Package: missForest 1.6.1
missForest: Nonparametric Missing Value Imputation using Random Forest
The function 'missForest' in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest (via 'ranger' or 'randomForest') trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.
Authors:
missForest_1.6.1.tar.gz
missForest_1.6.1.zip(r-4.6)missForest_1.6.1.zip(r-4.5)missForest_1.6.1.zip(r-4.4)
missForest_1.6.1.tgz(r-4.6-any)missForest_1.6.1.tgz(r-4.5-any)
missForest_1.6.1.tar.gz(r-4.6-any)missForest_1.6.1.tar.gz(r-4.5-any)
missForest_1.6.1.tgz(r-4.5-emscripten)
missForest.pdf |missForest.html✨
missForest/json (API)
NEWS
| # Install 'missForest' in R: |
| install.packages('missForest', repos = c('https://stekhoven.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stekhoven/missforest/issues
Last updated from:8543896a13. Checks:9 OK. Indexed: yes.
| Target | Result | Total time | Artifact |
|---|---|---|---|
| linux-devel-x86_64 | OK | 112 | |
| source / vignettes | OK | 159 | |
| linux-release-x86_64 | OK | 113 | |
| macos-devel-arm64 | OK | 141 | |
| macos-release-arm64 | OK | 137 | |
| windows-devel | OK | 82 | |
| windows-release | OK | 96 | |
| windows-oldrel | OK | 79 | |
| wasm-release | OK | 83 |
Exports:missForestmixErrornrmseprodNAvarClass
Dependencies:codetoolsdigestdoRNGforeachiteratorsitertoolslatticeMatrixrandomForestrangerrbibutilsRcppRcppEigenRdpackrngtools
