
For a Better Web

A Brief History of JavaScript

Brendan Eich
Brave Software
@BrendanEich

https://twitter.com/BrendanEich

F O R A B E T T E R W E B

"Things that are impossible just take longer.”

- Ian Hickson (HTML5 Editor)

Standardization

F O R A B E T T E R W E B

Things have changed a little since I created
JavaScript in ten days in May 1995

’94 ’95 ’98 ’04 ’16’09 ’15 ’17

F O R A B E T T E R W E B

https://brendaneich.com/2011/08/my-txjs-talk-twitter-remix/

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

Crock & Me

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

ECMA-262 Editions
• 1997: ES1, based on JS1 — no closures, weak arrays
• 1998: ES2, just the ISO version of ES1
• 1999: ES3, based on JS1.2 — closures, arrays, do-while,

switch, try-catch, regular expressions, Unicode (UCS-2)
• 2008: ES4, mothballed; many proposals made it to ES6
• 2009: ES5, formerly ES3.1, “no new de jure syntax”,

getters/setters, Object.defineProperty etc.
• 2015: ES6/2015, much of ES4 but no types, e.g. class,

iterators and for-of, modules

F O R A B E T T E R W E B

The Back-Story
• 1995: JS1 — “come do Scheme in the browser!” j/k lol
• 1996-7: JS1.2 — closures, arrays, do-while, switch, try-

catch, regular expressions from Perl 4, strict == !=

• 2004: Firefox 1.0 restarted the browser market
• 2005: I restarted Ecma TC39; with Macromedia allies we

planned ES4 and did E4X (which prefigured JSX)

• 2008: V8, SpiderMonkey, JavaScriptCore — JS JITs
• 2010: Dash (now Dart) memo leaks at November TC39

meeting; not noticed until next spring

F O R A B E T T E R W E B

An asm.js example
• C code:
int f(int i) { // i: 32-bit integer
 return i + 1;
}

• Generated asm.js:

“use asm”;
function f(i) { // i: any type
 i = i|0; // coerce i to int32
 return (i + 1)|0; // coerce return value
}

F O R A B E T T E R W E B

https://blog.mozilla.org/luke/2014/01/14/asm-js-aot-compilation-and-startup-performance/

JIT vs. Ahead Of Time asm.js compilation

https://blog.mozilla.org/luke/2014/01/14/asm-js-aot-compilation-and-startup-performance/

F O R A B E T T E R W E B

More Back-Story
• December 2010: I recruit Allen Wirfs-Brock (ECMA-262

Editor) from Microsoft to Mozilla
• 2012: asmjs.org type system formalized; Epic Unreal

Engine cross-compiled C++ to JS at 60fps in Firefox
• 2014: Babel.js (successor to 6to5) gets devs using ES6

early, acclimates many people to “compile to JS”
• 2015: Ecma TC39 moves to annuals, ES6 => ES2015

• March 2015: Google admits Dart won’t ever go in Chrome

• December 2015: Microsoft open-sources ChakraCore

https://twitter.com/awbjs
http://asmjs.org
https://babeljs.io/

F O R A B E T T E R W E B

F O R A B E T T E R W E B

F O R A B E T T E R W E B

TC39: BigInt
• New value type to handle arbitrary precision integers
• Literal syntax: 43539234598764325897635879n
• Operator overloading: 1n + 2n === 3n
• Exceptions on mixed types: 1n + 2 throws TypeError

• However, allow mixed comparisons using < and ==
• someObject[42n]: BigInt as distinct property key type
• BigInt.asUintN(N, b): wrap b between 0 and 2N-1
• BigInt.asIntN(N, b): wrap b between -2N-1 and 2N-1-1

F O R A B E T T E R W E B

More BigInt
• JSON hooking via BigInt.prototype.toJSON()
• New typed arrays: BigInt64Array/BigUint64Array
• DataView.prototype.getBigInt64/getBigUint64
• Explainer: https://github.com/tc39/proposal-bigint
• Spec: https://tc39.github.io/proposal-bigint/
• Issues: https://github.com/tc39/proposal-bigint/issues

https://github.com/tc39/proposal-bigint
https://tc39.github.io/proposal-bigint/
https://github.com/tc39/proposal-bigint/issues

F O R A B E T T E R W E B

BigInt FTW
/*
 * Avoid 53-bit limit of JS’s default number
 * type. Thus fib(79) is 14472334024676221n,
 * not 14472334024676220.
 */
function fib(n) {
 let [a, b] = [0n, 1n];
 for (let i = 0; i < n; i++) {
 [a, b] = [b, a + b];
 }
 return a;
}

F O R A B E T T E R W E B

More ES Next
• Dynamic import() (spec)
• Array.prototype.flatten/.flatMap (spec)
• let {x, y, ...z} = {x:1, y:2, a:3, b:4}; (spec)
• Private methods and accessors (spec)
• Asynchronous iteration: for await of (spec)
• RegExp lookbehind assertions (spec)
• RegExp Unicode property escapes (spec)
• RegExp named capture groups (spec)
• /s (dotAll) flag for regular expressions (spec)

https://github.com/tc39/proposal-dynamic-import
https://github.com/tc39/proposal-intl-relative-time
https://github.com/tc39/proposal-object-rest-spread
https://github.com/littledan/proposal-private-methods
https://github.com/tc39/proposal-async-iteration
https://github.com/tc39/proposal-regexp-lookbehind
https://github.com/tc39/proposal-regexp-unicode-property-escapes
https://github.com/tc39/proposal-regexp-named-groups
https://github.com/tc39/proposal-regexp-dotall-flag

& Webpack lol for @TheLarkInn

F O R A B E T T E R W E B

Thank you

