Modern Object Pascal Introduction for
Programmers

Michalis Kamburelis

Table of Contents

1. WhHY this DOOK ..o e 3

2. BaASICS it a e e e e e e eeeaarre 4
2.1. "Hello world" programcoo oo 4
2.2. Compilers and FPC "syntax MOdes"ccueeiiiiiiiiiiiiiiieeeiiis e eeeviin e e eenns 5
2.3. Functions, procedures, primitive tYPEScoveevieiiviiieieieeiiiie e eeeeane e e e 6
2.4, TeSNG (If) toereeeeeii i eane 8
2.5. Logical, relational and bit-wise Operatorscccccvvviiiieieeviiiiieeeeeeiee e, 10
2.6. Testing single expression for multiple values (Case)ccccceeevvevveivinnennn. 11
2.7. Enumerated and ordinal types and sets and constant-length arrays 12
2.8. Loops (for, while, repeat, for .. iN)cooeuiiiiiiii e, 13
JZ2Ne T @ 11110101 S (o o[T 16
2.10. Converting t0 @ SNG ..uvvuiiiiriiiiiii e e e 17

G T U] 1 SO PPPPPUPPPPPTRR 18
3.1, OVEIVIBW ..ttt ettt s e e e e e e e e e e e et et eat bbb a e s e e e e e eeeaaeeeeennnnnes 18
3.2. Extensions used for units and programscccceeeveeiiiiiieeeeeiiinn e 20
3.3. Initialization and fin@lization ... 20
3.4. Units uSiNg €aCh Othercooiiiiii i 21
3.5. Qualifying identifiers with unit NnamMe ..., 22
3.6. Exposing one unit identifiers from anothercccccceeiiiiiiiiie e, 25

N O = 1S L SRS OPPPPPP 26
4.1, BASICS ..oiieiiiiiiiiiiiiiiie et e bbb aaaaaas 26
4.2. Inheritance, virtual methods, override, reintroduceccccccvvvveiciiinnnnnnn. 27
4.3. Classes and class instances, constructors, destructorscccccvveeeennnnn. 29
4.4. Testing class (is), typecasting (as, TMyClass(X)) ...cccooevvevrriiiiieiiviiiiienennnns 31
T o (0] 01T =2 33
4.6. Exceptions - QUICK EXaMPIEoiiiiiiiiiiie et 36
4.7. VISIDIlity SPECITIEIS ..cuvviiiieiiiii e 37
4.8. Default ANCESIONccoiiiiiiiiiiiie e s 37
4.9, Sl it a e e e e e e e e e e e e e a e aaaa 37
4.10. Calling inherited Methodciiiiiiiii e, 38

Modern Object Pascal Introduction for Programmers

4.11. Virtual methods, override and reintroducCecccccceeeieeeiiiiiiiiiiniiies 41
5. FIEEING CIASSEScoiieeieeeeeieecee ittt e e e e e e e e e e e e aaaaeaaaas 45
5.1. Remember to free the class INStaNCesSccccccviviiiiiiiiiiie e, 45
5.2, HOW 10 rBE i 45
5.3. Manual and automaticC fre€inNgcevvrriiiiiuiiiiiiii e 47
5.4. The virtual destructor called DeStroycccvvvviveiiiiiiiiiiiiie e e eeeeeeeeeeeenns 50
5.5. Free NOLIfICAtIONooooiiiiiiiiiii et 51
5.6. Free notification observer (Castle Game ENgiNe)vvvvviiiiieiieeeeeennnnn. 53
N (o7 =T o 1o SRR 55
B.1. OVEIVIEW ...uiiiiiiiiiiiiiteeeee e e e e e e e e e e ettt et e et e e e e e aaeeeeeeeesesaaannnanes 55
[= = 11 T 56
6.3, CatCRING ..o —————— 57
6.4. Finally (doing things regardless of whether an exception occurred) 60
6.5. How the exceptions are displayed by various librariesccccceeeeerennn.. 63
A S 0T 1] 1= 11 o = VYU 64
7.1. INpUt/OULPUL USING SIrEAMS ...eeiveiiiiiiiiiiiie s e e e e e e e e e e e e e e e e e eeees 64
7.2. Containers (lists, dictionaries) USing geNeriCScccvvveeeeeeeeeeeeeeerreiinnineens 66
7.3. Cloning: TPersiSteNt.ASSIGN ...ccccceeeeeiieeeeeeeeecee e e e e e e s 72
8. Various language fEALUIESuuuuuiiiiiiii it e e e e e e e e e e e e e eeeeeenanaa 77
8.1. Local (Nested) rOULINESccccieiiieiieiiicee e e e e e e e e e e eees 77
8.2. Callbacks (aka events, aka pointers to functions, aka procedural
VarADIES) .o —————————————— 78
8.3. ANONYMOUS fUNCLIONSuvvueiiiiiiiiieee e eee et e e e e e e e e e e e e e ee s 81
S € 1= o= o PP PPPPPRPT 84
ST T @)= 15 (o = To |1 o S 86
o IS o (=T o] (0o 31 | TP PTRPPRTRPIN 86
B.7. RECOIUS ..ottt bbbt e e e e e e e e e e e e aeas 89
8.8. Variant records and related CONCEPLSuuucvieeiiiiiiiiiiieeeeerr e 91
8.9. Old-Style ODJECLS ..ccvieeeeeeeeiiiceie e e 95
8.10. POINTEIS .eeiiiiiiiiiee ettt e e e e e e e e s bbb e e 95
8.11. Operator OVErloadiNngcccccieeeeeeeeeiieeieeeeiirer e e e e e e e 96
9. Advanced ClasSES fEAIUIEScoeieiiiiiiiiiiiic e 101
9.1. Private and StriCt Privatecccooeeeiiiiiiiieeecrr e e 101
9.2. More stuff inside classes and nested ClasSescccccoevvieieiiiiiiiiiiiinn, 102
9.3, ClasS MELNOUSuuuiiiiiiiiiiiiiiiii e 103
9.4, ClassS IEfEIENCESccooiiiiiiiiie et 104
9.5. Static class MEthOdSuuuiiiiiiiiiiiiii e 106
9.6. Class properties and variablesccccovvviiiiiiiiiiici e, 108

Modern Object Pascal Introduction for Programmers

9.7. ClasS NEIPEIS ..ueeeiieei e a e 109
9.8. Should constructors and destructors be virtual?ccccceeeiiiiiiieeennnnne. 110
9.9. An exception iN CONSLIUCTONccvviveiiiiiiiiiieee e e e e e e e e e e e e e e e e e 113
O [01 (T £= o7 PP PPPPPPPPUTPPRN 115
10.1. INterfaces GUIDScccooeiiieeeeeeeesre e e e e e e e e e 117
10.2. Typecasting iNterfacesoovveeeiiiiiiiiiiii e 117
10.3. CORBA and COM types of interfacescccceeeeevieeeeeiiiiieieeeiiiiiin, 121
10.4. Reference-counted (COM) interfacescccceeevveeieeeeeeeieieeeeeeiiiieeenn 123
10.5. Using COM interfaces with reference-counting disabled 126
11. ADbOUL thiS OCUMENT ..o 128

1. Why this book

| wanted to describe the modern Object Pascal: programming language with classes,
units, generics, interfaces and other modern features you expect. | wanted to show
how all the language features, basic and advanced, connect together into a consistent
whole.

| also wanted this book to be practical and concise to fellow developers. As such, |
assume you already have some programming experience, and we can talk about things
like "how to declare a variable" and avoid a lengthy explanation "what even is a variable
and what is its purpose”. When covering the basics, | will give a brief description, and
then move on, like this: a variable is a container for some value; the container has a
name; the value it holds may change over time.

| emphasize the word modern in modern Object Pascal. That's because Pascal has
evolved a lot, and it's quite different from e.g. Turbo Pascal that many people learned
in schools long time ago. Feature-wise, modern Pascal is quite similar to C++ or Java
or C#.

« It has all the modern features you expect — classes, units, interfaces, generics...
* It's compiled to a fast, native code,
e |t's very type safe,

» High-level but can also be low-level if you need it to be.

For more reasoning about why use Pascal, see here®.

We also have an active ecosystem of tools and libraries. To name just a few:

1 https://castle-engine.io/why_pascal

https://castle-engine.io/why_pascal
https://castle-engine.io/why_pascal

Modern Object Pascal Introduction for Programmers

» Pascal has an excellent, portable and open-source compiler called the Free Pascal
Compiler, http://freepascal.org/ .

* And an accompanying IDE (editor, debugger, a library of visual components, form
designer) called Lazarus http://lazarus.freepascal.org/ .

» There’s also a proprietary and commercial compiler and IDE Delphi https://
www.embarcadero.com/products/Delphi .

» There’s a lot of libraries (for both FPC and Delphi) available, see https://github.com/
FrOsT-Brutal/awesome-pascal .

» We also support existing editors like VS Code, see https://castle-engine.io/vscode .

* Myself, I'm the creator of Castle Game Engine, https://castle-engine.io/ , which is
an open-source 3D and 2D game engine using modern Pascal to create games
on many platforms (Windows, Linux, FreeBSD, macOS, Android, iOS, Nintendo
Switch, WebGL).

2. Basics

2.1. "Hello world" program

// Just use this line in all modern FPC sources.
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}

// Below is needed for console programs on Windows,
// otherwise (with Delphi) the default is GUI program without console.
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

program MyProgram,
begin

WriteLn('Hello world!");
end.

This is a complete program that you can compile and run.

 If you use the command-line FPC, just create a new file myprogram.dpr and
execute fpc myprogram.dpr .

« If you use Lazarus, create a new project (menu "Project # New Project # Simple
Program"). Paste this as the program source code. Compile using the menu item
"Run # Compile" (or use shortcut Ctrl + F9).

http://freepascal.org/
http://lazarus.freepascal.org/
https://www.embarcadero.com/products/Delphi
https://www.embarcadero.com/products/Delphi
https://github.com/Fr0sT-Brutal/awesome-pascal
https://github.com/Fr0sT-Brutal/awesome-pascal
https://castle-engine.io/vscode
https://castle-engine.io/

Modern Object Pascal Introduction for Programmers

« If you use Delphi, also create a new project (menu "File # New # Console Application
- Delphi"). Paste this as the program source code. Compile using the menu item
"Project # Compile" (or use shortcut Ctrl + F9).

This is a command-line program, so just run the compiled executable from the
command-line.

You can also run it from Lazarus or Delphi IDE using the "Run" menu

@ item (shortcut F9 in both IDES). In this case, note that the console
will appear and disappear quickly. The simplest way to avoid it is to
add Readln (wait for Enter) at the end of the application.

The rest of this article talks about the Object Pascal language, so don’'t expect to see
anything more fancy than the command-line stuff. If you want to see something cool,
just create a new GUI project in Lazarus ("Project # New Project # Application™) or
Delphi ("File # New # Multi-Device Application”). Voila—a working GUI application,
cross-platform, with native look everywhere, using a comfortable visual component
library.

The Pascal compilers come with lots of standard units for networking, GUI, database,
file formats (XML, json, images...), threading and everything else you may need. |
already mentioned my cool Castle Game Engine earlier:)

2.2. Compilers and FPC "syntax modes'

This book, all the text and Pascal examples, has been written to support two modern
Pascal compilers:

1. Free Pascal Compiler (FPC), open-source Pascal compiler, used also by the
Lazarus IDE.

2. Delphi, a proprietary Pascal compiler from Embarcadero.

In this book, we support fully both compilers.

To complicate matters a bit, FPC compiler has multiple "syntax modes". In this book,
we decided to show the ObjFpc syntax mode, which is recommended by the FPC
developers and is the default for new Pascal projects created using Lazarus or Castle
Game Engine. It's a bit different from the Delphi syntax mode, which is most compatible

Modern Object Pascal Introduction for Programmers

with Pascal language as implemented by Delphi. We wrote a detailed comparison

herez.

But you don’t want to read about these differences now, if you're just starting to learn
Pascal!

The differences are minor, both between compilers and between FPC ObjFpc mode
and Delphi mode. Just be aware you may see some {$ifdef FPC} .. {$endif}
clauses in the examples, that make the code valid for both FPC ObjFpc mode and
Delphi. Using {$ifdef FPC_OBJFPC} .. {$endif} in some of these cases would
be more precise, but look even more complicated. If your project targets only one of
these compilers, you can simplify your code, just pick the variant for your compiler and
remove the {$ifdef ..}, {$endif} stuff.

2.3. Functions, procedures, primitive types

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

program MyProgram;

procedure MyProcedure(const A: Integer);
begin

WriteLn('A + 10 is: ', A + 10);
end;

function MyFunction(const S: string): string;
begin

Result := S + 'strings are automatically managed';
end;

var
X: Single;

begin
WriteLn(MyFunction('Note: '));
MyProcedure(5);

// Division using "/" always makes float result, use "div" for integer
division
X =15 / 5;

2 https://github.com/modern-pascal/modern-pascal-introduction/wiki/Some-differences-betwen-FPC-
ObjFpc-mode-and-Delphi-(and-FPC-Delphi-mode)

https://github.com/modern-pascal/modern-pascal-introduction/wiki/Some-differences-betwen-FPC-ObjFpc-mode-and-Delphi-(and-FPC-Delphi-mode)
https://github.com/modern-pascal/modern-pascal-introduction/wiki/Some-differences-betwen-FPC-ObjFpc-mode-and-Delphi-(and-FPC-Delphi-mode)
https://github.com/modern-pascal/modern-pascal-introduction/wiki/Some-differences-betwen-FPC-ObjFpc-mode-and-Delphi-(and-FPC-Delphi-mode)
https://github.com/modern-pascal/modern-pascal-introduction/wiki/Some-differences-betwen-FPC-ObjFpc-mode-and-Delphi-(and-FPC-Delphi-mode)

Modern Object Pascal Introduction for Programmers

WriteLn('X is now: ', X);
WriteLn('X is now: ', X:1:2);
end.

To return a value from a function, assign something to the magic Result variable.
You can read and set the Result freely, just like a local variable.

function MyFunction(const S: string): string;

begin
Result := S + 'something';
Result := Result + ' something more!';
Result := Result + ' and more!';

end;

You can also treat the function name (like MyFunction in example above) as the
variable, to which you can assign. But | would discourage it in new code, as it looks
"fishy" when used on the right side of the assignment expression. Just use Result
always when you want to read or set the function result.

If you want to call the function itself recursively, you can of course do it. If you're calling
a parameter-less function recursively, be sure to specify the parenthesis () (even
though in Pascal you can usually omit the parentheses for a parameter-less function),
this makes a recursive call to a parameter-less function different from accessing this
function’s current result. Like this:

function SumIntegersUntilZero: Integer;
var

I: Integer;
begin

ReadLn(I);

Result := I;

if I <> 0 then

Result := Result + SumIntegersuUntilZero();

end;

You can call Exit to end the execution of the procedure or function before it reaches
the final end; . If you call parameter-less Exit in a function, it will return the last
thing you set as Result . You can also use Exit(X) construct, to set the function
result and exit now —this is just like return X construct in C-like languages.

function AddName(const ExistingNames, NewName: string): string;

Modern Object Pascal Introduction for Programmers

begin
if ExistingNames = '' then
Exit(NewName);
Result := ExistingNames + ', ' + NewName;
end;

Note that the function result can be discarded. Any function may be used just like a
procedure. This makes sense if the function has some side effect (e.g. it modifies a
global variable) besides calculating the result. For example:

var
Count: Integer;
MyCount: Integer;

function CountMe: Integer;
begin

Inc(Count);

Result := Count;
end;

begin
Count := 10;
CountMe; // the function result is discarded, but the function is
executed, Count is now 11
MyCount := CountMe; // use the result of the function, MyCount equals to
Count which is now 12
end.

2.4. Testing (if)

Use if .. then or if .. then .. else torunsome code when some conditionis
satisfied. Unlike in the C-like languages, in Pascal you don’t have to wrap the condition
in parenthesis.

var
A: Integer;
B: boolean;
begin
if A > 0 then
DoSomething;

if A > 0 then

Modern Object Pascal Introduction for Programmers

begin
DoSomething;
AndDoSomethingMore;
end;

if A > 10 then
DoSomething

else
DoSomethingElse;

B := A > 10;
if B then
DoSomething
else
DoSomethingElse;
end;

The else is paired with the last if . So this works as you expect:

if A <> 0 then
if B <> 0 then
AIsNonzeroAndBToo
else
AIsNonzeroButBIsZero;

While the example with nested if above is correct, it is often better to place the
nested if inside a begin ... end block in such cases. This makes the code more
obvious to the reader, and it will remain obvious even if you mess up the indentation.
The improved version of the example is below. When you add or remove some else
clause in the code below, it's obvious to which condition it will apply (to the A test or
the B test), so it's less error-prone.

if A <> 0 then
begin
if B <> 0 then
AIsNonzeroAndBToo
else
AIsNonzeroButBIsZero;
end;

Modern Object Pascal Introduction for Programmers

2.5. Logical, relational and bit-wise operators

The logical operators are called and, or, not, xor . Their meaning is probably
obvious (search for "exclusive or" if you're unsure what xor does:)). They take boolean
arguments, and return a boolean. They can also act as bit-wise operators when both
arguments are integer values, in which case they return an integer.

The relational (comparison) operators are =, <>, >, <, <=, >=. If you're
accustomed to C-like languages, note that in Pascal you compare two values (check
are they equal) using a single equality character A = B (unlike in C where you use
A == B). The special assignment operator in Pascal is :=.

The logical (or bit-wise) operators have a higher precedence than relational operators.
You may need to use parenthesis around some expressions to have the desired order
of the calculations.

For example this is a compilation error:

var
A, B: Integer,
begin
if A= 0 and B <> 0 then ... // INCORRECT example

The above fails to compile, because the compiler first wants to perform a bit-wise and
in the middle of the expression: (0 and B) . This is a bit-wise operation which returns
an integer value. Then the compiler applies = operator which yields a boolean value
A = (0 and B) . And finally the "type mismatch" error is risen after trying to compare
the boolean value A = (0 and B) and integer value 0.

This is correct:

var
A, B: Integer;
begin
if (A =0) and (B <> 0) then ...

The short-circuit evaluation is used. Consider this expression:

if MyFunction(X) and MyOtherFunction(Y) then...

10

Modern Object Pascal Introduction for Programmers

* It's guaranteed that MyFunction(X) will be evaluated first.

* And if MyFunction(X) returns false, then the value of expression is
known (the value of false and whatever is always false), and
MyOtherFunction(Y) will not be executed at all.

* Analogous rule is for or expression. There, if the expression is known to be true
(because the 1st operand is true), the 2nd operand is not evaluated.

» This is particularly useful when writing expressions like
if (A <> nil) and A.IsValid then...

This will work OK, even when A is nil. The keyword nil is a pointer equal
to zero (when represented as a number). It is called a null pointer in many other
programming languages.

2.6. Testing single expression for multiple values (case)

If a different action should be executed depending on the value of some expression,
thenthe case .. of .. end statement is useful.

case SomeValue of
0: DoSomething;
1: DoSomethingElse;
2: begin
IfItsTwoThenDoThis;
AndAlsoDoThis;
end;
3..10: DoSomethingInCaseItsInThisRange;
11, 21, 31: AndDoSomethingForTheseSpecialValues;
else DoSomethingInCaseOfUnexpectedValue;
end;

The else clause is optional (and corresponds to default in C-like languages).
When no condition matches, and there’s no else , then nothing happens.

In you come from C-like languages, and compare this with switch statementinthese
languages, you will notice that there is no automatic fall-through. This is a deliberate
blessing in Pascal. You don’t have to remember to place break instructions. In every
execution, at most one branch of the case is executed, that's it.

11

Modern Object Pascal Introduction for Programmers

2.7. Enumerated and ordinal types and sets and constant-length
arrays

Enumerated type in Pascal is a very nice, opaque type. You will probably use it much
more often than enums in other languages:)

type
TAnimalKind = (akbDuck, akCat, akDog);

The convention is to prefix the enum names with a two-letter shortcut of type name,
hence ak = shortcut for "Animal Kind". This is a useful convention, since the enum
names are in the unit (global) namespace. So by prefixing them with ak prefix, you
minimize the chances of collisions with other identifiers.

The collisions in names are not a show-stopper. It's Ok for different
S units to define the same identifier. But it's a good idea to try to avoid
the collisions anyway, to keep code simple to understand and grep.

You can avoid placing enum names in the global namespace

S by compiler directive {$scopedenums on}. This means
you will have to access them qualified by a type name, like
TAnimalKind.akDuck . The needfor ak prefix disappearsin this
situation, and you will probably just call the enums Duck, Cat,
Dog . This is similar to C# enums.

The fact that enumerated type is opague means that it cannot be just assigned to
and from an integer. However, for special use, you can use Ord(MyAnimalKind) to
forcefully convert enum to int, or typecast TAnimalKind(MyInteger) to forcefully
convert int to enum. In the latter case, make sure to check first whether MyInteger
is in good range (0 to Ord(High(TAnimalKind))).

Enumerated and ordinal types can be used as array indexes:

type
TArrayOfTenStrings = array [0..9] of string;
TArrayOfTenStringsiBased = array [1..10] of string;

TMyNumber = 0..9;
TAlsoArrayOfTenStrings = array [TMyNumber] of string;

12

Modern Object Pascal Introduction for Programmers

TAnimalKind = (akDuck, akCat, akDog);
TAnimalNames = array [TAnimalKind] of string;

They can also be used to create sets (a bit-fields internally):

type
TAnimalKind = (akDuck, akCat, akDog);
TAnimals = set of TAnimalKind;

var
A: TAnimals;
begin
A= [1;
A := [akDuck, akCat];
A := A + [akDog];
A := A * [akCat, akDog];

Include(A, akDuck);
Exclude(A, akDuck);
end;

2.8. Loops (for, while, repeat, for .. in)

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}
{$R+} // range checking on - nice for debugging

var
MyArray: array [0..9] of Integer;
I: Integer;
begin
// initialize
for I := 0 to 9 do
MyArray[I] := I * I;

// show
for I := 0 to 9 do
WritelLn('Square is ', MyArray[I]);

// does the same as above
for I := Low(MyArray) to High(MyArray) do
WritelLn('Square is ', MyArray[I]);

// does the same as above
I :=0;

13

Modern Object Pascal Introduction for Programmers

while I < 10 do
begin

WriteLn('Square is ', MyArray[I]);

I :=I+1; // or "I += 1", or "Inc(I)"
end;

// does the same as above

I :=0;

repeat
WriteLn('Square is ', MyArray[I]);
Inc(I);

until I = 10;

// does the same as above
// note: here I enumerates MyArray values, not indexes
for I in MyArray do
WriteLn('Square is ', I);
end.

About the repeat and while loops:

There are two differences between these loop types:

1. The loop condition has an opposite meaning. In while .. do you tell it when to
continue, butin repeat .. until you tell it when to stop.

2. In case of repeat , the condition is not checked at the beginning. So the repeat
loop always runs at least once.

About the for I := .. loops:

The for I := .. to .. do .. construction it similar to the C-like for loop.
However, it's more constrained, as you cannot specify arbitrary actions/tests to control
the loop iteration. This is strictly for iterating over a consecutive numbers (or other
ordinal types). The only flexibility you have is that you can use downto instead of to,
to make numbers go downward.

In exchange, it looks clean, and is very optimized in execution. In particular, the
expressions for the lower and higher bound are only calculated once, before the loop
starts.

Note that the value of the loop counter variable (I in this example) should be
considered undefined after the loop has finished, due to possible optimizations.
Accessing the value of I after the loop may cause a compiler warning. Unless you

14

Modern Object Pascal Introduction for Programmers

exit the loop prematurely by Break or Exit :in such case, the counter variable is
guaranteed to retain the last value.

About the for I in .. loops:

The for I in .. do .. is similar to foreach construct in many modern
languages. It works intelligently on many built-in types:

|t can iterate over all values in the array (example above).

* It can iterate over all possible values of an enumerated type:

var
AK: TAnimalKind;

begin
for AK in TAnimalKind do...

¢ |t can iterate over all items included in the set:

var
Animals: TAnimals;
AK: TAnimalKind;

begin
Animals := [akDog, akCat];
for AK in Animals do ...

* And it works on custom list types, generic or not, like TObjectList or
TFPGObjectList.

{$ifdef FPC} {$mode objfpc}{S$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Generics.Collections;

type
TMyClass = class
I, Square: Integer,
end;
TMyClassList = {$ifdef FPC}specialize{$endif} TObjectList<TMyClass>;

var
List: TMyClassList;

15

Modern Object Pascal Introduction for Programmers

C: TMyClass;
I: Integer;
begin
List := TMyClassList.Create(true); // true = owns children
try
for I := 0 to 9 do
begin
C := TMyClass.Create;
C.T :=1,;
C.Square := I * I;
List.Add(C);
end;

for C in List do
WritelLn('Square of ', C.I, ' is ', C.Square);
finally
FreeAndNil(List);
end;
end.

We didn’t yet explain the concept of classes, so the last example may not be obvious
to you yet — just carry on, it will make sense later:)

2.9. Output, logging

To simply output strings in Pascal, use the Write or WritelLn routine. The latter
automatically adds a newline at the end.

This is a "magic" routine in Pascal. It takes a variable number of arguments and they
can have any type. They are all converted to strings when displaying, with a special
syntax to specify padding and number precision.

WriteLn('Hello world!");

WriteLn('You can output an integer: ', 3 * 4);
WriteLn('You can pad an integer: ', 666:10);
WriteLn('You can output a float: ', Pi:1:4);

To explicitly use newline in the string, use the LineEnding constant (from FPC RTL).
(The Castle Game Engine defines also a shorter NL constant.) Pascal strings do not
interpret any special backslash sequences, so writing

WriteLn('One line.\nSecond 1line.'); // INCORRECT example

16

Modern Object Pascal Introduction for Programmers

doesn’t work like some of you would think. This will work:
WriteLn('One line.' + LineEnding + 'Second line.');
or just this:

WriteLn('One line.');
WriteLn('Second 1line.'");

Note that this will only work in console applications. Make sure you have {$apptype
CONSOLE} (and not {$apptype GUI}) defined in your main program file. On
some operating systems it actually doesn’t matter and will work always (Unix), but on
some operating systems trying to write something from a GUI application is an error
(Windows).

In the Castle Game Engine: use WriteLnLog or WritelLnWarning, never
WritelLn, to print debug information. They will be always directed to some useful
output. On Unix, standard output. On Windows GUI application, log file. On Android,
the Android logging facility (visible when you use adb logcat). Theuseof WritelLn
should be limited to the cases when you write a command-line application (like a 3D
model converter / generator) and you know that the standard output is available.

2.10. Converting to a string

To convert an arbitrary number of arguments to a string (instead of just directly
outputting them), you have a couple of options.

* You can convert particular types to strings using specialized functions like
IntToStr and FloatToStr . Furthermore, you can concatenate strings in
Pascal simply by adding them. So you can create a string like this: 'My int
number is ' + IntToStr(MyInt) + ', and the value of Pi is '
+ FloatToStr(P1i).

Advantage: Absolutely flexible. There are many XxxToStr overloaded
versions and friends (like FormatF loat), covering many types. Most of them
are in the SysUtils unit.

Another advantage: Consistent with the reverse functions. To convert a string
(for example, user input) back to an integer or float, you use StrTolInt,
StrToFloat and friends (like StrToIntDef).

17

Modern Object Pascal Introduction for Programmers

Disadvantage: A long concatenation of many XxxToStr calls and strings
doesn’t look nice.

« The Format function, used like Format('%d %f %s', [MyInt, MyFloat,
MyString]) . Thisis like sprintf function in the C-like languages. It inserts the
arguments into the placeholders in the pattern. The placeholders may use special
syntax to influence formatting, e.g. %.4f results in a floating-point format with 4
digits after the decimal point.

Advantage: The separation of pattern string from arguments looks clean. If you
need to change the pattern string without touching the arguments (e.g. when
translating), you can do it easily.

Another advantage: No compiler magic. You can use the same syntax to pass
any number of arguments of an arbitrary type in your own routines (declare
parameter as an array of const). You can then pass these arguments
downward to Format , or deconstruct the list of parameters and do anything
you like with them.

Disadvantage: Compiler does not check whether the pattern matches the
arguments. Using a wrong placeholder type will result in an exception at
runtime (EConvertError exception, not anything nasty like Access Violation
(Segmentation Fault) error).

e WriteStr(TargetString, ..) routine behaves much like Write(..) , except
that the result is saved to the TargetString.

Advantage: It supports all the features of Write, including the special syntax
for formatting like Pi:1:4 .

Disadvantage: The special syntax for formatting is a "compiler magic",
implemented specifically for routines like this. This is sometimes troublesome,
e.g. you cannot create your own routine MyStringFormatter(..) thatwould
also allow the special syntax like Pi:1:4 . For this reason (and also because it
wasn’'t implemented for a long time in major Pascal compilers), this construction
IS not very popular.

3. Units

3.1. Overview

Units allow you to group common stuff (anything that can be declared), for usage
by other units and programs. They are equivalent to modules and packages in other

18

Modern Object Pascal Introduction for Programmers

languages. They have an interface section, where you declare what is available for
other units and programs, and then the implementation.

unit MyuUnit;

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}

interface

procedure MyProcedure(const A: Integer);
function MyFunction(const S: string): string;

implementation

procedure MyProcedure(const A: Integer);
begin

WriteLn('A + 10 is: ', A + 10);
end;

function MyFunction(const S: string): string;
begin

Result := S + 'strings are automatically managed';
end;

end.

A program can use a unit by a uses keyword:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

program MyProgram;

uses
MyuUnit;

begin
WriteLn(MyFunction('Note: '));
MyProcedure(5);

end.

19

Modern Object Pascal Introduction for Programmers

3.2. Extensions used for units and programs

Save the unitfile MyUnit as myunit.pas . Thatis, lowercase with .pas extension.
S Other conventions are possible.

E.g. FPC allows other file extensions for units. And some people use
.pp for unitfiles, like myunit.pp .

Using a different case is also possible. On Windows file systems,
the letter case doesn’'t matter. But on Unix file systems is does
matter and FPC allows only to use the exact same case as
was specified in Pascal uses clause(so MyUnit.pas) or all
lowercase (so myunit.pas). Since Pascal is case-insensitive, the
first rule sometimes causes issues when people specify unit names
with different case in different places.

All in all, we recommend the simple above rule all lowercase,
. pas extensiorfor your projects. This matches the most common
established practices and works with all compilers and file systems

without issues.

Save the program to a file with:

* .dpr extension (short for "Delphi Project"), if you want the project to be compatible
with both FPC/Lazarus and Delphi,

* . lpr extension (short for "Lazarus Project"), if you want to use only FPC/Lazarus.

Other conventions are possible and used by some projects. E.g.

@ some projects use .pas for main program file. Some projects
use .pp for units or programs. There are reasonable reasons
for this (e.g. for FPC programs, that don't use Lazarus LCL,
neither description "Lazarus Project" nor "Delphi Project” are strictly
correct)... But for the sake of simplicity, we recommend the above
conventions (.dpr or .1lpr), as they cover the most common
established practices.

3.3. Initialization and finalization

A unit may also contain initialization and finalization sections. Thisisthe
code executed when the program starts and ends.

20

Modern Object Pascal Introduction for Programmers

unit initialization_finalization;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
interface
implementation
initialization
WriteLn('Hello world!");
finalization

WritelLn('Goodbye world!"');
end.

3.4. Units using each other

One unit can also use another unit. Another unit can be used in the interface section,
or only in the implementation section. The former allows to define new public stuff
(procedures, types...) on top of another unit's stuff. The latter is more limited (if you
use a unit only in the implementation section, you can use its identifiers only in your
implementation).

unit AnotheruUnit;
{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
interface

uses
Classes;

{ The "TComponent" type (class) is defined in the Classes unit.
That's why we had to use the Classes unit above. }
procedure DoSomethingWithComponent(var C: TComponent);

implementation

uses SysUtils;

procedure DoSomethingWithComponent(var C: TComponent);
begin

{ The FreeAndNil procedure is defined in the SysUtils unit.
Since we only refer to its name in the implementation,

21

Modern Object Pascal Introduction for Programmers

it was OK to use the SysUtils unit in the "implementation" section. }
FreeAndNil(C);
end;

end.

It is not allowed to have circular unit dependencies in the interface. That is, two
units cannot use each other in the interface section. The reason is that in order to
"understand" the interface section of a unit, the compiler must first "understand” all the
units it uses in the interface section. Pascal language follows this rule strictly, and it
allows a fast compilation and fully automatic detection on the compiler side what units
need to be recompiled. There is no need to use complicated Makefile files for a
simple task of compilation in Pascal, and there is no need to recompile everything just
to make sure that all dependencies are updated correctly.

It is OK to make a circular dependency between units when at least one "usage" is only
in the implementation. So it's OK for unit A to use unit B in the interface, and then
unit B to use unit A in the implementation.

3.5. Qualifying identifiers with unit name

Different units may define the same identifier. To keep the code simple to read and
search, you should usually avoid it, but it's not always possible. In such cases, the last
unit on the uses clause "wins", which means that the identifiers it introduces hide the
same identifiers introduced by earlier units.

You can always explicitly define a unit of a given identifier, by using it like
MyUnit.MyIdentifier . This is the usual solution when the identifier you want to
use from MyUnit is hidden by another unit. Of course you can also rearrange the
order of units on your uses clause, although this can affect other declarations than the
one you're trying to fix.

program showcolor;

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

// Both Graphics and GoogleMapsEngine units define TColor type.
uses Graphics, GoogleMapsEngine;

var
{ This doesn't work like we want, as TColor ends up

22

Modern Object Pascal Introduction for Programmers

being defined by GoogleMapsEngine. }
// Color: TColor;
{ This works Ok. }
Color: Graphics.TColor;

begin

Color := clYellow;

WriteLn(Red(Color), ' ', Green(Color), ' ', Blue(Color));
end.

In case of units, remember that they have two uses clauses: one in the interface, and
another one in the implementation. The rule later units hide the stuff from earlier units
is applied here consistently, which means that units used in the implementation section
can hide identifiers from units used in the interface section. However, remember that
when reading the interface section, only the units used in the interface matter.
This may create a confusing situation, where two seemingly-equal declarations are
considered different by the compiler:

unit UnitUsingColors;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
// INCORRECT example
interface
uses Graphics;
procedure ShowColor(const Color: TColor);
implementation
uses GoogleMapsEngine;
procedure ShowColor(const Color: TColor);
begin
// WriteLn(ColorToString(Color));

end;

end.

The unit Graphics (from Lazarus LCL) defines the TColor type. But the
compiler will fail to compile the above unit, claiming that you don’'t implement a
procedure ShowColor that matches the interface declaration. The problem is that

23

Modern Object Pascal Introduction for Programmers

unit GoogleMapsEngine also defines a TColor type. And it is used only in the
implementation section, therefore it shadows the TColor definition only in the
implementation. The equivalent version of the above unit, where the error is obvious,
looks like this:

unit UnitUsingColors;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
// INCORRECT example.
// This is what the compiler "sees" when trying to compile previous
example
interface
uses Graphics;
procedure ShowColor(const Color: Graphics.TColor);
implementation
uses GoogleMapsEngine;
procedure ShowColor(const Color: GoogleMapsEngine.TColor);
begin
// WriteLn(ColorToString(Color));

end;

end.

The solution is trivial in this case, just change the implementation to explicitly
use TColor from Graphics wunit. You could fix it also by moving the
GoogleMapsEngine usage, to the interface section and earlier than Graphics,
although this could result in other consequences in real-world cases, when
UnitUsingColors would define more things.

unit UnitUsingColors;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
interface

uses Graphics;

24

Modern Object Pascal Introduction for Programmers

procedure ShowColor(const Color: TColor);
implementation
uses GoogleMapsEngine;
procedure ShowColor(const Color: Graphics.TColor);
begin

// WriteLn(ColorToString(Color));

end;

end.

3.6. Exposing one unit identifiers from another

Sometimes you want to take an identifier from one unit, and expose it in a new unit.
The end result should be that using the new unit will make the identifier available in
the namespace.

Sometimes this is necessary to preserve backward compatibility with previous unit
versions. Sometimes it’s nice to "hide" an internal unit this way.

This can be done by redefining the identifier in your new unit.

unit MyuUnit;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
interface

uses Graphics;

type
{ Expose TColor from Graphics unit as TMyColor. }
TMyColor = TColor;

{ Alternatively, expose it under the same name.

Qualify with unit name in this case, otherwise

we would refer to ourselves with "TColor = TColor" definition. }
TColor = Graphics.TColor;

const
{ This works with constants too. }

25

Modern Object Pascal Introduction for Programmers

clYellow = Graphics.clYellow;
clBlue = Graphics.clBlue;

implementation

end.

Note that this trick cannot be done as easily with global procedures, functions and
variables. With procedures and functions, you could expose a constant pointer to a
procedure in another unit (see Section 8.2, “Callbacks (aka events, aka pointers to
functions, aka procedural variables)”), but that looks quite dirty.

The usual solution is to create trivial "wrapper" functions that simply call the functions
from the internal unit, passing the parameters and return values as needed.

To make this work with global variables, one can use global (unit-level) properties, see
Section 4.5, “Properties”.

4. Classes

4.1. Basics

We have classes. At the basic level, a class is just a container for

« fields (which is fancy name for "a variable inside a class"),
* methods (which is fancy name for "a procedure or function inside a class"),

» and properties (which is a fancy syntax for something that looks like a field, but is in
fact a pair of methods to get and set something; more in Section 4.5, “Properties”).

« Actually, there are more possibilities, described in Section 9.2, “More stuff inside
classes and nested classes”.

type
TMyClass = class
MyInt: Integer; // this is a field
property MyIntProperty: Integer read MyInt write MyInt; // this is a
property
procedure MyMethod; // this is a method
end;

procedure TMyClass.MyMethod;

26

Modern Object Pascal Introduction for Programmers

begin
WriteLn(MyInt + 10);
end;

4.2. Inheritance, virtual methods, override, reintroduce

We have inheritance and virtual methods.

In the example below, class TMyClassDescendant inherits from class TMyClass .
The TMyClassDescendant is a descendant of TMyClass, and TMyClass is an
ancestor of TMyClassDescendant .

program MyProgram,

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils;

type
TMyClass = class
MyInt: Integer;
procedure MyVirtualMethod; virtual;
end;

TMyClassDescendant = class(TMyClass)
procedure MyVirtualMethod; override;
end;

procedure TMyClass.MyVirtualMethod;
begin

WriteLn('TMyClass shows MyInt + 10: ', MyInt + 10);
end;

procedure TMyClassDescendant.MyVirtualMethod;
begin

WriteLn('TMyClassDescendant shows MyInt + 20: ', MyInt + 20);
end;

var
C: TMyClass;

begin
C := TMyClass.Create;

27

Modern Object Pascal Introduction for Programmers

try
C.MyVirtualMethod;
finally
FreeAndNil(C);
end;

C := TMyClassDescendant.Create;
try
C.MyVirtualMethod;
finally
FreeAndNil(C);
end;
end.

When a method is virtual it means that the compiler searches for the method
implementation at runtime, based on the actual class of the instance. What does this
mean in practice?

* Run the above example unmodified. Note that the method MyVirtualMethod
is virtual. The call C.MyVirtualMethod selects the appropriate implementation
based on the actual class of the instance C. When C is of class
TMyClassDescendant, the TMyClassDescendant.MyVirtualMethod
implementation is called. Thus the output should be:

TMyClass shows MyInt + 10: 10
TMyClassDescendant shows MyInt + 20: 20

 Now modify the above example removing the virtual; and override;
pieces. Both calls C.MyVirtualMethod will now call the implementation from
TMyClass, because C is declared as TMyClass, so at compile-time all the
compiler knows is that C isa TMyClass . The output will be:

TMyClass shows MyInt + 10: 10
TMyClass shows MyInt + 10: 20

In short, this is usually not what you want. You want virtual methods.

By default methods are not virtual, declare them with virtual to make them so.
Overrides must be marked with override , otherwise you will get a warning. To hide
a method (declared in ancestor as virtual) without overriding it (usually you don’t
want to do this, unless you know what you're doing) use reintroduce .

28

Modern Object Pascal Introduction for Programmers

4.3. Classes and class instances, constructors, destructors

Example in the section above shows a class called TMyClass (and another class
called TMyClassDescendant). The class is a type, you can also think of it as a
template. The class itself doesn’t hold any values — there is no memory reserved for
the field MyInt: Integer declared in the example above.

It is actually possible for a class to "hold values" by using class
@ variables, but for now let’s forget about this possibility. Focus on
simple classes that have only regular fields.

To reserve memory for the fields, we need to create a class instance.

Creating the class instance is done by invoking a constructor.

» Constructor is a special kind of a method, using the keyword constructor .

» Before invoking a constructor, a memory for the class instance is allocated, and
then the constructor code is called.

* You don’'t need to define a constructor in all your classes. All classes implicitly
descend from the TObject which has a parameter-less constructor called
Create . So you always have a constructor, even if you didn’t define one.

« But you can define a constructor in your class. It's the best way to initialize a class
instance. If you want to later depend that e.g. "initial value of field X is Y", then make
itso (X := Y;)inthe constructor.

* Your own constructors are usually also called just Create . More details about
naming constructors and destructors are in Section 5.4, “The virtual destructor called
Destroy”.

You invoke the constructor, allocating a class instance, like this:
X := TMyClass.Create;

You define your own constructor like this:

type
TMyClass = class
public
X: Integer;

constructor Create;

29

Modern Object Pascal Introduction for Programmers

end;

constructor TMyClass.Create;

begin
inherited Create; // Call the ancestor constructor
// Initialization code here
X 1= 123;

end;

Conversely, when a class is destroyed, a destructor is called.

 Itis again a special kind of a method, using the keyword destructor .

 After invoking the destructor, a memory for the class instance is released. Accessing
the fields of the destroyed instance is no longer allowed.

e Again, you don’t need to define a destructor in all your classes. All classes
implicitly descend from the TObject which has a parameter-less destructor called
Destroy .

« But you can define a destructor in your class. This is your last chance to do any
"cleanup”. E.g. maybe your class instance created some other class instances,
internal, and now they need to be freed.

* If you define one, there should be only one destructor, called Destroy, always
with override; . More details why it should be so are in Section 5.4, “The virtual
destructor called Destroy”.

Here’s an example:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils;

type
TMyClass = class
private
InternalStuff: TObject;
public
constructor Create;
destructor Destroy; override;
end;

30

Modern Object Pascal Introduction for Programmers

constructor TMyClass.Create;

begin
inherited Create; // Call the ancestor constructor at the beginning
InternalStuff := TObject.Create;
Writeln('TMyClass.Create');

end;

destructor TMyClass.Destroy;

begin
Writeln('TMyClass.Destroy');
FreeAndNil(InternalStuff); // will call Internalstuff.Destroy
inherited Destroy; // Call the ancestor destructor at the end

end;
var
C: TMyClass;
begin
C := TMyClass.Create;
try
// use C
finally
FreeAndNil(C); // will call C.Dbestroy
end;
end.

4.4. Testing class (is), typecasting (as, TMyClass(X))

To test the class of an instance at runtime, use the is operator. To typecast the
instance to a specific class, use the as operator.

program is_as;

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils;

type
TMyClass = class
procedure MyMethod;
end;

TMyClassDescendant = class(TMyClass)

31

Modern Object Pascal Introduction for Programmers

procedure MyMethodInDescendant;
end;

procedure TMyClass.MyMethod;
begin

WriteLn('MyMethod');
end;

procedure TMyClassDescendant.MyMethodInDescendant;
begin

WriteLn('MyMethodInDescendant');
end;

var
Descendant: TMyClassDescendant;
C: TMyClass;
begin
Descendant := TMyClassDescendant.Create;
try
Descendant.MyMethod;
Descendant.MyMethodInDescendant;

{ Descendant has all functionality expected of
the TMyClass, so this assignment is OK }

C := Descendant;

C.MyMethod;

{ this cannot work, since TMyClass doesn't define this method }
//C.MyMethodInDescendant;
if C is TMyClassDescendant then

(C as TMyClassDescendant).MyMethodInDescendant;

finally
FreeAndNil(Descendant);
end;
end.

Instead of casting using X as TMyClass, you can also use the unchecked typecast
TMyClass(X) . This is faster, but results in an undefined behavior if the X is not,
in fact, a TMyClass descendant. So don’'t use the TMyClass(X) typecast, or use
it only in a code where it's blindingly obvious that it's correct, for example right after
testing with is:

if A is TMyClass then

32

Modern Object Pascal Introduction for Programmers

(A as TMyClass).CallSomeMethodOfMyClass;
// below is marginally faster
if A is TMyClass then
TMyClass(A).CallSomeMethodOfMyClass;

4.5. Properties
Properties are a very nice "syntactic sugar" to

1. Make something that looks like a field (can be read and set) but underneath is
realized by calling a getter and setter methods. The typical usage is to perform
some side-effect (e.g. redraw the screen) each time some value changes.

2. Make something that looks like a field, but is read-only. In effect, it's like a constant
or a parameter-less function.

type
TwWebPage = class
private
FURL: string;
FColor: TColor;
function SetColor(const Value: TColor);
public
{ No way to set it directly.
Call the Load method, like Load('http://www.freepascal.org/'),
to load a page and set this property. }
property URL: string read FURL;
procedure Load(const AnURL: string);
property Color: TColor read FColor write SetColor;
end;

procedure TWebPage.Load(const AnURL: string);
begin
FURL := AnURL;
NetworkingComponent.LoadWebPage(AnURL);
end;

function TwWebPage.SetColor(const Value: TColor);
begin
if FColor <> Value then
begin
FColor := Value;
// for example, cause some update each time value changes
Repaint;

33

Modern Object Pascal Introduction for Programmers

// as another example, make sure that some underlying instance,
// like a "RenderingComponent" (whatever that is),
// has a synchronized value of Color.
RenderingComponent.Color := Value;
end;
end;

Note that instead of specifying a method, you can also specify a field (typically a private
field) to directly get or set. In the example above, the Color property uses a setter
method SetColor . But for getting the value, the Color property refers directly to
the private field FColor . Directly referring to a field is faster than implementing trivial
getter or setter methods (faster for you, and faster at execution).

When declaring a property you specify:

1. Whether it can be read, and how (by directly reading a field, or by using a "getter"
method).

2. And, in a similar manner, whether it can be set, and how (by directly writing to a
designated field, or by calling a "setter" method).

The compiler checks that the types and parameters of indicated fields and methods
match with the property type. For example, to read an Integer property you have
to either provide an Integer field, or a parameter-less method that returns an
Integer.

Technically, for the compiler, the "getter" and "setter" methods are just normal methods
and they can do absolutely anything (including side-effects or randomization). But it's
a good convention to design properties to behave more-or-less like fields:

» The getter function should have no visible side-effects (e.g. it should not read some
input from file / keyboard). It should be deterministic (no randomization, not even
pseudo-randomization :). Reading a property many times should be valid, and return
the same value, if nothing changed in-between.

Note that it's OK for getter to have some invisible side-effect, for example to cache
a value of some calculation (known to produce the same results for given instance),
to return it faster next time. This is in fact one of the cool possibilities of a "getter”
function.

* The setter function should always set the requested value, such that calling the
getter yields it back. Do not reject invalid values silently in the "setter" (raise an

34

Modern Object Pascal Introduction for Programmers

exception if you must). Do not convert or scale the requested value. The idea is
that after MyClass.MyProperty := 123; the programmer can expect that
MyClass.MyProperty = 123.

* The read-only properties are often used to make some field read-only from the
outside. Again, the good convention is to make it behave like a constant, at least
constant for this object instance with this state. The value of the property should not
change unexpectedly. Make it a function, not a property, if using it has a side effect
or returns something random.

» The "backing" field of a property is almost always private, since the idea of a property
is to encapsulate all outside access to it.

 |t's technically possible to make set-only properties, but | have not yet seen a good
example of such thing:)

serve an analogous purpose then: look like a global variable, but are
backed by a getter and setter routines.

@ Properties can also be defined outside of class, at a unit level. They

Serialization of properties

Published properties are the basis of a serialization (also known as streaming
components) in Pascal. Serialization means that the instance data is recorded into a
stream (like a file), from which it can be later restored.

Serialization is what happens when Lazarus reads (or writes) the component state from
an xxx.Llfm file. (In Delphi, the equivalent file has .dfm extension.) You can also
use this mechanism explicitly, using routines like ReadComponentFromTextStream
from the LResources unit. You can also use other serialization algorithms, e.g.
FpJsonRtti unit (serializing to JSON).

In the Castle Game Engine: Use the CastleComponentSerialize unit (based
on FpJsonRtti) to serialize our user-interface and transformation component
hierarchies.

At each property, you can declare some additional things that will be helpful for any
serialization algorithm:

* You can specify the property default value (using the default keyword). Note
that you are still required to initialize the property in the constructor to this exact
default value (it is not done automatically). The default declaration is merely an

35

Modern Object Pascal Introduction for Programmers

information to the serialization algorithm: "when the constructor finishes, the given
property has the given value".

« Whether the property should be stored at all (using the stored keyword).

4.6. Exceptions - Quick Example

We have exceptions. They can be caught with try .. except .. end clauses, and
we have finally sectionslike try .. finally .. end.

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

program MyProgram;

uses
SysUtils;

type
TMyClass = class
procedure MyMethod;

end;

procedure TMyClass.MyMethod;
begin
if Random > 0.5 then
raise Exception.Create('Raising an exception!'");
end;

var
C: TMyClass;
begin
Randomize;
C := TMyClass.Create;
try
C.MyMethod;
finally
FreeAndNil(C);
end;
end.

Note that the finally clause is executed even if you exit the block using the Exit
(from function / procedure / method) or Break or Continue (from loop body).

See the Section 6, “Exceptions” chapter for more in-depth description of exceptions.

36

Modern Object Pascal Introduction for Programmers

4.7. Visibility specifiers

As in most object-oriented languages, we have visibility specifiers to hide fields /
methods / properties.

The basic visibility levels are:

public
everyone can access it, including the code in other units.

private
only accessible in this class.

protected
only accessible in this class and descendants.

The explanation of private and protected visibility above is not precisely true.
The code in the same unit can overcome their limits, and access the private and
protected stuff freely. Sometimes this is a nice feature, allows you to implement
tightly-connected classes. Use strict private or strict protected tosecure
your classes more tightly. See the Section 9.1, “Private and strict private”.

By default, if you don’'t specify the visibility, then the visibility of declared stuff is
public . The exception is for classes compiled with {$M+} , or descendants of
classes compiled with {$M+} , which includes all descendants of TPersistent,
which also includes all descendants of TComponent (since TComponent descends
from TPersistent). For them, the default visibility specifier is published , which
is like public, butin addition the streaming system knows to handle this.

Not every field and property type is allowed in the published section (not every
type can be streamed, and only classes can be streamed from simple fields). Just use
public if you don’t care about streaming but want something available to all users.

4.8. Default ancestor
If you don't declare the ancestor type, every class inherits from TObject .

4.9. Self

The special keyword Self can be used within the class implementation to explicitly
refer to your own instance. It is equivalent to this from C++, Java and similar
languages.

37

Modern Object Pascal Introduction for Programmers

4.10. Calling inherited method

Within a method implementation, if you call another method, then by default you call the
method of your own class. In the example code below, TMyClass2.MyOtherMethod
calls MyMethod , which ends up calling TMyClass2.MyMethod .

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils;

type
TMyClassl = class
procedure MyMethod;
end;

TMyClass2 = class(TMyClass1)
procedure MyMethod;
procedure MyOtherMethod;

end;

procedure TMyClassl.MyMethod;
begin

Writeln('TMyClassl.MyMethod');
end;

procedure TMyClass2.MyMethod;
begin

Writeln('TMyClass2.MyMethod');
end;

procedure TMyClass2.MyOtherMethod;
begin

MyMethod; // this calls TMyClass2.MyMethod
end;

var

C: TMyClass2;
begin

C := TMyClass2.Create;

try

C.MyOtherMethod;

finally FreeAndNil(C) end;

end.

38

Modern Object Pascal Introduction for Programmers

If the method is not defined in a given class, then it calls the method of an ancestor
class. In effect, when you call MyMethod on an instance of TMyClass2 , then

The compiler looks for TMyClass2.MyMethod .

If not found, it looks for TMyClass1.MyMethod .

If not found, it looks for TObject.MyMethod .

if not found, then the compilation fails.

You can test it by commenting out the TMyClass2.MyMethod definition
in the example above. In effect, TMyClassl.MyMethod will be called by
TMyClass2.MyOtherMethod .

Sometimes, you don’t want to call the method of your own class. You want to call the
method of an ancestor (or ancestor’s ancestor, and so on). To do this, add the keyword
inherited before the call to MyMethod, like this:

inherited MyMethod;

This way you force the compiler to start searching from an ancestor class.
In our example, it means that compiler is searching for MyMethod inside
TMyClassl.MyMethod, then TObject.MyMethod , and then gives up. It does not
even consider using the implementation of TMyClass2.MyMethod .

Go ahead, change the implementation of
@ TMyClass2.MyOtherMethod above to wuse inherited
MyMethod , and see the difference in the output.

The inherited callis often used to call the ancestor method of the same name. This
way the descendants can enhance the ancestors (keeping the ancestor functionality,
instead of replacing the ancestor functionality). Like in the example below.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils;

type
TMyClassl = class
constructor Create;
procedure MyMethod(const A: Integer);

39

Modern Object Pascal Introduction for Programmers

end;

TMyClass2 = class(TMyClassl)
constructor Create;
procedure MyMethod(const A: Integer);
end;

constructor TMyClassl.Create;
begin
inherited Create;
Writeln('TMyClassl.Create');
end;

procedure TMyClassl.MyMethod(const A: Integer);
begin

Writeln('TMyClassl.MyMethod ', A);
end;

constructor TMyClass2.Create;
begin
inherited Create;
Writeln('TMyClass2.Create');
end;

procedure TMyClass2.MyMethod(const A: Integer);
begin
inherited MyMethod(A);
Writeln('TMyClass2.MyMethod ', A);
end;

var

C: TMyClass2;
begin

C := TMyClass2.Create;

try

C.MyMethod(123);

finally FreeAndNil(C) end;

end.

Since using inherited to call a method with the same name, with the same
arguments, is a very common case, there is a special shortcut for it: you can just write
inherited; (inherited keyword followed immediately by a semicolon, instead
of a method name). This means "call an inherited method with the same name, passing
it the same arguments as the current method".

40

Modern Object Pascal Introduction for Programmers

In the above example, all the inherited ..; calls could be
@ replaced by a simple inherited; .

Note 1: The inherited; is really just a shortcut for calling the ancestor's method
with the same variables passed in. If you have modified your own parameter (which
is possible, if the parameter is not const), then the ancestor's method can receive
different input values from your descendant. Consider this:

procedure TMyClass2.MyMethod(A: Integer);
begin
WriteLn('TMyClass2.MyMethod beginning ', A);
A = 456;
{ This calls TMyClassl.MyMethod with A = 456,
regardless of the A value passed to this method
(TMyClass2.MyMethod). }
inherited;
WritelLn('TMyClass2.MyMethod ending ', A);
end;

Note 2: You usually want to make the MyMethod virtual when many classes (along
the "inheritance chain") define it. More about the virtual methods in the section below.
Butthe inherited keyword works regardless of whether the method is virtual or not.
The inherited always means that the compiler starts searching for the method in
an ancestor, and it makes sense for both virtual and non-virtual methods.

4.11. Virtua methods, override and reintroduce

By default, the methods are not virtual. This is similar to C++, and unlike Java.

When a method is not virtual, the compiler determines which method to call based on
the currently declared class type, not based on the actually created class type. The
difference seems subtle, but it's important when your variable is declared to have a
class like TFruit, butit may be in fact a descendant class like TApple.

The idea of the object-oriented programming is that the descendant class is always as
good as the ancestor, so the compiler allows to use a descendant class always when
the ancestor is expected. When your method is not virtual, this can have undesired
consequences. Consider the example below:

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}

41

Modern Object Pascal Introduction for Programmers

{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils;

type
TFruit = class
procedure Eat;
end;

TApple = class(TFruit)
procedure Eat;
end;

procedure TFruit.Eat;
begin

Writeln('Eating a fruit');
end;

procedure TApple.Eat;
begin

Writeln('Eating an apple');
end;

procedure DoSomethingWithAFruit(const Fruit: TFruit);
begin
Writeln('We have a fruit with class ', Fruit.ClassName);
Writeln('We eat it:');
Fruit.Eat;
end;

var

Apple: TApple; // Note: you could also declare "Apple: TFruit" here
begin

Apple := TApple.Create;

try

DoSomethingWithAFruit (Apple);

finally FreeAndNil(Apple) end;

end.

This example will print

We have a fruit with class TApple
We eat it:
Eating a fruit

42

Modern Object Pascal Introduction for Programmers

In effect, the call Fruit.Eat called the TFruit.Eat implementation, and nothing
calls the TApple.Eat implementation.

If you think about how the compiler works, this is natural: when you wrote the
Fruit.Eat, the Fruit variable was declared to hold a class TFruit. So the
compiler was searching for the method called Eat within the TFruit class. If the
TFruit class would not contain such method, the compiler would search within an
ancestor (TObject in this case). But the compiler cannot search within descendants
(like TApple))as it doesn’t know whether the actual class of Fruit is TApple,
TFruit, or some other TFruit descendant (like a TOrange, not shown in the
example above).

In other words, the method to be called is determined at compile-time.

Using the virtual methods changes this behavior. If the Eat method would be virtual
(an example of it is shown below), then the actual implementation to be called is
determined atruntime. Ifthe Fruit variable will hold aninstance of the class TApple
(even if it's declared as TFruit), then the Eat method will be searched within the
TApple class first.

In Object Pascal, to define a method as virtual, you need to

* Mark its first definition (in the top-most ancestor) with the virtual keyword.

« Mark all the other definitions (in the descendants) with the override keyword.
All the overridden versions must have exactly the same parameters (and return the
same types, in case of functions).

uses SysUtils;

type
TFruit = class
procedure Eat; virtual;
end;

TApple = class(TFruit)
procedure Eat; override;
end;

43

Modern Object Pascal Introduction for Programmers

procedure TFruit.Eat;
begin

Writeln('Eating a fruit');
end;

procedure TApple.Eat;
begin

Writeln('Eating an apple');
end;

procedure DoSomethingWithAFruit(const Fruit: TFruit);
begin
Writeln('We have a fruit with class ', Fruit.ClassName);
Writeln('We eat it:');
Fruit.Eat;
end;

var

Apple: TApple; // Note: you could also declare "Apple: TFruit"
begin

Apple := TApple.Create;

try

DoSomethingWithAFruit (Apple);

finally FreeAndNil(Apple) end;

end.

This example will print

We have a fruit with class TApple
We eat it:
Eating an apple

Internally, virtual methods work by having so-called virtual method table associated
with each class. This table is a list of pointers to the implementations of virtual methods
for this class. When calling the Eat method, the compiler looks into a virtual method
table associated with the actual class of Fruit, and uses a pointer to the Eat

implementation stored there.

If you don’t use the override keyword, the compiler will warn you that you’re hiding
(obscuring) the virtual method of an ancestor with a non-virtual definition. If you're sure
that this is what you want, you can add a reintroduce keyword. Butin most cases,
you will rather want to keep the method virtual, and add the override keyword, thus

making sure that it's always invoked correctly.

here

44

Modern Object Pascal Introduction for Programmers

5. Freeing classes

5.1. Remember to free the class instances

The class instances have to be manually freed, otherwise you get memory leaks.

We advise to automatically detect memory leaks using:

* FPC command-line options -gl -gh
* Delphi ReportMemorylLeaksOnShutdown := true

» Castle Game Engine detect_memory_leaks="true" in
CastleEngineManifest.xml

See https://castle-engine.io/memory_leaks for more information.

You don’t need to free the instances of raised exceptions. Although

@ you do create an instance when raising an exception (and it's a
perfectly normal class instance). But this class instance is freed
automatically.

5.2. How to free

To free the class instance, it's best to call FreeAndNil(A) from SysUtils uniton
your class instance. It checks whether A is nil, if not— calls its destructor, and sets
A to nil. So calling it many times in a row is not an error.

It is more-or-less a shortcut for

if A <> nil then
begin

A.Destroy;

A := nil;
end;

Actually, that’s an oversimplification, as FreeAndNil does a useful trick and sets the
variable A to nil before calling the destructor on a suitable reference. This helps
to prevent a certain class of bugs — the idea is that the "outside" code should never
access a half-destructed instance of the class.

Often you will also see people using the A.Free method, which is like doing

if A <> nil then

45

https://castle-engine.io/memory_leaks

Modern Object Pascal Introduction for Programmers

A.Destroy;

This frees the A, unlessit's nil.

Note that in normal circumstances, you should never call a method on an instance
whichmay be nil. Sothecall A.Free may look suspicious at the first sight, if A can
be nil. However, the Free method is an exception to this rule. It does something
dirty in the implementation — namely, checks whether Self <> nil.

This trick (officially allowing the method to be used with Self equal
S nil) is possible only in non-virtual methods.

In the implementation of such method, as long as Self = nil
is possible, the method cannot call any virtual methods or access
any fields, as these would cause Access Violation (Segmentation
Fault) error when called on a nil instance. See the sample code
method_with_self_nil.dpr®.

We discourage from using this trick in your own code (for virtual
or non-virtual methods) as it is counter-intuitive to normal usage. In
general all instance methods should be able to assume that they
work on valid (non-nil) instance and can access fields and call any
other methods (virtual or not).

We advise using FreeAndNil(A) always, without exceptions, and never to call
directly the Free method or Destroy destructor.

The Castle Game Engine does it like that. It helps to keep a nice assertion that
all references are either nil, or point to valid instances. Though note that using
FreeAndNil(A) doesn’'t guarantee this assertion, it only helps with this. For
example, if you copy the instance reference, and call FreeAndNil(A) on one copy,
the other copy will be a non-nil dangling pointer.

A := TMyClass.Create;

B := A;

FreeAndNil(A);

// B now contains a dangling pointer

More about dealing with this in the later section about "Free notification".

3 https://github.com/modern-pascal/modern-pascal-introduction/blob/master/code-samples/
method_with_self_nil.dpr

46

https://github.com/modern-pascal/modern-pascal-introduction/blob/master/code-samples/method_with_self_nil.dpr
https://github.com/modern-pascal/modern-pascal-introduction/blob/master/code-samples/method_with_self_nil.dpr
https://github.com/modern-pascal/modern-pascal-introduction/blob/master/code-samples/method_with_self_nil.dpr

Modern Object Pascal Introduction for Programmers

Still, FreeAndNil(A) takes care of the most trivial cases, so it's a good habit to use
it IMHO. You will appreciate it when debugging some errors, it is nice to easily observe
" X is already freed, because X is nil now".

5.3. Manual and automatic freeing

In many situations, the need to free the instance is not much problem. You just write a
destructor, that matches a constructor, and deallocates everything that was allocated
in the constructor (or, more completely, in the whole lifetime of the class). Be careful to
only free each thing once. Usually it's a good idea to set the freed reference to nil,
usually it's most comfortable to do it by calling the FreeAndNil(A) .

So, like this:

uses SysUtils;

type
TGun = class
end;

TPlayer = class
Gunl, Gun2: TGun;
constructor Create;
destructor Destroy; override;
end;

constructor TPlayer.Create;

begin
inherited;
Gunl := TGun.Create;
Gun2 := TGun.Create;
end;

destructor TPlayer.Destroy;

begin
FreeAndNil(Gunl);
FreeAndNil(Gun2);
inherited;

end;

To avoid the need to explicitly free the instance, one can also use the TComponent
feature of "ownership". An object that is owned will be automatically freed by the owner.
The mechanism is smart and it will never free an already freed instance (so things will

a7

Modern Object Pascal Introduction for Programmers

also work correctly if you manually free the owned object earlier). We can change the
previous example to this:

uses SysUtils, Classes;

type
TGun = class(TComponent)
end;

TPlayer = class(TComponent)

Gunl, Gun2: TGun;

constructor Create(AOwner: TComponent); override;
end;

constructor TPlayer.Create(AOwner: TComponent);
begin

inherited;

Gunl := TGun.Create(Self);

Gun2 := TGun.Create(Self);
end;

Note that we need to override a virtual TComponent constructor here. So we cannot
change the constructor parameters. (Actually, you can — declare a new constructor
with reintroduce . But be careful, as some functionality, e.g. streaming, will still use
the virtual constructor, so make sure it works right in either case.)

Note that you can always use nil value for the owner. This way the "ownership”
mechanism will not be used for this component. It makes sense if you need to
use the TComponent descendant, but you want to always manually free it. To
do this, you would create a component descendant like this: ManualGun :=
TGun.Create(nil); .

Another mechanism for automatic freeing is the OwnsObjects functionality (by
default already true!) of list-classes like TFPGObjectList or TObjectList . So
we can also write:

uses SysUtils, Classes, FGL;

type
TGun = class
end;

48

Modern Object Pascal Introduction for Programmers

TGunList = {$ifdef FPC}specialize{$endif} TFPGObjectList<TGun>;

TPlayer = class
Guns: TGunList;
Gunl, Gun2: TGun;
constructor Create;
destructor Destroy; override;
end;

constructor TPlayer.Create;

begin
inherited;
// Actually, the parameter true (OwnsObjects) is already the default
Guns := TGunList.Create(true);
Gunl := TGun.Create;
Guns.Add(Gun1l);
Gun2 := TGun.Create;
Guns.Add(Gun2);
end;

destructor TPlayer.Destroy;
begin
{ We have to take care to free the list.
It will automatically free its contents. }
FreeAndNil(Guns);

{ No need to free the Gunl, Gun2 anymore. It's a nice habit to set to
"nil"
their references now, as we know they are freed. In this simple class,
with so simple destructor, it's obvious that they cannot be accessed
anymore -- but doing this pays off in case of larger and more
complicated
destructors.

Alternatively, we could avoid declaring Gunl and Gun2,
and instead use Guns[0] and Guns[1] in own code.
Or create a method like Gunl that returns Guns[0]. }

Gunl := nil;

Gun2 := nil;

inherited;
end;

Beware that the list classes "ownership” mechanism is simple, and you will get an error
if you free the instance using some other means, while it's also contained within a list.

49

Modern Object Pascal Introduction for Programmers

Use the Extract method to remove something from a list without freeing it, thus
taking the responsibility to free it yourself.

In the Castle Game Engine: The descendants of TX3DNode have automatic memory
management when inserted as children of another TX3DNode . The root X3D node,
TX3DRootNode, is in turn usually owned by TCastleSceneCore. Some other
things also have a simple ownership mechanism — look for parameters and properties
called OwnsXxx .

5.4. The virtual destructor called Destroy

As you saw in the examples above, when the class is destroyed, its destructor
called Destroy is called.

In theory, you could have multiple destructors, but in practice it's almost never a good
idea. It's much easier to have only one destructor called Destroy, which is in turn
called by the Free method, which is in turn called by the FreeAndNil procedure.

The Destroy destructor in the TObject is defined as a virtual method, so you
should always mark it with the override keyword in all your classes (since all
classes descend from TObject). This makes the Free method work correctly.
Recall how the virtual methods work from the Section 4.11, “Virtual methods, override
and reintroduce”.

This information about destructors is, indeed, inconsistent with the
3 constructors.

It's normal that a class has multiple constructors. Usually they are
all called Create, and only have different parameters, but it's also
OK to invent other names for constructors.

Also, the Create constructorinthe TObject is not virtual, so you
do not mark it with override in the descendants.

This all gives you a bit of extra flexibility when defining constructors.
It is often not necessary to make them virtual, so by default you're
not forced to do it.

Note, however, that this changes for TComponent descendants.
The TComponent defines a virtual constructor Create (AOwner :
TComponent) . It needs a virtual constructor in order for the
streaming system to work. When defining descendants of the

50

Modern Object Pascal Introduction for Programmers

TComponent , you should override this constructor (and mark it with

the override keyword), and perform all your initialization inside it.
Itis still OK to define additional constructors, but they should only act
as "helpers". The instance should always work when created using
the Create(AOwner: TComponent) constructor, otherwise it will
not be correctly constructed when streaming. The streaming is used
e.g. when saving and loading this component on a Lazarus form.

5.5. Free notification

If you copy a reference to the instance, such that you have two references to the same
memory, and then one of them is freed — the other one becomes a "dangling pointer". It
should not be accessed, as it points to a memory that is no longer allocated. Accessing
it may result in a runtime error, or garbage being returned (as the memory may be
reused for other stuff in your program).

Using the FreeAndNil to free the instance doesn’t help here. FreeAndNil sets
to nil only the reference it got—there’s no way for it to set all other references
automatically. Consider this code:

var
Obj1, 0Obj2: TObject;
begin
Obj1 := TObject.Create;
Obj2 := 0bj1;
FreeAndNil(Obj1);

// what happens if we access Objl1l or Obj2 here?
end;

1. At the end of this block, the 0bj1 is nil. If some code has to access it, it can
reliably use if Objl <> nil then .. to avoid calling methods on a freed
instance, like

if Objl <> nil then
WriteLn(Objl.ClassName);

Trying to access a field of a nil instance results in a predictable exception at
runtime. So even if some code will not check 0bj1 <> nil, and will blindly access
Obj1 field, you will get a clear exception at runtime.

51

Modern Object Pascal Introduction for Programmers

Same goes for calling a virtual method, or calling a non-virtual method that
accessed a field of a nil instance.

2. With 0Obj2, things are less predictable. It's not nil, but it's invalid. Trying
to access a field of a non-nil invalid instance results in an unpredictable
behavior — maybe an access violation exception, maybe a garbage data returned.

There are various solutions to it:

* One solution is to, well, be careful and read the documentation. Don’'t assume
anything about the lifetime of the reference, if it's created by other code. If a class
TCar has a field pointing to some instance of TWheel, it's a convention that the
reference to wheel is valid as long as the reference to car exists, and the car will
free its wheels inside its destructor. But that's just a convention, the documentation
should mention if there’s something more complicated going on.

* In the above example, right after freeing the Obj1 instance, you can simply set the
Obj2 variable explicitly to nil . That's trivial in this simple case.

e The most future-proof solution is to use TComponent class "free notification"
mechanism. One component can be notified when another component is freed, and
thus set its reference to nil.

Thus you get something like a weak reference. It can cope with various usage
scenarios, for example you can allow the code from outside of the class to set your
reference, and the outside code can also free the instance at any time.

This requires both classes to descend from TComponent . Using it in general
boils down to calling FreeNotification , RemoveFreeNotification, and
overriding Notification.

Here’'s a complete example, showing how to use this mechanism, together with
constructor / destructor and a setter property. Sometimes it can be done simpler,
but this is the full-blown version that is always correct:)

type
TControl = class(TComponent)
end;

TContainer = class(TComponent)
private
FSomeSpecialControl: TControl;
procedure SetSomeSpecialControl(const Value: TControl);

52

Modern Object Pascal Introduction for Programmers

protected
procedure Notification(AComponent: TComponent; Operation:
TOperation); override;
public
destructor Destroy; override;
property SomeSpecialControl: TControl
read FSomeSpecialControl write SetSomeSpecialControl;
end;

implementation

procedure TContainer.Notification(AComponent: TComponent; Operation:
TOperation);
begin
inherited;
if (Operation = opRemove) and (AComponent = FSomeSpecialControl) then
{ set to nil by SetSomeSpecialControl to clean nicely }
SomeSpecialControl := nil;
end;

procedure TContainer.SetSomeSpecialControl(const Value: TControl);
begin
if FSomeSpecialControl <> Value then
begin
if FSomeSpecialControl <> nil then
FSomeSpecialControl.RemoveFreeNotification(Self);
FSomeSpecialControl := Value;
if FSomeSpecialControl <> nil then
FSomeSpecialControl.FreeNotification(Self);
end;
end;

destructor TContainer.Destroy;

begin
{ set to nil by SetSomeSpecialControl, to detach free notification }
SomeSpecialControl := nil;
inherited;

end;

5.6. Free notification observer (Castle Game Engine)

In Castle Game Engine we encourage to use TFreeNotificationObserver
from CastleClassUtils unit instead of directly calling FreeNotification,
RemoveFreeNotification and overriding Notification.

53

Modern Object Pascal Introduction for Programmers

In general using TFreeNotificationObserver looks a bit simpler than using
FreeNotification mechanism directly (though | admit it is a matter of taste). But
in particular when the same class instance must be observed because of multiple
reasons then TFreeNotificationObserver is much simplerto use (directly using
FreeNotification in this case can get complicated, as you have to watch to not
unregister the notification too soon).

This is the example code using TFreeNotificationObserver , to achieve the
same effect as example in the previous section:

type
TControl = class(TComponent)
end;

TContainer = class(TComponent)
private

FSomeSpecialControlObserver: TFreeNotificationObserver;
FSomeSpecialControl: TControl;
procedure SetSomeSpecialControl(const Value: TControl);
procedure SomeSpecialControlFreeNotification(const Sender:

TFreeNotificationObserver);

public
constructor Create(AOwner: TComponent); override;
property SomeSpecialControl: TControl

read FSomeSpecialControl write SetSomeSpecialControl;
end;

implementation
uses CastleComponentSerialize;

constructor TContainer.Create(AOwner: TComponent);

begin
inherited;
FSomeSpecialControlObserver := TFreeNotificationObserver.Create(Self);
FSomeSpecialControlObserver.OnFreeNotification := @
SomeSpecialControlFreeNotification;
end;

procedure TContainer.SetSomeSpecialControl(const Value: TControl);
begin
if FSomeSpecialControl <> Value then
begin
FSomeSpecialControl := Value;

54

Modern Object Pascal Introduction for Programmers

FSomeSpecialControlObserver.Observed := Value;
end;
end;

procedure TContainer.SomeSpecialControlFreeNotification(const Sender:
TFreeNotificationObserver);

begin
// set property to nil when the referenced component is freed
SomeSpecialControl := nil;

end;

See https://castle-engine.io/custom_components .

6. Exceptions

6.1. Overview

Exceptions allow to interrupt the normal execution of the code.

* At any point within the program, you can raise an exception using the raise
keyword. In effect the lines of code following the raise .. call will not execute.

* An exception may be caught using a try .. except .. end construction.
Catching an exception means that you somehow "deal" with exception, and the
following code should execute as usual, the exception is no longer propagated

upward.

Note: If an exception is raised but never caught, it will cause the entire application

to stop with an error.

But in LCL applications, the exceptions are always caught around events (and

cause LCL dialog box) if you don’t catch them earlier.

In Castle Game Engine applications using Cast leWindow , we similarly always

catch exceptions around your events (and display proper dialog box).

Soitis not so easy to make an exception that is not caught anywhere (not caught

in your code, LCL code, CGE code...).

» Although an exception breaks the execution, you can use the try .. finally ..
end construction to execute some code always, even if the code was interrupted

by an exception.

55

https://castle-engine.io/custom_components

Modern Object Pascal Introduction for Programmers

The try .. finally .. end construction also works when code is interrupted
by Break or Continue or Exit keywords. The pointis to always execute code
inthe finally section.

An "exception" is, in general, any class instance.

» The compiler does not enforce any particular class. You just must call raise XXX
where XXX is an instance of any class. Any class (so, anything descending from
TObject) is fine.

e It is a standard convention for exception classes to descend from a special
Exception class. The Exception class extends TObject , adding a string
Message property and a constructor to easily set this property. All exceptions
raised by the standard library descend from Exception . We advise to follow this
convention.

» Exception classes (by convention) have names that start with E, not T. Like
ESomethingBadHappened .

» The compiler will automatically free exception object when it is handled. Don’t free
it yourself.

In most cases, you just construct the object at the same time when you call raise,
like raise ESomethingBadHappened.Create('Description of what
bad thing happened.').

6.2. Raising

If you want to raise your own exception, declare itand call raise .. when appropriate:

type
EInvalidParameter = class(Exception);

function ReadParameter: String;

begin
Result := Readln;
if Pos(' ', Result) <> 0 then
raise EInvalidParameter.Create('Invalid parameter, space is not
allowed');
end;

Note that the expression following the raise should be a valid class instance to raise.
You will almost always create the exception instance here.

56

Modern Object Pascal Introduction for Programmers

You can also use the CreateFmt constructor, which is a comfortable shortcut to

Create(Format (MessageFormat,

MessageArguments)) . This is a common

way to provide more information to the exception message. We can improve the

previous example like this:

type
EInvalidParameter

function ReadParameter: String;

raise EInvalidParameter.CreateFmt('Invalid parameter %s,

begin
Result := Readln;
if Pos(' ', Result) <> 0 then
allowed', [Result]);

end;

6.3. Catching

You can catch an exception like this:

var
Parameterl, Parameter2,
begin
try
WriteLn('Input 1st parameter:
Parameter1l ReadParameter;
WriteLn('Input 2nd parameter:
Parameter2 ReadParameter;
WriteLn('Input 3rd parameter:
Parameters3 ReadParameter;
except
// capture EInvalidParameter

calls
on EInvalidParameter do
WriteLn('EInvalidParameter
end;
end;

Parameter3:

class(Exception);

space is not

String;

raised by one of the above ReadParameter

exception occurred');

To improve the above example, we can declare the name for the exception instance
(we will use E in the example). This way we can print the exception message:

try

57

Modern Object Pascal Introduction for Programmers

except
on E: EInvalidParameter do
WriteLn('EInvalidParameter exception occurred with message: ' +
E.Message);
end;

One could also test for multiple exception classes:

try

except
on E: EInvalidParameter do
WriteLn('EInvalidParameter exception occurred with message: ' +
E.Message);
on E: ESomeOtherException do
WriteLn('ESomeOtherException exception occurred with message: ' +
E.Message);
end;

You can also react to any exception raised, if you don’t use any on expression:

try

except
WriteLn('Warning: Some exception occurred');
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING BELOW
// ABOUT "CAPTURING ALL EXCEPTIONS"

In general you should only catch exceptions of a specific class, that signal a particular
problem that you know what to do with. Be careful with catching exceptions of a general
type (like catching any Exception or any TObject), as you may easily catch too
much, and later cause troubles when debugging other problems. As in all programming
languages with exceptions, the good rule to follow is to never capture an exception that
you do not know how to handle. In particular, do not capture an exception just as a
simple workaround of the problem, without investigating first why the exception occurs.

» Does the exception indicate a problem in user input? Then you should report it to

user.

* Does the exception indicate a bug in your code? Then you should fix the code, to

avoid the exception from happening at all.

58

Modern Object Pascal Introduction for Programmers

Another way to capture all exceptions is to use:

try

except
on E: TObject do
WritelLn('Warning: Some exception occurred');
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING ABOVE
// ABOUT "CAPTURING ALL EXCEPTIONS"

Although usually it is enough to capture Exception:

try

except
on E: Exception do
WritelLn('Warning: Some exception occurred: ' + E.ClassName + ',
message: ' + E.Message);
end;
// WARNING: DO NOT FOLLOW THIS EXAMPLE WITHOUT READING A WARNING ABOVE
// ABOUT "CAPTURING ALL EXCEPTIONS"

You can "re-raise" the exception in the except .. end block, if you decide so. You
canjustdo raise E if the exception instance is E, you can also just use parameter-
less raise . For example:

try

except
on E: EInvalidSoundFile do
begin
if E.Invalidurl = 'http://example.com/blablah.wav' then
WriteLn('Warning: loading http://example.com/blablah.wav failed,
ignore it')
else
raise;
end;
end;

59

Modern Object Pascal Introduction for Programmers

Note that, although the exception is an instance of an object, you should never manually
free it after raising. The compiler will generate proper code that makes sure to free the
exception object once it's handled.

6.4. Finally (doing things regardless of whether an exception
occurred)

Oftenyouuse try .. finally .. end construction to free an instance of some
object, regardless of whether an exception occurred when using this object. The way
to write it looks like this:

procedure MyProcedure;
var
MyInstance: TMyClass;
begin
MyInstance := TMyClass.Create;
try
MyInstance.DoSomething;
MyInstance.DoSomethingElse;
finally
FreeAndNil(MyInstance);
end;
end;

This always works, and does not cause memory leaks, even if
MyInstance.DoSomething or MyInstance.DoSomethingElse raise an
exception.

Note that this takes into account that local variables, like MyInstance above, have
undefined values (may contain random "memory garbage") before the first assignment.
That is, writing something like this would not be valid:

// INCORRECT EXAMPLE:
procedure MyProcedure;
var
MyInstance: TMyClass;
begin
try
CallSomeOtherProcedure;
MyInstance := TMyClass.Create;
MyInstance.DoSomething;

60

Modern Object Pascal Introduction for Programmers

MyInstance.DoSomethingElse;
finally
FreeAndNil(MyInstance);
end;
end;

The above example is not wvalid: if an exception occurs within
TMyClass.Create (a constructor may also raise an exception), or within the
CallSomeOtherProcedure, then the MyInstance variable is not initialized.
Calling FreeAndNil(MyInstance) will try to call destructor of MyInstance,
which will most likely crash with Access Violation (Segmentation Fault) error. In effect,
one exception causes another exception, which will make the error report not very
useful: you will not see the message of the original exception.

Sometimes it is justified to fix the above code by first initializing all local variables to
nil (on which calling FreeAndNil is safe, and will not do anything). This makes
sense if you free a lot of class instances. So the two code examples below work equally
well:

procedure MyProcedure;

var
MyInstancel: TMyClassi;
MyInstance2: TMyClass2;
MyInstance3: TMyClass3;

begin
MyInstancel := TMyClassl.Create;
try

MyInstancel.DoSomething;

MyInstance2 := TMyClass2.Create;
try
MyInstance2.DoSomethingElse;

MyInstance3 := TMyClass3.Create;
try
MyInstance3.DoYetAnotherThing;
finally
FreeAndNil(MyInstance3);
end;
finally
FreeAndNil(MyInstance2);
end;
finally

61

Modern Object Pascal Introduction for Programmers

FreeAndNil(MyInstancel);
end;
end;

It is probably more readable in the form below:

procedure MyProcedure;
var
MyInstancel: TMyClassi;
MyInstance2: TMyClass2;
MyInstance3: TMyClass3;

begin
MyInstancel := nil;
MyInstance2 := nil;
MyInstance3 := nil;
try

MyInstancel := TMyClassl.Create;
MyInstancel.DoSomething;

MyInstance2 := TMyClass2.Create;
MyInstance2.DoSomethingElse;

MyInstance3 := TMyClass3.Create;

MyInstance3.DoYetAnotherThing;
finally

FreeAndNil(MyInstance3);

FreeAndNil(MyInstance2);

FreeAndNil(MyInstancel);

end;
end;
In this simple example, you could also make a valid argument that
@ the code should be split into 3 separate procedures, one calling each
other.
The final sectioninthe try .. finally .. end block executes in most possible

scenarios when you leave the main code. Consider this:

try
A;
finally
B;
end;

62

Modern Object Pascal Introduction for Programmers

So B will execute if

e The A raised (and didn’t catch) an exception.

* Or you will call Exit or (if you're in the loop) Break or Continue right after
calling A.

* Or none of the above happened, and the code in A just executed without any
exception, and you didn’'t call Exit, Break or Continue either.

The only way to really avoid the B being executed is to unconditionally interrupt the
application process using Halt or some platform-specific APIs (like libc exit on Unix4)
inside A . Which generally should not be done —it's more flexible to use exceptions
to interrupt the application, because it allows some other code to have a chance to
clean up.

The try .. finally .. end doesn't catch the exception.
@ The exception will still propagate upward, and can be caught by the
try .. except .. end block outside of this one.
An example of try .. finally .. end together with Exit calls:

procedure MyProcedure;
begin
try
WriteLn('Do something');
Exit;
WriteLn('This will not happen');
finally
WriteLn('This will happen regardless of whether we have left the block
through Exception, Exit, Continue, Break, etc.');
end;
WriteLn('This will not happen');
end;

See the Section 6, “Exceptions” chapter for more in-depth description of exceptions
including how to raise themand use try .. except .. end to catch them.

6.5. How the exceptions are displayed by various libraries

 In case of Lazarus LCL, the exceptions raised during events (various
callbacks assigned to OnXxx properties of LCL components) will be

4 https://www.man7.org/linux/man-pages/man3/exit.3.html

63

https://www.man7.org/linux/man-pages/man3/exit.3.html
https://www.man7.org/linux/man-pages/man3/exit.3.html

Modern Object Pascal Introduction for Programmers

captured and will result in a nice dialog message, that allows the user
to continue and stop the application. This means that your own exceptions
do not "get out" from Application.ProcessMessages, so they do not
automatically break the application. You can configure what happens using
TApplicationProperties.OnException.

« Similarly in case of Castle Game Engine with CastleWindow : the exception is
internally captured and results in nice error message. So exceptions do not "get out”
from Application.ProcessMessages . Again, you can configure what happens
using Application.OnException.

» Some other GUI libraries may do a similar thing to above.

* In case of other applications, you can configure how the exception is displayed by
assigning a global callback to OnHaltProgram.

7. Run-time library

7.1. Input/output using streams

Modern programs should use TStream class and its many descendants to do input /
output. It has many useful descendants, like TFileStream, TMemoryStream,
TStringStream.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Classes;

var

S: TStream;

InputInt, OutputInt: Integer;
begin

InputInt := 666;

S := TFileStream.Create('my_binary file.data', fmCreate);
try
S.WriteBuffer(InputInt, SizeOf(InputInt));
finally
FreeAndNil(S);
end;

64

Modern Object Pascal Introduction for Programmers

S := TFileStream.Create('my_binary_file.data', fmOpenRead);
try
S.ReadBuffer(OutputInt, SizeOf(OutputInt));
finally
FreeAndNil(S);
end;

WriteLn('Read from file got integer: ', OutputInt);
end.

In the Castle Game Engine: You should use the Download function to create a
stream that obtains data from any URL. Regular files, HTTP and HTTPS resources,
Android assets and more are supported this way. Moreover, to open the resource inside
your game data (in the data subdirectory) use the special castle-data:/xxx
URL. Examples:

EnableNetwork := true;
S := Download('https://castle-engine.io/latest.zip');

w
1

Download('file:///home/michalis/my_binary_ file.data');

w
1

Download('castle-data:/gui/my_image.png');

To read text files, we advise using the TCast leTextReader class. It provides a line-
oriented API, and wraps a TStream inside. The TCast leTextReader constructor
can take a ready URL, or you can pass there your custom TStream source.

Text := TCastleTextReader.Create('castle-data:/my_data.txt");
try
while not Text.Eof do
WriteLnLog('NextLine', Text.ReadLn);
finally
FreeAndNil(Text);
end;

Documentation of all the Castle Game Engine features to load and save streams,
including the Download function and the TCast leTextReader class, is on https://
castle-engine.io/url .

65

https://castle-engine.io/url
https://castle-engine.io/url

Modern Object Pascal Introduction for Programmers

7.2. Containers (lists, dictionaries) using generics

The language and run-time library offer various flexible containers. There are a number
of non-generic classes (like TList and TObjectList from the Contnrs unit),
there are also dynamic arrays (array of TMyType). But to get the most flexibility
and type-safety, | advise using generic containers for most of your needs.

The generic containers give you a lot of helpful methods to add, remove, iterate, search,
sort... The compiler also knows (and checks) that the container holds only items of the
appropriate type.

There are three libraries providing generics containers in FPC now:
* Generics.Collections unit and friends (since FPC >= 3.2.0)

e FGL unit

e GVector unit and friends (together in fcl-stl)

We advise using the Generics.Collections unit. The generic containers it
implements are

packed with useful features,

very efficient (in particular important for accessing dictionaries by keys),

compatible between FPC and Delphi,

the naming is consistent with other parts of the standard library (like the non-generic
containers from the Contnrs unit).

In the Castle Game Engine: We use the Generics.Collections intensively
throughout the engine, and advise you to use Generics.Collections in your
applications too!

Most important classes from the Generics.Collections unit are:

TList
A generic list of types.

TObjectList
A generic list of object instances. It can "own" children, which means that it will free
them automatically.

66

Modern Object Pascal Introduction for Programmers

TDictionary
A generic dictionary.

TObjectDictionary
A generic dictionary, that can "own" the keys and/or values.

Here’s how to use a simple generic TObjectList :

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils, Generics.Collections;

type
TApple = class
Name: string;
end;

TAppleList = {$ifdef FPC}specialize{$endif} TObjectList<TApple>;

var
A: TApple;
Apples: TApplelList;
begin
Apples := TAppleList.Create(true);
try
A := TApple.Create;
A.Name := 'my apple';
Apples.Add(A);

A := TApple.Create;
A.Name := 'another apple';
Apples.Add(A);

Writeln('Count: ', Apples.Count);
Writeln(Apples[O].Name);
Writeln(Apples[1l].Name);
finally FreeAndNil(Apples) end;
end.

Note that some operations require comparing two items, like sorting and searching (e.g.
by Sort and IndexOf methods). The Generics.Collections containers use
a comparer for this. The default comparer is reasonable for all types, even for records

67

Modern Object Pascal Introduction for Programmers

(in which case it compares memory contents, which is a reasonable default at least for
searching using IndexOf).

When sorting the list you can provide a custom comparer as a parameter. The comparer
is a class implementing the IComparer interface. In practice, you usually define
the appropriate callback, and use TComparer<T>.Construct method to wrap this
callback into an IComparer instance. An example of doing this is below:

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{ If GENERICS_CONSTREF is defined, then various routines used with
Generics.Collections

(like callbacks we pass to TComparer, or OnNotify callback or Notify
virtual method)

should have "constref" parameter, not "const".

This was the case of FPC<= 3.2.0, FPC changed it in

https://gitlab.com/freepascal.org/fpc/source/-/
commit/693491048bf2c6f9122a0d8bh044ad0e55382354d

It is also applied to FPC fixes branch 3.2.3 and later 3.2.4(rc1). }
{$ifdef VER3_0} {$define GENERICS_CONSTREF} {$endif}
{$ifdef VER3_2_0} {$define GENERICS_CONSTREF} {$endif}
{$ifdef VER3_2_2} {$define GENERICS_CONSTREF} {$endif}

uses SysUtils, Generics.Defaults, Generics.Collections;

type
TApple = class
Name: string;
end;

TAppleList = {$ifdef FPC}specialize{$endif} TObjectList<TApple>;

function CompareApples(
{$ifdef GENERICS_CONSTREF}constref{$else}const{$endif}
Left, Right: TApple): Integer;

begin
Result := AnsiCompareStr(Left.Name, Right.Name);

end;

type

TAppleComparer = {$ifdef FPC}specialize{$endif} TComparer<TApple>;
var

A: TApple;

68

Modern Object Pascal Introduction for Programmers

L: TApplelList;

begin
L := TAppleList.Create(true);
try
A := TApple.Create;
A.Name := '11"';
L.Add(A);
A := TApple.Create;
A.Name := '33';
L.Add(A);

A := TApple.Create;
A.Name := '22';
L.Add(A);

L.Sort(TAppleComparer.Construct({$ifdef FPC}@{%$endif} CompareApples));

Writeln('Count: ', L.Count);
Writeln(L[O].Name);
Writeln(L[1].Name);
Writeln(L[2].Name);
finally FreeAndNil(L) end;
end.

The TDictionary class implements a dictionary, also known as a map (key
_, value), also known as an associative array. Its API is a bit similar to the C#
TDictionary class. It has useful iterators for keys, values, and pairs of key#value.

An example using a dictionary:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils, Generics.Collections;

type
TApple = class
Name: string;
end;

TAppleDictionary = {$ifdef FPC}specialize{$endif} TDictionary<String,
TApple>;

var

69

Modern Object Pascal Introduction for Programmers

Apples: TAppleDictionary;

A, FoundA: TApple;

ApplePair: {$ifdef FPC} TAppleDictionary.TDictionaryPair {$else}
TPair<String, TApple> {$endif};

AppleKey: string;

begin
Apples := TAppleDictionary.Create;
try
A := TApple.Create;
A.Name := 'my apple';

Apples.AddOrSetvalue('apple key 1', A);

if Apples.TryGetValue('apple key 1', FoundA) then
Writeln('Found apple under key "apple key 1" with name: ' +
FoundA.Name) ;

for AppleKey in Apples.Keys do
Writeln('Found apple key: ' + AppleKey);
for A in Apples.Values do
Writeln('Found apple value: ' + A.Name);
for ApplePair in Apples do
Writeln('Found apple key->value: ' +
ApplePair.Key + '->' + ApplePair.Value.Name);

{ Line below works too, but it can only be used to set
an *existing* dictionary key.
Instead of this, usually use AddOrSetValue
to set or add a new key, as necessary. }

// Apples['apple key 1'] = ... ;

Apples.Remove('apple key 1');

{ Note that the TDictionary doesn't own the items,
you need to free them yourself.
We could use TObjectDictionary to have automatic ownership
mechanism. }
A.Free;
finally FreeAndNil(Apples) end;
end.

The TObjectDictionary can additionally own the dictionary keys and/or values,
which means that they will be automatically freed. Be careful to only own keys and/
or values if they are object instances. If you set to "owned" some other type, like an

70

Modern Object Pascal Introduction for Programmers

Integer (for example, if your keys are Integer , and you include doOwnsKeys),
you will get a nasty crash when the code executes.

An example code wusing the TObjectDictionary is below. Compile
this example with memory leak detection, like fpc -gl -gh
generics_object_dictionary.dpr, to see that everything is freed when
program exits.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils, Generics.Collections;

type
TApple = class
Name: string;
end;

TAppleDictionary = {$ifdef FPC}specialize{$endif}
TObjectDictionary<String, TApple>;

var
Apples: TAppleDictionary;
A: TApple;
ApplePair: {$ifdef FPC} TAppleDictionary.TDictionaryPair {$else}
TPair<String, TApple> {S$endif};
begin
Apples := TAppleDictionary.Create([doOwnsValues]);
try
A := TApple.Create;
A.Name := 'my apple';
Apples.AddOrSetvalue('apple key 1', A);

for ApplePair in Apples do
Writeln('Found apple key->value: ' +
ApplePair.Key + '->' + ApplePair.Value.Name);

Apples.Remove('apple key 1');
finally FreeAndNil(Apples) end;
end.

If you prefer using the FGL unit instead of Generics.Collections, the most
important classes from the FGL unit are:

71

Modern Object Pascal Introduction for Programmers

TFPGList
A generic list of types.

TFPGObjectList
A generic list of object instances. It can "own" children.

TFPGMap
A generic dictionary.

In FGL unit, the TFPGList can be only used for types for which the equality operator
(=) is defined. For TFPGMap the "greater than" (>) and "less than" (<) operators must
be defined for the key type. If you want to use these lists with types that don’t have
built-in comparison operators (e.g. with records), you have to overload their operators
as shown in the Section 8.11, “Operator overloading”.

In the Castle Game Engine we include a unit CastleGenericlLists that adds
TGenericStructList and TGenericStructMap classes. They are similar
to TFPGList and TFPGMap, but they do not require a definition of the
comparison operators for the appropriate type (instead, they compare memory
contents, which is often appropriate for records or method pointers). But the
CastleGenericlLists unitis deprecated since the engine version 6.3, as we advise
using Generics.Collections instead.

If you want to know more about the generics, see Section 8.4, “Generics”.

7.3. Cloning: TPersistent.Assign

Copying the class instances by a simple assignment operator copies the reference.

var
X, Y: TMyObject;

begin
X := TMyObject.Create;
Y 1= X;

// X and Y are now two pointers to the same data
Y.MyField := 123; // this also changes X.MyField
FreeAndNil(X);

end;

To copy the class instance contents, the standard approach is to derive your
class from TPersistent , and override its Assign method. Once it's implemented
properly in TMyObject , you use it like this:

72

Modern Object Pascal Introduction for Programmers

var
X, Y: TMyObject;

begin
X := TMyObject.Create;
Y := TMyObject.Create;

Y.Assign(X);
Y.MyField := 123; // this does not change X.MyField
FreeAndNil(X);
FreeAndNil(Y);
end;

To make it work, you need to implement the Assign method to actually copy the fields
you want. You should carefully implement the Assign method, to copy from a class
that may be a descendant of the current class.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Classes;

type
TMyClass = class(TPersistent)
public
MyInt: Integer;
procedure Assign(Source: TPersistent); override;
end;

TMyClassDescendant = class(TMyClass)
public

MyString: string;

procedure Assign(Source: TPersistent); override;
end;

procedure TMyClass.Assign(Source: TPersistent);

var
SourceMyClass: TMyClass;
begin
if Source is TMyClass then
begin
SourceMyClass := TMyClass(Source);
MyInt := SourceMyClass.MyInt;
// Xxx := SourceMyClass.Xxx; // add new fields here
end else

73

Modern Object Pascal Introduction for Programmers

{ Since TMyClass is a direct TPersistent descendant,
it calls inherited ONLY when it cannot handle Source class.
See comments below. }
inherited Assign(Source);
end;

procedure TMyClassDescendant.Assign(Source: TPersistent);
var
SourceMyClassDescendant: TMyClassDescendant;

begin
if Source is TMyClassDescendant then
begin
SourceMyClassDescendant := TMyClassDescendant(Source);
MyString := SourceMyClassDescendant.MyString;
// Xxx := SourceMyClassDescendant.Xxx; // add new fields here
end;

{ Since TMyClassDescendant has an ancestor that already overrides
Assign (in TMyClass.Assign), it calls inherited ALWAYS,
to allow TMyClass.Assign to handle remaining fields.
See comments below for a detailed reasoning. }
inherited Assign(Source);
end;

var
C1, C2: TMyClass;
CD1, CD2: TMyClassDescendant;
begin
// test TMyClass.Assign
Cl := TMyClass.Create;
C2 := TMyClass.Create;
try
Cl.MyInt := 666,
C2.Assign(C1);
WriteLn('C2 state: ', C2.MyInt);
finally
FreeAndNil(C1);
FreeAndNil(C2);
end;

// test TMyClassDescendant.Assign

CD1 := TMyClassDescendant.Create;
CD2 := TMyClassDescendant.Create;
try

CD1.MyInt := 44,

74

Modern Object Pascal Introduction for Programmers

CD1.MyString := 'blah';
CD2.Assign(CD1);
WritelLn('CD2 state: ', CD2.MyInt, ' ', CD2.MyString);
finally
FreeAndNil(CD1);
FreeAndNil(CD2);
end;
end.

Sometimes it's more comfortable to alternatively override the AssignTo method in
the source class, instead of overriding the Assign method in the destination class.

Be careful when you call inherited in the overridden Assign implementation.
There are two situations:

Your class is adirect descendant of the TPersistent class. (Or,it’'s not adirect
descendant of TPersistent, but no ancestor has overridden the Assign
method.)
In this case, your class should use the inherited keyword (to call the
TPersistent.Assign) only if you cannot handle the assignment in your code.

Your class descends from some class that has already overridden the Assign
method.
In this case, your class should always use the inherited keyword (to call
the ancestor Assign). In general, calling inherited in overridden methods is
usually a good idea.

To understand the reason behind the above rule (when you should call, and when
you should not call inherited from the Assign implementation), and how it
relates to the AssignTo method, let's look at the TPersistent.Assign and
TPersistent.AssignTo implementations:

procedure TPersistent.Assign(Source: TPersistent);
begin
if Source <> nil then
Source.AssignTo(Self)
else
raise EConvertError...
end;

procedure TPersistent.AssignTo(Destination: TPersistent);
begin
raise EConvertError...

75

Modern Object Pascal Introduction for Programmers

end;

FPC standard library code, but then | simplified it to hide unimportant
details about the exception message.

@ This is not the exact implementation of TPersistent . | copied the

The conclusions you can get from the above are:

* If neither Assign nor AssignTo are overridderhen calling them will result in
an exception.

* Also, note thatthere isno code in TPersistent implementation that automatically
copies all the fields (or all the published fields) of the classes. That's why you need
to do that yourself, by overriding Assign in all the classes. You can use RTTI
(runtime type information) for that, but for simple cases you will probably just list the
fields to be copied manually.

When you have a class like TApple, your TApple.Assign implementation usually
deals with copying fields that are specific to the TApple class (not to the TApple
ancestor, like TFruit). So, the TApple.Assign implementation usually checks
whether Source is TApple atthe beginning, before copying apple-related fields.
Then, it calls inherited to allow TFruit to handle the rest of the fields.

Assuming that you implemented TFruit.Assign and TApple.Assign following
the standard pattern (as shown in the example above), the effect is like this:

* If you pass TApple instance to TApple.Assign, it will work and copy all the
fields.

* Ifyou pass TOrange instance to TApple.Assign, it will work and only copy the
common fields shared by both TOrange and TApple . In other words, the fields
defined at TFruit .

* If you pass TWerewolf instance to TApple.Assign, it will raise an
exception (because TApple.Assign will call TFruit.Assign which will call
TPersistent.Assign which raises an exception).

default visibility specifier is published, to allow streaming of
TPersistent descendants. Not all field and property types are
allowed inthe published section. If you get errors related to it, and
you don’t care about streaming, just change the visibilityto public .
See the Section 4.7, “Visibility specifiers”.

S Remember that when descending from TPersistent, the

76

Modern Object Pascal Introduction for Programmers

8. Various language features

8.1. Local (nested) routines

Inside a larger routine (function, procedure, method) you can define a helper routine.

The local routine can freely access (read and write) all the parameters of a parent, and
all the local variables of the parent that were declared above it. This is very powerful.
It often allows to split long routines into a couple of small ones without much effort (as
you don’t have to pass around all the necessary information in the parameters). Be
careful to not overuse this feature — if many nested functions use (and even change)
the same variable of the parent, the code may get hard to follow.

These two examples are equivalent:

function SumOfSquares(const N: Integer): Integer;

function Square(const Value: Integer): Integer;
begin

Result := Value * Value;
end;

var
I: Integer;
begin
Result := 0;
for I := 0 to N do
Result := Result + Square(I);
end;

Another version, where we let the local routine Square to access I directly:

function SumOfSquares(const N: Integer): Integer;
var
I: Integer;

function Square: Integer;
begin

Result := I * I;
end;

begin

77

Modern Object Pascal Introduction for Programmers

Result := 0;
for I := 0 to N do
Result := Result + Square;
end;

Local routines can go to any depth — which means that you can define a local routine
within another local routine. So you can go wild (but please don’t go too wild, or the
code will get unreadable:).

8.2. Callbacks (aka events, aka pointers to functions, aka
procedural variables)

They allow to call a function indirectly, through to a variable. The variable can be
assigned at runtime to point to any function with matching parameter types and return
types.

The callback can be:

* Normal, which means it can point to any normal routine (not a method, not local).

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

function Add(const A, B: Integer): Integer;
begin

Result := A + B;
end;

function Multiply(const A, B: Integer): Integer;
begin

Result := A * B;
end;

type
TMyFunction = function (const A, B: Integer): Integer;

function ProcessThelList(const F: TMyFunction): Integer;
var
I: Integer;
begin
Result := 1;
for I := 2 to 10 do
Result := F(Result, I);

78

Modern Object Pascal Introduction for Programmers

end;

var
SomeFunction: TMyFunction;

begin
SomeFunction := @Add;
WriteLn('l1 + 2 + 3 ... + 10 = ', ProcessThelList(SomeFunction));

SomeFunction := @Multiply;
WriteLn('1 * 2 * 3 ... * 10 = ', ProcessThelList(SomeFunction));
end.

* A method: declare with of object atthe end.

uses
SysUtils;

type
TMyMethod = procedure (const A: Integer) of object;

TMyClass = class
CurrentValue: Integer;
procedure Add(const A: Integer);
procedure Multiply(const A: Integer);
procedure ProcessThelList(const M: TMyMethod);
end;

procedure TMyClass.Add(const A: Integer);
begin

CurrentValue := CurrentValue + A;
end;

procedure TMyClass.Multiply(const A: Integer);
begin

CurrentValue := CurrentValue * A;
end;

procedure TMyClass.ProcessTheList(const M: TMyMethod);
var

I: Integer;
begin

Currentvalue := 1;

79

Modern Object Pascal Introduction for Programmers

for I := 2 to 10 do
M(I);
end;

var
C: TMyClass;
begin
C := TMyClass.Create;
try
C.ProcessThelList(@ C.Add);
WriteLn('1 + 2 + 3 ... + 10 = ', C.CurrentvValue);

C.ProcessThelList(@ C.Multiply);
WriteLn('2 * 2 * 3 ... * 10 = ', C.CurrentValue);
finally
FreeAndNil(C);
end;
end.

Note that you cannot pass global procedures / functions as methods. They are
incompatible. If you have to provide an of object callback, but don't want to
create a dummy class instance, you can pass Section 9.3, “Class methods” as
methods.

type
TMyMethod = function (const A, B: Integer): Integer of object;

TMyClass = class
class function Add(const A, B: Integer): Integer;
class function Multiply(const A, B: Integer): Integer;
end;

class function TMyClass.Add(const A, B: Integer): Integer;
begin

Result := A + B;
end;

class function TMyClass.Multiply(const A, B: Integer): Integer;
begin

Result := A * B;
end;

80

Modern Object Pascal Introduction for Programmers

var
M: TMyMethod;
begin
{$ifdef FPC}
// Unfortunately, this requires a bit of hack to work in FPC ObjFpc

mode.
M := @TMyClass(nil).Add;
M := @TMyClass(nil).Multiply;

{$else}
M := TMyClass.Add;
M := TMyClass.Multiply;
{$endif}
end.

* A (possibly) local routine: declare with is nested at the end, and make sure to
use {$modeswitch nestedprocvars} directive for the code. These go hand-
in-hand with Section 8.1, “Local (nested) routines”.

8.3. Anonymous functions
Delphi and new FPC versions (>= 3.3.1) support:

» anonymous functions (define function implementation right when you assign it to a
variable or pass as an argument),

e and function references (a new type of "function callback" that can accept a
wide range of function types, including global functions, methods and anonymous
functions).

Example:

{ Example of Map, ForEach methods and processing list with anonymous
functions. }

{$ifdef FPC}
{$ifdef VER3_2} {$message warn 'This code needs FPC >=
3.3.x'} begin end. {$endif}
{$mode objfpc}{$H+}{$I-}
{$modeswitch functionreferences}
{$modeswitch anonymousfunctions}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils, Generics.Collections;

81

Modern Object Pascal Introduction for Programmers

type
{ Note about below TIntMapFunc and TIntMapProc definition, what to use?

In short, use "reference to". You can assign to them anonymous
functions

reliably in both Delphi and FPC.
With Delphi 12.1, only the "reference to" version will compile.

with FPC 3.3.1, other variants will also compile.

You can assign anonymous function to any of them.

So if you only target FPC, you can decide which version to use
based on what you want to assign to them *aside*

from anonymous functions:

- The 1st version (without "of object", without "reference to")
allows to store a reference to a global function,

- The 2nd (with "of object")
allows to store a reference to a method of an object,

- The 3rd (with "reference to") is the most universal,
allows a lot of things --
see https://forum.lazarus.freepascal.org/index.php?topic=59468.0

TIntMapFunc =
//function(const Index, Item: Integer): Integer;
//function(const Index, Item: Integer): Integer of object;
reference to function(const Index, Item: Integer): Integer;
TIntMapProc =
//procedure(const Index, Item: Integer);
//procedure(const Index, Item: Integer) of object;
reference to procedure(const Index, Item: Integer);

TMyInts = class({$ifdef FPC}specialize{$endif} TList<Integer>)
{ Change every item in the 1list using AFunc. }
procedure Map(const AFunc: TIntMapFunc);
{ call AProc for every item in the list. }
procedure ForEach(const AProc: TIntMapProc);
end;

procedure TMyInts.Map(const AFunc: TIntMapFunc);
var

82

Modern Object Pascal Introduction for Programmers

Index: Integer;
begin
for Index := 0 to Count - 1 do
Items[Index] := AFunc(Index, Items[Index]);
end;

procedure TMyInts.ForEach(const AProc: TIntMapProc);
var
Index: Integer;
begin
for Index := 0 to Count - 1 do
AProc(Index, Items[Index]);

end;
var
MyList: TMyInts;
I: Integer;
F: TIntMapFunc;
begin
MyList := TMyInts.Create;
try

for I := 0 to 10 do
MyList.Add(I);

F := function(const Index, Item: Integer): Integer
begin
Result := Item + 1;
end;

MyList.Map(F);
MyList.Map(F);
MyList.Map(F);

MyList.Map(function(const Index, Item: Integer): Integer
begin
Result := Item * Item;
end);

MyList.ForEach(procedure(const Index, Item: Integer)
begin
WriteLn('Index: ', Index, ', Item: ', Item);
WriteLn(' If we would process it by F: ', F(Index,
end);

Item));

83

Modern Object Pascal Introduction for Programmers

finally FreeAndNil(MyList) end;
end.

More information:

* Delphi documentation: https://docwiki.embarcadero.com/RADStudio/Sydney/en/
Anonymous_Methods_in_Delphi

* FPC forum post: https://forum.lazarus.freepascal.org/index.php/topic,59468.0.html

« FPC feature changelog: https://wiki.freepascal.org/
FPC_New Features_Trunk#Support_for Function_References_and_Anonymous_Functions

To get FPC 3.3.1, we recommend to use FpcUpDeluxe: https://castle-engine.io/
fpcupdeluxe .

8.4. Generics

A powerful feature of any modern language. The definition of something (typically, of
a class) can be parameterized with another type. The most typical example is when
you need to create a container (a list, dictionary, tree, graph...): you can define a list
of type T, and then specialize it to instantly get a list of integers, a list of strings, a list
of TMyRecord, and so on.

The generics in Pascal work much like generics in C++. Which means that they are
"expanded" at specialization time, a little like macros (but much safer than macros;
for example, the identifiers are resolved at the time of generic definition, not at
specialization, so you cannot "inject" any unexpected behavior when specializing the
generic). In effect this means that they are very fast (can be optimized for each particular
type) and work with types of any size. You can use a primitive type (integer, float) as
well as a record, as well as a class when specializing a generic.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{$ifndef FPC}

{$message warn 'Delphi does not allow addition on types that are generic
parameters'}

begin end.
{$endif}

uses SysUtils;

type

84

https://docwiki.embarcadero.com/RADStudio/Sydney/en/Anonymous_Methods_in_Delphi
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Anonymous_Methods_in_Delphi
https://forum.lazarus.freepascal.org/index.php/topic,59468.0.html
https://wiki.freepascal.org/FPC_New_Features_Trunk#Support_for_Function_References_and_Anonymous_Functions
https://wiki.freepascal.org/FPC_New_Features_Trunk#Support_for_Function_References_and_Anonymous_Functions
https://castle-engine.io/fpcupdeluxe
https://castle-engine.io/fpcupdeluxe

Modern Object Pascal Introduction for Programmers

generic TMyCalculator<T> = class
Value: T;
procedure Add(const A: T);
end;

procedure TMyCalculator.Add(const A: T);
begin

Value := Value + A;
end;

type

TMyFloatCalculator = {$ifdef FPC}specialize{$endif}
TMyCalculator<Single>;

TMyStringCalculator = {$ifdef FPC}specialize{$endif}
TMyCalculator<string>;

var
FloatCalc: TMyFloatCalculator;
StringCalc: TMyStringCalculator;
begin
FloatCalc := TMyFloatCalculator.Create;
try
FloatCalc.Add(3.14);
FloatCalc.Add(1);
WriteLn('FloatCalc: ', FloatCalc.Value:1:2);
finally
FreeAndNil(FloatCalc);
end;

StringCalc := TMyStringCalculator.Create;
try
StringCalc.Add('something');
StringCalc.Add(' more');
WritelLn('StringCalc: ', StringCalc.Value);
finally
FreeAndNil(StringCalc);
end;
end.

Generics are not limited to classes, you can have generic functions and procedures
as well:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

85

Modern Object Pascal Introduction for Programmers

{$ifndef FPC}
{$message warn 'Delphi does not support global generic functions'}
begin end.

{$endif}

uses SysUtils;

{ Note: this example requires FPC 3.1.1 (will not compile with FPC 3.0.0
or older). }

generic function Min<T>(const A, B: T): T;
begin
if A < B then
Result := A else
Result := B;

end;

begin
WriteLn('Min (1, ©): ', specialize Min<Integer>(1, 0));
WriteLn('Min (3.14, 5): ', specialize Min<Single>(3.14, 5):1:2);
WriteLn('Min (''a'', "'b"'"'): ', specialize Min<string>('a', 'b'));

end.

See also the Section 7.2, “Containers (lists, dictionaries) using generics” about
important standard classes using generics.

8.5. Overloading

Methods (and global functions and procedures) with the same name are allowed, as
long as they have different parameters. At compile time, the compiler detects which
one you want to use, knowing the parameters you pass.

By default, the overloading uses the FPC approach, which means that all the methods
in given namespace (a class or a unit) are equal, and hide the other methods in
namespaces with less priority. For example, if you define a class with methods
Foo(Integer) and Foo(string), and it descends from a class with method
Foo(Float) , then the users of your new class will not be able to access the method
Foo(Float) easily (they still can --- if they typecast the class to its ancestor type).
To overcome this, use the overload keyword.

8.6. Preprocessor

You can use simple preprocessor directives for

86

Modern Object Pascal Introduction for Programmers

 conditional compilation (code depending on platform, or some custom switches),
* to include one file in another,

* you can also use parameter-less macros.

Note that macros with parameters are not allowed. In general, you should avoid using
the preprocessor stuff... unless it’s really justified. The preprocessing happens before
parsing, which means that you can "break" the normal syntax of the Pascal language.
This is a powerful, but also somewhat dirty, feature.

unit PreprocessorStuff;
{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
interface

{$ifdef FPC}
{ This is only defined when compiled by FPC, not other compilers (like

Delphi). }
procedure Foo;
{$endif}

{ Define a NewLine constant. Here you can see how the normal syntax of
Pascal
is "broken" by preprocessor directives. When you compile on Unix
(includes Linux, Android, mac0S), the compiler sees this:

const NewLine = #10;

When you compile on Windows, the compiler sees this:

const NewLine = #13#10;

Oon other operating systems, the code will fail to compile,
because a compiler sees this:

const NewLine = ;

It's a *good* thing that the compilation fails in this case -- if you
will have to port the program to an 0S that is not Unix, not Windows,
you will be reminded by a compiler to choose the newline convention
on that system. }

const
NewLine =

87

Modern Object Pascal Introduction for Programmers

{$ifdef UNIX} #10 {$endif}
{$ifdef MSWINDOWS} #13#10 {$endif} ;

{$define MY_SYMBOL}

{$ifdef MY_SYMBOL}
procedure Bar;
{$endif}

{$define CallingConventionMacro := unknown}
{$ifdef UNIX}

{$define CallingConventionMacro :
{$endif}
{$ifdef MSWINDOWS}

{$define CallingConventionMacro :
{$endif}
procedure RealProcedureName;
CallingConventionMacro; external 'some_external_library';

cdecl}

stdcall}

implementation

{$include some_file.inc}
// $I is just a shortcut for $include
{$I some_other_file.inc}

end.

Include files have commonly the .inc extension, and are used for two purposes:

* The include file may only contain other compiler directives, that "configure" your
source code. For example you could create a file myconfig.inc with these
contents:

{$ifdef FPC}

{$mode objfpc}

{$H+}

{$3-}

{$modeswitch advancedrecords}

{$ifdef VER2}

{$message fatal 'This code can only be compiled using FPC version

>= 3.0.'}

{$endif}
{$endif}

88

Modern Object Pascal Introduction for Programmers

Now you can include this file using {$I myconfig.inc} in all your sources.

* The other common use is to split a large unit into many files, while still keeping
it a single unit as far as the language rules are concerned. Do not overuse this
technique — your first instinct should be to split a single unit into multiple units, not to
split a single unit into multiple include files. Nevertheless, this is a useful technique.

1. It allows to avoid "exploding” the number of units, while still keeping your
source code files short. For example, it may be better to have a single unit with
"commonly used Ul controls” than to create one unit for each Ul control class,
as the latter approach would make the typical "uses" clause long (since a typical
Ul code will depend on a couple of Ul classes). But placing all these Ul classes
in a single myunit.pas file would make it a long file, unhandy to navigate, so
splitting it into multiple include files may make sense.

2. 1t allows to have a cross-platform unit interface with platform-dependent
implementation easily. Basically you can do

{$ifdef UNIX} {$I my_unix_implementation.inc} {$endif}
{$ifdef MSWINDOWS} {$I my_windows_implementation.inc} {$endif}

Sometimes this is better than writing a long code with many {$ifdef
UNIX}, {$ifdef MSWINDOWS} intermixed with normal code (variable
declarations, routine implementation). The code is more readable this way.
You can even use this technique more aggressively, by using the -
Fi command-line option of FPC to include some subdirectories only for
specific platforms. Then you can have many version of include file {$I
my_platform_specific_implementation.inc} and you simply include
them, letting the compiler find the correct version.

8.7. Records

A record is just a container for other variables. It's like a much, much simplified class:
there is no inheritance or virtual methods. It is like a structure in C-like languages.

If you use the {$modeswitch advancedrecords} directive, records can have
methods and visibility specifiers. In general, language features that are available for
classes, and do not break the simple predictable memory layout of a record, are then
possible.

89

Modern Object Pascal Introduction for Programmers

{$ifdef FPC}
{$mode objfpc}{$H+}{$I-}
{$modeswitch advancedrecords}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

type
TMyRecord = record
public
I, Square: Integer;
procedure WritelLnDescription;
end;

procedure TMyRecord.WritelLnDescription;
begin

WriteLn('Square of ', I, ' is ', Square);
end;

var
A: array [0..9] of TMyRecord;
R: TMyRecord;

I: Integer;
begin
for I := 0 to 9 do
begin
A[I].I := I;
A[I].Square =1 * I,
end;

for R in A do
R.WriteLnDescription;
end.

In modern Object Pascal, your first instinct should be to design a class, not a
record —because classes are packed with useful features, like constructors and

inheritance.

But records are still very useful when you need speed or a predictable memory layout:

* Records do not have any constructor or destructor. You just define a variable of a
record type. It has undefined contents (memory garbage) at the beginning (except
auto-managed types, like strings; they are guaranteed to be initialized to be empty,

90

Modern Object Pascal Introduction for Programmers

and finalized to free the reference count). So you have to be more careful when
dealing with records, but it gives you some performance gain.

Arrays of records are nicely linear in memory, so they are cache-friendly.

The memory layout of records (size, padding between fields) is clearly defined
in some situations: when you request the C layout, or when you use packed
record . This is useful:

to communicate with libraries written in other programming languages, when they
expose an API based on records,

to read and write binary files,

to implement dirty low-level tricks (like unsafe typecasting one type to another,
being aware of their memory representation).

Records can also have case parts, which work like unions in C-like languages.
They allows to treat the same memory piece as a different type, depending on your
needs. As such, this allows for greater memory efficiency in some cases. And it
allows for more dirty, low-level unsafe tricks:)

8.8. Variant records and related concepts
The concept variant may refer to 3 distinct (though, deep down related) things in Pascal:
Variant records

Variant records allow to define a section at the end of your record where the same
memory can be accessed by a few different names/types.

This is described on https://en.wikipedia.org/wiki/Tagged_union on Wikipedia. "Union"
is more common name for this in other languages. See also https://www.freepascal.org/
docs-html/ref/refsul5.html .

Example:

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}

type

TVector2 = packed record
case Integer of
0: (X, Y: Single);
1: (Data: array [0..1] of Single);

91

https://en.wikipedia.org/wiki/Tagged_union
https://www.freepascal.org/docs-html/ref/refsu15.html
https://www.freepascal.org/docs-html/ref/refsu15.html

Modern Object Pascal Introduction for Programmers

end;

TVector3 = packed record
case Integer of
0: (X, Y, Z: Single);
1: (Data: array [0..2] of Single);
2: (XY: TVector2);
end;

var
V2: TVector2;
V: TVector3;
I: Integer,;

begin
Writeln('Size of TVector2 is ', SizeOf(TVector2));
Writeln(' Should be equal to ', SizeOf(Single) * 2);

Writeln('Size of TVector3 is ', SizeOf(TVector3));
Writeln(' Should be equal to ', SizeOf(Single) * 3);

V.X 1= 1;
V.Y = 2,
V.Z = 3;

for I := 0 to 2 do
Writeln('V.Data[', I, '] is ', V.Data[I]:1:2);

V2 = V.XY;

for I := 0 to 1 do
Writeln('v2.Data[', I, '] is ', V2.Data[I]:1:2);
end.

Variant type

Variant is a special type in Pascal that underneath can hold values of various types.
Moreover, operators are defined to allow operating on them and converting their values
at run-time.

The effect is a bit similar to scripting programming languages with dynamic typing.

Do not use them without consideration: things are a bit less safe (you don’t control
types, conversions happen implicitly). Also there’s a small performance hit, since all
operations need to check and synchronize the types at run-time.

92

Modern Object Pascal Introduction for Programmers

But sometimes it does make sense. Namely, when you have to process data that
intrinsically indeed may have different types, and you only know those types at runtime.
E.g. when you want to process result of SQL select * from some_table ina
generic database viewer (not knowing table structure at compile-time).

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}

uses Variants;

var
Vi, V2, V3: Variant;
begin
Vi := "My String';

V1 := 123; // V1 no longer holds String, it has Integer now
V2 := 456.789,
V3 := V1 + V2; // result is float

Writeln('v3 = ', V3);
end.
Technically, Variant is realized using TVarData internal type,
S which is a record with variants. So these concepts are connected.

But you should not need to know this, you should not use
TVarData explicitly.

TVarRec in array of const

When you use array of const special parameter type, it is passed as an array
of TVarRec . See

e TVarRec in FPC: https://www.freepascal.org/docs-html/rtl/system/tvarrec.html

» TVarRec in Delphi: https://docwiki.embarcadero.com/Libraries/Sydney/en/
System.TVarRec

This is useful to pass to a routine parameters of arbitrary (not known at compile-time)
types. For example, to implement routines like standard Format (similarto sprintf
in C) or Castle Game Game WritelLnLog / WriteLnWarning.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils;

{ Example function that concatenates all elements of an array of const

93

https://www.freepascal.org/docs-html/rtl/system/tvarrec.html
https://docwiki.embarcadero.com/Libraries/Sydney/en/System.TVarRec
https://docwiki.embarcadero.com/Libraries/Sydney/en/System.TVarRec

Modern Object Pascal Introduction for Programmers

into a String. }
function GlueEverything(const MyArray: array of const): String;
var

I: Integer;
begin

Result := '';

for I := 0 to High(MyArray) do
begin
// treat MyArray[I] as TVarRec, check for type and do something
case MyArray[I].VType of
vtInteger:
begin
Writeln('Integer: ', MyArray[I].VInteger);
Result := Result + IntToStr(MyArray[I].VInteger) + ' ';
end;
vtAnsiString:
begin
Writeln('Ansi String (8-bit chars): ',
AnsiString(MyArray[I].VAnsiString));
Result := Result + AnsiString(MyArray[I].VAnsiString) + ' ';
end;
vtUnicodeString:
begin
Writeln('Unicode String (16-bit chars): ',
UnicodeString(MyArray[I].VUnicodeString));
Result := Result + UnicodeString(MyArray[I].VUnicodeString) + '

end;
else
Writeln('Something else, ignoring');
end;
end;
end;

var
S: String;

begin
S := GlueEverything([123, 'Hello', 'World',6 456]);
Writeln(S);

end.

94

Modern Object Pascal Introduction for Programmers

8.9. Old-style objects

In the old days, Turbo Pascal introduced another syntax for class-like functionality,
using the object keyword. It's somewhat of a blend between the concept of a
record and a modern class.

* The old-style objects can be allocated / freed, and during that operation you can
call their constructor / destructor.

« But they can also be simply declared and used, like records. A simple record or
object type is not a reference (pointer) to something, it's simply the data. This
makes them comfortable for small data, where calling allocation / free would be
bothersome.

e Old-style objects offer inheritance and virtual methods, although with small
differences from the modern classes. Be careful — bad things will happen if you try
to use an object without calling its constructor, and the object has virtual methods.

It's discouraged to use the old-style objects in most cases. Modern classes provide
much more functionality. And when needed, records (including advanced records) can
be used for performance. These concepts are usually a better idea than old-style
objects.

8.10. Pointers

You can create a pointer to any other type. The pointer to type TMyRecord is declared
as ATMyRecord, and by convention is called PMyRecord . This is a traditional
example of a linked list of integers using records:

type
PMyRecord = ATMyRecord;
TMyRecord = record
Value: Integer;
Next: PMyRecord;
end;

Note that the definition is recursive (type PMyRecord is defined using type
TMyRecord , while TMyRecord is defined using PMyRecord). Itis allowed to define
a pointer type to a not-yet-defined type, as long as it will be resolved within the same
type block.

You can allocate and free pointers using the New / Dispose methods, or (more
low-level, not type-safe) GetMem / FreeMem methods. You dereference the pointer

95

Modern Object Pascal Introduction for Programmers

(to access the stuff pointed by) you append the A operator (e.g. MyInteger :=
MyPointerToIntegerA). To make the inverse operation, which is to get a pointer of
an existing variable, you prefix it with @ operator (e.g. MyPointerToInteger :=
@MyInteger).

There is also an untyped Pointer type, similar to void* in C-like languages. It is
completely unsafe, and can be typecasted to any other pointer type.

Remember that a class instance is also in fact a pointer, although it doesn’t require any
A or @ operators to use it. A linked list using classes is certainly possible, it would
simply be this:

type
TMyClass = class
Value: Integer;
Next: TMyClass;
end;

8.11. Operator overloading

You can override the meaning of many language operators, for example to allow
addition and multiplication of your custom types.

Both FPC and Delphi support overloading operators by defining class operator
methods inside advanced records. Like this:

{$ifdef FPC}
{$mode objfpc}{$H+}{$JI-}
{$modeswitch advancedrecords}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses SysUtils;

type
TVector3 = record
public
X, Y, Z: Single;
class operator {$ifdef FPC}+{$else}Add{$Sendif}
(const A, B: TVector3): TVector3;
class operator {$ifdef FPC}*{$Selse}jMultiply{$endif}
(const V: TVector3; const Scalar: Single): TVector3;
function ToString: String;

96

Modern Object Pascal Introduction for Programmers

end;

class operator TVector3.{$ifdef FPC}+{S$Selse}Add{$endif}
(const A, B: TVector3): TVector3;

begin
Result.X := A.X + B.X;
Result.Y := A.Y + B.Y;
Result.zZ := A.Z + B.Z;
end;

class operator TVector3.{$ifdef FPC}*{$else}Multiply{$endif}
(const V: TVector3; const Scalar: Single): TVector3;

begin
Result.X := V.X * Scalar;
Result.Y := V.Y * Scalar;
Result.zZ := V.Z * Scalar;
end;

function TVector3.ToString: String;

begin
Result := Format('(%f, %f, %f)', [X, Y, Z]);
end;
var
V1, V2: TVector3;
begin
V1.X := 1.0; V1.Y := 2.0; V1.Z := 3.0;
V2.X = 4.0;, V2.Y := 5.0, V2.Z := 6.0,
WriteLn('v1i: ', V1.ToString);
WriteLn('Vv2: ', V2.ToString);
WriteLn('vl + v2: ', (V1 + V2).ToString);
WriteLn('vl * 10: ', (V1 * 10).ToString);
end.
With FPC, make sure to tell the compiler you use the "advanced
@ records"” feature by {$modeswitch advancedrecords} .

Take a look at the documentation to learn all possible operators that can be overloaded:

e FPC operator overloading5

e Delphi operator overloading6

5 https://wiki.freepascal.org/Operator_overloading
6 https://docwiki.embarcadero.com/RADStudio/Sydney/en/Operator_Overloading_%28Delphi%?29

97

https://wiki.freepascal.org/Operator_overloading
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Operator_Overloading_%28Delphi%29
https://wiki.freepascal.org/Operator_overloading
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Operator_Overloading_%28Delphi%29

Modern Object Pascal Introduction for Programmers

FPC supports also an alternative syntax to overload operators, by defining a global
function like operator™* . For example:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{$ifndef FPC}
{$message warn 'Delphi does not support global operator overloading'}
begin end.

{$endif}

uses
Strutils;

operator* (const S: string; const A: Integer): string;
begin

Result := DupeString(S, A);
end;

begin
WriteLn('bla' * 10);
end.

This approach (global operator functions) can be used to define operators on
classes too. Since you usually create new instances of your classes inside the operator
function, the caller must remember to free the result.

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{$ifndef FPC}
{$message warn 'Delphi does not support global operator overloading'}
begin end.

{$endif}

uses
SysUtils;

type
TMyClass = class
MyInt: Integer;
end;

operator* (const C1, C2: TMyClass): TMyClass;

98

Modern Object Pascal Introduction for Programmers

begin
Result := TMyClass.Create;
Result.MyInt := C1.MyInt * C2.MyInt;
end;

var
C1, C2: TMyClass;
begin
Cl := TMyClass.Create;
try
Cl1.MyInt := 12,
Cc2 :=C1 * C1;
try
WriteLn('12 * 12 = ', C2.MyInt);
finally
FreeAndNil(C2);
end;
finally
FreeAndNil(C1);
end;
end.

You can override operators on records too using the global operator functions. This
is usually easier than overloading them for classes, as the caller doesn’t have to deal
then with memory management.

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{$ifndef FPC}
{$message warn 'Delphi does not support global operator overloading'}
begin end.

{$endif}

uses SysUtils;

type
TMyRecord = record
MyInt: Integer;
end;

operator* (const C1, C2: TMyRecord): TMyRecord;
begin
Result.MyInt := C1.MyInt * C2.MyInt;

99

Modern Object Pascal Introduction for Programmers

end;

var

R1, R2: TMyRecord;
begin

R1.MyInt := 12,

R2 := R1 * R1;

WriteLn('12 * 12 = ', R2.MyInt);
end.

However, for records, we don’'t advise to use the global operator functions.
Instead, use {$modeswitch advancedrecords} and override operators as
class operator inside the record. Reasons:

» This is compatible with Delphi.

* This allows to use generic classes that depend on some operator’'s existence
(ike TFPGList, that depends on the equality operator being available) with
such records. Otherwise the "global" definition of an operator (not inside the
record) would not be found (because it's not available at the code that
implements the TFPGL1ist), and you could not specialize a list like specialize
TFPGList<TMyRecord>.

{$ifdef FPC}
{$mode objfpc}{$H+}{$JI-}
{$modeswitch advancedrecords}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

{$ifndef FPC}
{$message warn 'Delphi does not have FGL unit'}
begin end.

{$endif}

uses
SysUtils, FGL;

type
TMyRecord = record
MyInt: Integer,
class operator+ (const C1, C2: TMyRecord): TMyRecord;
class operator= (const C1, C2: TMyRecord): boolean;
end;

100

Modern Object Pascal Introduction for Programmers

class operator TMyRecord.+ (const C1, C2: TMyRecord): TMyRecord;
begin

Result.MyInt := C1.MyInt + C2.MyInt;
end;

class operator TMyRecord.= (const C1, C2: TMyRecord): boolean;
begin

Result := C1.MyInt = C2.MyInt;
end;

type
TMyRecordList = {$ifdef FPC}specialize{$endif} TFPGList<TMyRecord>;

var
R, ListItem: TMyRecord;
L: TMyRecordList;

begin
L := TMyRecordList.Create;

try
R.MyInt := 1; L.Add(R);
R.MyInt := 10; L.Add(R);
R.MyInt := 100; L.Add(R);

R.MyInt := 0,
for ListItem in L do
R := ListItem + R;

WriteLn('l + 10 + 100 = ', R.MyInt);
finally
FreeAndNil(L);
end;
end.

9. Advanced classes features

9.1. Private and strict private

The private visibility specifier means that the field (or method) is not accessible
outside of this class. But it allows an exception: all the code defined in the same unit can
break this, and access private fields and methods. A C++ programmer would say that
in Pascal all classes within a single unit are friends. This is often useful, and doesn’t
break your encapsulation, since it’s limited to a unit.

101

Modern Object Pascal Introduction for Programmers

However, if you create larger units, with many classes (that are not tightly integrated
with each other), it's safertouse strict private . It means thatthe field (or method)
is not accessible outside of this class — period. No exceptions.

In a similar manner, there’s protected visibility (visible to descendants, or friends in
the same unit) and strict protected (visible to descendants, period).

9.2. More stuff inside classes and nested classes

You can open a section of constants (const) or types (type) within a class. This
way, you can even define a class within a class. The visibility specifiers work as always,
in particular the nested class can be private (not visible to the outside world), which
is often useful.

Note that to declare a field after a constant or type you will need to open a var block.

type
TMyClass = class
private
type
TInternalClass = class
Velocity: Single;
procedure DoSomething;
end;
var
FInternalClass: TInternalClass;
public
const

DefaultVelocity = 100.0;
constructor Create;
destructor Destroy; override;

end;

constructor TMyClass.Create;

begin
inherited;
FInternalClass := TInternalClass.Create;
FInternalClass.Velocity := DefaultVelocity;
FInternalClass.DoSomething;

end;

destructor TMyClass.Destroy;
begin
FreeAndNil(FInternalClass);

102

Modern Object Pascal Introduction for Programmers

inherited;
end;

{ note that method definition is prefixed with
"TMyClass.TInternalClass" below. }

procedure TMyClass.TInternalClass.DoSomething;

begin

end;

9.3. Class methods

These are methods you can call having a class reference (TMyClass), not necessarily
a class instance.

type
TEnemy = class
procedure Kill;
class procedure KillAll;
end;

var
E: TEnemy;
begin
E := TEnemy.Create;
try
E.Kill;
finally FreeAndNil(E) end;
TEnemy.Kil1lAl1l;
end;

Note that they can be virtual — it makes sense, and is sometimes very useful, when
combined with Section 9.4, “Class references”.

The class methods can also be limited by the Section 4.7, “Visibility specifiers”, like
private or protected . Just like regular methods.

Note that a constructor always acts like a class method when called in a normal fashion
(MyInstance := TMyClass.Create(..);). Although it's possible to also call a
constructor from within the class itself, like a normal method, and then it acts like a
normal method. This is a useful feature to "chain" constructors, when one constructor
(e.g. overloaded to take an integer parameter) does some job, and then calls another
constructor (e.g. parameter-less).

103

Modern Object Pascal Introduction for Programmers

9.4. Class references

Class reference allows you to choose the class at runtime, for example to call a class
method or constructor without knowing the exact class at compile-time. It is a type
declared as class of TMyClass.

type
TMyClass = class(TComponent)
end;

TMyClassl = class(TMyClass)
end;

TMyClass2
end;

class(TMyClass)

TMyClassRef = class of TMyClass;

var
C: TMyClass;
ClassRef: TMyClassRef;

begin
// Obviously you can do this:

C := TMyClass.Create(nil); FreeAndNil(C);
C := TMyClassl.Create(nil); FreeAndNil(C);
C := TMyClass2.Create(nil); FreeAndNil(C);

// In addition, using class references, you can also do this:

ClassRef := TMyClass;
C := ClassRef.Create(nil); FreeAndNil(C);

ClassRef := TMyClassi;
C := ClassRef.Create(nil); FreeAndNil(C);

ClassRef := TMyClass2;
C := ClassRef.Create(nil); FreeAndNil(C);
end;

Class references can be combined with virtual class methods. This gives a similar
effect as using classes with virtual methods — the actual method to be executed is
determined at runtime.

104

Modern Object Pascal Introduction for Programmers

type
TMyClass = class(TComponent)
class procedure DoSomething; virtual; abstract;
end;

TMyClassl = class(TMyClass)
class procedure DoSomething; override;
end;

TMyClass2 = class(TMyClass)
class procedure DoSomething; override;
end;

TMyClassRef = class of TMyClass;

var
C: TMyClass;
ClassRef: TMyClassRef;
begin
ClassRef := TMyClassi;
ClassRef.DoSomething;

ClassRef := TMyClass2;
ClassRef.DoSomething;

ClassRef := TMyClass;
ClassRef.DoSomething;
end;

If you have an instance, and you would like to get a reference to its class (not the
declared class, but the final descendant class used at its construction), you can use the
ClassType property. The declared type of ClassType is TClass, which stands
for class of TObject . Often you can safely typecast it to something more specific,
when you know that the instance is something more specific than TObject .

In particular, you can use the ClassType reference to call virtual methods, including
virtual constructors. This allows you to create a method like Clone that constructs
an instance of the exact run-time class of the current object. You can combine it with
Section 7.3, “Cloning: TPersistent.Assign” to have a method that returns a newly-
constructed clone of the current instance.

105

Modern Object Pascal Introduction for Programmers

Remember that it only works when the constructor of your class is virtual. For example,
it can be used with the standard TComponent descendants, since they all must
override TComponent.Create(AOwner: TComponent) virtual constructor.

type
TMyClass = class(TComponent)
procedure Assign(Source: TPersistent); override;
function Clone(AOwner: TComponent): TMyClass;
end;

TMyClassRef = class of TMyClass;

function TMyClass.Clone(AOwner: TComponent): TMyClass;

begin
// This would always create an instance of exactly TMyClass:
//Result := TMyClass.Create(AOwner);
// This can potentially create an instance of TMyClass descendant:
Result := TMyClassRef(ClassType).Create(AOwner);
Result.Assign(Self);

end;

9.5. Static class methods

To understand the static class methods, you have to understand how the normal class
methods (described in the previous sections) work. Internally, normal class methods
receive a class reference of their class (it is passed through a hidden, implicitly added
1st parameter of the method). This class reference can be even accessed explicitly
using the Self keyword inside the class method. Usually, it's a good thing: this class
reference allows you to call virtual class methods (through the virtual method table of
the class).

While this is nice, it makes the normal class methods incompatible when assigning to
a global procedure pointer. That is, this will not compile:

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}

type
TMyCallback = procedure (A: Integer);

TMyClass = class
class procedure Foo(A: Integer);
end;

106

Modern Object Pascal Introduction for Programmers

class procedure TMyClass.Foo(A: Integer);
begin
end;

var
Callback: TMyCallback;
begin
// Error: TMyClass.Foo not compatible with TMyCallback
Callback := {$ifdef FPC} @TMyClass(nil).Foo {$else}
TMyClass.Foo {$endif};
end.

In the Delphi mode you would be able to write TMyClass.Foo
@ instead of an ugly TMyClass(nil).Foo in the example above.
Admittedly, the TMyClass.Foo looks much more elegant,
and it is also better checked by the compiler. Using the
TMyClass(nil).Foo is a hack... unfortunately, necessary (for
now) in the ObjFpc mode which is presented throughout this book.

In any case, assigning the TMyClass.Foo to the Callback
above would still fail in the Delphi mode, for exactly the same
reasons.

The above example fails to compile, because the Callback is incompatible with the
class method Foo . And it's incompatible because internally the class method has that
special hidden implicit parameter to pass a class reference.

One way to fix the above example is to change the definition of TMyCallback . It
will work if it is a method callback, declared as TMyCallback = procedure (A:
Integer) of object; . But sometimes, it's not desirable.

Here comes the static class method. It is, in essence, just a global procedure /
function, but its namespace is limited inside the class. It does not have any implicit
class reference (and so, it cannot be virtual and it cannot call virtual class methods).
On the upside, it is compatible with normal (non-object) callbacks. So this will work:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

type
TMyCallback = procedure (A: Integer);

107

Modern Object Pascal Introduction for Programmers

TMyClass = class
class procedure Foo(A: Integer); static;
end;

class procedure TMyClass.Foo(A: Integer);
begin
end;

var
Callback: TMyCallback;
begin
Callback := @TMyClass.Foo;
end.

9.6. Class properties and variables

A class property is a property that can be accessed through a class reference (it does
not need a class instance).

It is similar to a regular property (see Section 4.5, “Properties”), but all classes access
(read and write) the same value. For a class property, you can define a getter and / or
a setter. They may refer to a class variable or a static class method.

A class variable is, you guessed it, like a regular field but you don’t need a class instance
to access it. In effect, it's just like a global variable, but with the namespace limited to
the containing class. It can be declared within the class var section of the class.
Alternatively it can be declared by following the normal field definition with the keyword
static.

And a static class method is just like a global procedure / function, but with the
namespace limited to the containing class. More about static class methods in the
section above, see Section 9.5, “Static class methods”.

{$ifdef FPC} {$mode objfpc}{$H+}{$I-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

type
TMyClass = class
strict private
// Alternative:
// FMyProperty: Integer; static;
class var

108

Modern Object Pascal Introduction for Programmers

FMyProperty: Integer,
class procedure SetMyProperty(const Value: Integer); static;
public
class property MyProperty: Integer
read FMyProperty write SetMyProperty;
end;

class procedure TMyClass.SetMyProperty(const Value: Integer);
begin

Writeln('MyProperty changes!');

FMyProperty := Value;
end;

begin

TMyClass.MyProperty := 123;

Writeln('TMyClass.MyProperty is now ', TMyClass.MyProperty);
end.

9.7. Class helpers

The method is just a procedure or function inside a class. From the outside of the
class, you call it with a special syntax MyInstance.MyMethod(..) . After a while you
grow accustomed to thinking that if | want to make action Action on instance X, | write
“X.Action(...)".

But sometimes, you need to implement something that conceptually is an action
on class TMyClass without modifying the TMyClass source code. Sometimes it's
because it's not your source code, and you don’'t want to change it. Sometimes
it's because of the dependencies —adding a method like Render to a class like
TMy3DObject seems like a straightforward idea, but maybe the base implementation
of class TMy3DObject should be keptindependent from the rendering code? It would
be better to "enhance" an existing class, to add functionality to it without changing its
source code.

Simple way to do it is then to create a global procedure that takes an instance of
TMy3DObject as its 1st parameter.

procedure Render(const Objl: TMy3DObject; const Color: TColor);
var

I: Integer;
begin

for I := 0 to Objl.ShapesCount - 1 do

109

Modern Object Pascal Introduction for Programmers

RenderMesh(0Obj1.Shape[I].Mesh, Color);
end;

This works perfectly, but the downside is that calling it looks a little ugly. While usually
you call actions like X.Action(..) ,inthis case you have to call them like Render (X,
..) . It would be cool to be able to just write X.Render(..) , even when Render is
not implemented in the same unit as TMy3DObject .

And this is where you use class helpers. They are just a way to implement procedures /
functions that operate on given class, and that are called like methods, but are not in
fact normal methods — they were added outside of the TMy3DObject definition.

type
TMy3DObjectHelper = class helper for TMy3DObject
procedure Render(const Color: TColor);
end;

procedure TMy3DObjectHelper.Render(const Color: TColor);
var
I: Integer;
begin
{ note that we access ShapesCount, Shape without any qualifiers here }
for I := 0 to ShapesCount - 1 do
RenderMesh(Shape[I].Mesh, Color);
end;

The more general concept is "type helper”. Using them you can add
@ methods even to primitive types, like integers or enums. You can

also add "record helpers" to (you guessed it...) records. See http://

lists.freepascal.org/fpc-announce/2013-February/000587.html .

9.8. Should constructors and destructors be virtual ?

The answer is actually different for constructors and destructors, and it also depends
on whether you are using TObject or TComponent as the ancestor class.

Destructors

There is only one destructor in a class. It's name is always Destroy , itis virtual (since
you can call it without knowing the exact class at compile-time) and parameter-less.
Define it like this:

110

http://lists.freepascal.org/fpc-announce/2013-February/000587.html
http://lists.freepascal.org/fpc-announce/2013-February/000587.html

Modern Object Pascal Introduction for Programmers

type
TMyClass = class(TObject)
public
destructor Destroy; override;
end;

destructor TMyClass.Destroy;
begin

inherited;
end;

While in theory it is possible to deviate from this approach, and define additional
destructors with different names, we don’t recommend it. A single destructor should be
capable of cleaning up the instance (regardless of how it was created), this is obvious
to developers and this way Free and FreeAndNil can be used reliably (they will
both indirectly call the Destroy method).

Constructors

Constructor name is by convention Create .

In the base TObject class there is one simple constructor, without any parameters,
called Create . Itis not virtual. When creating descendants you're free to define your
own constructor(s) with any parameters you want. The new constructor will hide the
constructor in the ancestor (though see below for some warnings about this "hiding").
If you don’t have a good reason to make the constructor virtual in descendants, don’t
do it, it is not necessary.

For example, you can define a constructor like this:

type
TMyClass = class(TObject)
public
constructor Create(Avalue: Integer; const AName: String);
end;

constructor TMyClass.Create(AValue: Integer; const AName: String);
begin

inherited Create;

end;

111

Modern Object Pascal Introduction for Programmers

Multiple constructors can be defined, using overloading (multiple constructors with
the same name but with different parameters) and/or just inventing a new name
for the constructor, like TMyClass.CreateFromJson(const JsonFileName:
String) . It's a useful convention to start all constructor names with Create .

When creating a class, the correct constructor is called, since you explicitly indicate the
constructor name and parameters when creating an instance, like this:

X1 :
X2

TMyClass.CreateFromJson('myfile.json');
TMyClass.Create(10, 'hello');

If you define a constructor with a different name, like
O CreateFromJson, you usually also want to define a constructor
with the standard name Create in the same class. Otherwise,
the user can still access the ancestor constructor Create, thus
creating an instance of your class without using your custom

constructor at all. This is usually not what the developer intended.

For a similar reason, be careful when using overload (Delphi

o way of overloading, that doesn’t completely hide the ancestor
constructor). If you didn’t redefine all ancestor constructors, then the
user can still use the ancestor constructor (thus, create an instance
of your new class without calling any of your constructors).

The TComponent standard class has a virtual constructor declared like this:
constructor Create(AOwner: TComponent); virtual; . Using virtual
constructor is necessary for the streaming functionality of TComponent , to create a
class without knowing its type at compile time (see Section 9.4, “Class references” for
explanation). In the TComponent descendants, you should override it.

For example, this is how you can define a constructor in a TComponent descendant.
Note that we cannot take additional parameters in this case (e.g. to take initial value
for property MyInt), because we need to keep the same signature as in the ancestor
class. Any customization will have to be done by developer by setting properties or
calling other methods after the instance is created.

type
TMyComponent = class(TComponent)
private
FMyInt: Integer;
public

112

Modern Object Pascal Introduction for Programmers

constructor Create(AOwner: TComponent); override;
property MyInt: Integer read FMyInt write FMyInt;
end;

constructor TMyComponent.Create(AOwner: TComponent);

begin
inherited Create(AOwner); // Call the ancestor constructor
FMyInt := 0; // Default value

end;

Some other classes, also in your own code, may have virtual constructors (to enable
streaming them or just creating them using class references). In such cases, the
constructor in descendants should generally use the same parameters and be declared
with override (unless you really know what's going on, i.e. you understand why
ancestor constructor was virtual and this reason doesn’t apply to your descendant
class).

9.9. An exception in constructor

What happens if an exception happens during a constructor? The line
X := TMyClass.Create;

does not finish execution in this case, variable X is not assigned, so who will clean up
after a partially-constructed class?

The solution of Object Pascal is that, if an exception occurs within a constructor, then
the destructor is called. This is a reason why your destructor must be robust, which
means it should work in any circumstances, even on a half-created class instance.
Usually this is easy if you release everything safely, like by FreeAndNil.

A helpful property we can use to write robust destructors (that can handle half-created
instances) is that the memory of the class is guaranteed to be zeroed right before the
constructor code is executed. So we know that at the beginning, all class references
are nil, all integers are @ and so on. The strategy for writing a robust destructor is
thus: "be prepared that any field may still be zero, and handle it without errors".

In effect, the code below works without any memory leaks, even though constructor
execution is interrupted, leaving only Gunl but not Gun2 created:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

113

Modern Object Pascal Introduction for Programmers

uses
SysUtils;

type
TGun = class
end;

TPlayer = class
Gunl, Gun2: TGun,;
constructor Create;
destructor Destroy; override;
end;

constructor TPlayer.Create;

begin
inherited;
Gunl := TGun.Create;

raise Exception.Create('Raising an exception from constructor!');
Gun2 := TGun.Create;
end;

destructor TPlayer.Destroy;
begin
{ in case since the constructor crashed, we can
have Gunl <> nil and Gun2 = nil now. Deal with it.
...Actually, in this case, FreeAndNil deals with it without
any additional effort on our side, because FreeAndNil checks
whether the instance is nil before calling its destructor. }
FreeAndNil(Gunl);
FreeAndNil(Gun2);
inherited;
end;

begin
try
TPlayer.Create;
except
on E: Exception do
WriteLn('Caught ' + E.ClassName + ': ' + E.Message);
end;
end.

114

Modern Object Pascal Introduction for Programmers

10. Interfaces

An interface declares an API, much like a class, but it does not define the
implementation. A class can implement many interfaces, but it can only have one
ancestor class. By convention, we start interface type names with letter I, like
IMyInterface.

You can cast a class to any interface it implements, and then call the methods through
that interface. This allows to treat in a uniform fashion the classes that don’t descend
from each other, but still share some common functionality. Useful when a simple class
inheritance is not enough.

{$ifdef FPC}
{$mode objfpc}{$H+}{$I-}
{$interfaces corba} // See below why we recommend CORBA interfaces
{selse}
{$message warn 'Delphi does not support CORBA interfaces, only COM, that
change how memory is managed. This example is not valid in Delphi.'}
begin end.
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Classes;

type
IMyInterface = interface
['{79352612-668B-4E8C-910A-26975E103CAC} "]
procedure Shoot;
end;

TMyClassl = class(IMyInterface)
procedure Shoot;
end;

TMyClass2 = class(IMyInterface)
procedure Shoot;
end;

TMyClass3 = class
procedure Shoot;
end;

115

Modern Object Pascal Introduction for Programmers

procedure TMyClassl.Shoot;
begin

WriteLn('TMyClassl.Shoot');
end;

procedure TMyClass2.Shoot;
begin

WriteLn('TMyClass2.Shoot'");
end;

procedure TMyClass3.Shoot;
begin

WritelLn('TMyClass3.Shoot'");
end;

procedure UseThroughInterface(I: IMyInterface);
begin

Write('Shooting... ');

I.Shoot;
end;

var
Cl: TMyClassi;
C2: TMyClass2;
C3: TMyClasss3;

begin
Cl := TMyClassl.Create;
C2 := TMyClass2.Create;
C3 := TMyClass3.Create;
try

if C1 is IMyInterface then
UseThroughInterface(Cl1 as IMyInterface);
if C2 is IMyInterface then
UseThroughInterface(C2 as IMyInterface);
// The "C3 is IMyInterface" below is false,
// so "UseThroughInterface(C3 as IMyInterface)" will not execute.
if C3 is IMyInterface then
UseThroughInterface(C3 as IMyInterface);
finally
FreeAndNil(C1);
FreeAndNil(C2);
FreeAndNil(C3);
end;
end.

116

Modern Object Pascal Introduction for Programmers

10.1. Interfaces GUIDs

GUIDs are the seemingly random characters ['{ABCD1234-..}'] that you see
placed at every interface definition. Yes, they are just random. Unfortunately, they are
necessary.

The GUIDs have no meaning if you don’'t plan on integrating with communication
technologies like COM. But they are necessary, for implementation reasons. Don’t
be fooled by the compiler, that unfortunately allows you to declare interfaces without
GUIDs. Without the (unique) GUIDs, your interfaces will be treated equal by the is
operator. In effect, it will return true if your class supports any of your interfaces. The
magic function Supports(ObjectInstance, IMyInterface) behaves slightly
better here, as it refuses to be compiled for interfaces without a GUID.

To make inserting GUIDs easier, you can use Lazarus GUID generator (Ctrl +
Shift + G shortcut in the editor). Alternatively, you can use uuidgen program on
Unix or use an online service like https://www.guidgenerator.com/ . Or you can write
your own tool for this, using the CreateGUID and GUIDToString functionsin RTL.
See the example below:

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils;
var
MyGuid: TGUID;
begin
Randomize;
CreateGUID(MyGuid);
WriteLn('[''"' + GUIDToString(MyGuid) + '"']");
end.

10.2. Typecasting interfaces
Suppose we have a procedure with the following signature:

procedure UseThroughInterface(I: IMyInterface);

When calling it with a variable InterfacedVariable which is not exactly of type
IMyInterface, we have to typecast. There are a couple of options to choose from:

117

https://www.guidgenerator.com/

Modern Object Pascal Introduction for Programmers

1. Casting using the as operator:

UseThroughInterface(Interfacedvariable as IMyInterface);

If executed, it would make a run-time check and raise an exception if
InterfacedVvariable does notimplement IMyInterface.

Using as operator works consistently regardless of whether
InterfacedVvVariable is declared as a class instance (like TSomeClass)
or interface (like ISomeInterface). However, casting an interface to another
interface this way is not allowed under {$interfaces corba} - we will cover
that topic later.

2. Explicit typecasting:

UseThroughInterface(IMyInterface(Interfacedvariable));

Usually, such typecasting syntax indicates an unsafe, unchecked typecast. Bad
things will happen if you cast to an incorrect interface. And that's true, if you cast a
class to a class, or an interface to an interface, using this syntax.

There is a small exception here: if InterfacedVariable is declared as a class
(like TSomeClass), then this is a typecast that must be valid at compile-time. So
casting a class to an interface this way is a safe, fast (checked at compile-time)
typecast.

3. Implicit typecasting:

UseThroughInterface(InterfacedVariable);

In this case, the typecast must be valid at compile-time. This will compile only if
the type of InterfacedVariable (either class or an interface) is implementing
IMyInterface.

In essence, this typecast looks and works just like for regular classes. Wherever an
instance of a class TSomeClass is required, you can always use a variable there
that is declared with a class of TSomeClass, or TSomeClass descendantThe

same rule applies to interfaces. No need for any explicit typecast in such situations.

To test it all, play around with this example code:

118

Modern Object Pascal Introduction for Programmers

{$ifdef FPC} {$mode objfpc}{$H+}{$J-} {$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

// {$interfaces corba} // note that "as" typecasts will not compile with
CORBA interfaces

uses Classes;

type
IMyInterface = interface
['{7FC754BC-9CA7-4399-B947-D37DD30BA90A} ']
procedure One;
end;

IMyInterface2 = interface(IMyInterface)

['{A72B7008-3F90-45C1-8F4C-E77C4302AA3E}"']
procedure Two;

end;

IMyInterface3 = interface(IMyInterface2)

['{924BFB98-B049-4945-AF17-1DBO8DB1COC5} ']
procedure Three;

end;

TMyClass = class(TComponent, IMyInterface)
procedure One;
end;

TMyClass2 = class(TMyClass, IMyInterface, IMyInterface2)
procedure One;
procedure Two;

end;

procedure TMyClass.One;
begin

Writeln('TMyClass.One');
end;

procedure TMyClass2.0ne;
begin

Writeln('TMyClass2.0ne');
end;

procedure TMyClass2.Two;
begin

119

Modern Object Pascal Introduction for Programmers

Writeln('TMyClass2.Two');
end;

procedure UseInterface2(const I: IMyInterface2);
begin

I.0ne;

I.Two;
end;

procedure UseInterface3(const I: IMyInterface3);
begin

I.0ne;

I.Two;

I.Three;
end;

var
MyInterface: IMyInterface;
MyClass: TMyClass;

begin
MyInterface := TMyClass2.Create(nil);
MyClass := TMyClass2.Create(nil);

// This doesn't compile, since at compile-time it's unknown if
MyInterface is IMyInterface2.

// UselInterface2(MyInterface);

// UseInterface2(MyClass);

// This compiles and works OK.
UseInterface2(IMyInterface2(MyInterface));

// This does not compile. Casting InterfaceType(ClassType) is checked at
compile-time.

// UselInterface2(IMyInterface2(MyClass));

// This compiles and works OK.
UseInterface2(MyInterface as IMyInterface2);
// This compiles and works OK.
UseInterface2(MyClass as IMyInterface2);

// This compiles, but will fail at runtime, with ugly "Access
violation".

// UselInterface3(IMyInterface3(MyInterface));

// This does not compile. Casting InterfaceType(ClassType) is checked at
compile-time.

// UseInterface3(IMyInterface3(MyClass));

120

Modern Object Pascal Introduction for Programmers

// This compiles, but will fail at runtime, with nice "EInvalidCast:
Invalid type cast".

// UselInterface3(MyInterface as IMyInterface3);

// This compiles, but will fail at runtime, with nice "EInvalidCast:
Invalid type cast".

// UseInterface3(MyClass as IMyInterface3);

Writeln('Finished');
end.

10.3. CORBA and COM types of interfaces

This section is only relevant for FPC. Delphi has only COM
S interfaces.

Why are the interfaces (presented above) called "CORBA"?
Because these types of interfaces can be used together with the CORBA (Common
Object Request Broker Architecture) technology (see wikipedia about CORBA7).

But they are not really tied to the CORBA technology.

The name CORBA is perhaps unfortunate. A better name would be bare
interfaces. The point of these interfaces is that they are a "pure language feature".
Use them when you want to cast various classes as the same interface, because
they share a common API, and you don’'t want other features (like reference-
counting or COM integration).

How do these compare with other programming languages?
The CORBA interfaces in Object Pascal work pretty much like interfaces in Java
(https://docs.oracle.com/javase/tutorial/java/concepts/interface.html) or C# (https://
msdn.microsoft.com/en-us/library/ms173156.aspx).

Although the Java and C# languages have garbage collection, so comparison
is somewhat flawed, regardless of whether you compare with CORBA or COM
interfaces. In our experience, the CORBA interfaces in Pascal are similar to Java
and C# interfaces in the way they are used. That s, you use CORBA interfaces when
you want unrelated (not descending from each other) classes to share a common
API and you don’t want anything else to change.

! https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

121

https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
https://msdn.microsoft.com/en-us/library/ms173156.aspx
https://msdn.microsoft.com/en-us/library/ms173156.aspx
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

Modern Object Pascal Introduction for Programmers

Is the {$interfaces corba} declaration needed?
Yes, because by default you create COM interfaces. This can be stated explicitly
by saying {$interfaces com} , but usually it's not needed since it's the default
state.

And | don’t advise using COM interfaces, especially if you're looking for something
equivalent to interfaces from other programming languages. The CORBA interfaces
in Pascal are exactly what you expect if you're looking for something equivalent to
the interfaces in C# and Java. While the COM interfaces bring additional features
that you possibly don’t want.

Note that the {$interfaces xxx} declaration only affects the interfaces
that do not have any explicit ancestor (just the keyword interface, not
interface(ISomeAncestor)). When an interface has an ancestor, it has the
same type as the ancestor, regardless of the {$interfaces xxx} declaration.

What are COM interfaces?
The COM interface is synonymous with an interface descending from a special
IUnknown interface. Descending from IUnknown :

* Requires that your classes define the _AddRef and _ReleaseRef methods.
Proper implementation of these methods can manage the lifetime of your objects
using the reference-counting.

* Adds the QueryInterface method.
» Allows to interact with the COM (Component Object Model) technology.

Why do you advise to not use the COM interfaces?
Because COM interfaces "entangle" two features that should be unrelated
(orthogonal) in my view: multiple inheritance and reference counting. Other
programming languages rightly use separate concepts for these two features.

To be clear: reference-counting, that provides an automatic memory management
(in simple situations, i.e. without cycles), is a very useful concept. But entangling
this feature with interfaces (instead of making them orthogonal features) is
unclean in my eyes. It definitely doesn’t match my use cases.

* Sometimes | want to cast my (otherwise unrelated) classes to a common
interface.
* Sometimes | want to manage memory using the reference counting approach.
* Maybe some day | will want to interact with the COM technology.
But these are all separate, unrelated needs. Entangling them in a single language
feature is counter-useful in my experience. It does cause actual problems:

122

Modern Object Pascal Introduction for Programmers

« If | want the feature of casting classes to a common interface API, but | don’t
want the reference-counting mechanism (I want to manually free objects), then
the COM interfaces are problematic. Even when reference-counting is disabled
by a special _AddRef and _ReleaseRef implementation, you still need to be
careful to never have a temporary interface reference hanging, after you have
freed the class instance. More about this in the next section.

« If | want the feature of reference counting, but | have no need for an interface
hierarchy to represent something different than the class hierarchy, then | have
to duplicate my classes API in interfaces. Thus creating a single interface for
each class. This is counter-productive. | would much rather have smart pointers
as a separate language feature, not entangled with interfaces (and luckily, it's
coming:).

That is why | advise to use CORBA style interfaces, and the {$interfaces
corba} directive, in all modern code dealing with interfaces.

Only if you need both "reference counting” and "multiple inheritance" at the same
time, then use COM interfaces. Also, Delphi has only COM interfaces for now, so
you need to use COM interfaces if your code must be compatible with Delphi.

Can we have reference-counting with CORBA interfaces?
Yeah. Justadd _AddRef / _ReleaseRef methods. There’s no need to descend
from the IUnknown interface. Although in most cases, if you want reference-
counting with your interfaces, you may as well just use COM interfaces.

10.4. Reference-counted (COM) interfaces

The COM interfaces bring two additional features:

1. integration with COM (a technology from Windows, also available on Unix through
XPCOM, used by Mozilla),

2. reference counting (which gives you automatic destruction when all the interface
references go out of scope).

When using COM interfaces, you need to be aware of their automatic destruction
mechanism and relation to COM technology.

In practice, this means that:

* Your class needs to implement a magic _AddRef, _Release, and
QueryInterface methods. Or descend from something that already implements
them. A particular implementation of these methods may actually enable or disable

123

Modern Object Pascal Introduction for Programmers

the reference-counting feature of COM interfaces (although disabling it is somewhat
dangerous — see the next point).

The standard class TInterfacedObject implements these methods to
enable the reference-counting.

The standard class TComponent implements these methods to disable the
reference-counting.

* You need to be careful of freeing the class, when it may be referenced by
some interface variables. Because the interface is released using a virtual method
(because it may be reference-counted, even if you hack the _AddRef method to not
be reference-counted...), you cannot free the underlying object instance as long as
some interface variable may point to it. See "7.7 Reference counting” in the FPC
manual (http://freepascal.org/docs-html/ref/refse47.html).

The safest approach to using COM interfaces is to

» accept the fact that they are reference-counted,
 derive the appropriate classes from TInterfacedObject,

» and avoid using the class instance, instead accessing the instance always through
the interface, letting reference-counting manage the deallocation.

This is an example of such interface use:

{$ifdef FPC}
{$mode objfpc}{$H+}{$JI-}
{$interfaces com}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Classes;

type
IMyInterface = interface
['{3075FFCD-8EFB-4E98-B157-261448B8D92E} "']
procedure Shoot;
end;

TMyClassl = class(TInterfacedObject, IMyInterface)
procedure Shoot;
end;

124

http://freepascal.org/docs-html/ref/refse47.html

Modern Object Pascal Introduction for Programmers

TMyClass2 = class(TInterfacedObject, IMyInterface)
procedure Shoot;
end;

TMyClass3 = class(TInterfacedObject)
procedure Shoot;
end;

procedure TMyClassl.Shoot;
begin

WriteLn('TMyClassl.Shoot'");
end;

procedure TMyClass2.Shoot;
begin

WriteLn('TMyClass2.Shoot'");
end;

procedure TMyClass3.Shoot;
begin

WriteLn('TMyClass3.Shoot');
end;

procedure UseThroughInterface(I: IMyInterface);
begin

Write('Shooting... ');

I.Shoot;
end;

var
Cl: IMyInterface; // COM takes care of destruction
C2: IMyInterface; // COM takes care of destruction

C3: TMyClass3; // YOU have to take care of destruction
begin

Cl := TMyClassl.Create as IMyInterface;

C2 := TMyClass2.Create as IMyInterface;

C3 := TMyClass3.Create;
try

UseThroughInterface(C1); // no need to use "as" operator

UseThroughInterface(C2);
if Supports(C3, IMyInterface) then

UseThroughInterface(C3 as IMyInterface); // this will not execute

finally

{ €1 and C2 variables go out of scope and will be auto-destroyed now.

125

Modern Object Pascal Introduction for Programmers

In contrast, C3 is a class instance, not managed by an interface,
and it has to be destroyed manually. }
FreeAndNil(C3);
end;
end.

10.5. Using COM interfaces with reference-counting disabled

As mentioned in the previous section, your class can descend from
TComponent (or a similar class like TNonRefCountedInterfacedObject and
TNonRefCountedInterfacedPersistent) which disables reference-counting for
COM interfaces. This allows you to use COM interfaces, and still free the class instance
manually.

You need to be careful in this case to not free the class instance when some interface
variable may refer to it. Remember that every typecast Cx as IMyInterface also
creates a temporary interface variable, which may be present even until the end of
the current procedure. For this reason, the example below uses a UseInterfaces
procedure, and it frees the class instances outside of this procedure (when we can be
sure that temporary interface variables are out of scope).

To avoid this mess, it's usually better to use CORBA interfaces, if you don’'t want
reference-counting with your interfaces.

{$ifdef FPC}
{$mode objfpc}{$H+}{$JI-}
{$interfaces com}
{$endif}
{$ifdef MSWINDOWS} {$apptype CONSOLE} {$endif}

uses
SysUtils, Classes;

type
IMyInterface = interface
['{3075FFCD-8EFB-4E98-B157-261448B8D92E} ']
procedure Shoot;
end;

TMyClassl = class(TComponent, IMyInterface)
procedure Shoot;
end;

126

Modern Object Pascal Introduction for Programmers

TMyClass2 = class(TComponent, IMyInterface)
procedure Shoot;
end;

TMyClass3 = class(TComponent)
procedure Shoot;
end;

procedure TMyClassl.Shoot;
begin

WriteLn('TMyClassl.Shoot'");
end;

procedure TMyClass2.Shoot;
begin

WriteLn('TMyClass2.Shoot'");
end;

procedure TMyClass3.Shoot;
begin

WriteLn('TMyClass3.Shoot');
end;

procedure UseThroughInterface(I: IMyInterface);
begin

Write('Shooting... ');

I.Shoot;
end;

var
Cl: TMyClassi;
C2: TMyClass2;
C3: TMyClasss3;

procedure UselInterfaces;

begin
// In FPC, you could also check using "is", Tlike:
//if C1 is IMyInterface then

if Supports(Cl1, IMyInterface) then
UseThroughInterface(Cl1 as IMyInterface);
if Supports(C2, IMyInterface) then
UseThroughInterface(C2 as IMyInterface);
if Supports(C3, IMyInterface) then

127

Modern Object Pascal Introduction for Programmers

UseThroughInterface(C3 as IMyInterface);
end;

begin
C1 :
C2 :
C3 :
try
UselInterfaces;
finally
FreeAndNil(C1);
FreeAndNil(C2);
FreeAndNil(C3);
end;
end.

TMyClassl.Create(nil);
TMyClass2.Create(nil);
TMyClass3.Create(nil);

11. About this document

Copyright Michalis Kamburelis.

The source code of this document is in AsciiDoc on https://github.com/modern-
pascal/modern-pascal-introduction. Suggestions for corrections and additions, and
patches and pull requests, are always very welcome:) You can reach me through
GitHub or email michalis@castle-engine.i08. My homepage is https://michalis.xyz/.
This document is linked under the Documentation section of the Castle Game Engine
website https://castle-engine.io/.

You can redistribute and even modify this document freely, under the same licenses
as Wikipedia https://en.wikipedia.org/wiki/Wikipedia:Copyrights :

» Creative Commons Attribution-ShareAlike 3.0 Unported License (CC BY-SA)

» or the GNU Free Documentation License (GFDL) (unversioned, with no invariant
sections, front-cover texts, or back-cover texts) .

Thank you for reading!

8 mailto:michalis@castle-engine.io

128

https://github.com/modern-pascal/modern-pascal-introduction
https://github.com/modern-pascal/modern-pascal-introduction
mailto:michalis@castle-engine.io
https://michalis.xyz/
https://castle-engine.io/
https://en.wikipedia.org/wiki/Wikipedia:Copyrights
mailto:michalis@castle-engine.io

	Modern Object Pascal Introduction for Programmers
	Table of Contents
	1. Why this book
	2. Basics
	2.1. "Hello world" program
	2.2. Compilers and FPC "syntax modes"
	2.3. Functions, procedures, primitive types
	2.4. Testing (if)
	2.5. Logical, relational and bit-wise operators
	2.6. Testing single expression for multiple values (case)
	2.7. Enumerated and ordinal types and sets and constant-length arrays
	2.8. Loops (for, while, repeat, for .. in)
	2.9. Output, logging
	2.10. Converting to a string

	3. Units
	3.1. Overview
	3.2. Extensions used for units and programs
	3.3. Initialization and finalization
	3.4. Units using each other
	3.5. Qualifying identifiers with unit name
	3.6. Exposing one unit identifiers from another

	4. Classes
	4.1. Basics
	4.2. Inheritance, virtual methods, override, reintroduce
	4.3. Classes and class instances, constructors, destructors
	4.4. Testing class (is), typecasting (as, TMyClass(X))
	4.5. Properties
	Serialization of properties

	4.6. Exceptions - Quick Example
	4.7. Visibility specifiers
	4.8. Default ancestor
	4.9. Self
	4.10. Calling inherited method
	4.11. Virtual methods, override and reintroduce

	5. Freeing classes
	5.1. Remember to free the class instances
	5.2. How to free
	5.3. Manual and automatic freeing
	5.4. The virtual destructor called Destroy
	5.5. Free notification
	5.6. Free notification observer (Castle Game Engine)

	6. Exceptions
	6.1. Overview
	6.2. Raising
	6.3. Catching
	6.4. Finally (doing things regardless of whether an exception occurred)
	6.5. How the exceptions are displayed by various libraries

	7. Run-time library
	7.1. Input/output using streams
	7.2. Containers (lists, dictionaries) using generics
	7.3. Cloning: TPersistent.Assign

	8. Various language features
	8.1. Local (nested) routines
	8.2. Callbacks (aka events, aka pointers to functions, aka procedural variables)
	8.3. Anonymous functions
	8.4. Generics
	8.5. Overloading
	8.6. Preprocessor
	8.7. Records
	8.8. Variant records and related concepts
	Variant records
	Variant type
	TVarRec in array of const

	8.9. Old-style objects
	8.10. Pointers
	8.11. Operator overloading

	9. Advanced classes features
	9.1. Private and strict private
	9.2. More stuff inside classes and nested classes
	9.3. Class methods
	9.4. Class references
	9.5. Static class methods
	9.6. Class properties and variables
	9.7. Class helpers
	9.8. Should constructors and destructors be virtual?
	Destructors
	Constructors

	9.9. An exception in constructor

	10. Interfaces
	10.1. Interfaces GUIDs
	10.2. Typecasting interfaces
	10.3. CORBA and COM types of interfaces
	10.4. Reference-counted (COM) interfaces
	10.5. Using COM interfaces with reference-counting disabled

	11. About this document

