Package: missForest 1.6.1

missForest: Nonparametric Missing Value Imputation using Random Forest

The function 'missForest' in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest (via 'ranger' or 'randomForest') trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.

Authors:Daniel J. Stekhoven [aut, cre]

missForest_1.6.1.tar.gz
missForest_1.6.1.zip(r-4.6)missForest_1.6.1.zip(r-4.5)missForest_1.6.1.zip(r-4.4)
missForest_1.6.1.tgz(r-4.6-any)missForest_1.6.1.tgz(r-4.5-any)
missForest_1.6.1.tar.gz(r-4.6-any)missForest_1.6.1.tar.gz(r-4.5-any)
missForest_1.6.1.tgz(r-4.5-emscripten)
missForest.pdf |missForest.html
missForest/json (API)
NEWS

# Install 'missForest' in R:
install.packages('missForest', repos = c('https://stekhoven.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/stekhoven/missforest/issues

On CRAN:

Conda:

12.57 score 107 stars 35 packages 1.3k scripts 12k downloads 178 mentions 5 exports 15 dependencies

Last updated from:8543896a13. Checks:9 OK. Indexed: yes.

TargetResultTotal timeArtifact
linux-devel-x86_64OK112
source / vignettesOK159
linux-release-x86_64OK113
macos-devel-arm64OK141
macos-release-arm64OK137
windows-develOK82
windows-releaseOK96
windows-oldrelOK79
wasm-releaseOK83

Exports:missForestmixErrornrmseprodNAvarClass

Dependencies:codetoolsdigestdoRNGforeachiteratorsitertoolslatticeMatrixrandomForestrangerrbibutilsRcppRcppEigenRdpackrngtools

missForest

Rendered frommissForest_1.6.Rmdusingknitr::rmarkdownon Feb 19 2026.

Last update: 2025-10-13
Started: 2025-10-13

  • Image