deletions
from the heaps (Line 13), then greedily modify S' to maxi-
mize TAILF (Line 15). We then update the keys of nodes in
the heaps (Line 16), inserting nodes at the same time if they
are not already in the heap, and have not been popped so
far. In Line 16, when a node is added or deleted from S, the
degree in S of its neighbors change, so we recompute their
priority (i.e. key). We only need to update the neighbors of
the inserted or deleted node, due to our definition of keys.
We use Fibonacci heaps, taking O(logn) per key update.

Improved TELLTAIL+ Algorithm

TELLTAIL+ uses pruning to improve efficiency. We will
show that the form of TAILF allows us to safely prune
(i.e. remove) nodes, while guaranteeing that we never prune
nodes that are in the subset that optimizes TAILF.

Definition 6 (Deviation of a node). The deviation of node ¢
is the sum of the modularity matrix B = A — d - d* /(2m)
between it and its neighbors:

Dev;= Y By (35)
i,jEE
Intuitively, deviation measures how much a node can

‘contribute’ to the adjusted mass of a subset. Let S* =
arg maxgcy TAILF(S) and s = |n/2]. Define:

A(S) = (s° — (s — 1)?)TAILF(S) + o (s — (s — 1)‘2)6)

Our pruning is based on the following theorem. For space
reasons, all proofs are in our supplementary material.

Theorem 1 (Safe Pruning). For any node i, if i € S*, then:
Dev; > A(S*) > A(S)VSCV @)
So, we can prune nodes with deviation < A(S), for any S.

TELLTAIL+ first uses the neighborhoods of ¢ randomly
chosen nodes to bound for pruning (Lines 2 to 5). When a
new best .S is found, we prune the nodes using the improved
threshold (Line 18). We recommend ¢ = 500 as it has min-
imal impact on running time in practice, while providing a
large enough sample size.



Algorithm 1 TELLTAIL and TELLTAIL+

1: Input: Graph G, no. of neighborhoods ¢, repetitions r
2: fori = 1totdo

3: Let N; be the neighborhood of a random node

4:  Prune nodes with deviation less than A(N;)

5: end for

6: fori =1tor do

7:  Sample S; to contain a single random node {s}

8:  // Heaps with candidates for insertion / deletion

9:  Initialize max-heap H containing all neighbors of s
10:  Initialize min-heap Hp containing s

11:  while H; and Hp are nonempty do

12: /I Get insertion and deletion candidates

13: Pop ns from Hr and np from Hp

14: /I Greedy local step

15: S argmaxszg{SiUm’Si\HDysi}TAILF(S’)
16: Update keys in H; and Hp

17:  end while

18:  Prune nodes with deviation less than A(S;)
19: end for

20: Return arg maxsse(s, ... ,s,} TAILF(S")

Scalability

We store only the graph edges and heaps, using linear
(O(m)) memory (O(n) if we only load the adjacency lists of
ny and np at a time, and store the rest of the graph on disk).
For running time, the bottleneck is the heap key updates
(Line 16); each update in a Fibonacci heap takes O(logn),
each edge only has a constant number of updates across it
(since popped nodes are not re-inserted), so at most O(m)
updates occur, taking O(m logn) time.

Theoretical Results
Consistency
Our estimate for the surprisingness of subgraphs is consis-
tent: as n increases, the error of our estimate approaches
zero. Formalizing this uses a graphon G, a flexible gener-
ative model for graphs (see (Orbanz and Roy 2015)). TAIL
outputs F', the CDF of the GP distribution. Our consistency
theorem states that F' converges to F', the true surprisingness
under G, in relative error, as n — oo.
Theorem 2 (Consistency). Let y, = —o(fin)(1 — 2)/&.
Then as n — oo, there exists a sequence of N, — 00, €, —
0 such that:

1_F(ﬂn+yn) P 1

P . -
where — denotes convergence in probability.

®)

Experiments

Our experiments answer the following questions:

e Q1. Scalability: how does TELLTAIL+ scale?

e Q2. Accuracy of Measure: does TAILF accurately iden-
tify injected dense subgraphs?

e Q3. Real-World Effectiveness: do TAILF and TELL-
TAIL+ accurately find ground-truth communities?
Dataset details are in our supplementary information.

Q1. Scalability

To get graphs that follow real-world patterns, rather than us-
ing a synthetic generator, we use the real Wik iP graph and
extract subsets of its nodes. Hence, we run TELLTAIL+ on
random subsets of the WikiP graph containing |(0.85)%]
fraction of nodes for k = 0,...,9, averaging each over 10
trials. Figure 1b shows that TELLTAIL+ scales near-linearly.
TELLTAIL+ is fast, taking 0.41 seconds (using a laptop com-
puter) on the full graph of 49.0 million edges.

Pruning Effectiveness How effective are the pruning
steps (i.e. the green lines in Algorithm 1) for reducing
the graph size? Figure 5 shows that TELLTAIL+ reduces
the node count by 45, 18 and 52 times on the largest
InternetAS, WikiP and Twitter datasets.
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Figure 5: TELLTAIL+ reduces graph size.

Q2. Accuracy of Measure

In this section, we evaluate the accuracy of our TAILF mea-
sure in distinguishing injected dense subgraphs from normal
subgraphs. Note that our goal here is to evaluate its accuracy
as a measure, against baseline measures, rather than against
detection algorithms. Hence, our baseline measures are cho-
sen to provide a mix of standard internal density measures
(average degree, modularity), measures which consider in-
ternal and external density (expansion, conductance) and re-
cent dense subgraph measures (edge surplus (Tsourakakis et
al. 2013), suspiciousness (Jiang et al. 2016)).

While edge density e(S)/(151) is intuitive, it does not di-
rectly work as a single edge attains the maximum possible
density of 1. Average Degree, Modularity and Edge Surplus
are different approaches for adjusting edge density to alle-
viate this problem. For the Edge Surplus baseline we use
a = 1/2; for space reasons, additional results varying « can
be found in our supplement.

For each graph, in each trial we inject a dense sub-
graph, whose nodes are uniformly sampled at random
from the graph’s existing nodes, and whose size is one of
[vn],2[v/n],- -+ ,5|v/n] (we obtain separate results for
each of these sizes). We choose these values as it tends to
be the range where performance varies meaningfully. We
inject edges uniformly at random to this subgraph, adding
additional density equal to twice the average density of the
whole graph (i.e. density 2m/(})). A good measure should
distinguish ‘unnatural’ (injected) subgraphs from ‘natural’



(non-injected) subgraphs. Thus, in each trial we generate
500 random null subgraphs: their sizes follow an evenly dis-
tributed grid of sizes between 1 and n, while their nodes are
chosen uniformly at random. A measure is successful on a
trial if it gives a higher value to the injected subgraph than
to all the null subgraphs. We repeat each trial 20 times to
generate error bars (representing 1 standard deviation).

Figure 1a shows accuracy (i.e. the fraction of trials where
the injected subgraph received the highest score) against in-
jected size on the UCForum dataset (n = 899). Further re-
sults are in our supplement, and similarly show large im-
provements for TAILF. Why does this happen? In our intro-
ductory example we introduced size-bias: many measures
do not compare across sizes in a balanced manner: e.g. aver-
age degree chooses large subsets of almost the whole graph,
while modularity chooses subsets of around half the graph
size. TAILF evaluates subgraphs of each size using an accu-
rate GP model, allowing fair comparison across sizes.

Q3. Real-World Effectiveness

We next evaluate TAILF on topically curated Twitter
graphs with ground truth dense communities correspond-
ing to sports teams or political parties manually labelled
by (Greene and Cunningham 2013). On each dataset, we
randomly generate a pool of null subgraphs: for each size
(twice), we generate 200 random subgraphs of that size and
add the community with highest mass into the pool. This
ensures that the null subgraphs are reasonably dense. We
then compute each measure on the ground truth and null
subgraphs. For each measure, its accuracy is its precision
at k, i.e. the fraction of ground truth communities in the top
k subsets according to the measure, where k is the true num-
ber of ground truth communities. Table 3 shows that TAILF
clearly outperforms the baselines, and has more consistent
performance across datasets.
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9 < Z o @
% = Z
=l 2 & % £ £
£z = & S 2 &
Football | 1.00 | 000 096 071 055 1.00 0.68
PolIE | 1.00 | 000 094 087 086 075 0.38
PolUK | 096 | 046 0.87 054 087 071 0.29
Olympics | 100 [ 0.00 085 074 067 100 0.63
Rugby | 097 | 000 0.85 090 080 094 0.55

Table 3: TAILF outperforms baselines in identifying
ground truth communities.

Effectiveness of our Algorithms We now evaluate TELL-
TAIL and TELLTAIL+ on detecting ground truth commu-
nities in the same topical Twitter graphs. We use the same
baselines, each optimized using standard local search (Jiang
et al. 2016). We run each algorithm 10 times and choose the
subset which it gave the highest score to. We evaluate each
method based on the largest Jaccard similarity between its
output and any ground truth community.

The results are shown in Table 4. Averaging over the 5
graphs, TELLTAIL and TELLTAIL+ outperforms the best-

performing baseline by 0.34 and 0.31 respectively. This oc-
curs likely due to their use of TAILF, which also performs
better in identifying ground truth communities in Table 3.
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Football | 0.78 067 | 011 019 006 011 0.15 013

PolIE 090 0.82 | 042 039 0.02 041 0.41 0.39
PolUK | 0.82 084 | 081 075 001 036 053 0.76
Olympics 068 072 | 020 0.21 0.11 0.15 029 022
Rugby | 047 049 | 043 024 036 017 025 0.28

Table 4: TELLTAIL and TELLTAIL+ outperform base-
lines in detecting ground truth communities.

Case Study on Twitter Data
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Figure 6: TELLTAIL+ detects a follower-boosting
scheme: we detect a large group of accounts, 85% of which
are directly connected to the pictured account.

We apply TELLTAIL+ on a Twitter following graph of
41.7M users and 1.47B follows (Kwak et al. 2010). TELL-
TAIL+ detects a group of 4334 users with edge density 75%,
which is highly suspicious in itself. To further analyze the
users in this block, we randomly sample of 400 of these
users. We then exclude users whose accounts were deleted,
suspended, or not searchable, resulting in 280 remaining
users. Of these, we use a script to search for which of these
users have made tweets linking ‘tweepme.com’ or ‘tweeter-
getter.com,” which are two known follower-buying services
in which users who purchase the service follow one an-
other. We find that 125 (45%) of these users have made such
tweets. Moreover, 85% of the users in this block are directly
adjacent to the user in Figure 6, who advertises over 20
follower-boosting services, such as ‘“TweepMe’ and ‘Tweet-
erGetter’.

Conclusion

In this paper, we introduced principled measures and algo-
rithms for dense subgraphs. A persistent question in graph
analysis is: how can we fairly compare subgraphs of differ-
ent sizes and densities? We answer this by using GP distri-
butions to model the tail of subgraph mass distributions. Our
contributions are as follows:

e Theoretical underpinnings: We propose a probabilis-
tic framework (Definition 5) for finding dense subgraphs
based on extreme value theory. Theorem 2 provides a
guarantee of consistency.



e Discoveries: We make 2 novel empirical observations on
dense subgraph patterns in real graphs, which we use to
speed up our measure.

o Effectiveness: Our approach outperforms baselines in
finding injected (Figure 1a) and ground truth dense sub-
graphs (Table 3 and 4).

e Algorithm: Our TELLTAIL+ search algorithm scales
quasi-linearly, and also adds a safe pruning step (based
on Theorem 1).
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