Package: mvtnorm 1.3-4
mvtnorm: Multivariate Normal and t Distributions
Computes multivariate normal and t probabilities, quantiles, random deviates, and densities. Log-likelihoods for multivariate Gaussian models and Gaussian copulae parameterised by Cholesky factors of covariance or precision matrices are implemented for interval-censored and exact data, or a mix thereof. Score functions for these log-likelihoods are available. A class representing multiple lower triangular matrices and corresponding methods are part of this package.
Authors:
mvtnorm_1.3-4.tar.gz
mvtnorm_1.3-4.zip(r-4.6)mvtnorm_1.3-4.zip(r-4.5)mvtnorm_1.3-4.zip(r-4.4)
mvtnorm_1.3-4.tgz(r-4.6-x86_64)mvtnorm_1.3-4.tgz(r-4.6-arm64)mvtnorm_1.3-4.tgz(r-4.5-x86_64)mvtnorm_1.3-4.tgz(r-4.5-arm64)
mvtnorm_1.3-4.tar.gz(r-4.6-arm64)mvtnorm_1.3-4.tar.gz(r-4.6-x86_64)mvtnorm_1.3-4.tar.gz(r-4.5-arm64)mvtnorm_1.3-4.tar.gz(r-4.5-x86_64)
mvtnorm_1.3-4.tgz(r-4.5-emscripten)
mvtnorm.pdf |mvtnorm.html✨
mvtnorm/json (API)
NEWS
| # Install 'mvtnorm' in R: |
| install.packages('mvtnorm', repos = c('https://r-forge.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://r-forge.r-project.org/projects/mvtnorm
Last updated from:fc07e2650b. Checks:13 OK. Indexed: yes.
| Target | Result | Total time | Artifact |
|---|---|---|---|
| linux-devel-arm64 | OK | 199 | |
| linux-devel-x86_64 | OK | 197 | |
| source / vignettes | OK | 209 | |
| linux-release-arm64 | OK | 192 | |
| linux-release-x86_64 | OK | 187 | |
| macos-devel-arm64 | OK | 163 | |
| macos-devel-x86_64 | OK | 248 | |
| macos-release-arm64 | OK | 200 | |
| macos-release-x86_64 | OK | 316 | |
| windows-devel | OK | 222 | |
| windows-release | OK | 202 | |
| windows-oldrel | OK | 203 | |
| wasm-release | OK | 81 |
Exports:as.cholas.invcholas.ltMatricesas.syMatriceschol2corchol2covchol2invcholchol2pcchol2precond_mvnormcondDistCrossprodDcholdepermadestandardizediagonalsdiagonals<-dmvnormdmvtGenzBretzinvchol2cholinvchol2corinvchol2covinvchol2pcinvchol2preinvcholDis.cholis.invcholis.ltMatricesis.syMatricesldmvnormldpmvnormlLgradlogdetLower_trilpmvnormlpRRltMatricesmarg_mvnormmargDistMiwaMultmvnormpmvnormpmvtqmvnormqmvtrmvnormrmvtsldmvnormsldpmvnormslpmvnormslpRRstandardizesyMatricesTcrossprodTVPACKvectrick
Dependencies:
Readme and manuals
Help Manual
| Help page | Topics |
|---|---|
| Multivariate Normal and t Distributions | mvtnorm-package mvtnorm |
| Choice of Algorithm and Hyper Parameters | GenzBretz Miwa TVPACK |
| (Experimental) User Interface to Multiple Multivariate Normal Distributions | aperm.mvnorm condDist condDist.mvnorm lLgrad lLgrad.mvnorm logLik.mvnorm margDist margDist.mvnorm mvnorm simulate.mvnorm |
| Multivariate Normal Log-likelihood and Score Functions | ldmvnorm ldpmvnorm lpmvnorm sldmvnorm sldpmvnorm slpmvnorm |
| Multivariate Normal Log-likelihood and Score Functions for Reduced Rank Covariances | lpRR slpRR |
| Multiple Lower Triangular or Symmetric Matrices | adddiag aperm.chol aperm.invchol aperm.ltMatrices aperm.syMatrices as.array.ltMatrices as.array.syMatrices as.chol as.invchol as.ltMatrices as.ltMatrices.ltMatrices as.ltMatrices.syMatrices as.syMatrices chol.syMatrices chol2cor chol2cov chol2invchol chol2pc chol2pre Crossprod crossprod.ltMatrices crossprod.syMatrices Dchol deperma destandardize diagonals diagonals.integer diagonals.ltMatrices diagonals.matrix diagonals.syMatrices diagonals<- diagonals<-.ltMatrices diagonals<-.syMatrices invchol2chol invchol2cor invchol2cov invchol2pc invchol2pre invcholD is.chol is.invchol is.ltMatrices is.syMatrices logdet Lower_tri ltMatrices Mult Mult.ltMatrices Mult.syMatrices solve.ltMatrices standardize syMatrices Tcrossprod tcrossprod.ltMatrices tcrossprod.syMatrices vectrick |
| Marginal and Conditional Multivariate Normal Distributions | cond_mvnorm marg_mvnorm |
| Multivariate Normal Density and Random Deviates | dmvnorm rmvnorm |
| The Multivariate t Distribution | dmvt rmvt |
| Multivariate Normal Distribution | pmvnorm |
| Multivariate t Distribution | pmvt |
| Quantiles of the Multivariate Normal Distribution | qmvnorm |
| Quantiles of the Multivariate t Distribution | qmvt |
