%

Building CircuitPython

Created by Dan Halbert

$ git clone https://github.com/adafruit
$ cd circuitpython/ports/atmel-samd

$ git submodule update --init

$ make BOARD=gemma mO

Use make V=1, make V=2 or set BUILD VERE
install -d build-gemma m@/genhdr
python3 tools/gen usb descriptor.py \

--manufacturer "Adafrulit Indust

--product "Gemma MO"\

--vid 0Ox239A\

--pid 0x801D\

--output c file build-gemma mO/43

--output h file build-gemma mO/¢
Generating build-gemma mO/genhdr/mpvers
GEN build-gemma mO/genhdr/gstr.i.last

https://learn.adafruit.com/building-circuitpython

Last updated on 2025-05-30 02:59:28 PM EDT

©Adafruit Industries Page 1 of 22

Table of Contents

Introduction

Linux Setup

« Set Up a Real or Virtual Linux Machine
« Install Build Tools on Ubuntu

« Setting up a Python Virtual Environment (Ubuntu 24.04 and similar only)

« Next Steps

macOS Setup

- Install gmake if Necessary

Windows Subsystem for Linux (WSL) Setup

- Install WSL

« Finish Linux Install

« Build CircuitPython

« Moving Files to Windows

« Mounting a CircuitPython Board in WSL
« Editing Files in WSL

Manual Setup

GitHub Codespaces

Recent Changes

« Install git-Ifs
« Fetching Submodules

Build CircuitPython

» Fetch the Code to Build

- Install Required Python Packages
« Checking out a Specific Branch or Version
« Fetch Submodules

« Install pre-commit

« Build mpy-cross

« Build CircuitPython

« Run Your Build!

» Use All Your CPUs When Building
« When to make clean

« Updating Your Repo

Adding Frozen Modules
Choosing a Different SPI Flash Chip
Customizing Included Modules

Espressif Builds

- Files Generated by a Build
« Decoding a Crash Backtrace

How to Add a New Board to CircuitPython

©Adafruit Industries

"
"

12

12

18
19
19

20

22

Page 2 of 22

Introduction

Adafruit CircuitPython (https://adafru.it/AlP) is an open-source implementation of

Python for microcontrollers. It's derived from MicroPython (https://adafru.it/fOW), a
ground-breaking implementation of Python for microcontrollers and constrained
environments.

CircuitPython ships on many Adafruit products. We regularly create new releases and
make it easy to update your installation with new builds.

However, you might want to build your own version of CircuitPython. You might want
to keep up with development versions between releases, adapt it to your own
hardware, add or subtract features, or add "frozen" modules to save RAM space. This
guide explains how to build CircuitPython yourself.

CircuitPython is meant to be built in a POSIX-style build environment. We'll talk about
building it on Linux-style systems or on macOS. It's possible, but tricky, to build in
other environments such as CygWin or MinGW: we may cover how to use these in the
future.

Linux Setup

Set Up a Real or Virtual Linux Machine

If you don't already have a Linux machine, you can set one up in several different
ways. You can install a Linux distribution natively, either on its own machine or as a
dual-boot system. You can install Linux on a virtual machine on, say, a Windows host
machine. You can also use Windows Subsystem for Linux (https://adafru.it/C2z) (WSL),
available on Microsoft Windows 10 and 11. WSL allows you to run a Linux distribution

with an emulation layer substituting for the Linux kernel.

We recommend using the Ubuntu (https://adafru.it/C2A) distribution of Linux or one of

its variants (Kubuntu, Mint, etc.). The instructions here assume you are using Ubuntu.
The 24.04 LTS (Long Term Support) version is stable and reliable, but needs a Python
venv setup, detailed on the Build CircuitPython (https://adafru.it/C2D) page in this
guide. Ubuntu 22.04 can also be used, but some of the tools are out of date. Use
24.04 if you can.

Native Linux

You can install Ubuntu on a bare machine easily. Follow the directions (https://
adafru.it/10Sc) on the Ubuntu website. You can also install Ubuntu on a disk shared

©Adafruit Industries Page 3 of 22

file:///home/welcome-to-circuitpython/
https://micropython.org/
file:///home/building-circuitpython/windows-subsystem-for-linux
https://ubuntu.com
https://learn.adafruit.com/building-circuitpython/build-circuitpython
https://ubuntu.com/tutorials/install-ubuntu-desktop

with your Windows installation, or on a separate disk, and make a dual-boot
installation.

Linux on a Virtual Machine

Linux can also be installed easily on a virtual machine. First you install the virtual
machine software, and then create a new virtual machine, usually giving the VM
software a .iso file of Ubuntu or another distribution. On Windows, VM Workstation
Player (https://adafru.it/C2C) and VirtualBox (https://adafru.it/eiS) are both free and
easily installed. Make your virtual machine filesystem at least 20GB-40GB so you

won't run out of space.
Raspberry Pi

Raspberry Pi OS is a Debian-based Linux distribution, like Ubuntu. Use the latest
version of Raspberry Pi OS so that the tools are as up to date as possible. You can
also install Ubuntu on your Raspberry Pi. You will need to download the aarch64
executable for the arm-none-eabi-gcc toolchain. The RPis, particularly Pi 3 and earlier,
are not fast machines: be prepared to wait a while for a build to complete.

Install Build Tools on Ubuntu

The Ubuntu 24.04 and 22.04 LTS Desktop distributions include most of what you
need to build CircuitPython. You'll need to install some additional packages, including
build-essential, if it's not already installed, and also git, git-Ifs, gettext, and cmake.

You also need the uncrustify tool if using pre-commit, but that will be installed later,
when you install the Python dependencies, even though uncrustify is not a Python
tool per se.

The version of git (2.30) installed with Ubuntu 22.04 will work, but git versions that
support partial submodule cloning (2.36 or later) will work better with submodules.
The standard version of git in Ubuntu 24.04 works fine.

To install these tools, in a terminal window, do:

sudo apt update
Try running “make . If it's not installed, do:
sudo apt install build-essential

If you don't have add-apt-repository, do:
sudo apt install software-properties-common

Recommended on Ubuntu 22.04: use the latest stable version of git:
Optional and not necessary on Ubuntu 24.04.
sudo add-apt-repository ppa:git-core/ppa

sudo apt install git git-1fs gettext cmake

©Adafruit Industries Page 4 of 22

https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.virtualbox.org/

Cortex-M Builds

Most CircuitPython boards use an ARM Cortex-M processor. You need to download
and unpack the appropriate ARM Cortex-M toolchain. Do not use the obsolete ARM
Ubuntu "ppa" (private package archive). The links below point to the general
download pages for the toolchains. Choose the arm-none-eabi version of the
compiler, and select the correct architecture for your development computer, such as
x64 Linux for a typical Linux PC. The package library for your particular Linux
distribution will not necessary install the correct version.

« For ClrcuitPython 9.x, use the 13.2.Rell version for (https://adafru.it/
19c0)AArch32 bare-metal target (arm-none-eabi) (https://adafru.it/19c0) on the
Arm GNU Toolchain Downloads page. Scroll down to find the correct version.

« For CircuitPython 10.x use the 14.2.Rel1 version for (https://adafru.it/
19c0)AArch32 bare-metal target (arm-none-eabi) (https://adafru.it/19c0) on the
Arm GNU Toolchain Downloads page. Scroll down to find the correct version.
GCC 14 is required as of PR #10386 (https://adafru.it/1ajH), which is after 10.0.0-
alpha.6.

If you want to build an older version of CircuitPython:

« For CircuitPython 6.1, 7.x, and 8.x, use the 10-2020-g4-major version on this
page (https://adafru.it/19bZ).

« For CircuitPython 5 and 6.0, use the 9-2019-g4-major version on this
page (https://adafru.it/19bZ).

« CircuitPython 4 was built with the 7-2018g2-update version on this page (https://
adafru.it/19b2).

Cortex-A Builds (Only for broadcom Port)

The broadcom port (Raspberry Pi Linux boards, not Pi RP2040 or RP2350) needs a
different toolchain. Use the Cortex-A toolchain:

« For CircuitPython 7.x, 8.x, and 9.x, use the 10.3-2021.07 version (https://adafru.it/
1ajw).

« For CircuitPython 10.x, use the 13.3-Rel1l AArch64 bare-metal target (aarch64-
none-elf) (https://adafru.it/19c0).

You will also need the mtools package for Cortex-A:

sudo apt install mtools

©Adafruit Industries Page 5 of 22

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://github.com/adafruit/circuitpython/pull/10386
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-rm
https://developer.arm.com/downloads/-/gnu-a#panel1a
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads#panel2a
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads#panel2a
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads#panel2a
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads#panel2a

And finally, you need a version 4.2 or later of mkfs.fat, which is part of the dosfstools
package. Ubuntu 20.04 has version 4.1. If you are still running 20.04. You can
download and build dosfstools. After you do so, copy mkfs.fat to some place that is or
will be on your PATH.

(This is not necessary on Ubuntu 22.04 or later.)

wget https://github.com/dosfstools/dosfstools/releases/download/v4.2/
dosfstools-4.2.tar.gz

tar xvf dosfstools-4.2.tar.gz

cd dosfstools-4.2

./configure

make

Installing the Toolchain

Unpack the Cortex-M or Cortex-A toolchain in a convenient directory.

This is an example.
cd ~/bin
tar xvf <name of the .bz2 or .xz file you downloaded>

Next, add a line to your .bash_profile or other startup file to add the unpacked
toolchain executables to your PATH. For example:

export PATH=/home/$USER/bin/arm-gnu-toolchain-13.2.Rell-x86 64-arm-none-eabi/bin:
$PATH

Open a new terminal window, and see if you now have the correct executables on
your path:

which arm-none-eabi-gcc
/home/halbert/bin/arm-gnu-toolchain-13.2.Rell-x86 64-arm-none-eabi/bin/arm-none-
eabi-gcc

Other Builds

« For Espressif (ESP32-S2, -S3, -C3), see the Espressif build page (https://adafru.it/
Ykd).

« For Spresense (cxd56), see the cxd56 README (https://adafru.it/Yke).

« For Litex (FOMU), see the litex README (https://adafru.it/Ykf).

Setting up a Python Virtual Environment (Ubuntu 24.04
and similar only)

On Ubuntu 24.04 and other recent Debian-derived Linux distribution releases, you
can no longer install Python modules with pip without first setting up a Python virtual
environment. You can override this restriction, but it has been set up as a safeguard.

©Adafruit Industries Page 6 of 22

https://learn.adafruit.com/building-circuitpython/esp32-s2-build
https://github.com/adafruit/circuitpython/blob/main/ports/cxd56/README.md
https://github.com/adafruit/circuitpython/blob/main/ports/litex/README.rst

The guide Python Virtual Environment Usage on Raspberry Pi (https://adafru.it/19a5)

explains this in great detail, from the point of view of using Raspberry Pi OS.

For building CircuitPython, here is a short recipe. First, make sure that venv, the
virtual environment module, is installed. Then create the virtual environment. Here we
name it .py, but you can pick a different name.

Install if not already installed.
sudo apt install python3-venv

Put the venv (virtual environment) in your home directory.
cd

Create the venv and name it ".py (or whatever you'd like).
python3 -mvenv .py

Once you create a virtual environment, you "activate" it by sourcing the activate script
provided by the virtual environment. Note that you cannot just run the script. You have
to source it into the current shell using the source orthe . command:

Enable the virtual environment.
source .py/bin/activate

Your shell will probably show an indication that you are now using the Python virtual
environment named .py:

(.py) yourusername@yourmachine:~$

Now you are ready to start building. You'll install the Python modules you need while
you are inside this virtual environment.

Note that if you're doing an Espressif build, it creates its own virtual environment
when you run esp-idf/export.sh.So don't use the virtual environment you
created above for those builds.

To leave the virtual environment, you deactivate it:

deactivate

Using the Virtual Environment Automatically

If it's convenient for you, you can activate the virtual environment in any new terminal
by putting a line like this in your .bashrc, .bash_aliases, or other shell startup file:

source ~/.py/bin/activate

©Adafruit Industries Page 7 of 22

https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi

Next Steps

Now move to the Build CircuitPython (https://adafru.it/C2D) section of this guide.
There we will get the CircuitPython source code, install a few more dependencies,
and then build!

macOS Setup

To build CircuitPython on macOS, you need to install git, python3, and the compiler
toolchain. The easiest way to do this is to first install Homebrew (https://adafru.it/
wPC), a software package manager for macOS. Follow the directions on its webpages.

Now install the software you need:

brew update
brew install git git-1fs python3 gettext uncrustify cmake
brew link gettext --force

Then install the compiler toolchain. You may be able to use the gcc-arm-embedded

homebrew formula (https://adafru.it/19c2) to install the correct toolchain, but make

sure you have homebrew install the correct version, as described on the Linux
Setup (https://adafru.it/HCR) page in this guide. A version that is too old or too new
may cause compilation errors.

As an alternative to homebrew, on the Linux Setup (https://adafru.it/HCR) page, you
can find pointers to the download pages for different kinds of ARM processors, and
also special instructions for other builds (not all are available on macOS). Download
and install the appropiate .pkg file for your Mac.

Once the dependencies are installed, we'll also need to make a disk image to clone
CircuitPython into. By default the macOS filesystem is case insensitive. In a few cases,
this can confuse the build process. So, we recommend creating (https://adafru.it/
CaT)a case sensitive disk image with Disk Utility (https://adafru.it/CaT) to store the
source code. Make the image capable of storing at least 10GB, preferably 20GB, so
you won't run out of space if you do extensive development. You can use a sparse

bundle disk image which will grow as necessary, so you don't use up all the space at
once. The disk image is a single file that can be mounted by double clicking it in the
Finder. Once it's mounted, it works like a normal folder located under the /Volumes
directory.

©Adafruit Industries Page 8 of 22

file:///home/building-circuitpython/build-circuitpython
https://brew.sh/
https://formulae.brew.sh/cask/gcc-arm-embedded
https://formulae.brew.sh/cask/gcc-arm-embedded
https://formulae.brew.sh/cask/gcc-arm-embedded
https://learn.adafruit.com/building-circuitpython/linux
https://learn.adafruit.com/building-circuitpython/linux
https://learn.adafruit.com/building-circuitpython/linux
https://support.apple.com/guide/disk-utility/create-a-disk-image-dskutl11888/mac
https://support.apple.com/guide/disk-utility/create-a-disk-image-dskutl11888/mac

Install gmake if Necessary

Depending on your version of macOS, whether or not you have installed Xcode, and
other factors, the version of make on your Mac may not be recent enough to run
builds. Check the version:

make --version
and
gmake --version

If neither program exists, or both are older than version 4.3, install a newer version of
gmake with brew:

brew install make

If you install the brew version of make, it will be known as gmake .

That's it Now you can move on and actually Build CircuitPython (https://adafru.it/C2D).
There we will get the CircuitPython source code, install a few more dependencies,
and then build!

Windows Subsystem for Linux (WSL) Setup

Windows Subsystem for Linux (WSL) is a feature of Windows 10 and 11 that lets you
run Ubuntu and other versions of Linux right in Windows. It's real Ubuntu, without the
Linux kernel, but with all the software packages that don't need a graphical interface.
You can build CircuitPython in WSL easily. It's easier to install than a Linux virtual
machine.

Install WSL

The installation procedures for WSL continue to evolve. Rather than provide
information here which quickly becomes outdated, we ask that you refer to
Microsoft's official instructions: How to install Linux on Windows with WSL (https://

adafru.it/1aby). Enable WSL 2, which is better for our purposes than WSL 1 in several
ways.

Note that your PC must have hardware virtualization support. Virtualization must also
be enabled in the BIOS or UEFI on your motherboard.

One WSL 2 is set up, you need to choose a Linux distribution to install, as described
in the document above. Choose Ubuntu 24.04 if you can.

©Adafruit Industries Page 9 of 22

file:///home/building-circuitpython/build-circuitpython
https://learn.microsoft.com/en-us/windows/wsl/install

Finish Linux Install

Once WSL is set up, just proceed with the regular Linux Setup (https://adafru.it/HCR).
You will install the Linux-based tools, not Windows-based tools

Build CircuitPython

From this point on, you can build CircuitPython just as it's built in regular Ubuntu,
described in the Build CircuitPython (https://adafru.it/C2D) section of this guide.

Moving Files to Windows

You can copy files to and from Windows through the /mnt/c. For instance, if you want
to copy a CircuitPython build to the desktop, do:

cp build-circuitplayground express/firmware.uf2 /mnt/c/Users/YourName/Desktop

Warning: Don't build in a shared folder (in /mnt/c). You'll probably have

filename and line-ending problems.

You might be tempted to clone and build CircuitPython in a folder shared with the
Windows filesystem (in /mnt/c somewhere). That can cause problems, especially if
you use git commands on the Windows side in that folder. The CircuitPython build
assumes case-sensitive filenames, but Windows usually ignores filename case
differences. You may also have line-ending problems (CRLF vs. LF). It's better to
clone and build inside your home directory in WSL, and copy files over to a shared
folder as needed. It is possible to drag and drop files between WSL and Windows.

Mounting a CircuitPython Board in WSL

You can mount your ...BOOT or CIRCUITPY drive in WSL. Create a mount point and
then mount it. Note that you'll have to remount each time the drive goes away, such
as when you restart the board or switch between the BOOT drive and CIRCUITPY. So

it's probably more convenient to copy files to the board from Windows instead of
WSL.

You only need to do this once.

Choose the appropriate drive letter.
sudo mkdir /mnt/d

Now mount the drive.
sudo mount -t drvfs D: /mnt/d

Now you can look at the contents, copy things, etc.

©Adafruit Industries Page 10 of 22

https://learn.adafruit.com/building-circuitpython/linux
file:///home/building-circuitpython/build-circuitpython

1s /mnt/d
cp firmware.bin /mnt/d
etc.

Editing Files in WSL

You can use the usual Linux editors in WSL, such as vim and emacs. You may need to
install them explicitly. Visual Studio Code (not Visual Studio) is also available: do a
websearch to find the latest instructions. Visual Studio Code in Windows has an
extension that supports WSL.

Manual Setup

If the setup instructions above don't work for your particular OS setup, for whatever
reason, you can get the ball rolling by installing these tools in whatever way you can
and then getting them to work with the Makefile in circuitpython/ports/atmel-samd.
(main branch):

. git

. git-Ifs

- make

« python3

. gettext

« cmake

« All Python packages listed in requirements-dev.txt. You will need to clone the
repository to see that file.

« ARM gcc toolchain for Cortex-M boards: https://developer.arm.com/open-source/
gnu-toolchain/gnu-rm/downloads (https://adafru.it/C2E)

« ARM gcc toolchain for Cortex-A boards (only needed for broadcom port):

https://developer.arm.com/tools-and-software/open-source-software/developer-
tools/gnu-toolchain/gnu-a/downloads (https://adafru.it/Ykb)

See information about which gcc version to pick on the Linux Setup
page (https://adafru.it/HCR) of this guide.

GitHub Codespaces

GitHub Codespaces provides a cloud-based development environment which you can
use instead of creating and maintaining a local development environment. There is a
free tier that should be sufficient for casual CircuitPython development.

GitHub user @bablokb (https://adafru.it/191f) has set up and plans to maintain GitHub
Codespaces "devcontainers" for the different ClrcuitPython port builds. For more

©Adafruit Industries Page 11 of 22

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2986713-2
https://learn.adafruit.com/building-circuitpython/linux#install-build-tools-on-ubuntu-2986713-2
https://github.com/bablokb

information, see Using Github Codespaces for CircuitPython Development (https://
adafru.it/191A) in the Adafruit Playground (https://adafru.it/18fM). Thank you, @bablokb!

Recent Changes

The build setup and steps in this guide change frequently, and are updated as
needed. If you are are having trouble, check this page, which highlights recent
changes, to see if you need to update your build environment. The changes
mentioned here are also documented in the other pages in this guide.

Install git-Ifs

git-Ifs is now a required prerequisite, as of CircuitPython 8.1.0. The submodules in the
silabs portrequire it.

Fetching Submodules

Submodules should be fetched using the Makefile targets fetch-all-submodules,
which is in the top-level Makefile, or fetch-port-submodules , which is used from
port-specific Makefiles. If you use standard git commands for fetching submodules,
you will end up fetching many gigabytes of unnecessary versions.

See this page section (https://adafru.it/C2D) for more details.

These make targets do either a partial "blobless" clone of all submodules, if your
version of git supports it, or else does a shallow depth 1 clone.

make remove-all-submodules removes all submodules and cleans up, so you can
do a fresh make fetch-all-submodules or fetch-port-submodules . Use make
remove-all-submodules if you are getting errors when fetching submodules.

These Makefile targets were added June 6, 2023, changing a previous target, added
in late March, 2023 that only fetched all modules, make fetch-submodules .

Build CircuitPython

If you are building for an Espressif board, read this section and also read the

Espressif Builds page in this guide for additional instructions.

©Adafruit Industries Page 12 of 22

https://adafruit-playground.com/u/picofun/pages/using-github-codespaces-for-circuitpython-development
https://adafruit-playground.com/
https://learn.adafruit.com/building-circuitpython/build-circuitpython#fetch-submodules-3141425
https://learn.adafruit.com/building-circuitpython/espressif-build

Fetch the Code to Build

Once your build tools are installed, fetch the CircuitPython source code from its
GitHub repository ("repo") and also fetch the git "submodules" it needs. The
submodules are extra code that you need that's stored in other repos.

Fork the adafruit repo if you plan to submit pull requests back to

circuitpython

In the commands below, you're cloning from Adafruit's CircuitPython repo. But if you
want to make changes, you might want to "fork" that repo on GitHub to make a copy
for yourself, and clone from there. For more information about using GitHub and
forking a repo, see the Contribute to CircuitPython with Git and GitHub (https://
adafru.it/FjO) guide.

If you are on macOS and you had to install the brew version of make, use

gmake in all examples below instead of make.

git clone https://github.com/adafruit/circuitpython.git
cd circuitpython

Install Required Python Packages

After you have cloned the repo, you'll need to install some Python packages that are
needed for the build process. You only need to do this the first time, though you may
want to run this again from time to time to make sure the packages are up to date.

Install pip if it is not already installed (Linux only). Try running pip first.
sudo apt install python3-pip
Install needed Python packages from pypi.org.

pip3 install --upgrade -r requirements-dev.txt
pip3 install --upgrade -r requirements-doc.txt

The --upgrade flag will force installation of the latest packages, except where a
version is explicitly specified in the requirements-*.txt files.

If you get an error indicating that rust is needed to install minify-html, install
rust:

©Adafruit Industries Page 13 of 22

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github/

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh
You can verify the installation by running:

source $HOME/.cargo/env #Import the environment config for rust
rustc --version

Checking out a Specific Branch or Version

If you want to build a version other the latest, checkout the branch or tag you want to
build. For example:

Build using the latest code on the main branch.
git checkout main

Build the latest code on the 9.0.x branch
git checkout 9.0.x

Build the 9.2.1 version exactly.
git checkout 9.2.1

Note the build process has evolved, and earlier versions will need to be built
somewhat differently than how the instructions in this guide specify. If you have
trouble, ask on Discord () or the forums (https://adafru.it/jIf).

Fetch Submodules

We are not using git submodule update --init --recursive or

git submodule update --init.Instead you run the special Makefile target make
fetch-all-submodules atthe top level, or make fetch-port-submodules when
you in a particular ports/port-name directory. The target fetches only as many
commits from each submodule as is necessary, using either a blobless partial clone (if
available) or a shallow clone. This avoids downloading the complete trees of some
large submodules, saving time and space.

make fetch-all-submodules fetches all the submodules in the entire repository,
and can take several minutes and use up a lot of storage. If you are planning to build
only in one or a few port directories, you'll save time by using make fetch-port-
submodules , which fetches only the submodules need for that particular port.

If you are having trouble with your submodules, you can clean out all the fetched
modules by doing make remove-all-submodules atthe top level. Then run make
fetch-all-submodules or make fetch-port-submodules again to fetch a fresh
copy of all the submodules. (There is no make remove-port-submodules .)

Using a Version of git that can do Partial Clones

As mentioned above, the submodule fetching targets try to do a blobless partial clone
if possible. This is better than a shallow clone: it is slightly faster, and the partial clone

©Adafruit Industries Page 14 of 22

https://adafru.it/discord
https://forums.adafruit.com

acts like a full clone if you want to maneuver around in the submodule by checking
out other commits, examining the history, etc.

Git version 2.36 or later supports blobless partial clones. Ubuntu 24.04 includes such
a version. To find out which version of git you are using, do git --version.
Consider installing a newer version of git if it is available. On earlier versions of
Ubuntu, you can install the git PPA (https://adafru.it/19c3) and get the latest stable
version of git. On macOS, homebrew may provide a later version for you.

cd circuitpython # go to the top level
make fetch-all-submodules
OR, for example, to fetch only the submodules needed for RP2040 builds:

cd circuitpython/ports/raspberrypi
make fetch-port-submodules

Install pre-commit

We are using the pre-commit system to check submitted code for problems before it
gets to GitHub. For more information, see this Learn Guide page (https://adafru.it/

check-your-code). To add pre-commit to your repository clone, do:

cd <your repository clone directory>
You only need to do this once in each clone.
pre-commit install

Are you seeing errors when pre-commit runs? See this hint.

Build mpy-cross

Build the mpy-cross compiler first, which compiles Circuitpython .py files into .mpy
files. It's needed to include library code in builds that use frozen modules (https://
adafru.it/1abz).

(If you get a make: msgfmt: Command not found error, you have not installed gettext.
Go back to the Setup page for your operating system.)

Normally you do not need to rebuild mpy-cross on every pull or merge from the circ
uitpython repository or for your own changes. The .mpy format does not change
very often. But occasionally when we merge from MicroPython, the format changes.
You will find that your old .mpy files or frozen libraries give an error, and you will need
to rebuild mpy-cross.

©Adafruit Industries Page 15 of 22

https://launchpad.net/~git-core/+archive/ubuntu/ppa
https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/check-your-code
https://learn.adafruit.com/creating-and-sharing-a-circuitpython-library/check-your-code#workaround-for-pre-commit-issues-on-ubuntu-and-debian-3086216
https://learn.adafruit.com/building-circuitpython/adding-frozen-modules

make -C mpy-cross

Build CircuitPython

Now you're all set to build CircuitPython. If you're in the main branch of the repo,
you'll be building the latest version. Choose which board you want to build for. The
boards available are all the subdirectories in ports/atmel-samd/boards/.

cd ports/atmel-samd
make BOARD=circuitplayground express

By default the en_US version will be built. To build for a different language supply a
TRANSLATION argument.

cd ports/atmel-samd
make BOARD=circuitplayground express TRANSLATION=es

Run Your Build!

When you've successfully built, you'll see output like:

Create build-circuitplayground express/firmware.bin

Create build-circuitplayground express/firmware.uf2

python2 ../../tools/uf2/utils/uf2conv.py -b 0x2000 -c -o build-

circuitplayground express/firmware.uf2 build-circuitplayground express/firmware.bin
Converting to uf2, output size: 485888, start address: 0x2000

Wrote 485888 bytes to build-circuitplayground express/firmware.uf2.

Copy firmware.uf2 to your board the same way you'd update CircuitPython: Double-
click to get the BOOT drive, and then just copy the .uf2 file:

Double-click the reset button, then:
cp build-circuitplayground express/firmware.uf2 /media/yourname/CPLAYBOOT

The board will restart, and your build will start running.

If you're using a board without a UF2 bootloader, you'll need to use bossac and the
firmware.bin file, not the .uf2 file. Detailed instructions are here (https://adafru.it/Bid).

Use All Your CPUs When Building

Most modern computers have CPU chips with multiple cores. For instance, you may
have a 2-core, 4-core, or 6-core or more CPU. Your CPU may also allow 2 "threads"
per core, so that it appears to have even more cores. You can run much of the build in
parallel by using the make -j flag. This is will speed up the build noticeably.

©Adafruit Industries Page 16 of 22

file:///home/welcome-to-circuitpython?view=all#flashing-with-bossac-for-non-express-feather-m0-s-and-arduino-zero

If you don't know how many cores or threads your CPU has, on Linux you can use this
command:

getconf NPROCESSORS ONLN
12
This CPU has 6 cores and 12 threads.

Then, when you run make, add the -j<n> option to use as many cores or threads as
possible. For example:

make -3j12 BOARD=trinket mO

When to make clean

After you make changes to code, normally just doing make BOARD=... will be
sufficient. The changed files will be recompiled and CircuitPython will be rebuilt.

However, there are some circumstance where you must do:

make clean BOARD=...

If you have changed the #include file structure in certain ways, if you have defined
QSTR's (a way of defining constants strings in the CircuitPython source), or if you have
added new error messages, then you must make clean before rebuilding. If you're
not sure, it's always safe to make clean and then make . It might take a little longer
to build, but you'll be sure it was rebuilt properly.

Updating Your Repo

When there are changes in the GitHub repo, you might want to fetch those and then
rebuild. Just "pull" the new code (assuming you haven't made changes yourself),
update the submodules if necessary, and rebuild:

git pull

only if necessary, from the top level directory
make fetch-submodules

Then make again.

Those are the basics. There's a lot more to know about how to keep your forked repo
up to date, merge "upstream" (Adafruit's) changes into your code, etc. We cover this in
the Contribute to CircuitPython with Git and GitHub (https://adafru.it/Dkh) guide

©Adafruit Industries Page 17 of 22

https://learn.adafruit.com/contribute-to-circuitpython-with-git-and-github

Adding Frozen Modules

Normally, all imported Python modules in CircuitPython are loaded into RAM in
compiled form, whether they start as .mpy or .py files. Especially on MO boards, a
user program can run out of RAM if too much code needs to be loaded.

To ameliorate this problem, a CircuitPython image can include compiled Python code
that is stored in the image, in flash memory, and executed directly from there. These
are "internal frozen modules". The circuitplayground express builds use this
technique, for example.

If you would like to build a custom image that includes some frozen modules, you can
imitate how it's done inthe circuitplayground express build. Look at boards/
circuit playground express/mpconfigboard.mk:

Temporarily unable to load content:

Notice the FROZEN MPY DIRS lines in the file. Pick the mpconfigboard.mk file for the
board you are using, and add one or more similar lines. You will need to do add
directories for the libraries you want to include. If these are existing libraries in
GitHub, you can add them as submodules. For instance, suppose you want to add the
Adafruit_CircuitPython_HID library to the feather_mO_express build. Add this line to
boards/feather_mO_express/mpconfigboard.mk:

FROZEN MPY DIRS += $(TOP)/frozen/Adafruit CircuitPython HID

Then add the library as a submodule:

cd circuitpython/frozen
git submodule add https://github.com/adafruit/Adafruit CircuitPython HID

When you add the submodule it will be cloned into the frozen/ directory.

Set the submodule to a commit that is a release tag. If you try to freeze a module

that is at untagged commit, you'll get a git error when building. You can update all
the frozen modules to the latest release tags by doing this, at the top level of your

repository clone:

make update-frozen-libraries

Alternatively, simply check out a tagged version of the submodule after you add the
submodule and before you commit it:

©Adafruit Industries Page 18 of 22

cd circuitpython/frozen/The Module to Freeze # example submodule name
git checkout 2.11.0 # example version number

Note that there is limited unused space available in the images, especially in the non-
Express MO builds, and you may not be able to fit all the libraries you want to freeze.
You can of course try to simplify the library code if necessary to make it fit.

Choosing a Different SPI Flash Chip

CircuitPython supports external SPI/QSPI flash chips for the CIRCUITPY filesystem.
Each board build is setup to support only one or a few flash chips. The chips are not
identical in how they are accessed, so you can't just substitute without rebuilding. The
chips that CircuitPython currently supports are listed in a GitHub repository of chip
data, https://github.com/adafruit/nvm.toml (https://adafru.it/RAQ), along with the
settings needed for each.

The chip(s) that are supported in a particular board are specified in the mpconfigboar
d.mk file for that board, in the line that defines EXTERNAL FLASH DEVICES. So
change or add to EXTERNAL FLASH DEVICES if you want to use a different supported
chip. We don't support a entire list of chips for each build because the table of data
for all possible chips would take significant space in the CircuitPython build.

Here's an example:

EXTERNAL FLASH DEVICES = "S25FL116K, S25FL216K, GD25Q16C"

Customizing Included Modules

You may want to include a particular module that is not included by default for the
board for your board. You can customize which modules to include in your
CircuitPython build by adding or changing settings in the mpconfigboard.mk file for
your board.

For example, here is the standard circuitpython/ports/atmel-samd/boards/
trinket_mO/mpconfigboard.mk file:

USB VID = 0x239A

USB PID = 0Ox801F

USB_PRODUCT = "Trinket MO"

USB_MANUFACTURER = "Adafruit Industries LLC"

CHIP VARIANT = SAMD21E18A
CHIP FAMILY = samd2l

INTERNAL FLASH FILESYSTEM = 1

©Adafruit Industries Page 19 of 22

https://github.com/adafruit/nvm.toml

LONGINT IMPL = NONE
CIRCUITPY_ FULL BUILD = 0

Suppose you wanted to turn on pulseio, but you did not need MIDI support. There
is not enough room for pulseio in this build, but if you turn other modules, you can
make room. Sometimes this will work only for certain languages due to the size of the
translation. In this case, for the en US translation, turning off usb midi frees up
enough space to include pulseio . Add these lines to the file above:

CIRCUITPY PULSEIO =1
CIRCUITPY_USB MIDI = 0

You can figure out which modules are on or off by looking at the module support
matrix in the ClrcuitPython documentation (https://adafru.it/N2a). It also helps to study
the files circuitpython/py/circuitpy_mpconfig.mk and circuitpympconfig.h, and

circuitpython/ports/<your-board's-port>/mpconfigport.mk and mpconfigport.h.

Warning: Don't put Makefile comments on the same line as Makefile assignments. |
causes the variable value to include the trailing spaces before comment
character (https://adafru.it/QEu).

Espressif Builds

The ports/espressif build setup is a rather involved process. Start with the setup
described on the Build CircuitPython (https://adafru.it/C2D) page. Don't forget to make
fetch-port-submodules in ports/espressif or make-fetch-all-submodules at
the top level.

Linux

On Linux you probably need to install ninja-build and cmake.

sudo apt install ninja-build cmake

The ESP-IDF expects there to be a python command which runs python3. On Ubuntu,
there is no plain python by default, so install this simple package which links python
to python3.

sudo apt install python-is-python3

macQOS

On macOS, you will need to install cmake and ninja:

©Adafruit Industries Page 20 of 22

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html
https://stackoverflow.com/questions/9953825/trailing-comments-after-variable-assignment-subvert-comparison
https://stackoverflow.com/questions/9953825/trailing-comments-after-variable-assignment-subvert-comparison
https://learn.adafruit.com/building-circuitpython/build-circuitpython

brew install cmake
brew install ninja

Run the ESP-IDF Installation Script Once

Once you have the prerequisites installed, change to the ports/espressif directory,
and run the esp-idf/install.sh script. You only need to do this once: install.sh
downloads the toolchains and other files it needs, and copies a number of files into
“/.espressif. (If the ESP-IDF version used by CircuitPython changes, you will need to
run install.sh again.)

install.sh also sets up a Python venv (virtual environment) in ~/.espressif/python-dev.
If you are already using a venv, maybe because you're using a recent version of Linux,
you'll need to deactivate that venv before running install.sh. Otherwise you'll get
an error that you can't create a venv inside another venv.

cd circuitpython/ports/espressif

If you are already inside a Python venv, deactivate it.
deactivate

esp-idf/install.sh

Install Python Packages in the ESP-IDF venv

After running export.sh, you need to repeat the pip3 install commands described
here (https://adafru.it/C2D) so that they take effect inside the Python environment set
up by source esp-idf/export.sh . But you will need to do this only once.

Install needed Python packages from pypi.org after running install.sh or if the
needed packages change.

pip3 install --upgrade -r requirements-dev.txt

pip3 install --upgrade -r requirements-doc.txt

Setting Up the ESP-IDF Environment Before Building

You only need to run esp-idf/install.sh once. But later, in each fresh terminal window
in which you are doing builds, you need to run esp-idf/export.sh in order to set up the
correct PATH and other environment variables.

As with install.sh, if you're inside a Python venv, you need to deactivate it, so that
export.sh can activate its own venv . Otherwise you will get an error that you can't
create venv inside another venv.

Do this in each new terminal.
cd circuitpython/ports/espressif

If you are inside a Python venv, deactivate it.
deactivate

©Adafruit Industries Page 21 of 22

https://learn.adafruit.com/building-circuitpython/build-circuitpython#install-required-python-packages-3086211

source esp-idf/export.sh

export.sh will suggest that you use idf.py to do a build after you run it. But we don't
use idf.py. Instead, use make . For example:

make BOARD=adafruit magtag 2.9 grayscale

Files Generated by a Build

make BOARD=... generates several files:

. circuitpython-firmware.bin

. firmware.uf2 (not generated on boards that don't support the UF2 bootloader)
. firmware.bin

The circuitpython-firmware.bin is an intermediate file that does not include the
bootloader and partition table. Ignore it: do not flash it to the chip. Flash firmware.bin
instead.

Decoding a Crash Backtrace

If your Espressif build of CircuitPython crashes with a line that looks something like
this, you can process this backtrace and get a symbolic backtrace.

Backtrace: 0x400e33fd:0x3ffbl090 0x40086755:0x3ffbl0d0 0x40084025:0x3ffbl100
0x4008e75d:0x3ffb3b70 0x4008e7a5:0x3ffb3ba0d ...

Run this python script, substituting the BOARD name for <board> below. Then paste
the Backtrace: ... lineintothe ? prompt. The script will look in the build-
<board> directory, and use the .elf file there to decode the hex numbers in the
backtrace.

$ cd ports/espressif
$ python3 tools/decode backtrace.py <board>

How to Add a New Board to CircuitPython

How to Add a New Board to CircuitPython (https://adafru.it/PBG)

©Adafruit Industries Page 22 of 22

https://learn.adafruit.com/how-to-add-a-new-board-to-circuitpython

	Building CircuitPython
	Table of Contents
	Introduction
	Linux Setup
	macOS Setup
	Windows Subsystem for Linux (WSL) Setup
	Manual Setup
	GitHub Codespaces
	Recent Changes
	Build CircuitPython
	Adding Frozen Modules
	Choosing a Different SPI Flash Chip
	Customizing Included Modules
	Espressif Builds
	How to Add a New Board to CircuitPython

	Introduction
	Linux Setup
	Set Up a Real or Virtual Linux Machine
	Native Linux
	Linux on a Virtual Machine
	Raspberry Pi

	Install Build Tools on Ubuntu
	Cortex-M Builds
	Cortex-A Builds (Only for broadcom Port)
	Installing the Toolchain
	Other Builds

	Setting up a Python Virtual Environment (Ubuntu 24.04 and similar only)
	Using the Virtual Environment Automatically

	Next Steps

	macOS Setup
	Install gmake if Necessary

	Windows Subsystem for Linux (WSL) Setup
	Install WSL
	Finish Linux Install
	Build CircuitPython
	Moving Files to Windows
	Mounting a CircuitPython Board in WSL
	Editing Files in WSL

	Manual Setup
	GitHub Codespaces
	Recent Changes
	Install git-lfs
	Fetching Submodules
	Build CircuitPython
	Fetch the Code to Build
	Install Required Python Packages
	Checking out a Specific Branch or Version
	Fetch Submodules
	Using a Version of git that can do Partial Clones

	Install pre-commit
	Build mpy-cross
	Build CircuitPython
	Run Your Build!
	Use All Your CPUs When Building
	When to make clean
	Updating Your Repo

	Adding Frozen Modules
	Choosing a Different SPI Flash Chip
	Customizing Included Modules
	Espressif Builds
	Linux
	macOS
	Run the ESP-IDF Installation Script Once
	Install Python Packages in the ESP-IDF venv
	Setting Up the ESP-IDF Environment Before Building
	Files Generated by a Build
	Decoding a Crash Backtrace

	How to Add a New Board to CircuitPython

