
CircuitPython Libraries on Linux and
Raspberry Pi

Created by Melissa LeBlanc-Williams

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Last updated on 2025-11-25 01:29:53 PM EST

©Adafruit Industries Page 1 of 65

5

7

10

11

18

22

28

30

Table of Contents

Overview
• Why CircuitPython?
• CircuitPython on Microcontrollers
• CircuitPython Libraries on Desktop Linux

Running CircuitPython Code without CircuitPython
• Adafruit Blinka: a CircuitPython Compatibility Library
• Raspberry Pi and Other Single-Board Linux Computers
• Desktop Computers
• MicroPython
• Installing Blinka
• Installing CircuitPython Libraries
• Linux Single-Board Computers
• Desktop Computers using a USB Adapter
• MicroPython

CircuitPython & RasPi
• CircuitPython Libraries on Linux & Raspberry Pi
• Wait, isn't there already something that does this - GPIO Zero?
• What about other Linux SBCs?

Installing Blinka on Raspberry Pi
• Prerequisite Pi Setup!
• Update Your Pi and Python
• Setup Virtual Environment
• Automated Install
• Manual Install
• Check I2C and SPI
• Fixing CE0 and CE1 Device or Resource Busy Issue
• Enabling Second SPI
• Pi 5 : Cannot determine SOC peripheral base address
• Blinka Test

Digital I/O
• Parts Used
• Wiring
• Blinky Time!
• Button It Up

I2C Sensors & Devices
• Parts Used
• Wiring
• Install the CircuitPython BME280 Library
• Run that code!

I2C Clock Stretching

SPI Sensors & Devices
• Reassigning or Disabling the SPI Chip Enable Lines
• Using the Second SPI Port
• Parts Used
• Wiring

©Adafruit Industries Page 2 of 65

38

40

48

51

54

55

55

55

• Install the CircuitPython MAX31855 Library
• Run that code!

Using I2C or SPI by Device ID
• Installing the Library
• I2C Devices
• SPI Devices

UART / Serial
• The Easy Way - An External USB-Serial Converter
• The Hard Way - Using Built-in UART
• Disabling Console & Enabling Serial
• Install the CircuitPython GPS Library
• Run that code!

PWM Outputs & Servos
• Update Adafruit Blinka
• Supported Pins
• PWM - LEDs
• Servo Control
• pulseio Servo Control
• adafruit_motor Servo Control

Using NeoPixels on the Pi 5 and Pi 500
• Installation
• Updating Permissions
• Running the Example Code

More To Come!

CircuitPython & OrangePi

CircuitPython & Jetson Nano

FAQ & Troubleshooting
• Update Blinka/Platform Libraries

©Adafruit Industries Page 3 of 65

©Adafruit Industries Page 4 of 65

Overview

Here at Adafruit we're always looking for ways to make making easier - whether that's
making breakout boards for hard-to-solder sensors or writing libraries to simplify
motor control. Our new favorite way to program is CircuitPython.

Why CircuitPython?
CircuitPython is a variant of MicroPython, a very small version of Python that can fit on
a microcontroller. Python is the fastest-growing programming language. It's taught in
schools, used in coding bootcamps, popular with scientists and of course
programmers at companies use it a lot!

CircuitPython adds the Circuit part to the Python part. It lets you program in Python
and talk to Circuitry like sensors, motors, and LEDs!

This guide describes using CircuitPython libraries on small Linux computers,
running under regular Python. It is not about running the CircuitPython
firmware itself on those boards.

©Adafruit Industries Page 5 of 65

CircuitPython on Microcontrollers
CircuitPython runs on microcontroller boards, such as our Feather, Metro, QT Py, and
ItsyBitsy boards, using a variety of chips, such as the MicroChip SAMD21 SAMD51, the
Raspberry Pi RP2040, the Nordic nRF52840, and the Espressif ESP32-S2 and ESP32-
S3.

All of these chips have something in common - they are microcontrollers with
hardware peripherals like SPI, I2C, ADCs etc. We squeeze Python into 'em and can
then make the project portable.

But...sometimes you want to do more than a microcontroller can do. Like HDMI video
output, or camera capture, or serving up a website, or just something that takes more
memory and computing than a microcontroller board can do...

CircuitPython Libraries on Desktop Linux
By adding a software layer, you can use CircuitPython hardware control
capabilities with "regular Python", as found on your desktop or single-board Linux
computer/ There are tons of projects, libraries and example code for CircuitPython on
microcontrollers, and thanks to the flexibility and power of Python its' pretty easy to
get that code working on micro-computers like the Raspberry Pi or other single-board
Linux computers with GPIO pins available.

You'll use a special library called adafruit_blinka (https://adafru.it/BJS) (named after
Blinka, the CircuitPython mascot (https://adafru.it/BJT)) that provides a layer that
translates the CircuitPython hardware API to whatever library the Linux board
provides. For example, on Raspberry Pi we use the python RPi.GPIO (https://adafru.it/
BJU) library. For any I2C interfacing we'll use ioctl messages to the /dev/i2c device.
For SPI we'll use the spidev python library, etc. These details don't matter so much
because they all happen underneath the adafruit_blinka layer.

The upshot is that most code we write for CircuitPython will be instantly and easily
runnable on Linux computers like Raspberry Pi.

In particular, you'll be able to use all of our device drivers - the sensors, led
controllers, motor drivers, HATs, bonnets, etc. And nearly all of these use I2C or SPI!

The rest of this guide describes how to install and set up Blinka, and then how to use
it to run CircuitPython code to control hardware.

©Adafruit Industries Page 6 of 65

https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://www.adafruit.com/?q=blinka
https://www.adafruit.com/?q=blinka
https://pypi.org/project/RPi.GPIO/

Running CircuitPython Code without
CircuitPython

There are two parts to the CircuitPython ecosystem:

CircuitPython firmware, written in C and built to run on various microcontroller
boards (not PCs). The firmware includes the CircuitPython interpreter, which
reads and executes CircuitPython programs, and chip-specific code that controls
the hardware peripherals on the microcontroller, including things like USB, I2C,
SPI, GPIO pins, and all the rest of the hardware features the chip provides.
CircuitPython libraries, written in Python to use the native (built into the
firmware) modules provided by CircuitPython to control the microcontroller
peripherals and interact with various breakout boards.

But suppose you'd like to use CircuitPython libraries on a board or computer that
does not have a native CircuitPython firmware build. For example, on a PC running
Windows or macOS. Can that be done? The answer is yes, via a separate piece of
software called Blinka. Details about Blinka follow, however it is important to realize
that the CircuitPython firmware is never used.

Adafruit Blinka: a CircuitPython
Compatibility Library
Enter Adafruit Blinka. Blinka is a software library that emulates the parts of
CircuitPython that control hardware. Blinka provides non-CircuitPython
implementations for board , busio , digitalio , and other native CircuitPython
modules. You can then write Python code that looks like CircuitPython and uses
CircuitPython libraries, without having CircuitPython underneath.

There are multiple ways to use Blinka:

Linux based Single Board Computers, for example a Raspberry Pi

•

•

CircuitPython firmware is NOT used when using Blinka.

•

©Adafruit Industries Page 7 of 65

Desktop Computers + specialized USB adapters
Boards running MicroPython

More details on these options follow.

Raspberry Pi and Other Single-Board Linux Computers
On a Raspberry Pi or other single-board Linux computer, you can use Blinka with the
regular version of Python supplied with the Linux distribution. Blinka can control the
hardware pins these boards provide.

Desktop Computers
On Windows, macOS, or Linux desktop or laptop ("host") computers, you can use
special USB adapter boards that that provide hardware pins you can control. These
boards include MCP221A (https://adafru.it/IfV) and FT232H (https://adafru.it/xia)
breakout boards, and Raspberry Pi Pico boards running the u2if software (https://
adafru.it/Sje). These boards connect via regular USB to your host computer, and let
you do GPIO, I2C, SPI, and other hardware operations.

MicroPython
You can also use Blinka with MicroPython, on MicroPython-supported boards (https://
adafru.it/SBi). Blinka will allow you to import and use CircuitPython libraries in your
MicroPython program, so you don't have to rewrite libraries into native MicroPython
code. Fun fact - this is actually the original use case for Blinka.

Installing Blinka
Installing Blinka on your particular platform is covered elsewhere in this guide. The
process is different for each platform. Follow the guide section specific to your
platform and make sure Blinka is properly installed before attempting to install any
libraries.

•
•

Be sure to install Blinka before proceeding.

©Adafruit Industries Page 8 of 65

https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221
https://learn.adafruit.com/adafruit-ft232h-breakout
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-micropython-using-the-raspberry-pi-pico

Installing CircuitPython Libraries
Once Blinka is installed the next step is to install the CircuitPython libraries of interest.
How this is down is different for each platform. Here are the details.

Linux Single-Board Computers
On Linux single-board computers, such as Raspberry Pi, you'll use the Python
pip3 program (sometimes named just pip) to install a library. The library will be
downloaded from pypi.org (https://adafru.it/19ff) automatically by pip3 .

How to install a particular library using pip3 is covered in the guide page for that
library. For example, here is the pip3 installation information (https://adafru.it/OkF)
for the library for the LIS3DH accelerometer.

The library name you give to pip3 is usually of the form adafruit-circuitpython-
libraryname . This is not the name you use with import . For example, the LIS3DH
sensor library is known by several names:

The GitHub library repository is Adafruit_CircuitPython_LIS3DH (https://adafru.it/
uBs).
When you import the library, you write import adafruit_lis3dh .
The name you use with pip3 is adafruit-circuitpython-lis3dh . This the
name used on pypi.org (https://adafru.it/19ff).

Libraries often depend on other libraries. When you install a library with pip3 , it will
automatically install other needed libraries.

Desktop Computers using a USB Adapter
When you use a desktop computer with a USB adapter, like the MCP2221A, FT232H,
or u2if firmware on an RP2040, you will also use pip3. However, do not install the
library with sudo pip3 , as mentioned in some guides. Instead, just install with pip3 .

MicroPython
For MicroPython, you will not use pip3 . Instead you can get the library from the
CircuitPython bundles. See this guide page (https://adafru.it/ABU) for more
information about the bundles, and also see the Libraries page on
circuitPython.org (https://adafru.it/ENC).

•

•
•

©Adafruit Industries Page 9 of 65

https://pypi.org
https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout/python-circuitpython#python-installation-of-lis3dh-library-2997958
https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout/python-circuitpython#python-installation-of-lis3dh-library-2997958
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH
https://pypi.org
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://circuitpython.org/libraries
https://circuitpython.org/libraries

CircuitPython & RasPi

CircuitPython Libraries on Linux & Raspberry Pi
The next obvious step is to bring CircuitPython back to 'desktop Python'. We've got
tons of projects, libraries and example code for CircuitPython on microcontrollers, and
thanks to the flexibility and power of Python it's pretty easy to get that code working
with micro-computers like Raspberry Pi or other 'Linux with GPIO pins available' single
board computers.

We are not running the CircuitPython interpreter itself on the Linux machine. But we
are running Python code written to use the CircuitPython hardware API (busio.I2C ,
busio.SPI , etc.)

We'll use a special library called adafruit_blinka (https://adafru.it/BJS) (named after
Blinka, the CircuitPython mascot (https://adafru.it/BJT)) to provide the layer that
translates the CircuitPython hardware API to whatever library the Linux board
provides. For example, on Raspberry Pi we use the python RPi.GPIO (https://adafru.it/
BJU) library. For any I2C interfacing we'll use ioctl messages to the /dev/i2c device.
For SPI we'll use the spidev python library, etc. These details don't matter so much
because they all happen underneath the adafruit_blinka layer.

The upshot is that any code we have for CircuitPython will be instantly and easily
runnable on Linux computers like Raspberry Pi.

©Adafruit Industries Page 10 of 65

https://pypi.org/project/Adafruit-Blinka/
https://pypi.org/project/Adafruit-Blinka/
https://www.adafruit.com/?q=blinka
https://www.adafruit.com/?q=blinka
https://pypi.org/project/RPi.GPIO/

In particular, we'll be able to use all of our device drivers - the sensors, led controllers,
motor drivers, HATs, bonnets, etc. And nearly all of these use I2C or SPI!

Wait, isn't there already something that does this - GPIO
Zero?
Yes! We like and use GPIO Zero a lot (https://adafru.it/BJV), its an excellent hardware
interfacing library for Raspberry Pi. It's great for digital in/out, analog inputs, servos,
some basic sensors, etc. In particular, one cool thing it does is thread/event
management so you can have code run, say, when a button is pressed.

GPIO Zero excels at that, but doesn't cover SPI/I2C sensors or drivers, which is where
we got stuck: for each sensor we had we'd write a driver in C/C++ for Arduino,
CircuitPython using our hardware API, and then Python using smbus or similar.

By letting you use CircuitPython on Raspberry Pi via adafruit_blinka, you can unlock
all of the drivers and example code we wrote! And you can keep using GPIO Zero for
pins, buttons and LEDs. We save time and effort so we can focus on getting code that
works in one place, and you get to reuse all the code we've written already.

What about other Linux SBCs?
Plus, we're adapting and extending adafruit_blinka to support other boards (https://
adafru.it/DbB) such as Allwinners and BeagleBone, even some smaller linux boards
like Onion.io will be able to run CircuitPython code.

If you have a board you'd like to adapt check out the adafruit_blinka code on
github (https://adafru.it/BJX), pull requests are welcome as there's a ton of different
Linux boards out there! You'll need to add a detection element (https://adafru.it/Dyb)
so we can tell what board you're running on, then the pin definitions into
adafruit_blinka above. As long as you're running a modern kernel, you'll have
libgpiod for GPIO, smbus for I2C and spidev for SPI all ready to go.

Installing Blinka on Raspberry Pi

CircuitPython libraries and adafruit-blinka will work on any Raspberry Pi board!
That means the original 1, the Pi 2, Pi 3, Pi 4, Pi 5, Pi Zero, Pi Zero 2 W, or even
the compute modules.

©Adafruit Industries Page 11 of 65

https://gpiozero.readthedocs.io/en/stable/
https://learn.adafruit.com/circuitpython-on-orangepi-linux
https://learn.adafruit.com/circuitpython-on-orangepi-linux
https://github.com/adafruit/Adafruit_Blinka
https://github.com/adafruit/Adafruit_Blinka
https://github.com/adafruit/Adafruit_Python_PlatformDetect

Prerequisite Pi Setup!
In this page we'll assume you've already gotten your Raspberry Pi up and running and
can log into the command line

Here's the quick-start for people with some experience:

Download the latest Raspberry Pi OS or Raspberry Pi OS Lite (https://adafru.it/
Pf5) to your computer
Burn the OS image to your MicroSD card (https://adafru.it/dDL) using your
computer
Re-plug the SD card into your computer (don't use your Pi yet!) and set up your
wifi connection by editing supplicant.conf (https://adafru.it/yuD)
Activate SSH support (https://adafru.it/yuD)
Plug the SD card into the Pi
If you have an HDMI monitor we recommend connecting it so you can see that
the Pi is booting OK
Plug in power to the Pi - you will see the green LED flicker a little. The Pi will
reboot while it sets up so wait a good 10 minutes
If you are running Windows on your computer, install Bonjour support so you can
use .local names, you'll need to reboot Windows after installation (https://
adafru.it/lPE)
You can then ssh into raspberrypi.local (https://adafru.it/jvB)

The Pi Foundation has tons of guides as well (https://adafru.it/BJY)

At this time, Blinka requires Python version 3.7 or later, which means you will
need to at least be running Raspberry Pi OS Bullseye.

1.

2.

3.

4.
5.
6.

7.

8.

9.

We really really recommend the latest Raspberry Pi OS only. If you have an
older Raspberry Pi OS install, run "sudo apt-get update" and "sudo apt-get
upgrade" to get the latest OS!

©Adafruit Industries Page 12 of 65

https://www.raspberrypi.org/software/operating-systems/
https://learn.adafruit.com/adafruit-raspberry-pi-lesson-1-preparing-and-sd-card-for-your-raspberry-pi
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/raspberry-pi-zero-creation/text-file-editing
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/bonjour-zeroconf-networking-for-windows-and-linux#microsoft-windows
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-6-using-ssh
https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started

Update Your Pi and Python
Run the standard updates:

sudo apt-get update
sudo apt-get -y upgrade
sudo apt-get install -y python3-pip

and upgrade setuptools:

sudo apt install --upgrade python3-setuptools

Setup Virtual Environment
If you are installing on the Bookworm (released in 2023) or later version of Raspberry
Pi OS, you will need to install your python modules in a virtual environment. You can
find more information in the Python Virtual Environment Usage on Raspberry
Pi (https://adafru.it/19a5) guide. To Install and activate the virtual environment, use the
following commands:

cd ~
sudo apt install python3-venv
python3 -m venv env --system-site-packages

You will need to activate the virtual environment every time the Pi is rebooted. To
activate it:

You may need to reboot prior to installing Blinka. The raspi-blinka.py script will
inform you if it is necessary.

If you are installing in a virtual environment, the installer may not work
correctly since it requires sudo. We recommend using pip to manually install it
in that case.

©Adafruit Industries Page 13 of 65

https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi

source env/bin/activate

To deactivate, you can use deactivate , but leave it active for now.

Automated Install
We put together a script to easily make sure your Pi is correctly configured and install
Blinka. It requires just a few commands to run. Most of it is installing the
dependencies.

cd ~
pip3 install --upgrade adafruit-python-shell
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/
master/raspi-blinka.py
sudo -E env PATH=$PATH python3 raspi-blinka.py

If you are installing on an earlier version such as Bullseye of Raspberry Pi OS and not
using a Virtual Environment, you can call the script like:

sudo python3 raspi-blinka.py

If you are installing an older version of
Raspberry Pi OS, your system default
Python is likely Python 2. If so, it will ask to
confirm that you want to proceed.
Choose yes.

©Adafruit Industries Page 14 of 65

https://learn.adafruit.com//assets/98682
https://learn.adafruit.com//assets/98682

It may take a few minutes to run. When it
finishes, it will ask you if you would like to
reboot. Choose yes.

Once it reboots, the connection will close.
After a couple of minutes, you can
reconnect.

Manual Install
If you are having trouble running the automated installation script, you can follow
these steps to manually install Blinka.

Enable Interfaces

Run these commands to enable the various interfaces such as I2C and SPI:

sudo raspi-config nonint do_i2c 0
sudo raspi-config nonint do_spi 0
sudo raspi-config nonint do_serial_hw 0
sudo raspi-config nonint do_ssh 0
sudo raspi-config nonint do_camera 0
sudo raspi-config nonint disable_raspi_config_at_boot 0

Install Blinka and Dependencies

Blinka needs a few dependencies installed:

©Adafruit Industries Page 15 of 65

https://learn.adafruit.com//assets/98683
https://learn.adafruit.com//assets/98683
https://learn.adafruit.com//assets/98684
https://learn.adafruit.com//assets/98684

sudo apt-get install -y i2c-tools libgpiod-dev python3-libgpiod
pip3 install --upgrade adafruit-blinka

Raspberry Pi 5 Adjustments

At the moment, RPi.GPIO is installed, which causes issues. Just remove it with the
following command:

pip3 uninstall -y RPi.GPIO

Check I2C and SPI
The script will automatically enable I2C and SPI. You can run the following command
to verify:

ls /dev/i2c* /dev/spi*

You should see the response

/dev/i2c-1 /dev/spidev0.0 /dev/spidev0.1

Fixing CE0 and CE1 Device or Resource Busy Issue
In order to use the CE0 and CE1 pins in Python, you will need to disable them from OS
usage. To do so, check out the Reassigning or Disabling the SPI Chip Enable
Lines (https://adafru.it/19fg) section of this guide.

Enabling Second SPI
If you are using the main SPI port for a display or something and need another
hardware SPI port, you can enable it by adding the line

dtoverlay=spi1-3cs

©Adafruit Industries Page 16 of 65

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/spi-sensors-devices#reassigning-or-disabling-the-spi-chip-enable-lines-3097985
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/spi-sensors-devices#reassigning-or-disabling-the-spi-chip-enable-lines-3097985

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /
dev/spidev1.x devices:

Pi 5 : Cannot determine SOC peripheral base address

comment out this line :

#dtparam=spi=on

Blinka Test

Create a new file called blinkatest.py with nano or your favorite text editor and put
the following in:

import board
import digitalio
import busio

print("Hello, blinka!")

Try to create a Digital input
pin = digitalio.DigitalInOut(board.D4)
print("Digital IO ok!")

Try to create an I2C device
i2c = busio.I2C(board.SCL, board.SDA)
print("I2C ok!")

Try to create an SPI device
spi = busio.SPI(board.SCLK, board.MOSI, board.MISO)
print("SPI ok!")

print("done!")

If onewire is enabled, you may need to use another digital input besides D4.

©Adafruit Industries Page 17 of 65

Save it, make sure your virtual environment is activated, and run at the command line
with:

python3 blinkatest.py

You should see the following, indicating digital i/o, I2C and SPI all worked.

Digital I/O

The first step with any new hardware is the 'hello world' of electronics - blinking an
LED. This is very easy with CircuitPython and Raspberry Pi. We'll extend the example
to also show how to wire up a button/switch and enable a pull-up resistor.

Even if you use a different library to create digital in/outs like GPIO Zero, there's a
number of sensor libraries that use a digital pin for resetting, or for a chip-select. So
it's good to have this part working!

Parts Used

Any old LED will work just fine as long as its not an IR LED (you can't see those) and a
470 to 2.2K resistor

©Adafruit Industries Page 18 of 65

Diffused Blue 10mm LED (25 pack)
Need some big indicators? We are big
fans of these huge diffused blue LEDs.
They are really bright so they can be seen
in daytime, and from any angle. They go
easily into a breadboard...
https://www.adafruit.com/product/847

Through-Hole Resistors - 470 ohm 5%
1/4W - Pack of 25
ΩMG! You're not going to be able to resist
these handy resistor packs! Well, axially,
they do all of the resisting for you!This is a
25 Pack of...
https://www.adafruit.com/product/2781

Some tactile buttons or switches

Tactile Switch Buttons (12mm square,
6mm tall) x 10 pack
Medium-sized clicky momentary switches
are standard input "buttons" on electronic
projects. These work best in a PCB but
https://www.adafruit.com/product/1119

We recommend using a breadboard and some female-male wires.

©Adafruit Industries Page 19 of 65

https://www.adafruit.com/product/847
https://www.adafruit.com/product/847
https://www.adafruit.com/product/2781
https://www.adafruit.com/product/2781
https://www.adafruit.com/product/2781
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119
https://www.adafruit.com/product/1119

Premium Female/Male 'Extension' Jumper
Wires - 40 x 6" (150mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are
6" (150mm) long and come in a 'strip' of
40 (4 pieces of each of...
https://www.adafruit.com/product/826

You can use a Cobbler to make this a little easier, the pins are then labeled!

Adafruit Pi Cobbler + Kit- Breakout Cable
for Pi B+/A+/Pi 2/Pi 3
The Raspberry Pi B+ has landed on the
Maker World like a 40-GPIO pinned, quad-
USB ported, credit card sized bomb of
DIY joy. And while you can use most of
our great Model B accessories...
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO
Breakout
This is the assembled version of the Pi T-
Cobbler Plus. It only works with the
Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3
& Pi 4! (Any Pi with 2x20...
https://www.adafruit.com/product/2028

Wiring
Connect the Raspberry Pi Ground pin to the blue ground rail on the breadboard.

Connect one side of the tactile switch to Raspberry Pi GPIO #4
Connect the other side of the tactile switch to the ground rail

•
•

©Adafruit Industries Page 20 of 65

https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028

Connect the longer/positive pin of the LED to Raspberry Pi GPIO #18
Connect the shorter/negative pin of the LED to a 470ohm to 2.2K resistor, the
other side of the resistor goes to ground rail

Double-check you have the right wires connected to the right location, it can be
tough to keep track of Pi pins as there are forty of them!

No additional libraries are needed so we can go straight on to the example code

However, we recommend running a pip3 update!

pip3 install --upgrade adafruit_blinka

Blinky Time!
The finish line is right up ahead, lets start with an example that blinks the LED on and
off once a second (half a second on, half a second off):

import time
import board
import digitalio

print("hello blinky!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

•
•

©Adafruit Industries Page 21 of 65

while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

Verify the LED is blinking. If not, check that it's wired to GPIO #18, the resistor is
installed correctly, and you have a Ground wire to the Raspberry Pi.

Type Control-C to quit

Button It Up
Now that you have the LED working, lets add code so the LED turns on whenever the
button is pressed

import time
import board
import digitalio

print("press the button!")

led = digitalio.DigitalInOut(board.D18)
led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.D4)
button.direction = digitalio.Direction.INPUT
button.pull = digitalio.Pull.UP

while True:
 led.value = not button.value # light when button is pressed!

Press the button - see that the LED lights up!

Type Control-C to quit

I2C Sensors & Devices

The most popular electronic sensors use I2C to communicate. This is a 'shared bus' 2
wire protocol, you can have multiple sensors connected to the two SDA and SCL pins
as long as they have unique addresses (check this guide for a list of many popular
devices and their addresses (https://adafru.it/BK0))

Lets show how to wire up a popular BME280. This sensor provides temperature,
barometric pressure and humidity data over I2C

©Adafruit Industries Page 22 of 65

https://learn.adafruit.com/i2c-addresses
https://learn.adafruit.com/i2c-addresses

We're going to do this in a lot more depth than our guide pages for each sensor, but
the overall technique is basically identical for any and all I2C sensors.

Honestly, the hardest part of using I2C devices is figuring out the I2C address (https://
adafru.it/BK0) and which pin is SDA and which pin is SCL!

Parts Used
Adafruit BME280 I2C or SPI Temperature
Humidity Pressure Sensor
Bosch has stepped up their game with
their new BME280 sensor, an
environmental sensor with temperature,
barometric pressure and humidity! This
sensor is great for all sorts...
https://www.adafruit.com/product/2652

We recommend using a breadboard and some female-male wires.

Premium Female/Male 'Extension' Jumper
Wires - 40 x 6" (150mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are
6" (150mm) long and come in a 'strip' of
40 (4 pieces of each of...
https://www.adafruit.com/product/826

You can use a Cobbler to make this a little easier, the pins are then labeled!

Don't forget you have to enable I2C with raspi-config!

©Adafruit Industries Page 23 of 65

https://learn.adafruit.com/i2c-addresses
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/2652
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826

Adafruit Pi Cobbler + Kit- Breakout Cable
for Pi B+/A+/Pi 2/Pi 3
The Raspberry Pi B+ has landed on the
Maker World like a 40-GPIO pinned, quad-
USB ported, credit card sized bomb of
DIY joy. And while you can use most of
our great Model B accessories...
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO
Breakout
This is the assembled version of the Pi T-
Cobbler Plus. It only works with the
Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3
& Pi 4! (Any Pi with 2x20...
https://www.adafruit.com/product/2028

Wiring
Connect the Raspberry Pi 3.3V power pin to Vin
Connect the Raspberry Pi GND pin to GND
Connect the Pi SDA pin to the BME280 SDI
Connect the Pi SCL pin to to the BME280 SCK

•
•
•
•

©Adafruit Industries Page 24 of 65

https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028

Double-check you have the right wires connected to the right location, it can be
tough to keep track of Pi pins as there are forty of them!

After wiring, we recommend running I2C detection to verify that you see the device,
in this case its address 77

sudo i2cdetect -y 1

Install the CircuitPython BME280 Library
OK onto the good stuff, you can now install the Adafruit BME280 CircuitPython library.

As of this writing, not all libraries are up on PyPI (https://adafru.it/-cA) so you may want
to search before trying to install. Look for circuitpython and then the driver you want.

©Adafruit Industries Page 25 of 65

https://pypi.org/search/?q=circuitpython

(If you don't see it you can open up a github issue on circuitpython to remind
us (https://adafru.it/tB7)!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-bme280

You'll notice we also installed a dependancy called adafruit-circuitpython-busdevice.
This is a great thing about pip, if you have other required libraries they'll get installed
too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!
The finish line is right up ahead. You can now run one of the (many in some cases)
example scripts we've written for you.

©Adafruit Industries Page 26 of 65

https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython

Check out the examples for your library by visiting the repository for the library and
looking in the example folder. In this case, it would be https://github.com/adafruit/
Adafruit_CircuitPython_BME280/tree/master/examples (https://adafru.it/BK1)

As of this writing there's only one example. But that's cool, here it is:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time

import board

from adafruit_bme280 import basic as adafruit_bme280

Create sensor object, using the board's default I2C bus.
i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)

OR create sensor object, using the board's default SPI bus.
import digitalio
spi = board.SPI()
bme_cs = digitalio.DigitalInOut(board.D10)
bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, bme_cs)

change this to match the location's pressure (hPa) at sea level
bme280.sea_level_pressure = 1013.25

while True:
print("\nTemperature: %0.1f C" % bme280.temperature)
print("Humidity: %0.1f %%" % bme280.relative_humidity)
print("Pressure: %0.1f hPa" % bme280.pressure)
print("Altitude = %0.2f meters" % bme280.altitude)
time.sleep(2)

Save this code to your Pi by copying and pasting it into a text file, downloading it
directly from the Pi, etc.

Then in your command line run

python3 bme280_simpletest.py

©Adafruit Industries Page 27 of 65

https://github.com/adafruit/Adafruit_CircuitPython_BME280/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_BME280/tree/master/examples

The code will loop with the sensor data until you quit with a Control-C

That's it! Now if you want to read the documentation on the library, what each function
does in depth, visit our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/bme280/en/latest/ (https://adafru.it/BK2)

I2C Clock Stretching

In order to use certain I2C sensors, such as the BNO055 (http://adafru.it/2472),
BNO085 (http://adafru.it/4754) and the CCS811 (http://adafru.it/3566), you'll need to
enable I2C clock stretching 'support' by greatly slowing down the I2C clock on the
Raspberry Pi using the device tree overlay.

This is done by adding a line in /boot/firmware/config.txt . Log in to a terminal
on your Pi and open that file in Nano, or your text editor of choice:

sudo nano /boot/firmware/config.txt

Scroll down until you find a block like:

©Adafruit Industries Page 28 of 65

https://circuitpython.readthedocs.io/projects/bme280/en/latest/
https://www.adafruit.com/product/2472
https://www.adafruit.com/product/4754
https://www.adafruit.com/product/3566

Uncomment some of all of these to enable the optional hardware interfaces
dtparam=i2c_arm=on
dtparam=i2s=on
dtparam=spi=on

This block might vary depending on what you've enabled in raspi-config . Directly
below it, add the following:

Clock stretching by slowing down to 10KHz
dtparam=i2c_arm_baudrate=10000

Clock stretching is used by certain peripheral devices to signal to the Raspberry Pi to
give it more time to respond, but the Raspberry Pi's hardware I2C doesn't support this
feature. However, by slowing down the bus speed, it should give the peripheral more
time.

The default baudrate may be 100KHz or 1MHz, by slowing it down to 10KHz or more,
you may be able to be slow enough to avoid missing clocks.

In Nano, your screen should look like this:

Next, save the file and exit (in Nano, press Ctrl-X, y for yes, and Enter).

Now you can reboot your Pi and proceed to testing your I2C device:

sudo reboot

If you still get bad data, try slowing it down more, maybe to 5 KHz or 1 KHz rate.
Reboot after each change

©Adafruit Industries Page 29 of 65

SPI Sensors & Devices

SPI is less popular than I2C but still you'll see lots of sensors and chips use it. Unlike
I2C, you don't have everything share two wires. Instead, there's three shared wires
(clock, data in, data out) and then a unique 'chip select' line for each chip.

The nice thing about SPI is you can have as many chips as you like, even the same
kind, all share the three SPI wires, as long as each one has a unique chip select pin.

The formal/technical names for the 4 pins used are:

SPI clock - called SCLK, SCK or CLK
SPI data out - called MOSI for Microcomputer Out Serial In. This is the wire that
takes data from the Linux computer to the sensor/chip. Sometimes marked SDI
or DI on chips
SPI data in - called MISO for Microcomputer In Serial Out. This is the wire that
takes data to the Linux computer from the sensor/chip. Sometimes marked SDO
or DO on chips
SPI chip select - called CS or CE

Remember, connect all SCK, MOSI and MISO pins together (unless there's some
specific reason/instruction not to) and a unique CS pin for each device.

SPI on microcontrollers is fairly simple, you have an SPI peripheral and you can
transfer data on it with some low level command. Its 'your job' as a programmer to
control the CS lines with a GPIO. That's how CircuitPython is structured as well.
busio does just the SPI transmit/receive part and busdevice handles the chip
select pin as well.

Linux, on the other hand, doesn't let you send data to SPI without a CS line, and the
CS lines are fixed in hardware as well. For example on the Raspberry Pi, there's only
two CS pins available for the hardware SPI pins - CE0 and CE1 - and you have to use
them. (In theory there's an ioctl option called no_cs but this does not actually work)

•
•

•

•

WARNING! SPI on Linux/Raspberry PI WARNING!

©Adafruit Industries Page 30 of 65

To let you use more than 2 peripherals on SPI, we decided to let you use any CS pins
you like, CircuitPython will toggle it the way you expect. But when we transfer SPI
data we always tell the kernel to use CE0. CE0 will toggle like a CS pin, but if we
leave it disconnected, its no big deal.

The upshot here is basically never connect anything to CE0 (or CE1 for that matter)
when using SPI in its default configuration. Use whatever chip select pin you define in
CircuitPython and just leave the CE pins alone, it will toggle as if it is the chip select
line, completely on its own, so you shouldn't try to use it as a digital input/output/
whatever.

Reassigning or Disabling the SPI Chip Enable Lines
There are some add-on boards that use the CE0 and CE1 lines such as the PiTFT, so
you don't have much choice in the way it is wired. Fortunately, the Raspberry Pi OS
allows you to reassign the Chip Enable lines to some unused pins or even disable
them from Operating System usage altogether by loading a Device Tree Overlay,
which allows them to be accessible in Python. In order to make this as easy as
possible, there's a script to do all the hard work for you.

To run the script, there are a few dependencies that you will need to install first:

cd ~
pip3 install --upgrade adafruit-python-shell click
wget https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/main/
raspi-spi-reassign.py

If you already know the GPIO lines you would like to use, you can pass them in as
parameters to the script. For instance, if you want to assign GPIO 5 to CE0 and GPIO
6 to CE1, you can use the following command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py --ce0=5 --ce1=6

Alternatively, you can pass "disabled instead of a number to disable its usage. For
instance, to disable the OS from using either Chip enable, you could run the following
command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py --ce0=disabled --ce1=disabled

©Adafruit Industries Page 31 of 65

For all features or to run the script interactively, you can just use the following
command:

sudo -E env PATH=$PATH python3 raspi-spi-reassign.py

Using the Second SPI Port
The Raspberry Pi has a 'main' SPI port, but not a lot of people know there's a second
one too! This is handy if you are using the main SPI port for a PiTFT or other kernel-
driven device. You can enable this SPI #1 by adding (https://adafru.it/Oaa)

dtoverlay=spi1-3cs

to the bottom of /boot/config.txt and rebooting. You'll then see the addition of some /
dev/spidev1.x devices.

Here's the wiring for SPI #1:

SCK_1 on GPIO #21
MOSI_1 on GPIO #20
MISO_1 on GPIO #19
SPI #1 CS0 on GPIO 18
SPI #1 CS1 on GPIO 17
SPI #1 CS2 on GPIO 16

like the main SPI, we'll use CE0 as our default but don't connect to it! Use any other
pin and leave that one unused. Then update your scripts to use

If you have installed a PiTFT from another guide, you will need to "uninstall"
that before you can use the main spi ports.

While the Chip Enable lines are reassigned or disabled, you likely will not be
able to use kernel drivers for the reassigned or disabled lines.

•
•
•
•
•
•

©Adafruit Industries Page 32 of 65

https://elinux.org/RPi_SPI

spi = busio.SPI(board.SCK_1, MOSI=board.MOSI_1, MISO=board.MISO_1)

Parts Used
OK now that we've gone thru the warning, lets wire up an SPI MAX31855
thermocouple sensor, this particular device doesn't have a MOSI pin so we'll not
connect it.

Thermocouple Amplifier MAX31855
breakout board (MAX6675 upgrade)
Thermocouples are very sensitive,
requiring a good amplifier with a cold-
compensation reference. The MAX31855K
does everything for you, and can be
easily interfaced with any...
https://www.adafruit.com/product/269

Thermocouple Type-K Glass Braid
Insulated
Thermocouples are best used for
measuring temperatures that can go
above 100 °C. This is a bare wires bead-
probe which can measure air or surface
temperatures. Most inexpensive...
https://www.adafruit.com/product/270

We recommend using a breadboard and some female-male wires.

©Adafruit Industries Page 33 of 65

https://www.adafruit.com/product/269
https://www.adafruit.com/product/269
https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://www.adafruit.com/product/270
https://www.adafruit.com/product/270

Premium Female/Male 'Extension' Jumper
Wires - 40 x 6" (150mm)
Handy for making wire harnesses or
jumpering between headers on PCB's.
These premium jumper wires are
6" (150mm) long and come in a 'strip' of
40 (4 pieces of each of...
https://www.adafruit.com/product/826

You can use a Cobbler to make this a little easier, the pins are then labeled!

Adafruit Pi Cobbler + Kit- Breakout Cable
for Pi B+/A+/Pi 2/Pi 3
The Raspberry Pi B+ has landed on the
Maker World like a 40-GPIO pinned, quad-
USB ported, credit card sized bomb of
DIY joy. And while you can use most of
our great Model B accessories...
https://www.adafruit.com/product/1990

Assembled Pi T-Cobbler Plus - GPIO
Breakout
This is the assembled version of the Pi T-
Cobbler Plus. It only works with the
Raspberry Pi Model Zero, A+, B+, Pi 2, Pi 3
& Pi 4! (Any Pi with 2x20...
https://www.adafruit.com/product/2028

Wiring
Connect the Raspberry Pi 3.3V power pin to Vin
Connect the Raspberry Pi GND pin to GND
Connect the Pi SCLK pin to the MAX31855 CLK
Connect the Pi MISO pin to to the MAX31855 DO

•
•
•
•

©Adafruit Industries Page 34 of 65

https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/826
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/1990
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028
https://www.adafruit.com/product/2028

Connect the Pi GPIO 5 pin to to the MAX31855 CS

Fritzing Diagram

https://adafru.it/BKi

Double-check you have the right wires connected to the right location, it can be
tough to keep track of Pi pins as there are forty of them!

Install the CircuitPython MAX31855 Library
OK onto the good stuff, you can now install the Adafruit MAX31855 CircuitPython
library.

As of this writing, not all libraries are up on PyPI so you may want to search before
trying to install. Look for circuitpython and then the driver you want.

•

©Adafruit Industries Page 35 of 65

https://cdn-learn.adafruit.com/assets/assets/000/056/795/original/max.fzz?1530483015

(If you don't see it you can open up a github issue on circuitpython to remind
us (https://adafru.it/tB7)!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-max31855

You'll notice we also installed a few other dependancies called spidev, adafruit-
pureio, adafruit-circuitpython-busdevice and more. This is a great thing about pip, if
you have other required libraries they'll get installed too!

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!
The finish line is right up ahead. You can now run one of the (many in some cases)
example scripts we've written for you.

©Adafruit Industries Page 36 of 65

https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython

Check out the examples for your library by visiting the repository for the library and
looking in the example folder. In this case, it would be https://github.com/adafruit/
Adafruit_CircuitPython_MAX31855/tree/master/examples (https://adafru.it/BKj)

As of this writing there's only one example. But that's cool, here it is:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time

import board
import digitalio

import adafruit_max31855

spi = board.SPI()
cs = digitalio.DigitalInOut(board.D5)

max31855 = adafruit_max31855.MAX31855(spi, cs)
while True:

tempC = max31855.temperature
tempF = tempC * 9 / 5 + 32
print(f"Temperature: {tempC} C {tempF} F ")
time.sleep(2.0)

Save this code to your Pi by copying and pasting it into a text file, downloading it
directly from the Pi, etc.

Then in your command line run

python3 max31855_simpletest.py

The code will loop with the sensor data until you quit with a Control-C

©Adafruit Industries Page 37 of 65

https://github.com/adafruit/Adafruit_CircuitPython_MAX31855/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_MAX31855/tree/master/examples

That's it! Now if you want to read the documentation on the library, what each function
does in depth, visit our readthedocs documentation at

https://circuitpython.readthedocs.io/projects/max31855/en/latest/ (https://adafru.it/
BKk)

Using I2C or SPI by Device ID

One of the great things about Linux systems is that each of the subsystems are stored
as separate devices and so you can tell if the I2C or SPI device is available by looking
in the /dev/ folder. If your I2C or SPI devices are not showing up, make sure you
followed the steps on the Installing CircuitPython Libraries on Raspberry Pi page.

In order to maintain a certain level of compatibility with CircuitPython, busio was
written to attempt to automatically detect which pins you had your I2C or SPI device
set up to use. However, with the flexibility that the Raspberry Pi provides and the
staggering number of possible pin combinations, there are definitely cases where it
fails to detect it properly. This is why we wrote the Python Extended Bus library, which
allows you to specify the bus and device ID so you can tell it exactly which device you
want to use.

Installing the Library
Installing the library is easy once you already have Blinka setup. Just use the
following command to install:

Make sure you have a K-type thermocouple installed into the sensor breakout
or you will get an error like the one below!

©Adafruit Industries Page 38 of 65

https://circuitpython.readthedocs.io/projects/max31855/en/latest/

pip3 install adafruit-extended-bus

That's it!

I2C Devices
To use an I2C device, you first need to know the device file name and from that, you
can get the ID number. For instance, if you wanted to use /dev/i2c-1, the ID number
would be 1.

You would then pass that ID into the Extended I2C Constructor. Here's an example of
how to use /dev/i2c-1 with the BME280 sensor instead of the built-in busio.I2C
module:

"""
This exmaple demonstrates how to instantiate the
Adafruit BME280 Sensor using this library and just
the I2C bus number.
"""

import adafruit_bme280
from adafruit_extended_bus import ExtendedI2C as I2C

Create library object using our Extended Bus I2C port
i2c = I2C(1) # Device is /dev/i2c-1
bme280 = adafruit_bme280.Adafruit_BME280_I2C(i2c)
print(f"\nTemperature: {bme280.temperature:0.1f} C")

SPI Devices
This is less useful than I2C if you only have the first SPI port enabled because in most
cases, you can already use any GPIO pin as a Chip Enable line. However, if you have
multiple SPI buses enabled, then it becomes much more useful.

To use SPI Devices with this library, it is similar to I2C, but you have a bus and Chip
Enable number to determine. The first number is the Bus ID and the second number is
the Chip Enable ID. So for instance, if you have a SPI device named /dev/spidev1.0
that you would like to use, then the Bus ID would be 1 and the Chip Enable ID would
be 0.

You would then pass that IDs into the Extended SPI Constructor. Here's an example of
how to use /dev/spidev1.0 with the BME280 sensor instead of the built-in busio.SPI
module. We are using GPIO 5 for the actual Chip Enable in this example.

"""
This exmaple demonstrates how to instantiate the

©Adafruit Industries Page 39 of 65

Adafruit BME280 Sensor using this library and just
the SPI bus and chip enable numbers.

Please note that Linux will mess with the system CE pins, so
we are using an alternate pin for the Chip Enable line. This
library is more useful for using a SPI Device on a Bus other
than 0
"""

import board
import digitalio
import adafruit_bme280
from adafruit_extended_bus import ExtendedSPI as SPI

Create library object using our Extended Bus I2C port
spi = SPI(1, 0) # Device is /dev/spidev1.0
cs = digitalio.DigitalInOut(board.D5)
bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, cs)
print(f"\nTemperature: {bme280.temperature:0.1f} C")

UART / Serial

After I2C and SPI, the third most popular "bus" protocol used is serial (also sometimes
referred to as 'UART'). This is a non-shared two-wire protocol with an RX line, a TX
line and a fixed baudrate. The most common devices that use UART are GPS units,
MIDI interfaces, fingerprint sensors, thermal printers, and a scattering of sensors.

One thing you'll notice fast is that most linux computers have minimal UARTs, often
only 1 hardware port. And that hardware port may be shared with a console.

There are two ways to connect UART / Serial devices to your Raspberry Pi. The easy
way, and the hard way.

We'll demonstrate wiring up & using an Ultimate GPS with both methods

Adafruit Ultimate GPS Breakout - 66
channel w/10 Hz updates
We carry a few different GPS modules
here in the Adafruit shop, but none that
satisfied our every desire - that's why we
designed this little GPS breakout board.
We believe this is...
https://www.adafruit.com/product/746

©Adafruit Industries Page 40 of 65

https://www.adafruit.com/product/746
https://www.adafruit.com/product/746
https://www.adafruit.com/product/746

The Easy Way - An External USB-Serial
Converter
By far the easiest way to add a serial port is to use a USB to serial converter cable or
breakout. They're not expensive, and you simply plug it into the USB port. On the
other end are wires or pins that provide power, ground, RX, TX and maybe some
other control pads or extras.

Here are some options, they have varying chipsets and physical designs but all will do
the job. We'll list them in order of recommendation.

The first cable is easy to use and even has little plugs that you can arrange however
you like, it contains a CP2102

USB to TTL Serial Cable - Debug /
Console Cable for Raspberry Pi
The cable is easiest way ever to connect
to your microcontroller/Raspberry Pi/WiFi
router serial console port. Inside the big
USB plug is a USB<->Serial conversion
chip and at...
https://www.adafruit.com/product/954

The CP2104 Friend is low cost, easy to use, but requires a little soldering, it has an '6-
pin FTDI compatible' connector on the end, but all pins are broken out the sides

Adafruit CP2104 Friend - USB to Serial
Converter
Discontinued - you can grab Adafruit
CP2102N Friend - USB to Serial
Converter instead! Long gone are...
https://www.adafruit.com/product/3309

Both the FTDI friend and cable use classic FTDI chips, these are more expensive than
the CP2104 or PL2303 but sometimes people like them!

©Adafruit Industries Page 41 of 65

https://www.adafruit.com/product/954
https://www.adafruit.com/product/954
https://www.adafruit.com/product/954
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/3309

FTDI Friend with Micro USB Port + extras
Long gone are the days of parallel ports
and serial ports. Now the USB port reigns
supreme! But USB is hard, and you just
want to transfer your every-day serial data
from a...
https://www.adafruit.com/product/284

FTDI Serial TTL-232 USB Cable
Just about all electronics use TTL serial
for debugging, bootloading,
programming, serial output, etc. But it's
rare for a computer to have a serial port
anymore. This is a USB to...
https://www.adafruit.com/product/70

You can wire up the GPS by connecting the following

GPS Vin to USB 5V or 3V (red wire on USB console cable)
GPS Ground to USB Ground (black wire)
GPS RX to USB TX (green wire)
GPS TX to USB RX (white wire)

•
•
•
•

©Adafruit Industries Page 42 of 65

https://www.adafruit.com/product/284
https://www.adafruit.com/product/284
https://www.adafruit.com/product/70
https://www.adafruit.com/product/70

Once the USB adapter is plugged in, you'll need to figure out what the serial port
name is. You can figure it out by unplugging-replugging in the USB and then typing
dmesg | tail -10 (or just dmesg) and looking for text like this:

At the bottom, you'll see the 'name' of the attached device, in this case its ttyUSB0 ,
that means our serial port device is available at /dev/ttyUSB0

The Hard Way - Using Built-in UART
If you don't want to plug in external hardware to the Pi you can use the built in UART
on the RX/TX pins.

But, if you do this, you'll lose the serial console, so if you're using a PiUART or
console cable or HAT that lets you connect directly to the console, that will no
longer work and you'll have to use the HDMI+Keyboard or ssh method of running
commands!

This isn't a big deal, in fact the serial login-console isn't even enabled by default on
Raspbian anymore, but it's worth a warning!

Disabling Console & Enabling Serial
Before wiring up, make sure you have disabled the console.

Run sudo raspi-config and select the following:

Interfacing Options

©Adafruit Industries Page 43 of 65

https://learn.adafruit.com//assets/59443
https://learn.adafruit.com//assets/59443

Serial

Select No on enabling the login shell

Select Yes on enabling serial port
hardware

Once complete you should have no console and yes on serial interface:

©Adafruit Industries Page 44 of 65

https://learn.adafruit.com//assets/59444
https://learn.adafruit.com//assets/59444
https://learn.adafruit.com//assets/59445
https://learn.adafruit.com//assets/59445
https://learn.adafruit.com//assets/59446
https://learn.adafruit.com//assets/59446

Then reboot

Once you've rebooted, you can use the built in UART via /dev/ttyS0

Wire the GPS as follows:

GPS Vin to 3.3V (red wire)
GPS Ground to Ground (black wire)
GPS RX to TX (green wire)
GPS TX to RX (white wire)

Install the CircuitPython GPS Library
OK onto the good stuff, you can now install the Adafruit GPS CircuitPython library.

As of this writing, not all libraries are up on PyPI so you may want to search before
trying to install. Look for circuitpython and then the driver you want.

(If you don't see it you can open up a github issue on circuitpython to remind
us (https://adafru.it/tB7)!)

Once you know the name, install it with

pip3 install adafruit-circuitpython-gps

You'll notice we also installed a dependancy called pyserial. This is a great thing
about pip, if you have other required libraries they'll get installed too!

©Adafruit Industries Page 45 of 65

https://learn.adafruit.com//assets/59441
https://learn.adafruit.com//assets/59441
https://github.com/adafruit/circuitpython
https://github.com/adafruit/circuitpython

We also recommend an adafruit-blinka update in case we've fixed bugs:

pip3 install --upgrade adafruit_blinka

Run that code!
The finish line is right up ahead. You can now run one of the (many in some cases)
example scripts we've written for you.

Check out the examples for your library by visiting the repository for the library and
looking in the example folder. In this case, it would be https://github.com/adafruit/
Adafruit_CircuitPython_GPS/tree/master/examples (https://adafru.it/Ca9)

Lets start with the simplest, the echo example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Simple GPS module demonstration.
Will print NMEA sentences received from the GPS, great for testing connection
Uses the GPS to send some commands, then reads directly from the GPS
import time

import board
import busio

import adafruit_gps

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

If using I2C, we'll create an I2C interface to talk to using default pins
i2c = board.I2C() # uses board.SCL and board.SDA
i2c = board.STEMMA_I2C() # For using the built-in STEMMA QT connector on a
microcontroller

Create a GPS module instance.
gps = adafruit_gps.GPS(uart) # Use UART/pyserial
gps = adafruit_gps.GPS_GtopI2C(i2c) # Use I2C interface

Initialize the GPS module by changing what data it sends and at what rate.
These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
the GPS module behavior:
https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

Turn on the basic GGA and RMC info (what you typically want)
gps.send_command(b"PMTK314,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0")
Turn on just minimum info (RMC only, location):
gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Turn off everything:
gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
Tuen on everything (not all of it is parsed!)

©Adafruit Industries Page 46 of 65

https://github.com/adafruit/Adafruit_CircuitPython_GPS/tree/master/examples
https://github.com/adafruit/Adafruit_CircuitPython_GPS/tree/master/examples

gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

Set update rate to once a second (1hz) which is what you typically want.
gps.send_command(b"PMTK220,1000")
Or decrease to once every two seconds by doubling the millisecond value.
Be sure to also increase your UART timeout above!
gps.send_command(b'PMTK220,2000')
You can also speed up the rate, but don't go too fast or else you can lose
data during parsing. This would be twice a second (2hz, 500ms delay):
gps.send_command(b'PMTK220,500')

Main loop runs forever printing data as it comes in
timestamp = time.monotonic()
while True:

data = gps.read(32) # read up to 32 bytes
print(data) # this is a bytearray type

if data is not None:
convert bytearray to string
data_string = "".join([chr(b) for b in data])
print(data_string, end="")

if time.monotonic() - timestamp > 5:
every 5 seconds...
gps.send_command(b"PMTK605") # request firmware version
timestamp = time.monotonic()

We'll need to configure this code to work with our UART port name.

If you're using a USB-to-serial converter, the device name is probably /dev/

ttyUSB0 - but check dmesg to make sure
If you're using the built-in UART on a Pi, the device name is /dev/ttyS0 - note
that last character is a zero

Comment out the lines that reference board.TX , board.RX and busio.uart and
uncomment the lines that import serial and define the serial device, like so:

Define RX and TX pins for the board's serial port connected to the GPS.
These are the defaults you should use for the GPS FeatherWing.
For other boards set RX = GPS module TX, and TX = GPS module RX pins.
#RX = board.RX
#TX = board.TX

Create a serial connection for the GPS connection using default speed and
a slightly higher timeout (GPS modules typically update once a second).
#uart = busio.UART(TX, RX, baudrate=9600, timeout=3000)

for a computer, use the pyserial library for uart access
import serial
uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=3000)

And update the "/dev/ttyUSB0" device name if necessary to match your USB
interface

•

•

©Adafruit Industries Page 47 of 65

Whichever method you use, you should see output like this, with $GP "NMEA
sentences" - there probably wont be actual location data because you haven't gotten
a GPS fix. As long as you see those $GP strings sorta like the below, you've got it
working!

PWM Outputs & Servos

Adafruit Blinka supports PWMOut! This means you can easily pulse LEDs and control
servos from your Raspberry Pi using any GPIO pin! This page will walk you through
wiring up an LED and a servo, and provide an example for each.

Update Adafruit Blinka
Before getting started, make sure you're running the latest version of Adafruit Blinka.
If you have not already installed it, run the following:

pip3 install adafruit-blinka

If you've previously installed it, you should run a pip3 update:

pip3 install --upgrade adafruit-blinka

Once you're certain that you are running the latest version of Adafruit Blinka, you can
continue!

Supported Pins
PWMOut is supported on all GPIO pins on the Raspberry Pi! They are independent,
and each can have a different frequency and duty cycle.

©Adafruit Industries Page 48 of 65

PWM - LEDs
This example will show you how to use PWM to pulse fade an LED.

First, wire up the LED to the Raspberry Pi.

LED - (negative) to Pi GND
LED + (positive) to 470Ω resistor
470Ω resistor to Pi GPIO5

Double-check you have the right wires connected to the right location, it can be
tough to keep track of pins as there are forty of them!

No additional libraries are needed, so we can go straight on to the example code.

Run the following code:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time
import board
import pwmio

led = pwmio.PWMOut(board.D5, frequency=5000, duty_cycle=0)

while True:
for i in range(100):

PWM LED up and down
if i < 50:

led.duty_cycle = int(i * 2 * 65535 / 100) # Up
else:

led.duty_cycle = 65535 - int((i - 50) * 2 * 65535 / 100) # Down
time.sleep(0.01)

Verify that the LED is pulsing. If not, check that it's wired to GPIO #5, the resistor is
installed correctly, and you have a ground wire to the Raspberry Pi.

Type control-C to quit.

©Adafruit Industries Page 49 of 65

https://learn.adafruit.com//assets/93078
https://learn.adafruit.com//assets/93078

Servo Control
In order to use servos, we take advantage of pulseio . You have two options. You
can use the raw pulseio calls to set the frequency to 50 Hz and then set the pulse
widths. Or, you can use adafruit_motor which manages servos for you quite nicely.

This section will cover both options.

Install adafruit_motor by running pip3 install adafruit-circuitpython-
motor

First, wire up a servo to your Raspberry Pi:

Servo power (red wire) to Raspberry Pi 5V
Servo ground (black/brown wire) to
Raspberry Pi ground
Servo signal (yellow/white wire) to
Raspberry Pi GPIO5

pulseio Servo Control
Run the following code:

SPDX-FileCopyrightText: 2020 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time
import board
import pwmio

Initialize PWM output for the servo (on pin D5):
servo = pwmio.PWMOut(board.D5, frequency=50)

Create a function to simplify setting PWM duty cycle for the servo:
def servo_duty_cycle(pulse_ms, frequency=50):

period_ms = 1.0 / frequency * 1000.0
duty_cycle = int(pulse_ms / (period_ms / 65535.0))
return duty_cycle

Main loop will run forever moving between 1.0 and 2.0 mS long pulses:
while True:

servo.duty_cycle = servo_duty_cycle(1.0)
time.sleep(1.0)

©Adafruit Industries Page 50 of 65

https://learn.adafruit.com//assets/93080
https://learn.adafruit.com//assets/93080

servo.duty_cycle = servo_duty_cycle(2.0)
time.sleep(1.0)

The servo should sweep back and forth repeatedly. If it does not, verify your wiring
matches the diagram above.

Type control-C to quit.

adafruit_motor Servo Control
Run the following code:

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries
#
SPDX-License-Identifier: MIT

import time
import board
import pwmio
from adafruit_motor import servo

create a PWMOut object on Pin D5.
pwm = pwmio.PWMOut(board.D5, duty_cycle=2 ** 15, frequency=50)

Create a servo object.
servo = servo.Servo(pwm)

while True:
for angle in range(0, 180, 5): # 0 - 180 degrees, 5 degrees at a time.

servo.angle = angle
time.sleep(0.05)

for angle in range(180, 0, -5): # 180 - 0 degrees, 5 degrees at a time.
servo.angle = angle
time.sleep(0.05)

The servo should sweep back and forth in steps. If it does not, verify your wiring
matches the diagram above.

Type control-C to quit.

Using NeoPixels on the Pi 5 and Pi 500

When the Raspberry Pi 5 came out, it was released on completely different underlying
hardware than the previous Raspberry Pi boards. Specifically, it used the RP1 chip to
handle pretty much all of the Peripheral IO. This made some of the existing libraries
such as RPi.GPIO and the NeoPixels stop working and alternatives needed to be
found.

©Adafruit Industries Page 51 of 65

For Blinka, libgpiod was originally used because many of the other supported boards
had worked with this library and with some testing (https://adafru.it/1abw), I found it to
be about 3 times faster than the recommended gpiozero. However, this lacked some
crucial features such as PWM. Eventually, I stumbled upon rpi-lgpio, which was
basically a wrapper around another library called lgpio, and served as a drop-in
replacement for RPi.GPIO and included PWM. Unfortunately, because the RP1 chip
remained undocumented, the only option for folks to use NeoPixels was with the
Adafruit_CircuitPython_NeoPixel_SPI (https://adafru.it/NHd) library and it used the SPI
port, so it couldn't be use in conjunction with another SPI device.

However, with the release of the RP1 documentation, a new library was written to
make use of the NeoPixels in a similar way to that of the Pi 4, freeing up the SPI port.
However, at the time of this writing, changes to allow access to the PIO through the
kernel are new and it will require a firmware upgrade, which is generally not
recommended under normal circumstances as it hasn't been as thoroughly tested.

Installation
Make sure you already have Blinka installed. After that, you will want to first start by
checking the permissions to see if a firmware update is necessary. Type the following:

ls -l /dev/pio0

If the response is no such file or directory , then you will need to update the
firmware.

You can update the firmware by running the following commands:

An update to the kernel is required to run this, which is generally not
recommended under normal circumstances.

©Adafruit Industries Page 52 of 65

https://adafruit-playground.com/u/MakerMelissa/pages/comparing-libgpiod-and-gpiozero-speeds-on-the-raspberry-pi-5
https://github.com/adafruit/Adafruit_CircuitPython_NeoPixel_SPI

sudo apt update
sudo apt upgrade -y
sudo rpi-eeprom-update -a

After updating it, you will need to reboot the pi:

sudo reboot

Making sure you have your virtual environment (https://adafru.it/Deo) activated first,
you will need to install the Adafruit_Blinka_Raspberry_Pi5_Neopixel library:

pip install Adafruit-Blinka-Raspberry-Pi5-Neopixel

Updating Permissions
After installing the necessary items, you will want to check that you have the
appropriate permissions. You can check this by running the following command again:

ls -l /dev/pio0

If it shows that both group and file are owned by root, you will need to update the
permissions by adding to the rules file.

You can update the rules file, by typing the following:

sudo nano /etc/udev/rules.d/99-com.rules

Add the following line to the end of the file:

SUBSYSTEM=="*-pio", GROUP="gpio", MODE="0660"

Go ahead and reboot once more. When you type the command to check, it should
show gpio as one of the items:

©Adafruit Industries Page 53 of 65

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#setup-virtual-environment-3157129

Running the Example Code

To get the led_animation.py example code onto your Raspberry Pi, you can use the
wget command:

wget https://raw.githubusercontent.com/adafruit/
Adafruit_Blinka_Raspberry_Pi5_Neopixel/refs/heads/main/examples/led_animation.py

To run the example, you will need a couple more libraries installed. Making sure you
have your virtual environment activated first (https://adafru.it/Deo) (if you get an error,
it's likely not activated), install using the following command:

pip install adafruit-circuitpython-pixelbuf adafruit-circuitpython-led-animation

The example expects your NeoPixels to be connected to pin D13, but you can adjust
the code to use any pin as needed. You may also need to adjust
the number_of_pixels variable and byteorder parameter in the Pi5Pixelbuf
initializer to match your actual hardware.

Finally, you can run the example with the following command:

python led_animation.py

You should see a variety of different animations run on the NeoPixels.

More To Come!

That's just a taste of what we've got working so far

We're adding more support constantly, so please hold tight and visit the
adafruit_blinka github repo (https://adafru.it/BJX) to share your feedback and perhaps
even submit some improvements!

©Adafruit Industries Page 54 of 65

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/installing-circuitpython-on-raspberry-pi#setup-virtual-environment-3157129
https://github.com/adafruit/Adafruit_Blinka
https://github.com/adafruit/Adafruit_Blinka

If you'd like to contribute, but aren't sure where to start, check out the following
guides:

Adding a Single Board Computer to PlatformDetect for Blinka (https://adafru.it/
JFy)
Adding a Single Board Computer to Blinka (https://adafru.it/KEF)

CircuitPython & OrangePi

CircuitPython & OrangePi (https://adafru.it/DbB)

CircuitPython & Jetson Nano

CircuitPython & Jetson Nano (https://adafru.it/11aT)

FAQ & Troubleshooting

There's a few oddities when running Blinka/CircuitPython on Linux. Here's a list of
stuff to watch for that we know of!

This FAQ covers all the various platforms and hardware setups you can run Blinka on.
Therefore, some of the information may not apply to your specific setup.

Update Blinka/Platform Libraries
Most issues can be solved by forcing Python to upgrade to the latest blinka /
platform-detect libraries. Try running

sudo python3 -m pip install --upgrade --force-reinstall adafruit-

blinka Adafruit-PlatformDetect

•

•

?

©Adafruit Industries Page 55 of 65

https://learn.adafruit.com/adding-a-single-board-computer-to-platformdetect-for-blinka
https://learn.adafruit.com/adding-a-single-board-computer-to-blinka
https://learn.adafruit.com/circuitpython-on-orangepi-linux
https://learn.adafruit.com/circuitpython-libraries-on-linux-and-the-nvidia-jetson-nano

Somehow you have ended up with either the wrong board module or
no board module at all.

DO NOT try to fix this by manually installing a library named board .
There is one out there (https://adafru.it/NCE) and it has nothing to do
with Blinka. You will break things if you install that library!

The easiest way to recover is to simply force a reinstall of Blinka with:
python3 -m pip install --upgrade --force-reinstall

adafruit-blinka

Additionally, and especially if you are using a more recent version of
Python, you may run into this error if you either do not have a Virtual
Environment active or setup. See the Python Virtual Environment Usage
on Raspberry Pi (https://adafru.it/19a5) guide for more information or
check out the guide's Installation page.

Getting an error message about
'board' not found or 'board' has no
attribute

Due to the way we share an SPI peripheral, you cannot have two SPI
devices with different 'mode/polarity' on the same SPI bus - you'll get
weird data

95% of SPI devices are mode 0, check the driver to see mode or polarity
settings. For example:

LSM9DS1 is mode 1 (https://adafru.it/NCF), please use in I2C mode
instead of SPI
MAX31865 is phase 1 (https://adafru.it/NCG), try using this on a
separate SPI device, or read data twice.

? Mixed SPI mode devices

•

•

?

©Adafruit Industries Page 56 of 65

https://pypi.org/project/board/
https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://learn.adafruit.com/python-virtual-environment-usage-on-raspberry-pi
https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1/blob/master/adafruit_lsm9ds1.py#L408
https://github.com/adafruit/Adafruit_CircuitPython_MAX31865/blob/master/adafruit_max31865.py#L97

This is due to having an older version of spidev (https://adafru.it/JEi). You
need at least version 3.4. This should have been taken care of (https://
adafru.it/NCH) when you installed Blinka, but in some cases it does not
seem to happen.

To check what version of spidev Python is using:

$ python3

Python 3.6.8 (default, Oct 7 2019, 12:59:55)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license"

for more information.

>>> import spidev

>>> spidev.__version__

'3.4'

>>>

If you see a version lower then 3.4 reported, then try a force upgrade of
spidev with (back at command line):

sudo python3 -m pip install --upgrade --force-reinstall

spidev

Why am I getting AttributeError:
'SpiDev' object has no attribute
'writebytes2'?

Some Linux boards, for example, AllWinner-based, do not have support
to set pull up or pull down on their GPIO. Use an external resistor
instead!

? No Pullup/Pulldown support on
some Linux boards or MCP2221

?

©Adafruit Industries Page 57 of 65

https://pypi.org/project/spidev/
https://github.com/adafruit/Adafruit_Blinka/blob/8a4686cbc7ebd7f338f64517fa42db4dc5b5c78c/requirements.txt#L6

If you are getting a stack trace that ends with something like:

return self._hid.read(64)

File "hid.pyx", line 122, in hid.device.read

OSError: read error

Try setting an environment variable named
BLINKA_MCP2221_RESET_DELAY to a value of 0.5 or higher.

Windows:

set BLINKA_MCP2221_RESET_DELAY=0.5

Linux:

export BLINKA_MCP2221_RESET_DELAY=0.5

This is a value in seconds to wait between resetting the MCP2221 and
the attempt to reopen it. The reset is seen by the operating system as a
hardware disconnect/reconnect. Different operating systems can need
different amounts of time to wait after the reconnect before the attempt
to reopen. Setting the above environment variable will override the
default reset delay time, allowing it to be increased as needed for
different setups.

Getting OSError: read error with
MCP2221

Blinka uses the libusbk driver to talk to the FT232H directly. If you have
other FTDI devices installed that are using the FTDI VCP drivers, you
may run into issues. See here for a possible workaround:

https://forums.adafruit.com/viewtopic.php?f=19&t=166999 (https://
adafru.it/doW)

? Using FT232H with other FTDI
devices.

©Adafruit Industries Page 58 of 65

https://forums.adafruit.com/viewtopic.php?f=19&t=166999

This is probably only an issue for older versions of Windows. If you run
into something like this, see this issue thread:

https://github.com/pyusb/pyusb/issues/120 (https://adafru.it/Uao)

which describes copying the 32bit and 64bit DLLs into specific folders.
(example for Win7 (https://adafru.it/Uao))

? Getting "no backend available" with
pyusb on Windows

Check out this issue thread:

https://github.com/pyusb/pyusb/issues/355 (https://adafru.it/19fh)

which has lots of discussion. It is probably worth reading through it all to
determine what applies for your setup. Most solutions seem to rely on
setting the DYLD_LIBRARY_PATH environment variable.

This issue thread has further information:

https://github.com/orgs/Homebrew/discussions/3424 (https://adafru.it/
19fi)

? Getting "no backend available" or
other problems with pyusb on Mac

Some CircuitPython modules like may not be supported.

Most SBCs do not have analog inputs so there is no analogio
Few SBCs have neopixel support so that is only available on
Raspberry Pi (and any others that have low level neopixel protocol
writing

? I can't get neopixel, analogio,
audioio, rotaryio, displayio or
pulseio to work!

•
•

©Adafruit Industries Page 59 of 65

https://github.com/pyusb/pyusb/issues/120
https://github.com/pyusb/pyusb/issues/120#issuecomment-322058585
https://github.com/pyusb/pyusb/issues/355
https://github.com/pyusb/pyusb/issues/355
https://github.com/orgs/Homebrew/discussions/3424

Rotary encoders (rotaryio) is handled by interrupts on
microcontrollers, and is not supported on SBCs at this time
Likewise pulseio PWM support is not supported on many SBCs,
and if it is, it will not support a carrier wave (Infrared transmission)
For display usage, we suggest using python Pillow library or
Pygame , we do not have displayio support

We aim to have, at a minimum, digitalio and busio (I2C/SPI). This
lets you use the vast number of driver libraries

For analog inputs, the MCP3xxx library (https://adafru.it/CPN) will give
you AnalogIn objects. For PWM outputs, try the PCA9685 (https://
adafru.it/tZF). For audio, use pygame or other Python3 libraries to play
audio.

Some libraries, like Adafruit_CircuitPython_DHT (https://adafru.it/Beq)
will try to bit-bang if pulsein isn't available. Slow linux boards (<700MHz)
may not be able to read the pins fast enough), you'll just have to try!

•

•

•

It looks like libgpiod may not be installed on your board.

Try running the command: sudo apt-get install libgpiod2

? Help, I'm getting the message "error
while loading shared libraries:
libgpiod.so.2: cannot open shared
object file: No such file or directory"

Be sure you have the latest libgpiod.py script and run it with the -l or
--legacy flag:

? = v5.5.0""> When running the
libgpiod script, I see the message:
configure: error: "libgpiod needs
linux headers version >= v5.5.0"

©Adafruit Industries Page 60 of 65

https://github.com/adafruit/Adafruit_CircuitPython_MCP3xxx
https://github.com/adafruit/Adafruit_CircuitPython_PCA9685
https://github.com/adafruit/Adafruit_CircuitPython_DHT

All Raspberry Pi Computers Have:

1 x I2C port with busio (but clock stretching
is not supported in hardware, so you must
set the I2C bus speed to 10KHz to 'fix it')
2 x SPI ports with busio
1 x UART port with serial - note this is
shared with the hardware console
pulseio.pulseIn using gpiod
neopixel support on a few pins
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

Google Coral TPU Dev Boards Have:

1 x I2C port with busio
1 x SPI ports with busio
1 x UART port with serial - note this is
shared with the hardware console
3 x PWMOut support
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)

sudo python3 libgpiod.py --legacy

©Adafruit Industries Page 61 of 65

https://learn.adafruit.com//assets/77099
https://learn.adafruit.com//assets/77099
https://learn.adafruit.com//assets/77100
https://learn.adafruit.com//assets/77100

Orange Pi PC Plus Boards Have:

1 x I2C port with busio
1 x SPI ports with busio
1 x UART port with serial
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

Orange Pi R1 Boards Have:

1 x I2C port with busio
1 x SPI port with busio
1 x UART port with serial
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

ODROID C2 Boards Have:

1 x I2C port with busio
No SPI support
1 x UART port with serial - note this is
shared with the hardware console
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

©Adafruit Industries Page 62 of 65

https://learn.adafruit.com//assets/77102
https://learn.adafruit.com//assets/77102
https://learn.adafruit.com//assets/77105
https://learn.adafruit.com//assets/77105
https://learn.adafruit.com//assets/77107
https://learn.adafruit.com//assets/77107

DragonBoard 410c Boards Have:

2 x I2C port with busio
1 x SPI port with busio
1 x UART port with serial
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

NVIDIA Jetson Nano Boards Have:

2 x I2C port with busio
2 x SPI ports with busio
2 x UART port with serial - note one of
these is shared with the hardware console
No NeoPixel support
No AnalogIn support (Use an MCP3008 or
similar to add ADC)
No PWM support (Use a PCA9685 or
similar to add PWM)

©Adafruit Industries Page 63 of 65

https://learn.adafruit.com//assets/77714
https://learn.adafruit.com//assets/77714
https://learn.adafruit.com//assets/80798
https://learn.adafruit.com//assets/80798

FT232H Breakouts Have:

1x I2C port OR SPI port with busio
12x GPIO pins with digitalio
No UART
No AnalogIn support
No AnalogOut support
No PWM support

If you are using Blinka in FT232H
mode (https://adafru.it/FWD), then keep in
mind these basic limitations.

SPI and I2C can not be used at the same
time since they share the same pins.
GPIO speed is not super fast, so trying to
do arbitrary bit bang like things may run
into speed issues.
There are no ADCs.
There are no DACs.
UART is not available (its a different FTDI
mode)

©Adafruit Industries Page 64 of 65

https://learn.adafruit.com//assets/81745
https://learn.adafruit.com//assets/81745
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h

MCP2221 Breakouts Have:

1x I2C port with busio
4x GPIO pins with digitalio
3x AnalogIn with analogio
1x AnalogOut with analogio
1x UART with pyserial
No PWM support
No hardware SPI support

If you are using Blinka in MCP2221 mode,
then keep in mind these basic limitations.

GPIO speed is not super fast, so trying to
do arbitrary bit bang like things may run
into speed issues.
UART is available via pyserial , the serial
COM port shows up as a second USB
device during enumeration

©Adafruit Industries Page 65 of 65

https://learn.adafruit.com//assets/86115
https://learn.adafruit.com//assets/86115

	CircuitPython Libraries on Linux and Raspberry Pi
	Table of Contents
	Overview
	Running CircuitPython Code without CircuitPython
	CircuitPython & RasPi
	Installing Blinka on Raspberry Pi
	Digital I/O
	I2C Sensors & Devices
	I2C Clock Stretching
	SPI Sensors & Devices
	Using I2C or SPI by Device ID
	UART / Serial
	PWM Outputs & Servos
	Using NeoPixels on the Pi 5 and Pi 500
	More To Come!
	CircuitPython & OrangePi
	CircuitPython & Jetson Nano
	FAQ & Troubleshooting

	Overview
	Why CircuitPython?
	CircuitPython on Microcontrollers
	CircuitPython Libraries on Desktop Linux

	Running CircuitPython Code without CircuitPython
	Adafruit Blinka: a CircuitPython Compatibility Library
	Raspberry Pi and Other Single-Board Linux Computers
	Desktop Computers
	MicroPython

	Installing Blinka
	Installing CircuitPython Libraries
	Linux Single-Board Computers
	Desktop Computers using a USB Adapter
	MicroPython

	CircuitPython & RasPi
	CircuitPython Libraries on Linux & Raspberry Pi
	Wait, isn't there already something that does this - GPIO Zero?
	What about other Linux SBCs?

	Installing Blinka on Raspberry Pi
	Prerequisite Pi Setup!
	Update Your Pi and Python
	Setup Virtual Environment
	Automated Install
	Manual Install
	Enable Interfaces
	Install Blinka and Dependencies
	Raspberry Pi 5 Adjustments

	Check I2C and SPI
	Fixing CE0 and CE1 Device or Resource Busy Issue
	Enabling Second SPI
	Pi 5 : Cannot determine SOC peripheral base address

	Blinka Test
	Digital I/O
	Parts Used
	Wiring
	Blinky Time!
	Button It Up
	I2C Sensors & Devices
	Parts Used
	Wiring
	Install the CircuitPython BME280 Library
	Run that code!
	I2C Clock Stretching
	SPI Sensors & Devices
	Reassigning or Disabling the SPI Chip Enable Lines

	Using the Second SPI Port
	Parts Used
	Wiring
	Install the CircuitPython MAX31855 Library
	Run that code!
	Using I2C or SPI by Device ID
	Installing the Library
	I2C Devices
	SPI Devices

	UART / Serial
	The Easy Way - An External USB-Serial Converter
	The Hard Way - Using Built-in UART
	Disabling Console & Enabling Serial

	Install the CircuitPython GPS Library
	Run that code!
	PWM Outputs & Servos
	Update Adafruit Blinka
	Supported Pins
	PWM - LEDs
	Servo Control
	pulseio Servo Control
	adafruit_motor Servo Control

	Using NeoPixels on the Pi 5 and Pi 500
	Installation
	Updating Permissions
	Running the Example Code

	More To Come!
	CircuitPython & OrangePi
	CircuitPython & Jetson Nano
	FAQ & Troubleshooting
	Update Blinka/Platform Libraries
	Getting an error message about 'board' not found or 'board' has no attribute
	Mixed SPI mode devices
	Why am I getting AttributeError: 'SpiDev' object has no attribute 'writebytes2'?
	No Pullup/Pulldown support on some Linux boards or MCP2221
	Getting OSError: read error with MCP2221
	Using FT232H with other FTDI devices.
	Getting "no backend available" with pyusb on Windows
	Getting "no backend available" or other problems with pyusb on Mac
	I can't get neopixel, analogio, audioio, rotaryio, displayio or pulseio to work!
	Help, I'm getting the message "error while loading shared libraries: libgpiod.so.2: cannot open shared object file: No such file or directory"
	= v5.5.0""> When running the libgpiod script, I see the message: configure: error: "libgpiod needs linux headers version >= v5.5.0"

