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Implicit Neural Representations with Structured
Latent Codes for Human Body Modeling

Sida Peng, Chen Geng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Xiaowei Zhou, Hujun Bao

Abstract—This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views.
Some recent works have shown that learning implicit neural representations of 3D scenes achieves remarkable view synthesis quality
given dense input views. However, the representation learning will be ill-posed if the views are highly sparse. To solve this ill-posed
problem, our key idea is to integrate observations over video frames. To this end, we propose Neural Body, a new human body
representation which assumes that the learned neural representations at different frames share the same set of latent codes anchored
to a deformable mesh, so that the observations across frames can be naturally integrated. The deformable mesh also provides
geometric guidance for the network to learn 3D representations more efficiently. Furthermore, we combine Neural Body with implicit
surface models to improve the learned geometry. To evaluate our approach, we perform experiments on both synthetic and real-world
data, which show that our approach outperforms prior works by a large margin on novel view synthesis and 3D reconstruction. We also
demonstrate the capability of our approach to reconstruct a moving person from a monocular video on the People-Snapshot dataset.
The code and data are available at https://zju3dv.github.io/neuralbody/.

Index Terms—Novel View Synthesis, Human Reconstruction, Differentiable Rendering
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1 INTRODUCTION

Free-viewpoint videos of human performers have a variety
of applications such as movie production, sports broad-
casting, and telepresence. Previous free-viewpoint video
systems either rely on a dense array of cameras for image-
based novel view synthesis [1], [2] or require multiple depth
sensors for high-quality 3D reconstruction [3], [4] to produce
realistic rendering. The complicated hardware makes free-
viewpoint video systems expensive and only applicable in
constrained environments.

This work focuses on the problem of novel view synthe-
sis for a human performer from a sparse multi-view video
captured by a very limited number of cameras, as illustrated
in Figure 2. This setting significantly decreases the cost of
free-viewpoint systems and makes the systems more widely
applicable. However, this problem is extremely challenging.
Traditional image-based rendering methods [1], [5] mostly
require dense input views and cannot be applied here. For
reconstruction-based methods [6], [7], the wide baselines
between cameras make dense stereo matching intractable.
Moreover, part of the human body may be invisible due to
self-occlusion in sparse views. As a result, these methods
tend to give noisy and incomplete reconstructions, resulting
in heavy rendering artifacts.

Recent works [8], [9], [10] have investigated the potential
of implicit neural representations on novel view synthesis.
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Fig. 1: The basic idea of Neural Body. Neural Body gener-
ates implicit 3D representations of a human body at different
video frames from the same set of latent codes, which are
anchored to the vertices of a deformable mesh. For each
frame, we transform the spatial locations of codes based on
the human pose, and use a network to regress the density
and color for any 3D location based on the structured latent
codes. Then, images at any viewpoints can be synthesized
by the volume rendering.

NeRF [10] shows that photorealistic view synthesis can be
achieved by representing 3D scenes as implicit fields of
density and color, which are learned from images with a
differentiable renderer. However, when the input views are
highly sparse, the performance of [10] degrades dramati-
cally, as shown by our experimental results in Section 4.3.
The reason is that it is ill-posed to learn the neural rep-
resentations with very sparse observations. We argue that
the key to solving this ill-posed problem is to aggregate all
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Fig. 2: Novel view synthesis of a performer from a sparse multi-view video. Neural Body captures the 3D geometry and
appearance of the performer, which can be used for 3D reconstruction and novel view synthesis.

observations over different video frames. Lombardi et al.
[11] implement this idea by regressing the 3D representation
for each frame using the same network with different latent
codes as input. Since the latent codes are independently
obtained for each frame, it lacks sufficient constraints to
effectively fuse observations across frames.

In this paper, we introduce a novel implicit neural rep-
resentation for dynamic humans, named Neural Body, to
solve the challenge of novel view synthesis from sparse
views. The basic idea is illustrated in Figure 1. For the
implicit fields at different frames, instead of learning them
separately, Neural Body generates them from the same set
of latent codes. Specifically, we anchor a set of latent codes
to the vertices of a deformable human model (SMPL [12]
in this work), namely that their spatial locations vary with
the human pose. To obtain the 3D representation at a frame,
we first transform the code locations based on the human
pose, which can be reliably estimated from sparse camera
views [13], [14], [15]. Then, a network is designed to regress
the density and color for any 3D point based on these
latent codes. Both the latent codes and the network are
jointly learned from images of all video frames during the
reconstruction process. This model is inspired by the latent
variable model [16] in statistics, which enables us to effec-
tively integrate observations at different frames. Another
advantage of the proposed method is that the deformable
model provides a geometric prior (rough surface location)
to enable more efficient learning of implicit fields.

To evaluate our approach, we perform experiments on
ZJU-MoCap [17] and Human 3.6M [18] datasets, which cap-
tures dynamic humans in complex motions with multiple
synchronized cameras. Across all captured videos, our ap-
proach exhibits state-of-the-art performances on novel view
synthesis. We also collect a synthetic dataset that contains
high-quality 3D human models to evaluate our performance
on 3D reconstruction. Furthermore, we also demonstrate the
capability of our approach to capture moving humans from
monocular RGB videos on the People-Snapshot dataset [19].

In the light of previous work, this work has the following
contributions: i) We present a new approach capable of
synthesizing photorealistic novel views of a performer in
complex motions from a sparse multi-view video. ii) We
propose Neural Body, a novel implicit neural represen-
tation for a dynamic human, which enables us to effec-
tively incorporate observations over video frames. iii) We
demonstrate significant performance improvements of our
approach compared to prior work.

A preliminary version of this work appeared in CVPR

2021 [17]. Here, the work is extended in the following
ways. First, inspired by [20], we integrate an implicit surface
model into Neural Body, which effectively constrains the
learned geometry during training and helps the geometry
extraction. Second, we perform two additional ablation
studies to analyze our approach. Third, additional experi-
ments on ZJU-MoCap [17] and Human 3.6M [18] datasets
are conducted to evaluate our approach and investigate the
potential of Neural Body to synthesize performers under
unseen human poses. We also add comparisons with two re-
cent methods [21], [22]. Moreover, for quantitative compari-
son on 3D reconstruction, we create a synthetic dataset that
has several multi-view videos and corresponding ground-
truth human models, and validate the effectiveness of the
adaptive sampling strategy.

2 RELATED WORK

Image-based rendering. These methods aim to synthe-
size novel views without recovering detailed 3D geometry.
Given densely sampled images, some works [1], [23] apply
light field interpolation to obtain novel views. Although
their rendering results are impressive, the range of render-
able viewpoints is limited. To extend the range, [24], [25]
infer depth maps from input images as proxy geometries.
They utilize the depth to warp observed images into the
novel view and perform image blending. However, these
methods are sensitive to the quality of reconstructed proxy
geometries. [2], [26], [27], [28], [29], [30], [31] replace hand-
crafted parts of the image-based rendering pipeline with
learnable counterparts to improve the robustness.

Human performance capture. Most methods [3], [4], [7],
[32] adopt the traditional modeling and rendering pipeline
to synthesize novel views of humans. They rely on either
depth sensors [3], [4], [33] or a dense array of cameras [7],
[34] to achieve the high fidelity reconstruction. [35], [36],
[37] improve the rendering pipeline with neural networks,
which can be trained to compensate for the geometric arti-
facts. To capture human models in the highly sparse multi-
view setting, template-based methods [38], [39], [40], [41]
assume that there are pre-scanned human models. They
reconstruct dynamic humans by deforming the template
shapes to fit the input images. However, the deformed
geometries tend to be unrealistic, and pre-scanned human
shapes are unavailable in most cases. Recently, [42], [43],
[44], [45] capture the human prior from training data using
networks, which enables them to recover 3D human geom-
etry and texture from a single image. However, it is difficult
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Fig. 3: Implicit neural representation with structured latent codes. (a) The structured latent codes are input into a
SparseConvNet which outputs a latent code volume. This process diffuses the input codes defined on the surface to nearby
3D space. (b) For any 3D point, its latent code is obtained using trilinear interpolation from its neighboring vertices in the
latent code volume and passed into MLP networks for density and color regression.

for them to achieve photo-realistic view synthesis or deal
with people under complex human poses that are unseen
during training.

Neural representation-based methods. In these works,
deep neural networks are employed to learn scene repre-
sentations from 2D images with differentiable renderers,
such as voxels [11], [46], point clouds [37], [47], textured
meshes [48], [49], [50], multi-plane images [51], [52], and
implicit functions [8], [9], [10], [53], [54]. As a pioneer, SRN
[8] proposes an implicit neural representation that maps xyz
coordinates to feature vectors, and uses a differentiable ray
marching algorithm to render 2D feature maps, which are
then interpreted into images with a pixel generator. NeRF
[10] represents scenes with implicit fields of density and
color, which are well-suited for the differentiable rendering
and achieve photorealistic view synthesis results. Instead
of learning the scene with a single implicit function, our
approach introduces a set of latent codes, which are used
with a network to encode the local geometry and appear-
ance. Furthermore, anchoring these codes to vertices of a
deformable model enables us to represent a dynamic scene.

More recently, some works attempt to improve NeRF in
various aspects. [31], [55], [56], [57], [58] add image features
to the input of NeRF networks and train networks on a large
amount of data, enabling them to infer complete 3D scenes
from very sparse views. [21], [22], [59] establish dense cor-
respondences across video frames by learning deformation
fields. This explicitly integrates temporal information and
enables them to work on monocular videos. To improve
the reconstruction quality, [20], [60], [61] combine implicit
surface models with volume rendering techniques.

3 NEURAL BODY

Given a sparse multi-view video of a performer, our task
is to generate a free-viewpoint video of the performer. We
denote the video as {Ict |c = 1, ..., Nc, t = 1, ..., Nt}, where
c is the camera index, Nc is the number of cameras, t is
the frame index, and Nt is the number of frames. The
cameras are pre-calibrated. For each image, we apply [62]
to obtain the foreground human mask and set the values of
the background image pixels as zero.

The overview of the proposed model is illustrated in
Figure 3. Neural Body starts from a set of structured la-

tent codes attached to the surface of a deformable human
model (Section 3.1). The latent code at any location around
the surface can be obtained with a code diffusion process
(Section 3.2) and then decoded to density and color values
by neural networks (Section 3.3). The image from any view-
point can be generated by volume rendering (Section 3.4).
Considering that neural radiance fields tend to give noisy
geometries [20], [60], [61], we replace radiance fields with
implicit surface models [20] to improve the reconstruction
performance of Neural Body (Section 3.6). The structured
latent codes and neural networks are jointly learned by
minimizing the difference between the rendered images and
input images (Section 3.6).

Neural Body generates the human geometry and appear-
ance at each frame from the same set of latent codes. From a
statistical perspective, this is a type of latent variable model
[16] that relates the observed variables at each frame to a
set of latent variables. With such a latent variable model, we
effectively integrate observations in the video.

3.1 Structured latent codes

To control the spatial locations of latent codes with the
human pose, we anchor these latent codes to a deformable
human body model (SMPL) [12]. SMPL is a skinned vertex-
based model, which is defined as a function of shape param-
eters, pose parameters, and a rigid transformation relative
to the SMPL coordinate system. The function outputs a
posed 3D mesh with 6890 vertices. Specifically, we define
a set of latent codes Z = {z1, z2, ...,z6890} on vertices of
the SMPL model. For the frame t, SMPL parameters St are
estimated from the multi-view images {Ict |c = 1, ..., Nc}
using [63]. The spatial locations of the latent codes are then
transformed based on the human pose St for the density and
color regression. Figure 3 shows an example. The dimension
of latent code z is set to 16 in our experiments.

Similar to the local implicit representations [64], [65],
[66], the latent codes are used with a neural network to
represent the local geometry and appearance of a human.
Anchoring these codes to a deformable model enables us
to represent a dynamic human. With the dynamic human
representation, we establish a latent variable model that
maps the same set of latent codes to the implicit fields
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Layer Description Output Dim.
Input volume D×H×W×16

1-2 (3× 3× 3 conv, 16 features, stride 1) × 2 D×H×W×16
3 3× 3× 3 conv, 32 features, stride 2 1⁄2D×1⁄2H×1⁄2W×32
4-5 (3× 3× 3 conv, 32 features, stride 1) × 2 1⁄2D×1⁄2H×1⁄2W×32
6 3× 3× 3 conv, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×64
7-9 (3× 3× 3 conv, 64 features, stride 1) × 3 1⁄4D×1⁄4H×1⁄4W×64
10 3× 3× 3 conv, 128 features, stride 2 1⁄8D×1⁄8H×1⁄8W×128
11-13 (3× 3× 3 conv, 128 features, stride 1) × 3 1⁄8D×1⁄8H×1⁄8W×128
14 3× 3× 3 conv, 128 features, stride 2 1⁄16D×1⁄16H×1⁄16W×128
15-17 (3× 3× 3 conv, 128 features, stride 1) × 3 1⁄16D×1⁄16H×1⁄16W×128

TABLE 1: Architecture of SparseConvNet. Each layer con-
sists of sparse convolution, batch normalization and ReLU.

of density and color at different frames, which naturally
integrates observations.

3.2 Code diffusion
Figure 3(a) shows the process of code diffusion. The implicit
fields assign the density and color to each point in the 3D
space, which requires us to query the latent codes at con-
tinuous 3D locations. This can be achieved with the trilinear
interpolation. However, since the structured latent codes are
relatively sparse in the 3D space, directly interpolating the
latent codes leads to zero vectors at most 3D points. To solve
this problem, we diffuse the latent codes defined on the
surface to nearby 3D space.

Inspired by [67], [68], [69], we choose the SparseConvNet
[70] to efficiently process the structured latent codes, whose
architecture is described in Table 1. Specifically, based on the
SMPL parameters, we compute the 3D bounding box of the
human and divide the box into small voxels with voxel size
of 5mm × 5mm × 5mm. The latent code of a non-empty
voxel is the mean of latent codes of SMPL vertices inside
this voxel. SparseConvNet utilizes 3D sparse convolutions
to process the input volume and output latent code volumes
with 2×, 4×, 8×, 16× downsampled sizes. With the convo-
lution and downsampling, the input codes are diffused to
nearby space. Following [68], for any point in 3D space, we
interpolate the latent codes from multi-scale code volumes
of network layers 5, 9, 13, 17, and concatenate them into the
final latent code. Since the code diffusion should not be
affected by the human position and orientation in the world
coordinate system, we transform the code locations to the
SMPL coordinate system.

For any point x in 3D space, we query its latent code
from the latent code volume. Specifically, the point x is first
transformed to the SMPL coordinate system, which aligns
the point and the latent code volume in 3D space. Then,
the latent code is computed using the trilinear interpolation.
For the SMPL parameters St, we denote the latent code at
point x as ψ(x,Z, St). The code vector is passed into MLP
networks to predict the density and color for point x.

3.3 Density and color regression
Figure 3(b) overviews the regression of density and color
for any point in 3D space. The density and color fields
are represented by MLP networks. The details of net-
work architectures can be found in the released code at
https://github.com/zju3dv/neuralbody/.

Density model. For the frame t, the volume density at
point x is predicted as a function of only the latent code
ψ(x,Z, St), which is defined as:

σt(x) = Mσ(ψ(x,Z, St)), (1)

where Mσ represents an MLP network with four layers.
Color model. Similar to [10], [11], we take both the latent

code ψ(x,Z, St) and the viewing direction d as input for the
color regression. To model the location-dependent incident
light, the color model also takes the spatial location x as
input. We observe that temporally-varying factors affect the
human appearance, such as secondary lighting and self-
shadowing. Inspired by the auto-decoder [71], we assign a
latent embedding `t for each video frame t to encode the
temporally-varying factors.

Specifically, for the frame t, the color at x is predicted
as a function of the latent code ψ(x,Z, St), the viewing
direction d, the spatial location x, and the latent embedding
`t. Following [10], [72], we apply the positional encoding
to both the viewing direction d and the spatial location x,
which enables better learning of high frequency functions.
The color model at frame t is defined as:

ct(x) = Mc(ψ(x,Z, St), γd(d), γx(x), `t), (2)

where Mc represents an MLP network with two layers,
and γd and γx are positional encoding functions for view-
ing direction and spatial location, respectively. We set the
dimension of `t to 128 in experiments. During rendering
images of novel human poses, we simply fix `t as the latent
embedding of the last training frame.

3.4 Volume rendering
Given a viewpoint, we utilize the classical volume rendering
techniques to render the Neural Body into a 2D image.
The pixel colors are estimated via the volume rendering
integral equation [73] that accumulates volume densities
and colors along the corresponding camera ray. In practice,
the integral is approximated using numerical quadrature
[10], [74]. Given a pixel, we first compute its camera ray
r using the camera parameters. Then, the camera ray r
intersects with the bounding box of the SMPL model, which
gives near and far intersection points. Based on the near
and far bounds, we use a stratified sampling approach [10]
to sample Nk points {xk}Nk

k=1 along camera ray r. Then,
Neural Body predicts volume densities and colors at these
points. For the video frame t, the rendered color C̃t(r) of the
corresponding pixel is given by:

C̃t(r) =
Nk∑
k=1

Tk(1− exp(−σt(xk)δk))ct(xk), (3)

where Tk = exp(−
k−1∑
j=1

σt(xj)δj), (4)

where δk = ||xk+1 − xk||2 is the distance between adjacent
sampled points. We set Nk as 64 in all experiments. With
volume rendering, our model is optimized by comparing
the rendered and observed images.

3.5 Neural Body with implicit surface models
Neural radiance fields with volume rendering achieves im-
pressive performance on novel view synthesis. However,
the volume rendering does not constrain the learned geom-
etry, resulting in that radiance fields tend to produce noisy
geometries. Moreover, NeRF does not model the geometry

https://github.com/zju3dv/neuralbody/
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as a particular level set of the density function. As a result,
we need to carefully select the density threshold to extract
the geometry. To overcome these problems, UNISURF [20]
proposes to replace neural radiance fields with occupancy
fields and improves the rendering process with the surface
guidance. We introduce these strategies to Neural Body to
improve the performance on 3D reconstruction.

Specifically, we first revise the density model to output a
value σot (x) between 0 and 1 at the point x, where σot (x) = 0
means free space and σot (x) = 1 means occupied space.
With the occupancy field, the volume rendering equation of
solid objects like humans can be rewritten as

C̃t(r) =
Nk∑
k=1

σot (xk)
k−1∏
j=1

(1− σot (xj))ct(xk), (5)

as shown in UNISURF [20]. We also add the normal n(x) at
point x as an input to the color network:

ct(x) = Mc(ψ(x,Z, St),n(x), γd(d), γx(x), `t). (6)

Surface-guided sampling. In original NeRF, it takes the
stratified sampling approach to sample points along camera
rays during the volume rendering. To encourage surface
points to contribute more in the volume rendering, we adopt
the surface-guided sampling strategy as in UNISURF [20].
Specifically, given the occupancy field, we first utilize [9]
to obtain the surface point of the camera ray r. Denote the
depth of surface point as D. Then, the stratified sampling
strategy is applied within the depth interval [D−∆, D+∆].
During training, the sampling interval ∆ monotonically
decreases with the iteration number, which is defined as:

∆k = max(∆max exp(−iβ),∆min), (7)

where i is the iteration number, and β, ∆min and ∆max
are hyperparameters of the interval function. We follow
UNISURF [20] to set β as 1.5e − 5, ∆min as 0.05, and ∆max
as 1.0. For camera rays that do no have intersection points
with the surface, we use the sampling strategy described
in Section 3.4. Experimental results show that combining
implicit surface models with Neural Body improves the
performance on 3D reconstruction.

3.6 Training

Through the volume rendering techniques, we optimize the
Neural Body to minimize the rendering error of observed
images {Ict |c = 1, ..., Nc, t = 1, ..., Nt}:

minimize
{`t}Nt

t=1,Z,Θ

Nt∑
t=1

Nc∑
c=1

L(Ict , P c; `t,Z,Θ), (8)

where Θ means the network parameters, P c is the camera
parameters, and L is the total squared error that measures
the difference between the rendered and observed images.
The corresponding loss function is defined as:

L =
∑
r∈R
||C̃(r)− C(r)||2, (9)

where R is the set of camera rays passing through image
pixels, and C(r) means the ground-truth pixel color. In
contrast to frame-wise reconstruction methods [6], [10], our

subject Twirl Taichi Swing1 Swing2 Swing3 Warmup Punch1 Punch2 Kick
training 60 400 300 300 300 300 300 300 300
test 1000 1000 356 559 358 317 346 354 700

TABLE 2: The number of training frames and test frames for
each subject in the ZJU-MoCap dataset.

method optimizes the model using all images in the video
and has more information to recover the 3D structures.

We adopt the Adam optimizer [75] for training the
Neural Body. The learning rate starts from 5e−4 and decays
exponentially to 5e−5 along the optimization. We conduct
the training on four 2080 Ti GPUs. The training on a four-
view video of 300 frames typically takes around 200k itera-
tions to converge (about 14 hours).

3.7 Applications
The trained Neural Body can be used for novel view
synthesis, novel pose synthesis and 3D reconstruction of
the performer. 1) The view synthesis is achieved through
the volume rendering. Novel view synthesis on dynamic
humans results in free-viewpoint videos, which give the
viewers the freedom to watch human performers from
arbitrary viewpoints. Our experimental results show that
the generated videos exhibit high inter-frame and inter-view
consistency, which are presented in the project page. 2) For
novel pose synthesis, given a human pose, we transform
the spatial locations of latent codes based on the SMPL
deformation framework. Then, the structured latent codes
are input into the network to obtain the 3D representation
of target human, which can be used to render images. 3) For
3D reconstruction, we first discretize the scene with a voxel
size of 5mm× 5mm× 5mm. Then, we evaluate the volume
densities for all voxels and extract the human mesh with the
Marching Cubes algorithm [76].

4 EXPERIMENTS

4.1 Datasets and metrics
ZJU-MoCap [17] is a multi-view dataset that captures 9
dynamic human videos using a multi-camera system that
has 21 synchronized cameras. The humans perform complex
motions, including twirling, Taichi, arm swings, warmup,
punching, and kicking. The split of training and test frames
is listed in Table 2. We select four cameras for training and
use the remaining cameras for testing. Since the inter-frame
human images are very similar, we calculate the metrics
every 30 frames on this dataset.

Human3.6M [18] records multi-view videos with 4 cameras
and collects human poses using the marker-based motion
capture system. It includes multiple subjects performing
complex actions. Its videos have a length between 200 to
500 frames. We exactly follow the experiment setting of Ani-
NeRF [22] on this dataset.

RenderPeople is a multi-view dataset that contains ground-
truth 3D human shapes for each video frame. We collect 5
high-quality animated human models from RenderPeople
[78] and Mixamo [79]. Then, each dynamic human model is
rendered into 10 camera views with BlenderProc [80], [81].
We select four uniformly distributed cameras for training.
Considering that the rendered images lack of complicated
illumination conditions, we only use this dataset to evaluate
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PSNR ↑ SSIM ↑
NV [11] NT [48] NHR [37] Ani-NeRF [22] OURS OURS* NV [11] NT [48] NHR [37] Ani-NeRF [22] OURS OURS*

Twirl 20.09 25.78 26.68 29.27 30.54 30.43 0.831 0.929 0.935 0.962 0.969 0.970
Taichi 18.57 19.44 19.81 24.22 27.42 26.22 0.824 0.869 0.874 0.922 0.963 0.957

Swing1 22.88 24.96 24.73 27.79 29.69 29.04 0.726 0.905 0.902 0.928 0.948 0.949
Swing2 22.08 24.84 25.01 26.06 28.64 28.60 0.843 0.903 0.906 0.916 0.939 0.942
Swing3 21.29 23.50 23.47 27.53 27.66 27.22 0.842 0.896 0.894 0.925 0.938 0.939

Warmup 21.15 23.74 23.79 26.63 27.89 27.73 0.842 0.917 0.918 0.941 0.955 0.957
Punch1 23.21 24.93 25.02 26.78 28.39 28.99 0.820 0.877 0.879 0.891 0.928 0.937
Punch2 20.74 22.44 22.88 24.75 25.83 26.33 0.838 0.888 0.891 0.913 0.928 0.935

Kick 22.49 24.33 23.72 26.19 27.32 27.95 0.825 0.881 0.873 0.915 0.924 0.933
average 21.39 23.77 23.90 26.58 28.15 28.05 0.821 0.896 0.897 0.924 0.943 0.947

TABLE 3: Results of novel view synthesis on the ZJU-MoCap dataset in terms of PSNR and SSIM metrics. “Ours*”
means Neural Body with implicit surface model introduced in Section 3.5, “NV” means Neural Volumes, and “NT” means
Neural Textures. Results of Ani-NeRF were obtained from [77]. Note that we re-trained Neural Body, so the results of
“OURS” are slightly different from the conference version [17].

PSNR ↑ SSIM ↑
NT NHR Ani-

NeRF
OURS OURS* NT NHR Ani-

NeRF
OURS OURS*

Twirl 22.56 23.05 23.61 23.24 24.08 0.889 0.893 0.908 0.897 0.911
Taichi 18.38 18.88 19.45 19.87 20.65 0.841 0.844 0.854 0.863 0.883

Swing1 24.08 23.66 24.15 25.70 25.95 0.900 0.893 0.900 0.914 0.924
Swing2 22.67 22.87 23.97 24.64 25.11 0.871 0.874 0.899 0.893 0.907
Swing3 22.45 22.27 24.29 23.84 24.22 0.888 0.885 0.893 0.903 0.913

Warmup 22.07 21.94 25.03 24.96 25.18 0.886 0.885 0.927 0.922 0.931
Punch1 23.70 23.70 25.14 26.61 27.29 0.851 0.853 0.878 0.895 0.915
Punch2 20.64 20.97 22.94 24.50 23.64 0.862 0.866 0.892 0.886 0.906

Kick 22.90 22.65 24.51 23.08 25.18 0.864 0.858 0.889 0.889 0.903
average 22.16 22.22 23.68 24.05 24.59 0.872 0.872 0.893 0.896 0.910

TABLE 4: Results of novel pose synthesis on the ZJU-
MoCap dataset in terms of PSNR and SSIM. “Ours*”
means Neural Body with implict surface model. Results of
Ani-NeRF were obtained from [77].

the reconstruction performance. Since the inter-frame hu-
man models are very similar, we calculate the reconstruction
metric every 10 frames on this dataset.

People-Snapshot [19] captures monocular videos with a
fixed camera. Its performers rotate while holding an A-
pose, whose human poses are relatively easy and enables
us to recover accurate SMPL parameters. This dataset ex-
hibits many challenges for differentiable rendering-based
methods, including single view, loose clothing, and varying
lighting conditions. Following [19], we only present qualita-
tive results on this dataset.

Metrics. For image synthesis, we follow [10] to evaluate
our method using two standard metrics: peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM).
The performances on novel view synthesis and novel pose
synthesis are evaluated on the training and test frames,
respectively. Note that both of them are evaluated on the
test camera views. For 3D reconstruction, we follow [43] to
adopt two metrics: point-to-surface Euclidean distance (P2S)
and Chamfer distance. Units for the two metrics are in cm.

4.2 Baseline methods
Image synthesis. We compare our method with state-of-
the-art view synthesis methods [11], [37], [48] that handle
dynamic scenes. All methods train a separate network for
each scene. 1) Neural Volumes (NV) [11] encodes multi-
view images at each frame into a latent vector and decodes
it into a discretized RGBα voxel grid. 2) Neural Textures
(NT) [48] proposes latent texture maps to render a coarse
mesh into 2D images. Since [48] is not open-sourced, we

reimplement it and take the SMPL mesh as the input mesh.
3) NHR [37] uses networks to render input point clouds to
images. Here we take SMPL vertices as input point clouds.
4) D-NeRF [21] encodes a video as a canonical NeRF and
a set of deformation fields that establish correspondences
between the canonical space and observation spaces. It uses
translational vector fields to represent deformation fields. 5)
Ani-NeRF [22] also use a canonical NeRF and deformation
fields to represent the video. It adopts the linear blend
skinning model to calculate deformation fields.

3D reconstruction. We compare our method with recent
methods [22], [82]. 1) IDR [82] represents 3D scenes as
signed distance fields and learns it from images with differ-
entiable sphere tracing. Note that it can only handle static
scenes. 2) Ani-NeRF [22] can be used for reconstruction
using Marching Cubes [76], similar to Neural Body.

4.3 Results on the ZJU-MoCap dataset
Performance on novel view synthesis. Table 3 compares
our method with [11], [22], [37], [48] in terms of the PSNR
and SSIM metrics. For both metrics, our model achieves
the best performances among all methods. In particular, our
method outperforms previous works by a margin of at least
1.57 in terms of PSNR and 0.019 in terms of SSIM.

In contrast to learning the 3D representations from in-
dividual latent vectors [11], Neural Body generates implicit
fields at different frames from the same set of latent codes.
The results indicate that our method better integrates obser-
vations of the target performer across video frames.

Figure 4 shows the qualitative results of our method and
other methods [11], [37], [48]. The rendering results of [11]
indicate that they don’t accurately capture the 3D human
geometry and appearance. Neural Volumes [11] gives blurry
results. As image-to-image translation methods, [37], [48]
have difficulty in controlling the rendering viewpoints. In
contrast, our method gives photorealistic novel views.
Performance on novel pose synthesis. Table 4 shows the
comparison of our method with [11], [22], [37], [48] in terms
of the PSNR and SSIM metrics. Since Neural Volumes [11]
is designed for over-fitting a video sequence, we do not
compare with it. Our method is comparable with Ani-NeRF
[22] and outperforms other methods. Qualitative results are
presented in Figure 4.

Results on novel pose synthesis indicate that Neural
Body can generalize to novel human poses. The reason may
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NV NT NHR OURS OURS*Ground
  Truth NT NHRGround

  Truth OURS OURS*

Fig. 4: Qualitative comparison on the ZJU-MoCap dataset. The results of two subjects on the left are novel views of
training human poses, and the results of two subjects on the right are renderings of novel human poses. “NV” means
Neural Volumes [11], “NT” means Neural Textures [48], and “Ours*” means Neural Body with implicit surface model.

Ground 
  Truth Ani-NeRF D-NeRF NT NHR OURS OURS* OURS*Ground 

  Truth Ani-NeRF NT NHR OURS

Fig. 5: Qualitative comparison on the Human3.6M dataset. We present novel views of training human poses of two
subjects on the left, and show rendering results of novel human poses of two subjects on the right. “Ours*” means Neural
Body with implicit surface model.

PSNR ↑ SSIM ↑
NT [48] NHR [37] D-NeRF [21] Ani-NeRF [22] OURS OURS* NT [48] NHR [37] D-NeRF [21] Ani-NeRF [22] OURS OURS*

S1 20.98 21.08 19.63 22.05 22.87 23.83 0.860 0.872 0.838 0.888 0.897 0.905
S5 19.87 20.64 20.92 23.27 24.60 24.61 0.855 0.872 0.807 0.892 0.917 0.917
S6 20.18 20.40 20.64 21.13 22.82 24.53 0.816 0.830 0.811 0.854 0.888 0.901
S7 20.47 20.29 17.90 22.50 23.17 24.46 0.856 0.868 0.722 0.890 0.914 0.915
S8 16.77 19.13 20.81 22.75 21.72 23.48 0.837 0.871 0.845 0.898 0.894 0.913
S9 22.96 23.04 23.79 24.72 24.28 26.04 0.873 0.879 0.889 0.908 0.910 0.919

S11 21.71 21.91 17.23 24.55 23.70 24.14 0.859 0.871 0.737 0.902 0.896 0.902
average 20.42 20.93 20.13 23.00 23.31 24.44 0.851 0.866 0.807 0.890 0.903 0.910

TABLE 5: Results of novel view synthesis on Human3.6M. “Ours*” means Neural Body with implicit surface model.

be that, after training on seen human poses, SparseConvNet
is able to extract meaningful feature volumes from struc-
tured latent codes under novel poses. Such generalization
ability of SparseConvNet has also been demonstrated in 3D
segmentation [70] and detection [68] tasks, where SparseC-
onvNet needs to processes various point clouds. However,
Neural Body does not generalize well to human poses that
are very different from training poses, which are discussed
in Section 5. Experimental results also show that the implicit
surface model introduced in Section 3.5 contributes a lot to
performance of novel pose synthesis, as it can produce more
accurate geometry information.

4.4 Results on the Human3.6M dataset

To extensively evaluate our model, we perform experiments
on the Human3.6M [18] dataset that collects accurate SMPL
parameters with a marker-based motion capture system.

PSNR ↑ SSIM ↑
NT
[48]

NHR
[37]

Ani-NeRF
[22]

OURS OURS* NT
[48]

NHR
[37]

Ani-NeRF
[22]

OURS OURS*

S1 20.09 20.48 21.37 22.11 23.30 0.837 0.853 0.868 0.879 0.890
S5 20.03 20.72 22.29 23.51 23.34 0.843 0.860 0.875 0.897 0.891
S6 20.42 20.47 22.59 23.52 24.41 0.844 0.856 0.884 0.889 0.896
S7 20.03 19.66 22.22 22.33 23.15 0.838 0.852 0.878 0.889 0.883
S8 16.69 18.83 21.78 20.94 22.53 0.824 0.855 0.882 0.876 0.893
S9 22.20 22.18 23.72 23.04 24.48 0.851 0.860 0.886 0.884 0.892
S11 21.72 22.12 23.91 23.72 23.90 0.854 0.867 0.889 0.884 0.884

average 20.17 20.64 22.55 22.74 23.59 0.842 0.858 0.880 0.885 0.890

TABLE 6: Results of novel pose synthesis on Human3.6M.
“Ours*” means Neural Body with implicit surface model.

Only three camera views are used during training, which
makes the novel view synthesis more challenging.
Performance on novel view synthesis. We compare our
method with [21], [22], [37], [48] in Table 5. For both PSNR
and SSIM metrics, our approaches achieves the best perfor-
mances among all methods.
Performance on novel pose synthesis. Table 6 shows the
comparison of our method with [22], [37], [48] in terms of
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Input IDROURS* Input IDROURS*

Ground
  Truth OURS Ani-NeRF Ground

  Truth OURS Ani-NeRF

Fig. 6: 3D reconstruction on the RenderPeople dataset. IDR is trained separately per frame, while other methods are
trained on the whole video. Our method with implicit surface model has better reconstruction results than other methods.

Input

OURS People-Snapshot

Input

OURS People-Snapshot

Fig. 7: Qualitative results on monocular videos. Our method renders more appearance details and reconstruct more
geometric details than People-Snapshot [19]. “Ours” indicates Neural Body without implicit surface model.

Chamfer Distance ↓ P2S ↓
Ani-NeRF [22] Ours Ours* Ani-NeRF [22] Ours Ours*

manuel 1.77 0.82 0.74 2.29 0.84 0.81
megan 1.45 1.11 0.49 1.55 1.00 0.36

lenonard 1.66 1.18 0.61 1.88 1.14 0.55
josh 1.73 1.31 0.67 1.90 1.17 0.47
jody 1.89 1.46 0.71 2.18 1.32 0.57

average 1.70 1.17 0.64 1.96 1.09 0.55

TABLE 7: Results of 3D reconstruction on the RenderPeo-
ple dataset in terms of Chamfer distance and P2S (lower
is better). “Ours*” means Neural Body with implicit surface
model. The testing is performed on some sampled frames
with an interval of 10 frames.

the PSNR metric and the SSIM metric, respectively. Since D-
NeRF [21] is not designed for animation, we do not compare
with it. For both metrics, our approach gives the best results
among all methods. Figure 5 presents the qualitative results
of our method and other baselines on image synthesis,
which indicates that our method has a higher rendering
quality than other methods.

4.5 Results on the RenderPeople dataset

We use the RenderPeople dataset to demonstrate that our
method can reconstruct accurate geometries from sparse
input videos. Only four camera views are used for training,
which makes this task challenging.

Chamfer Distance ↓ P2S ↓
Ani-NeRF

[22]
IDR
[82]

Ours Ours* Ani-NeRF
[22]

IDR
[82]

Ours Ours*

manuel 1.68 1.15 0.78 0.73 2.29 1.05 0.80 0.73
megan 1.46 0.90 1.14 0.48 1.58 0.73 1.02 0.33

lenonard 1.73 1.29 1.22 0.63 1.96 1.10 1.18 0.62
josh 1.78 0.83 1.31 0.66 1.89 0.50 1.16 0.45
jody 1.93 1.11 1.50 0.73 2.21 0.81 1.40 0.61

average 1.71 1.06 1.19 0.65 1.98 0.84 1.11 0.55

TABLE 8: Results of single frame reconstruction on Ren-
derPeople dataset in terms of Chamfer distance and P2S
(lower is better). The testing is performed on the first frame.
IDR [82] is trained on the first frame, and other methods are
trained on the whole video.

We compare our method with the latest dynamic human
reconstruction method, Ani-NeRF [22], and the method that
handles static scenes, IDR [82]. As shown in Table 7, under
the task of dynamic reconstruction, our method significantly
outperform Ani-NeRF in both P2S and Chamfer distance.
The reason behind this phenomenon can be inferred from
qualitative result Figure 6, in which we can observe that
Ani-NeRF [22] produces noisy reconstruction results due to
the lack of surface constraints on the density fields.

Furthermore, it can also be concluded from Table 7 that
the implicit surface model introduced in Section 3.5 greatly
improves the reconstruction accuracy. The mesh generated
from Neural Body without the assistance of implicit surface
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1 view 2 views 4 views 6 views
PSNR 25.08 25.49 30.54 32.73
SSIM 0.912 0.928 0.969 0.979

TABLE 9: Results of models trained with different num-
bers of camera views on the video “Twirl” of the ZJU-
MoCap dataset. We select six camera views for ablation
studies and use the remaining views for test.

model is much less smooth, because the density field does
not sufficiently regularize the underlying 3D geometry.

To show the effectiveness of leveraging temporal infor-
mation, we compare our reconstruction results in the first
frame of each test series with IDR [82], which is trained
separately on each frame. Our method gives the best results
among all methods, which shows that aggregating informa-
tion across video frames benefits the reconstruction.

4.6 Results on the People-Snapshot dataset
We demonstrate that our approach is able to reconstruct
dynamic humans from monocular videos on the People-
Snapshot dataset [19]. We compare Neural Body with the
approach proposed in [19], which deforms vertices of the
SMPL model to fit the 2D human silhouettes over the video
sequence. Following [19], only the qualitative results are
reported on the People-Snapshot dataset.

Figure 7 shows the qualitative comparison on novel view
synthesis and 3D reconstruction. Our method reconstructs
more appearance and geometric details than [19]. For ex-
ample, the hair shapes are highly consistent with the RGB
observations. The results of the first column indicate that
our method can handle persons wearing loose clothing,
while [19] does not recover correct shapes for such data.

4.7 Ablation studies on the ZJU-Mocap dataset
We conduct ablation studies on the video “Twirl”. We first
analyze the effects of per-frame latent embedding. Then we
explore the performances of our models trained with differ-
ent numbers of video frames and input views. Considering
that Neural Body is based on the SMPL model, we also train
Neural Body on a human wearing a dress to see if it can
work on humans with loose clothes. Finally, we compare
different ways to diffuse the structured latent codes.

Impact of per-frame latent embedding. We train a model
without latent embeddings {`t}Nt

t=1 that are proposed in
Section 3.3, which gives 30.03 PSNR, lower than 30.54 PSNR
of the complete model. This comparison indicates that the
latent embeddings yield 0.53 PSNR improvement.

Impact of the number of camera views. Table 9 com-
pares our models trained with different numbers of camera
views. The results show that the number of training views
improves the performance on novel view synthesis. Neural
Body trained on single view still outperforms [11] trained
on four views, which gives 23.12 PSNR and 0.875 SSIM on
test views of the ablation study.

Impact of the video length. We train our model with 1,
60, 300, 600, and 1200 frames, respectively. Table 10 shows
the quantitative results, which indicate that training on
the video improves the view synthesis performance, but
training on too many frames may decrease the performance

Frames 1 60 300 600 1200
Training
frame

PSNR 25.64 30.14 30.66 30.59 29.97
SSIM 0.940 0.970 0.971 0.970 0.970

Test
frame

PSNR 21.39 22.70 23.00 22.71 24.45
SSIM 0.832 0.882 0.894 0.889 0.910

TABLE 10: Results of models trained with different num-
bers of training frames. We train models on 1, 60, 300,
600, and 1200 frames of “Twirl”. On novel view synthesis
of training frame, the first training frame is selected for test,
and the images from 1201-st frame to 1400-th frame are used
for evaluating novel pose synthesis.

PSNR SSIM Iteration time
Ball query 18.23 0.797 0.1045

PointNet++ 26.05 0.931 0.8555
SparseConvNet 30.54 0.969 0.1748

TABLE 11: Results of models with different diffusion
methods on the video “Twirl” of the ZJU-MoCap dataset.
The iteration time means the time each iteration takes dur-
ing the training. The unit for the iteration time is in second.

on novel view synthesis of training frames as the network
has difficulty in fitting very long videos. In addition, results
in Table 10 indicate that more training frames enable Neural
Body to generalize better to novel human poses.

Impact of code diffusion method. Section 3.2 proposes to
use SparseConvNet to diffuse the latent codes on the surface
to nearby 3D space. To validate its effectiveness, we here
compare it with two other fusion ways: 1) Ball query [83].
For any point, we find all SMPL vertices that within a radius
to it (at most K vertices) and apply a PointNet layer [84] to
the latent codes of these vertices to obtain the point feature.
2) PointNet++ [83]. We first perform a hierarchical feature
learning on the structured latent codes with PointNet++.
Then, for any 3D point, we use the multi-scale grouping to
extract features at different scales, which are concatenated
to form a multi-scale feature.

Table 11 compares the three fusion methods in terms of
the quality of iamge synthesis and the running time during
training. The SparseConvNet significantly outperforms the
two other fusion methods in terms of the PSNR and SSIM
metrics. And SparseConvNet is much faster than Point-
Net++ in term of the training time.

Impact of image perceptual loss. As described in Sec-
tion 3.6, we simply adopt the MSE loss for training Neural
Body. It is interesting to investigate the impact of using a
more complex loss function, such as image perceptual loss in
[37], on the performance of the model. To this end, we train
a model that is supervised with both the image perceptual
loss and the MSE loss. We found that this model exhibits
similar rendering performance to the original model (PSNR:
30.70 vs. 30.54, SSIM: 0.970 vs. 0.969).

5 DISCUSSION

Limitations. Although Neural Body has produced high-
quality free-viewpoint synthesis, it still has some limita-
tions. (1) Since Neural Body is built on naked paramet-
ric model [12], it struggles to give photorealistic render-
ing results for people wearing loose clothes. To illustrate
this problem, we select the video sequence “Magdalena”
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Ground Truth Rendering and reconstruction Rendering and reconstruction Rendering and reconstructionGround Truth Ground Truth

Fig. 8: Novel view synthesis on the video “Magdalena”.
The rendered dress tends to be blurry. The reason may be
that the dress’s hem deforms non-rigidly along with the
human movement, and latent codes around the hem will
correspond to different human geometry and appearance at
different video frames. Consequently, different content will
be encoded into the same latent code, averaging the infor-
mation of the latent code and degrading the performance
of Neural Body. The visualization also indicates that Neural
Body does not correctly reconstruct the geometry of hem.
Note that this model is without implicit surface model.

Fig. 9: Results of human poses that are very different from
training poses. We animates human subjects in ZJU-MoCap
dataset with human poses from Human3.6M dataset. The
rendered faces and bodies are distorted and blurry, indicat-
ing that Neural Body has limited generalization ability on
novel pose synthesis.

from the DeepCap dataset [85], which captures that a per-
former wearing a loose dress walks around. Figure 8 shows
the qualitative results. Although rendered images appear
natural-looking, the rendering results of the loose dress
are blurry and have some spatial misalignments from the
observed images. Replacing SMPL model with a clothed
parametric model [86] is a possible solution for this limi-
tation. (2) Neural Body has difficulty in representing ani-
matable avatars. Its performance on novel pose synthesis
seems reasonable when test poses are similar to training
poses, as indicated by experiments. However, when the test
pose is quite different from training poses, Neural Body
fails to render high-quality images. Figure 9 presents some
examples. (3) Neural Body is sensitive to inaccurate SMPL
poses, which can cause misalignment between structured
latent codes and observed images. It may be addressed by
optimizing input SMPL poses along with Neural Body.

Future perspectives. In this paper, we have reached a stage
that we can create free-viewpoint videos of dynamic human
performers from sparse multi-view videos. Nevertheless,
there is still room for future advancement. (1) Relightable
human avatar is desirable, as many applications require
placing reconstructed avatars into scenes under different
lighting conditions. (2) To faithfully describe digital hu-
mans, we need to animate avatars with not only body
postures but also facial expressions and hand poses. (3)
For the richness of user interaction, digital avatars should
be editable, such as changing human clothes, modifying
haircuts and putting on accessories.

6 CONCLUSION

We introduced a novel implicit neural representation,
named Neural Body, for novel view synthesis of dynamic
humans from sparse multi-view videos. Neural Body de-
fines a set of latent codes, which encode local geometry
and appearance with a neural network. We anchored these
latent codes to vertices of a deformable human model to
represent a dynamic human. This enables us to establish
a latent variable model that generates implicit fields at
different video frames from the same set of latent codes,
which effectively incorporates observations of the performer
across video frames. We learned Neural Body over the
video with volume rendering. To improve the reconstruction
quality, we combined Neural Body with an implicit surface
model that efficiently regularizes the learned geometry. To
evaluate our approach, we created a multi-view dataset
called ZJU-MoCap that captures dynamic humans in com-
plex motions, and a synthetic dataset called RenderPeople
that contains ground-truth human shapes. We demonstrated
superior view synthesis quality and better reconstruction
performance compared to prior work on the ZJU-MoCap,
Human3.6M, RenderPeople, and People-Snapshot datasets.
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