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Abstract

This thesis investigates the relationship between free constructions and monadic-
ity, uniting mathematics and theoretical computer science through the lens of Cat-
egory Theory.

A free construction, intuitively, is the cheapest way of endowing an object with
structure. Here, cheapest means that the object possesses exactly the necessary
properties – no more and no less – to support the desired structure. This can be
understood through the principle of “no junk and no noise”. The expression “no
junk” means that the object contains nothing beyond what arises from a chosen set
of generators from the original object, while “no noise” means that no additional
equations are imposed beyond those required by the structure itself.

Free constructions appear across diverse contexts, from free groups in alge-
bra to free monads that model computational effects in programming languages
theory. Category theory provides a unified framework in which both algebraic
structures and computational phenomena arise from the so-called free-forgetful
adjunctions, which in turn generate monads capturing the essence of these theo-
ries. The central question explored here is: When is the category of models of a
theory equivalent to the category of algebras for its associated monad? The answer
is provided by the notion of monadicity, formalized in Barr-Beck’s Monadicity The-
orem. Furthermore, this equivalence turns out to have profound implications in
universal algebra and even in theoretical computer science.

The thesis is structured as follows:

1. Chapter 1 offers an intuitive introduction to the key ideas.

2. Chapters 2 to 4 develop the categorical foundations in detail, covering ad-
junctions, monads, and the monadicity theorems.

3. Chapter 5 applies this framework to algebraic theories, demonstrating that
their categories of models are indeed monadic.
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Chapter 1

Introduction

The history of mathematics is rarely a linear procession of orderly discoveries. In-
stead, it is often a tumultuous convergence of disparate streams—topology, alge-
bra, geometry, and logic—crashing together to form new, unified landscapes. The
subject of this thesis, Free Constructions and Monadicity, is one of the profound ex-
amples of this phenomenon in the 20th century.

To the contemporary student of Category Theory, Beck’s Monadicity Theorem
is often presented as a pristine technical criterion: a set of necessary and sufficient
conditions for a functor to be monadic. Similarly, to the computer scientist, the
Monad is often viewed merely as a design pattern for managing side effects. How-
ever, these modern crystallizations strip away the decades of intellectual struggle
that birthed them.

This thesis investigates the deep structural link between the process of generat-
ing structure, known as freeness, and the process of recognizing structure, referred
to as monadicity. To understand why these concepts are central to both mathe-
matics and computer science, we must first understand the historical crises that
necessitated them.

Historical Origins
The story begins in the 1950s, a period dominated by the rapid ascendancy of ho-
mological algebra. The central problem of this era was the computation of coho-
mology groups, which measures the topological or algebraic holes in a topologi-
cal space or algebraic structure. While the tools developed by Henri Cartan and
Samuel Eilenberg [CE99] were powerful, they faced a significant limitation known
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as the additive bias—the machinery was strictly confined to linear and abelian cat-
egories.

The Standard Construction. In the years following World War II, the French
school of mathematics revolutionized topology through the invention of sheaf the-
ory. A sheaf tracks local data across a global space. However, computing the co-
homology of a sheaf required an injective resolution—a sequence of embeddings
into injective objects. In the category of sheaves, injective objects are monstrously
complex, large, and opaque. The theory was elegant, but the machinery required
to compute it was intractable.

The breakthrough came in 1958 with Roger Godement’s treatise on algebraic
topology. Godement [God58] introduced a radical new method for constructing
resolutions based on flasque (flabby) sheaves. Unlike injectives, flabby sheaves had
a concrete geometric definition. More importantly, Godement discovered a canon-
ical way to embed any sheaf into a flabby sheaf via a functor T. This construction
came equipped with natural maps that allowed one to iterate the process, gener-
ating a sequence:

F ! TF ! TTF ! . . .

This sequence, which Godement termed the standard construction, was guaranteed
to be acyclic, allowing for the computation of cohomology without ever appealing
to opaque injective objects.

Structurally, Godement’s construction consisted of an endofunctor T equipped
with two natural transformations: a unit η that embedded the sheaf into the con-
struction, and a multiplication µ that collapsed the iteration. The community began
to realize that the standard construction was not a trick for sheaves; it was a universal
mechanism for resolving structure.

The Formalization of Triples. The transition from these ad-hoc constructions to
a formal theory was catalyzed by the discovery of adjoint functors by Daniel Kan
in 1958 [Kan58]. It took several years for the community to realize the profound
connection: every standard construction was the shadow cast by an adjunction.

This realization was formalized in the seminal 1965 paper by Samuel Eilenberg
and John C. Moore, Adjoint functors and triples [EM65]. They demonstrated that
every adjoint pair F ⊣ U gives rise to a triple,

T = (T, η, µ)

which is now called a monad, on the domain category. The unit of the adjunction
η becomes the unit of the monad, and the counit yields the multiplication µ.
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This simple observation changed the landscape of algebra. It meant that every
time a mathematician defined a free object—a free group, a free ring, or a polyno-
mial algebra—they were implicitly creating a monad. Eilenberg and Moore went
further, asking the inverse question: Given a monad T, can we reconstruct the
adjunction that generated it? Their answer was the construction of the Eilenberg-
Moore Category AT, the category of algebras over the monad. This unified the con-
cept of algebraic structure under a single banner.

Beck’s Insight. This brings us to the central figure of the theoretical develop-
ment: Jonathan Beck. Working in the mid-1960s, Beck sought to shatter the addi-
tive bias of homological algebra. He wanted to define a cohomology theory that
applied universally to any algebraic structure—groups, Lie algebras, and abstract
monoids. To legitimize his new Triple Cohomology, Beck needed to prove it matched
classical results. Specifically, in the classical theory of rings, the second cohomol-
ogy group classifies singular extensions. Beck faced a critical challenge: he needed
to treat the messy, concrete category of singular extensions over X as a category of
algebras itself. He needed to show that the operations of forming extensions be-
haved exactly like the operations of an algebra over a monad.

This necessity birthed the Monadicity Theorem, which was originally known as
the Tripleability Theorem. Beck identified that algebraic structure is essentially about
coequalizers. In algebra, we define structures using generators and relations. Cat-
egorically, generators correspond to free objects, and relations correspond to co-
equalizers that capture quotients. Beck’s insight, that the coequalizer is the cate-
gorical essence of an equation, provided the rigorous authorization to treat non-
linear categories using the powerful machinery of the Eilenberg-Moore category. It
is worth noting that these same conditions would later prove fundamental in alge-
braic geometry, specifically in characterizing the effectiveness of descent for gluing
local geometric structures [BR70].

Alternative Perspectives: Lawvere and Linton. Parallel to the development of
monadicity, F.W. Lawvere introduced a distinct categorical framework for univer-
sal algebra in 1963 [Law63]. Rather than focusing on endofunctors, Lawvere de-
fined an algebraic theory as a small category L with finite products, where the ob-
jects are natural numbers representing arities. In this framework, an algebra is
simply a product-preserving functor from L to the category of sets. This approach
offered a coordinate-free, syntax-independent definition of algebraic structure that
elegantly handled finitary operations. In 1966, Linton demonstrated that the cat-
egory of algebras for a finitary monad is equivalent to the category of models for



4

a Lawvere theory [Lin66]. Linton’s work clarified that while Lawvere theories
were conceptually cleaner for classical finitary algebra, the monadic approach was
more general, capable of handling infinitary structures, such as compact Hausdorff
spaces, where operations have infinite arity. This synthesis ensured that algebraic
structure was a unified concept, regardless of the categorical tool used to describe
it.

Moggi and Computational Effects. The bridge to computer science was built
by Eugenio Moggi in 1991. Moggi observed that impure features—like modify-
ing memory state, raising exceptions, or non-determinism—could be modeled by
wrapping the return type of a function in a monad T [Mog88, Mog91]. For ex-
ample, the State Monad models computations that read and write to a store. The
List Monad models non-determinism. This insight revolutionized functional pro-
gramming by showing that the abstract machinery of monads could encapsulate
effectful behavior within a pure functional language.

Algebraic Effects. While Moggi established that computational effects can be
modeled by monads, this approach faces a significant practical limitation: mon-
ads do not compose naturally. The combination of two monads is not necessarily
a monad, making it difficult to combine different effects in a modular way. Gor-
don Plotkin and John Power addressed this by grounding effects in the theory of
Algebraic Effects [PP02, PP03]. In this view, an effect is not an opaque functor but
is defined by primitive commands and laws that govern their behavior. Crucially,
algebraic theories compose easily via the sum of their signatures and the union of
their equations. This perspective returns us to the free construction: operations
generate a free monad that represents raw syntax, and equations impose a quotient
that captures the logic of the effect.

Free Monad: An Intuitive Introduction
Free constructions often appear with a universal property, which is intuitively the
best or most general way to impose some structure. In this section, we develop
an intuitive understanding of free monad, which is one kind of free construction for
obvious reasons. Free monads are used in functional programming languages like
Haskell to represent syntax of a computational effect.



5

Signatures as functors. To understand how computational effects can be treated
as algebraic structures, we must first formalize the notions of operations and laws
using the language of category theory. The starting point for any algebraic theory
is a signature, which specifies the interface of the algebraic structure.

A signature Σ is a collection of pairs (opi, ari)i∈I , where each opi is called an op-
eration symbol and ari ∈ N is called its arity. An endofunctor Σ on Set generalizes
the concept of a signature, that is, for a signature having a set of operation symbols
ai of arity i (for each i ≥ 0), we define a functor Σ : Set ! Set by the polynomial
formula:

ΣX = a0 + a1 ×X + a2 ×X2 + · · · + an ×Xn (1.1)
where ai is a finite set indexing the i-ary operations.

This endofunctor Σ captures the shape of one-level Σ-operations: given a set
X of inputs, ΣX is the set of all single-step computations one can build—either a
nullary operation (there are a0 ways to do that) or an i-ary operation with choices
of i inputs from X .

Example 1.1 (The Signature of Monoids). Consider the theory of monoids, Mon.
The signature is given by ΣMon = {(∗, 2), (e, 0)}, consisting of a binary multiplica-
tion and a nullary unit element. Categorically, this corresponds to the functor:

ΣMon(X) = 1 +X2

Here a0 = 1 represents the constant e, and a2 = 1 represents the binary operation
∗.

Syntax as free monads. From a signature Σ, we construct the raw syntax or terms.
Let Γ = {x1, . . . , xn} be a context of variables. The set Σ∗(Γ) of all well-formed Σ-
terms is defined inductively: every variable is a term, and if op is an n-ary opera-
tion, then op(t1, . . . , tn) is a term. That is, terms are trees where leaves are variables
and internal nodes are operations. From the endofunctor perspective, the set of
terms Σ∗(Γ) is a solution of the set equation up to isomorphism:

Σ∗(Γ) ∼= Γ + ΣΣ∗(Γ) (1.2)

and one solution is given by the least fixed point:

Σ∗(X) = µY.X + ΣY

This construction lifts Σ into another functor Σ∗ : Set ! Set, where Σ∗X = Σ(X)
is the set of Σ-terms with variables drawn fromX . There are two natural structures
that come with this functor:
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1. The injection ηX : X ! Σ∗X , which embeds variables as trivial terms.

2. The flattening µX : Σ∗Σ∗X ! Σ∗X , which performs substitution. It takes a
term-of-terms and flattens it into a single term by replacing variables with the
terms they hold.

And in fact, for readers familiar with Haskell, this construction is exactly the Free
monad over the functor Σ. Equation (1.2) could be implemented using an alge-
braic data type in Haskell,
data Free (f :: Type -> Type) a

= Pure a
| Op (f (Free f a))

which directly corresponds to the fixed point isomorphism above: a term is either
a pure variable from Γ or an operation applied to sub-terms from ΣΣ∗(Γ). Here,
Pure corresponds to the injection of variables ηX , and Op wraps one layer of the
functor f, inductively building the tree structure of terms.

We can show that this is indeed a monad by defining the monadic operations.
we must define the binding operation, which corresponds to syntactic substitution.
instance ( Functor f) => Monad (Free f) where

return = Pure
(Pure x) >>= g = g x
(Op y) >>= g = Op $ fmap (>>= g) y

The return function simply lifts a value into a leaf node. The bind operator
(>>=) takes a syntax tree and a function g that maps variables to new syntax trees.
It traverses the structure: if it encounters a variable Pure x, it replaces it with the
tree generated by g x. If it encounters an operation Op, it recursively applies the
substitution to the children. This is precisely the implementation of the monad
multiplication µ, which grafts new trees onto the leaves of an existing tree.

Notably, a Free monad is indeed free, in the sense that there is a universal prop-
erty of Σ∗X . This computational view aligns perfectly with the categorical defi-
nition. The free monad Σ∗ satisfies a vital universal property: it is the most gen-
eral monad generated by the functor Σ. Formally, for any monad (T, ηT , µT ) and
any natural transformation α : Σ ! T, there exists a unique monad morphism
α̂ : Σ∗ ! T such that

α̂ ◦ η = ηT

for all sets X .
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Thesis Structure
This thesis explores the mathematical machinery that enables this unification. We
will journey from the basic definitions of categories to the advanced criteria of the
Monadicity Theorem, culminating in their application to algebraic theories.

Chapter 2. The Basic Language establishes the foundational vocabulary of Cate-
gory Theory. We introduce functors, natural transformations, and the crucial con-
cept of Adjunctions, which generate free constructions. We also detail the theory
of limits and colimits, specifically Coequalizers, which act as the categorical gener-
alization of equations.

Chapter 3. Monads and Algebras formally defines the Monad and its associated
algebras. We explore the two canonical resolutions of a monad: the Kleisli Category
(representing free algebras/syntax) and the Eilenberg-Moore Category (represent-
ing all algebras/semantics). We show how the Free Construction naturally leads
to these structures.

Chapter 4. Monadicity Theorems forms the technical core of the thesis. We present
Beck’s Monadicity Theorem and its variants. We analyze the subtle distinctions be-
tween “Weak,” “Crude,” and “Precise” monadicity. A significant portion of this
chapter is dedicated to the role of Coequalizers—specifically split, reflexive, and ab-
solute coequalizers—in determining when a functor is monadic. We demonstrate
that the “exactness” conditions of the theorem are precisely what is needed to re-
construct the algebraic structure from the monad.

Chapter 5. Algebraic Theories applies this framework to the study of algebraic
structures. We prove the correspondence between equational theories and Mon-
ads. We show that the category of models for an algebraic theory is strictly monadic
over the category of sets. Finally, we connect this back to Algebraic Effects, illustrat-
ing how computational notions arise as algebras for a theory defined by operations
and equations.

In summary, this thesis demonstrates that the seemingly abstract machinery of
Monadicity is, in fact, the rigorous bridge between Syntax and Semantics. Whether
in the context of mathematical homology or programming language effects, monadic-
ity realizes the insight that structure is not accidental—it is generated by opera-
tions, governed by equations, and characterized by the preservation of exactness.
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Chapter 2

The Basic Language

Category theory provides a unifying language for formalizing relationships be-
tween mathematical structures, often with a hierarchical character. Usually one
begins with the basic notion of a category, and relations between categories are ex-
pressed by functors. Furthermore, we can study relations between these functors,
called natural transformations. These ideas can be extended to higher-dimensional
structures, but in this thesis we work only with categories, functors, and natural
transformations; Section 2.1 introduces these notions and their basic properties.

Freeness captures a certain best or universal aspect of constructions, and cate-
gory theorists formalize this through universal properties. We will focus on uni-
versal properties in Section 2.2, especially those whose internal universal character
is closely tied to freeness, most notably adjunctions (Section 2.3).

2.1 Categories, Functors and Natural
Transformations

A category is the basic building block of Category Theory. It is designed to be ab-
stract enough, with only a few essential constraints, to capture the general essence
of mathematical structures and the relationships between them. From the perspec-
tive that mathematicians prefer structures that are beautiful and well-behaved, cat-
egories distill the most essential properties of such structures. In this section, we
study the basic notions and properties of categories and functors, which describe
transitions or mappings between categories. Finally, we introduce natural trans-
formations, which are higher-level transitions between functors.

Definition 2.1 (Category). A category A consists of
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(1) A collection of objects, denoted ObA

(2) For each pair of objects A,B ∈ ObA, a collection of morphisms (or arrows)
fromA toB, denoted HomA(A,B) or A(A,B). The collection of all morphisms
in A is denoted HomA.

(3) For each object A ∈ ObA, an identity morphism idA : A! A

(4) For each triple of objects A,B,C ∈ ObA, a composition law

◦ : A(B,C) × A(A,B) ! A(A,C)

such that the following axioms hold:

Associativity. For morphisms f : A! B, g : B ! C, and h : C ! D,

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Identity. For any morphism f : A! B,

f ◦ idA = f = idB ◦f

A category A is called small if the ObA is a set, and for each pair of objects
A,B ∈ ObA, the set A(A,B) is also a set. A category A is called large if it is not
small.

A lot of mathematical structures can be organized into categories, for example:

Set. The category of sets, where objects are sets and morphisms are functions be-
tween sets;

Grp. The category of groups, where objects are groups and morphisms are group
homomorphisms;

Top. The category of topological spaces, where objects are topological spaces and
morphisms are continuous functions between topological spaces.

Additional mathematical structures are described in Appendix A, with proofs of
well-definedness.

Morphisms generalize the notion of homomorphisms, which are maps preserv-
ing structures of mathematical objects. In Category Theory, we also care about
special morphisms that capture important properties of objects and their relation-
ships, in particular, monomorphisms and epimorphisms and isomorphisms.
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Definition 2.2 (Monomorphism, Epimorphism and Isomorphism). A morphism
f : X ! Y in a category A is called a

monomorphism if for any two morphisms g, h : Z ! X in A,

f ◦ g = f ◦ h =⇒ g = h.

epimorphism if for any two morphisms g, h : Y ! Z in A,

g ◦ f = h ◦ f =⇒ g = h.

isomorphism if there exists a morphism g : Y ! X such that:

g ◦ f = idX and f ◦ g = idY

we write X ∼= Y and call g the inverse of f .

A monomorphism generalizes the notion of injective functions, while an epi-
morphism generalizes the notion of surjective functions. It’s clear from the defini-
tion that a morphism is an isomorphism if and only if it is both a monomorphism
and an epimorphism.

The functor is the first category-theoretic concept that is subtle and different
from what we usually see in traditional mathematical structures.

Definition 2.3 (Functor). A functor F : A ! B from a category A to a category B

consists of

(1) A mapping F : ObA ! ObB

(2) A mapping F : HomA ! HomB. In particular, for each pair of objects X, Y ∈
ObA, a mapping

F : A(X,Y ) ! B(FX,FY )

satisfying:

(1) Identity preservation: FidX = idFX for all X ∈ ObA

(2) Composition preservation: F(g ◦ f) = Fg ◦ Ff for all composable morphisms
f, g in A

When we speak of functors without qualification, we mean covariant functors,
which preserve the direction of morphisms as defined above. A contravariant func-
tor F : A ! B reverses the direction of morphisms, mappingA(A,B) toB(FB,FA)
and satisfying F(g ◦ f) = Ff ◦ Fg for composable morphisms f, g.
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Example 2.1 (Forgetful Functor on Grp). The forgetful functor U : Grp ! Set
sends each group (G, ·) to its underlying set G and each group homomorphism
f : G ! H to the underlying function f : G ! H . This functor forgets the group
structure, retaining only the set structure. We will encounter more general forget-
ful functors in later chapters.

To see that U is a well-defined functor, we need to verify the two functoriality
properties:

(1) Identity preservation: For any group (G, ·), the identity morphism in Grp is
the identity group homomorphism idG : G! G. Applying the forgetful func-
tor, we have U(idG) = idG, which is indeed the identity function on the under-
lying set G.

(2) Composition preservation: For any two composable group homomorphisms
f : G ! H and g : H ! K, their composition in Grp is given by (g ◦ f)(x) =
g(f(x)) for all x ∈ G. Applying the forgetful functor, we have U(g ◦ f) = g ◦ f ,
which is exactly the composition of the underlying functions Uf : G! H and
Ug : H ! K in Set.

Another important example of functors is the free functor, which constructs
free objects in a category from objects in another category. For example, the free
group functor constructs the best group out of a set.

Example 2.2 (Free Group Functor). The free group functor F : Set ! Grp sends
each set S to the free group FS generated by S, and each function f : X ! Y to
the unique group homomorphism Ff : FX ! FY extending f . In particular, for
a given set S, define S−1 = {s−1 | s ∈ S} as the set of formal inverses of elements
in S. The free group FS consists of all finite words (S ∪ S−1)∗ formed by elements
of S ∪ S−1, subject to the equivalence relation ∼ induced by the group axioms

ss−1 ∼ ε,

s1(s2s3) ∼ (s1s2)s3,

εs ∼ s ∼ sε.

In FS, εdenotes the empty word, which serves as the identity element of the group.
The well-definedness of the free group requires proving confluence and termina-
tion of the reduction system, which is a standard result in combinatorial group
theory and is therefore omitted here.

To see that F is a well-defined functor, however, is more complicated than the
forgetful functor in example 2.1. We could unfold all technical details and verify
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the functor laws directly, but an easier way is to use the universal property of free
groups, which states the following. For any setS and any groupG, given a function
f : S ! UG, there exists a unique group homomorphism f : FS ! G such that
the following diagram commutes:

S FS

G

ιS

f
f

where ιS : S ! FS is the canonical injection mapping each element s ∈ S to the
corresponding generator in FS. Using this universal property, we can verify the
functoriality of F:

(1) Identity preservation. For any set S, the identity function idS : S ! S induces
a unique group homomorphism FidS : FS ! FS such that FidS ◦ ιS = ιS . By
uniqueness in the universal property, we have FidS = idFS .

(2) Composition preservation. For any two composable functions f : X ! Y
and g : Y ! Z, the composition g ◦ f : X ! Z induces a unique group
homomorphism F(g ◦ f) : FX ! FZ such that F(g ◦ f) ◦ ιX = ιZ ◦ (g ◦ f). On
the other hand, f and g induce unique homomorphisms Ff : FX ! FY and
Fg : FY ! FZ satisfying Ff ◦ ιX = ιY ◦ f and Fg ◦ ιY = ιZ ◦ g. Composing
these,

(Fg◦Ff)◦ιX = Fg◦(Ff◦ιX) = Fg◦(ιY ◦f) = (Fg◦ιY )◦f = (ιZ◦g)◦f = ιZ◦(g◦f).

By the uniqueness part of the universal property, we conclude that F(g ◦ f) =
Fg ◦ Ff .

There is a structure behind the universal property, called adjunction, which we will
study in section 2.3.

Finally, natural transformations provide a way to describe the transitions be-
tween functors, concretizing the vague idea of naturality in mathematics.

Definition 2.4 (Natural Transformation). Let F,G : A ! B be functors. A natural
transformation η : F ⇒ G consists of a morphism ηA : FA ! GA in B for each
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object A ∈ ObA, such that for every morphism f : A! B in A, Gf ◦ ηA = ηB ◦ Ff ,
i.e. diagram (2.1) commutes:

FA GA

FB GB

ηA

Ff Gf

ηB

(2.1)

If every component ηA : FA ! GA is an isomorphism in B, we call η a natural
isomorphism and write F ∼= G.

Example 2.3 (Identity Natural Transformation). For any functor F : A ! B, the
identity natural transformation idF : F ⇒ F is defined by (idF)A = idFA for all objects
A.

This hierarchical structure of functors and natural transformations allows us to
relax the strict notion of isomorphism between categories to a more flexible and
weaker concept called equivalence of categories, which are more common in prac-
tice.

Definition 2.5 (Equivalence of Categories). Two categories A and B are equivalent,
written as A ≃ B, if there exist functors F : A ! B and G : B ! A such that:

GF ∼= idA and FG ∼= idB

where idA and idB are the identity functors.

2.2 Universal Constructions: Limits and Colimits
This section introduces limits and colimits, which are fundamental concepts in cat-
egory theory and generalize many familiar constructions from algebra and topol-
ogy, including products, coproducts, equalizers, and coequalizers. For example,
the product of two topological spaces (with the product topology) is a limit in
Top. There are two noteworthy internal features of category-theoretic definitions
that will appear in this section: duality and universal properties. The Duality Prin-
ciple allows us to obtain the definition of colimits directly from that of limits by
reversing the direction of all morphisms. Universal properties capture the essence
of constructions by characterizing them through their relationships with other ob-
jects, rather than through their internal structure.
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2.2.1 Diagrams and Cones
To define limits and colimits precisely, we need a few fundamental concepts: di-
agrams and cones/cocones. Intuitively, a diagram is a configuration of objects and
morphisms in a category that we wish to study.

Definition 2.6 (Diagram). Let J be a small category. A diagram of shape J in a
category A is a functor D : J ! A.

A cone represents a way of looking at this diagram from a particular vantage
point: it consists of a single object together with morphisms to each object in the
diagram, such that these morphisms respect the structure of the diagram, while
a cocone represents a way of assembling the objects in the diagram into a single
object, again respecting the structure of the diagram.

Definition 2.7 (Cone). Let D : J ! A be a diagram. A cone over D consists of

• An object C ∈ ObA (the apex of the cone)

• For each object j ∈ Ob J, a morphism πj : C ! Dj

Such that for every morphism f : j ! k in J, diagram (2.2) commutes:

C Dk

Dj

πj

πk

Df (2.2)

That is, Df ◦ πj = πk.

Definition 2.8 (Cocone). Let D : J ! A be a diagram. A cocone under D consists
of

• An object C ∈ ObA (the apex of the cocone)

• For each object j ∈ Ob J, a morphism ιj : Dj ! C

Such that for every morphism f : j ! k in J, diagram (2.3) commutes:

Dj Dk

C

Df

ιj
ιk (2.3)



15

That is, ιk ◦ Df = ιj .

The universal nature of limits arises when we ask: What is the best or most
general way to look at a given diagram? Similarly, colimits arise when we ask
for the most efficient way to assemble the objects in a diagram into a single unified
structure.

2.2.2 Limits
Definition 2.9 (Limit). Let D : J ! A be a diagram. A limit of D, denoted by
lim D, is a cone (L, {πj}j∈J) over D that is universal in the sense that for any other
cone (C, {ϕj}j∈J) over D, there exists a unique morphism u : C ! L such that
πj ◦ u = ϕj for all j ∈ J.

A limit represents a class of structures, and two of them are of special interest
to us: products and equalizers.

Definition 2.10 (Product). Let J be a discrete category with two objects. A diagram
D : J ! A consists of two objects A,B. A limit of this diagram is a product A × B
together with projection maps π1 : A×B ! A and π2 : A×B ! B.

The universal property states that for any object C with morphisms f : C ! A
and g : C ! B, there exists a unique morphism ⟨f, g⟩ : C ! A × B such that
π1 ◦ ⟨f, g⟩ = f and π2 ◦ ⟨f, g⟩ = g. In particular, diagram (2.4) commutes:

C

A A×B B

f ⟨f,g⟩
g

π1 π2

(2.4)

Many familiar structures are products in various categories, for example

Set. The product object of two sets is their cartesian product equipped with the
standard projection functions.

Grp. The product object of two groups is their direct product equipped with the
componentwise group operation and projection homomorphisms.

Top. The product object of two topological spaces is their cartesian product equipped
with the product topology and projection continuous maps. This also gives a
much clearer definition of product topology, as the coarsest topology making
the projection maps continuous.
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Detailed verifications that these constructions satisfy the universal property of
products can be found in Appendix A.

Definition 2.11 (Equalizer). Let J be the category with two objects and a parallel
pair of morphisms between them. A diagram D : J ! A consists of two objects
A,B and two morphisms f, g : A ! B. A limit of this diagram is an equalizer
eq(f, g) together with a morphism e : Eq(f, g) ! A such that f ◦ e = g ◦ e.

The universal property states that for any object C with a morphism h : C ! A
such that f ◦ h = g ◦ h, there exists a unique morphism u : C ! Eq(f, g) such that
e ◦ u = h. In particular, diagram (2.5) commutes:

eq(f, g) A B

C

e
f

g

u
h

(2.5)

Example 2.4 (Equalizer inR-Mod). Given a ringR, the kernel of a ring homomor-
phism f : M ! N betweenR-modules is the equalizer of f and the zero morphism
0 : M ! N .

Proof. By R-module homomorphism theorem ker f ⊴ M and the inclusion map
i : ker f ! M satisfies f ◦ i = 0 ◦ i. For any R-module C with a morphism
h : C ! M such that f ◦ h = 0 ◦ h, the image of h lies in ker f , so there exists
a unique morphism u : C ! ker f such that i ◦ u = h.

2.2.3 Colimits
A good thing about Category Theory is duality: proving a result establishes its
dual for free! In this case, we can obtain the definition of colimits directly from
that of limits by reversing the direction of all morphisms.

Definition 2.12 (Colimit). Let D : J ! A be a diagram. A colimit of D, denoted
by colim D, is a cocone (L, {ιj}j∈J) under D that is universal in the sense that for
any other cocone (C, {ϕj}j∈J) under D, there exists a unique morphism u : L! C
such that u ◦ ιj = ϕj for all j ∈ J.

Dually, two important examples of colimits are coproducts and coequalizers.
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Definition 2.13 (Coproduct). Let J be a discrete category with two objects. A
diagram D : J ! A consists of two objects A,B. A colimit of this diagram is a
coproduct A+B together with inclusion maps ι1 : A! A+B and ι2 : B ! A+B.

The universal property states that for any object C with morphisms f : A! C
and g : B ! C, there exists a unique morphism [f, g] : A + B ! C such that
[f, g] ◦ ι1 = f and [f, g] ◦ ι2 = g. In particular, diagram (2.6) commutes:

A A+B B

C

f

ι1

[f,g]

ι2

g
(2.6)

Many familiar structures are coproducts in various categories.

Example 2.5 (Coproducts in Set). In the category Set (see definition A.1), the
coproduct of sets X and Y is the disjoint union X ⊔ Y = ⋃

i∈{X,Y }(i × {i}) with
canonical inclusions ιX : X ! X ⊔ Y sending x to (x,X) and ιY : Y ! X ⊔ Y
sending y to (y, Y ). Given functions f : X ! Z and g : Y ! Z, the unique
mediating morphism is [f, g] : (z, i) 7! f(z) if i = X and g(z) if i = Y .

Example 2.6 (Coproducts in Grp). In the category Grp (see definition A.12), the
coproduct of groupsG andH is the free productG∗H , which consists of all words
in the elements ofG andH modulo the relations that hold within each group. The
inclusions are the canonical embeddings of G and H into the free product.

Example 2.7 (Coproducts in Top). In the category Top (see definition A.13), the
coproduct of topological spaces (X, τX) and (Y, τY ) is the disjoint union X ⊔ Y
equipped with the disjoint union topology, where a set U ⊆ X ⊔ Y is open if and
only if U ∩X ∈ τX and U ∩ Y ∈ τY . The inclusions are continuous maps.

The dual notion to equalizers are coequalizers.

Definition 2.14 (Coequalizer). Let J be the category with two objects and a parallel
pair of morphisms between them. A diagram D : J ! A consists of two objects
A,B and two morphisms f, g : A ! B. A colimit of this diagram is a coequalizer
coeq(f, g) together with a morphism q : B ! coeq(f, g) such that q ◦ f = q ◦ g.

The universal property states that for any object C with a morphism h : B ! C
such that h ◦ f = h ◦ g, there exists a unique morphism u : coeq(f, g) ! C such
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that u ◦ q = h. In particular, diagram (2.7) commutes:

A B coeq(f, g)

C

f

g

q

h
u (2.7)

Coequalizers generalize the notion of quotient structures in algebra. Examples
of coequalizers, however, will be discussed in more detail in section 4.1, as they
play a crucial role in charactering monadicity.

While limits and colimits are dual concepts thus in general different, they can
coincide in certain categories or under specific conditions. The following result
demonstrates this subtlety, that is, for finite families of R-modules, products (di-
rect products) and coproducts (direct sums) coincide, while for infinite families,
they generally differ.

Example 2.8 (Product and Coproduct in R-Mod). Let R be a ring with 1 and con-
sider the category R-Mod of R-modules (see definition A.14). For a finite family
of R-modules {Mi}i∈I indexed by a finite set I , the direct product ∏

i∈IMi and the
direct sum ⊕

i∈IMi are isomorphic. For an infinite family, they generally differ.

Proof. For a finite index set I , the direct sum ⊕
i∈IMi is defined as the submod-

ule of ∏
i∈IMi consisting of those tuples with only finitely many nonzero compo-

nents. Since I is finite, every tuple has only finitely many nonzero components, so⊕
i∈IMi = ∏

i∈IMi. The canonical inclusions and projections witness this isomor-
phism.

For an infinite index set, consider the direct product ∏
i∈NR and direct sum⊕

i∈NR whereR is a nonzero ring. The element (1, 1, 1, . . .) ∈ ∏
i∈NR has all entries

nonzero, so it does not belong to ⊕
i∈NR. Hence ∏

i∈NR
≁=

⊕
i∈NR.

2.3 Adjunctions
An adjunction is the second best thing we can know about two categories other
than being equivalent. In the literature, there are multiple definitions of adjunc-
tions. Some sources define adjunctions in such a way and use other definitions
as propositions. We will provide three definitions of adjunctions and prove their
equivalence.
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Definition 2.15 (Adjunctions via unit-counit). An adjunction between categories
A and B consists of

(1) A pair of functors F : A ! B and G : B ! A

(2) Natural transformations η : idA ⇒ GF (the unit) and ε : FG ⇒ idB (the
counit)

such that the following triangle identities in diagram (2.8) and (2.9) hold:

F FGF

F

Fη

idF
εF (2.8)

G GFG

G

ηG

idG
Gε (2.9)

We write F ⊣ G : A ! B and say that F is left adjoint to G and G is right adjoint
to F. When A and B are clear from context, we write F ⊣ G.

Before exploring the formal structure of adjunctions, we introduce some termi-
nology that will help illustrate the concept. A forgetful functor is a functor defined
by forgetting some structure. For example, the forgetful functor in example 2.1 from
Grp to Set forgets the group structure, remembering only the underlying set. Al-
though the term has no precise definition in the literature, it is used whenever a
functor is obviously defined by forgetting structure. When U : B ! A is a forget-
ful functor and X is an object in A, a free B-object on X with respect to U is an object
FX (up to isomorphism) that satisfies a universal property, and F is called the free
functor.

Example 2.9 (Free-Forgetful Adjunction between Set and Grp). The free-forgetful
adjunction between Set and Grp consists of the functors F : Set ! Grp and U :
Grp ! Set and the natural transformations ηX : X ! UFX and εG : FUG ! G
such that diagrams in Definition 2.15 commute.

The unit ηX sends each element x ∈ X to the corresponding generator in the
free group FX . The counit εG sends each word in the free group on the underlying
set of G to its evaluation in G.

There are two alternative but equivalent characterizations of adjunctions that
will be useful in different contexts.
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Definition 2.16 (Adjunctions via Hom-set). An adjunction between categories A

and B consists of

(1) A pair of functors F : A ! B and G : B ! A

(2) A natural isomorphism ⌊−⌋ : B(F−,−) ! A(−,G−) with inverse ⌈−⌉ :
A(−,G−) ! B(F−,−)

That is, for each object A ∈ ObA and B ∈ ObB, there is a bijection:

⌊−⌋A,B : B(FA,B) ! A(A,GB)

such that for any morphisms f : A′ ! A in A and g : B ! B′ in B, diagram (2.10)
commutes:

B(FA,B) A(A,GB)

B(FA′, B′) A(A′,GB′)

⌊−⌋A,B

g◦(−)◦Ff Gg◦(−)◦f

⌊−⌋A′,B′

(2.10)

Definition 2.17 (Adjunctions via universal property). An adjunction between cat-
egories A and B consists of

(1) A functor G : B ! A

(2) For each object A ∈ ObA, an object FA ∈ ObB and a morphism ηA : A !
GFA

such that for each object A ∈ ObA and each morphism f : A ! GB in A, there
exists a unique morphism f : FA! B in B making diagram (2.11) commute:

A GFA

GB

ηA

f
Gf (2.11)

These three definitions offer different perspectives on adjunctions: the unit-
counit definition emphasizes the natural transformations, the hom-set definition
reveals the duality between left and right adjoints, and the universal property def-
inition connects to universal constructions. We now establish their equivalence.
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Theorem 2.1 (Equivalence of Adjunction Definitions). The three definitions of ad-
junction given above are equivalent.

Proof. We will show the implications in a cycle: Definition 2.15 ⇒ Definition 2.16
⇒ Definition 2.17 ⇒ Definition 2.15.

Definition 2.15 ⇒ Definition 2.16. Given the unit-counit definition, we define the
natural isomorphism ⌊−⌋ by:

⌊f⌋ = Gf ◦ ηA

for f : FA! B. The inverse is given by:

⌈g⌉ = εB ◦ Fg

for g : A! GB.
To verify naturality, consider morphisms h : A′ ! A and k : B ! B′. We need to
show:

⌊k ◦ f ◦ Fh⌋ = Gk ◦ ⌊f⌋ ◦ h

This follows from the naturality of η and the functoriality of G:

⌊k ◦ f ◦ Fh⌋ = Gk ◦ f ◦ Fh ◦ ηA′

= Gk ◦ Gf ◦ GFh ◦ ηA′

= Gk ◦ Gf ◦ ηA ◦ h
= Gk ◦ ⌊f⌋ ◦ h

The triangle identities ensure that ⌊−⌋ and ⌈−⌉ are indeed inverses.

Definition 2.16 ⇒ Definition 2.17. Given the natural isomorphism ⌊−⌋, we define
the unit ηA : A! GFA as:

ηA = ⌊idFA⌋

The universal property follows from the naturality of ⌊−⌋. Given f : A! GB, we
define f = ⌈f⌉. The commutativity of the diagram follows from the naturality of
⌊−⌋.

Definition 2.17 ⇒ Definition 2.15. Given the universal property, we can extend F
to a functor by defining Ff = Gf ◦ ηA for f : A! A′.

We define the counit εB : FGB ! B as εB = idGB. The triangle identities follow
from the universal property and the uniqueness of the mediating morphisms.
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We explicitly state the Hom-set formulation of adjunctions in terms of the unit
and counit from Theorem 2.1 as a proposition.

Proposition 2.1 (Adjoint transposition). Let F ⊣ G : A ! B be an adjunction with
unit η and counit ε. Then for every A ∈ Ob (A) and B ∈ Ob (B) there is a natural
bijection

⌊−⌋ : B(FA,B) ∼= A(A,GB) : ⌈−⌉

sending a morphism h : A! GB to its adjunct

⌈h⌉ := εB ◦ Fh : FA! B,

with inverse given by
⌊h⌋ := Gh ◦ ηA : A! GB.

These assignments are mutually inverse.

Adjunctions capture the idea of optimal approximation between categories, they
are weaker than equivalences, but still have strong structural implications and
well-behaved properties. A fundamental result about adjoint functors is their unique-
ness up to natural isomorphism.

Lemma 2.1 (Uniqueness of adjoint functors). If F and F′ are both left (right) adjoints
to G : B ! A, then F ∼= F′ naturally.

Proof Sketch. By the Yoneda Lemma1, the natural isomorphism

B(F−,−) ∼= A(−G−) ∼= B(F′−,−)

induces a natural isomorphism F ∼= F′. The case for right adjoints is similar.

Adjunctions can also be composed to form new adjunctions, just like equiva-
lences.

Lemma 2.2 (Composition of Adjunctions). Given adjunctions F ⊣ G : A ! B and
F′ ⊣ G′ : B ! C

A B C
F

G

F′

G′
⊥ ⊥ ⇝ A C

F′◦F

G◦G′
⊥

then the composition F′ ◦ F ⊣ G ◦ G′ : A ! C is an adjunction.
1Yoneda Lemma is beyond the scope of this thesis, so we are only providing a sketch of proof.
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Proof. There are natural isomorphisms C(F′Fx, y) ∼= B(Fx,G′y) ∼= A(x,GG′y),
the first defined using F′ and G′ and the second defined using F and G.

All properties are preserved under an isomorphism of categories, most prop-
erties are also preserved under an equivalence of categories. Since adjunctions
are weaker than equivalences, what are the properties preserved by adjunctions?
It turns out adjunctions exhibit important preservation properties with respect to
limits and colimits.

Theorem 2.2 (Right Adjoints Preserve Limits). If F ⊣ G : A ! B, then G preserves
all limits that exist in B.

Proof. Let (L, {πj}) be a limit of a diagram D : J ! B. We need to show that
(GL, {Gπj}) is a limit of G ◦ D : J ! A. Given any cone (C, {ϕj}) over G ◦ D, by
the adjunction, each ϕj : C ! GDj corresponds to a unique morphism ψj : FC !
Dj . The collection {ψj} forms a cone over D, so there exists a unique morphism
u : FC ! L such that πj ◦ u = ψj for all j. By the adjunction again, u corresponds
to a unique morphism u : C ! GL such that Gπj ◦u = ϕj for all j. This establishes
the universal property of the limit.

By duality, left adjoints preserve colimits.

Theorem 2.3 (Left Adjoints Preserve Colimits). If F ⊣ G : A ! B, then F preserves
all colimits that exist in A.

We conclude this chapter with some notable examples of adjunctions that illus-
trate their ubiquity and utility in various mathematical contexts.

Example 2.10 (Product-Hom Adjunction). In the category Set, for any set A, we
have an adjunction2:

(−) × A ⊣ Set(A,−) : Set ! Set

This adjunction embodies the mathematical formalization of currying. The natural
isomorphism states that a function f : X × A ! Y from the cartesian product
corresponds uniquely to a function f : X ! Set(A, Y ) that takes an element of X
and returns a function from A to Y :

Set(X × A, Y ) ∼= Set(X,Set(A, Y ))
2Being Cartesian-closed should be enough.
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Explicitly, for f : X × A ! Y , we define f(x)(a) = f(x, a). Conversely, given g :
X ! Set(A, Y ), we define ĝ(x, a) = g(x)(a). This is exactly currying: transforming
a function of two arguments into a function that returns another function. The
unit ηX : X ! Set(A,X × A) sends x to the function a 7! (x, a), while the counit
εY : Set(A, Y ) × A! Y is the evaluation map (f, a) 7! f(a).

In fact, for readers familiar with functional programming, example 2.10 cap-
tures the essence of how functions are treated in languages like Haskell or ML,
where functions are inherently curried.
-- currying
curry :: ((a, b) -> c) -> (a -> b -> c)
curry f x y = f (x, y)

-- uncurrying
uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f (x, y) = f x y

This principle of a natural Hom-set isomorphism definition 2.16 is not limited to
Set. It finds a classical formulation in order theory, where the adjunction manifests
as a Galois connection.

Example 2.11 (Galois Connections as Adjunctions). A Galois connection between
partially ordered sets (P,≤P ) and (Q,≤Q) consists of two monotone functions f :
P ! Q and g : Q! P such that for all p ∈ P and q ∈ Q:

f(p) ≤Q q ⇐⇒ p ≤P g(q)

We say that f is the lower adjoint and g is the upper adjoint.
In fact, a Galois connection is precisely an adjunction in the category Pos of

posets. Specifically, viewing posets as categories where there is a unique mor-
phism p! q if and only if p ≤ q, the condition

f(p) ≤ q ⇐⇒ p ≤ g(q)

becomes the natural bijection of hom-sets:

Q(f(p), q) ∼= P (p, g(q))

In programming language semantics, type inference and program analysis of-
ten give rise to Galois connections. For instance, consider a static analysis that
tracks abstract values in a program. If P is the poset of concrete program states
and Q is the poset of abstract values, then:
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The abstraction function α : P ! Q sends concrete states to their abstract
counterparts. α is monotone because more precise concrete states map to
more precise abstract values.

The concretization function γ : Q ! P sends abstract values to the set of all
concrete states they represent. γ is also monotone, as more precise abstract
values represent smaller sets of concrete states.

The Galois connection α ⊣ γ ensures soundness: a concrete property holds in all
states represented by an abstract value exactly when the corresponding abstract
property holds. This is expressed by:

α(c) ≤Q a ⇐⇒ c ≤P γ(a)

where c ∈ P is a concrete state and a ∈ Q is an abstract value.

Perhaps the most foundational adjunction in abstract algebra is the one relating
tensor products and Hom-functors. This example is particularly instructive as it di-
rectly illustrates the equivalence between the Hom-set definition of an adjunction
(Definition 2.16) and the universal property definition (Definition 2.17).

Example 2.12 (Tensor-Hom Adjunction). Let R be a commutative ring. In the cat-
egory R-Modof R-modules, for a fixed R-module A, we have the adjunction:

A⊗R (−) ⊣ HomR(A,−) : R-Mod ! R-Mod

The functor A⊗R (−) sends an R-module N to the tensor product A⊗RN , and
a morphism f : N !M to idA ⊗Rf : A⊗RN ! A⊗RM . The functor HomR(A,−)
sends an R-module N to the abelian group HomR(A,N) of R-module homomor-
phisms from A to N , and a morphism f : N ! M to the post-composition map
f ◦ (−).

The unit
ηN : N ! HomR(A,A⊗R N)

is defined by sending n ∈ N to the homomorphism a 7! a⊗n. The counit εM : A⊗R

HomR(A,M) !M is the evaluation map a⊗ f 7! f(a). The natural isomorphism

⌊−⌋N,M : HomR(A⊗R N,M) ! HomR(N,HomR(A,M))

is given by currying: for g : A ⊗R N ! M , define ⌊g⌋ : N ! HomR(A,M) by
n 7! (a 7! g(a⊗ n)). Its inverse sends h : N ! HomR(A,M) to ⌈h⌉ : A⊗R N !M
defined by a⊗ n 7! h(n)(a).
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This adjunction directly demonstrates the equivalence between the Hom-set
definition (Definition 2.16) and the universal property definition (Definition 2.17).

The universal property of the tensor productA⊗RN states that it is the universal
object for R-bilinear maps out of A × N . That is, for any R-module M , there is a
natural bijection between the set of R-linear maps (from the tensor product) and
the set of R-bilinear maps (from the product):

HomR(A⊗R N,M) ∼= BilinR(A,N ;M)

This is, in effect, an instance of Definition 2.20 (Adjunction via universal prop-
erty), where A ⊗R (−) is the free construction. Separately, the familiar process of
"currying" provides its own natural bijection betweenR-bilinear maps and iterated
R-linear maps:

BilinR(A,N ;M) ∼= HomR(N,HomR(A,M))

An element g on the right (g : N ! HomR(A,M)) corresponds to the bilinear map
φ(a, n) = g(n)(a) on the left. By composing these two bijections, we recover the
Hom-set adjunction from definition 2.16:

HomR(A⊗R N,M) ∼= HomR(N,HomR(A,M))

This shows how the universal property of the tensor product is the Hom-set
adjunction. This equivalence—between a universal construction (Definition 2.17)
and a Hom-set bijection (Definition 2.16)—is a common pattern. It highlights the
unit-counit definition (Definition 2.15) as a distinct, third perspective, which will
be central to defining monads in the next chapter.
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Chapter 3

Monads and Algebras

Monads provide a unifying framework for describing algebraic and computational
structure within category theory. They arise naturally when one studies construc-
tions that combine data with additional structure, such as context, effects, or no-
tions of composition, while remaining compatible with categorical composition.
From this perspective, a monad encapsulates a way of building complex objects
from simpler ones in a coherent and principled manner.

The notion of a monad was introduced by Godement [God58] in the study of
algebraic topology, and later appeared under various names, including the “dual
standard construction”, “triple”, “monoid”, and “triad” [ML98]. In computer sci-
ence, monads became influential through Moggi’s work on the computational λ
calculus [Mog88], and were later popularized by Wadler’s article Monads for Func-
tional Programming [Wad95]. A concise categorical characterization is often sum-
marized by the slogan that monads are monoids in the category of endofunctors, al-
though this description is most meaningful after the basic structure of monads
has been developed.

In this chapter, we introduce the fundamental theory of monads in category
theory. We begin with the definition of monads and their algebras in section 3.1,
and then discuss free algebras in section 3.2. We conclude by presenting the two
canonical categorical constructions associated with a monad, namely the Kleisli
category and the Eilenberg Moore category, which provide complementary per-
spectives on monadic structure in section 3.3.

3.1 Monads and Their Algebras
In this section, we introduce the notion of monads and their algebras.
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Definition 3.1 (Monad). A monad on a category A is a triple T = (T, η, µ) where:

1. T : A ! A is an endofunctor 1

2. η : idA ⇒ T is a natural transformation (the unit)

3. µ : TT ⇒ T is a natural transformation (the multiplication)

such that diagrams (3.1), (3.2), and (3.3) commute:

T TT

T

Tη

idT
µ (3.1)

T TT

T

ηT

idT
µ (3.2)

TTT TT

TT T

Tµ

µT µ

µ

(3.3)

They are called the left unit, right unit, and associativity axioms respectively.

Intuitively, the monad axioms ensure that the unit and multiplication behave
like the unit and multiplication of a monoid, and that is why monads are some-
times referred to as monoids in the category of endofunctors.

Example 3.1 (Maybe Monad). The maybe monad on Set is defined by:

• TX = X ⊔ {⊥} where ⊥ represents “nothing”.

• ηX : X ↪! X ⊔ {⊥} is the inclusion map.

• µX : (X ⊔ {⊥}) ⊔ {⊥} ! X ⊔ {⊥}

µX :

x 7! x

⊥ 7! ⊥

The monad laws are easily verified.

One of the most common ways in which monads arise is from adjunctions. In
particular, every adjunction gives rise to a monad.

1If η and µ is clear from context, we refer to monad T simply by its underlying endofunctor T.



29

Theorem 3.1 (Every Adjunction Determines a Monad). Let F ⊣ G : A ! B be an
adjunction with unit η : idA ⇒ GF and counit ε : FG ⇒ idB. Then (GF, η,GεF) is a
monad on A.

Proof. The proof is a straightforward verification of the monad laws. Left compose
G on the entire diagram (3.1) gives diagram (3.4), and right compose F on dia-
gram (2.9) gives diagram (3.5), proving the left and right unit laws respectively.

GF GFGF

GF

GFη

idGF
GεF (3.4)

GF GFGF

GF

ηGF

idGF
GεF (3.5)

The associativity law follows from naturality of ε as shown in diagram (3.6).

GFGFGF GFGF

GFGF GF

GFGεF

GεF GεF

GεF

(3.6)

When monads were first discovered in the 1950’s and it was found that adjunc-
tions give rise to monads, a natural and fundamental question was raised by Hilton
et al. [Mac63]: Whether every monad comes from an adjunction? The answer is
yes, and two well-known solutions appeared, which leads us to the construction
of two special categories associated with any monad: the Eilenberg-Moore cate-
gory [EM65] and the Kleisli category [Kle65]. Both solutions, however, are deeply
related to the concept of algebras for a monad. To see this, we first define algebras
for endofunctors.

Definition 3.2 (Functor Algebra). Let F be a endofunctor on category A. A algebra
of F is a pair (A,α) where A is an object of A (called the carrier) and α : FA ! A
is a morphism in A (called the algebra structure). A homomorphism between two
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algebras (A,α) to (B, β) is a morphism f : A ! B in A such that diagram (3.7)
commutes:

FA FB

A B

Ff

α β

f

(3.7)

All F-algebras and their morphisms form a category, denoted F-Alg, whose
objects are pairs (A,α : FA! A) and whose morphisms are F-algebra morphisms.
Compositions and identities are inherited from A.

Interestingly, the initial objects in F-Alg, called an initial F-algebra, often have
significant computational interpretations, such as representing inductive data types,
as detailed in lemma 3.1.

Lemma 3.1 (Lambek). If (µF, α : FµF ! µF) is an initial F-algebra, then α is an
isomorphism.

Proof. Since (µF, α) is an initial F-algebra, there exists a unique F-algebra mor-
phism β : µF ! FµF such that the following diagram commutes:

FµF FFµF

µF FµF

Fβ

α Fα

β

(1) α◦β = idµF. First note that α◦β is an F-algebra homomorphism from (µF, α)
to itself, because

(α ◦ β) ◦ α = α ◦ (β ◦ α)
= α ◦ (Fα ◦ Fβ)
= α ◦ Fα ◦ Fβ
= α ◦ F(α ◦ β)

But (µF, α) is initial, so there is only one algebra morphism (µF, α) ! (µF, α).
The identity idµF is certainly such a morphism, therefore

α ◦ β = idµF .
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(2) β ◦ α = idFµF. We already have

β ◦ α = Fα ◦ Fβ.

Apply the functor F to the equality α ◦ β = idµF gives us

Fα ◦ Fβ = F(α ◦ β)
= FidµF

= idFµF .

i.e.,
β ◦ α = idFµF .

So α and β are mutual inverses, hence α is an isomorphism, as claimed.

Analogous to viewing groups as sets with structure, we can view monads as
special endofunctors with structures (in this case, η and µ). So monad algebras are
just functor algebras for the underlying endofunctor of the monad, satisfying addi-
tional conditions regarding the unit and multiplication of the monad.

Definition 3.3 (Monad Algebra). Let T = (T, η, µ) be a monad on a category A. A
T-algebra is a pair (A,α) whereA is an object ofA, andα : TA! A is a morphism in
A (called the algebra structure), such that diagram (3.8) (unit property) and (3.9)
(action property) commute:

A TA

A

ηA

idA

α (3.8)

TTA TA

TA A

Tα

µA α

α

(3.9)

T-algebra homomorphisms are just T-algebra homomorphisms defined in def-
inition 3.2. Similarly, when it is clear from context whether we are referring to the
monad or its underlying endofunctor, we write T-algebra instead of T-algebra to
denote a monad algebra.

In 1965, Samuel Eilenberg and John C. Moore introduced the construction of
the category of algebras for a monad [EM65], which was called a triple at that
time. All algebras of a monad T and their morphisms form a category called the
Eilenberg-Moore category of T. This category, together with a canonical adjunc-
tion, provides one solution to the question raised by Hilton et al.
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Definition 3.4 (Eilenberg-Moore Category). Let (T, η, µ) be a monad on a category
A. The Eilenberg-Moore category AT is the category where objects are T-algebras
and morphisms are T-algebra morphisms. Compositions are inherited from A.

Theorem 3.2 (Every monad is defined by its T-algebras [ML98]). Let (T, η, µ) be
a monad on a category A. There’s an adjunction FT ⊣ GT : A ! AT given by assign-
ments (3.10) and (3.11) respectively such that T = (GT ◦ FT, ηT,GTεTFT), where ηT

and εT are the unit and counit of the adjunction, respectively.

X (TX,µX)

Y (TY, µY ).

f TfFT
7−!

(3.10)

(X,α) X

(Y, β) Y.

f fGT
7−!

(3.11)

Proof. The functor GT : AT ! A is the evident functor which simply forgets the
structure map of each T-algebra. On the other hand, for each X in ObA, the pair
(TX,µX : TTX ! TX) is a T-algebra (called the free T-algebra on X), in view of
the associative and (left) unit laws for the monad T. Hence X 7! (TX,µX) does
indeed define a functor FT : A ! AT, as asserted.

Then GT ◦ FTX = GT(TX,µX) = TX , so the unit of the given monad is a
natural transformation η = ηT : idA ⇒ GT ◦ FT.

On the other hand, FT ◦ GT(X, h) = FTX = (TX,µX). The first square in the
definition of a T-algebra (X, h) states that the structure map is h : TX ! X . The
resulting transformation εT

(X,h) = h : FT ◦ GT(X, h) ! (X, h) is natural, by the
definition of a morphism of T-algebras.

The triangular identities for an adjunction read:

TX TTX

TX

TηX

µX (3.12)

X TX

X

ηX

h (3.13)

Diagram (3.12) holds by the (right) unit law for T, and diagram (3.13) holds by
the unit law for a T-algebra. Therefore ηT and εT define an adjunction, as stated.

This adjunction thus determines a monad in A. The endofunctor GT ◦ FT is
the original T, its unit ηT is the original unit, and its multiplication µT = GTεTFT



33

has µT
X = GTεT

(TX,µX) = GTµX = µX , so is the original multiplication of T. The
proof is complete.

In theorem 3.2, we mentioned a important special class of T-algebras called free
T-algebras. which are of special interest to this thesis. To see that free T-algebras
are well-defined T-algebras, we now make a formal definition as follows.

Definition 3.5 (Free T-algebra). Let (T, η, µ) be a monad on a category A, then

(TX,µX : TTX ! TX)

is called a free T-algebra on object X in A.

To see that a free T-algebra (TX,µX) is a well-defined T-algebra, we need to
verify the two properties of a T-algebra as shown in diagram (3.8) and (3.9). It is
easily checked that the unit property and the action property follow from the right
unit law (3.2) and the associativity law (3.3) of the monad respectively.

Note from definition 3.3 that (TX,µX) is precisely the image of object X under
the free functor FT defined in theorem 3.2. Since we have an adjunction FT ⊣
GT : A ! AT, by the definition 2.17 of adjunctions via universal property, free
T-algebras are indeed free in the categorical sense, as stated in lemma 3.2.

Lemma 3.2 (Universal Property of Free T-algebras). Let (T, η, µ) be a monad on a
category A. For each objectA in ObA, and each morphism f : A! TB in A, there exists
a unique morphism of T-algebras f : (TA, µA) ! (TB, µB) such that the following
diagram commutes:

A TA

TB

ηT
A

f
Uf

This aligns with the concrete universal property of free groups discussed in ex-
ample 2.2. More details on the universal property of free T-algebras will be dis-
cussed in chapter 5.

3.2 Free Algebras for Monads
We now develop the second canonical way given by Heinrich Kleisli [Kle65] in
1965 to decompose a monad into an adjunction: the Kleisli construction.
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Definition 3.6 (Kleisli Category). Let (T, η, µ) be a monad on a category A. The
Kleisli category AT is the category where:

1. the objects of AT are those of A;

2. a morphism f ♭ : X ⇝ Y in AT is a morphism f : X ! TY in A;

3. the composite of two morphisms f ♭ : X ⇝ Y , g♭ : Y ⇝ Z in AT is given in A

by the composite (µZ ◦ Tg ◦ f)♭.

X TY TTZ TZ.f

g♭◦f♭

Tg µZ

4. the identity idX : X ⇝ X on an object X of AT is just ηX : X ! TX in A.

The definition of morphisms f ♭ amounts to a bijection

AT(X, Y ) ∼= A(X,TY )

on hom-sets. We use⇝ to denote morphisms in the Kleisli category AT and ! to
denote morphisms in the underlying category A.

Theorem 3.3 (Kleisli Adjunction). Let (T, η, µ) be a monad on a category A. There’s
an adjunction FT ⊣ GT : A ! AT given by assignments (3.14) and (3.15) respectively,
such that (T, η, µ) = (GT ◦ FT, ηT,GTεTFT), where ηT and εT are the unit and counit
of the adjunction, respectively.

X X

Y Y

f (ηX◦f)♭FT7−!
(3.14)

X TX

Y TY

f♭ µY ◦TfGT7−!
(3.15)

Proof. A suitable large diagram shows the new composition associative. Other
diagrams prove that (ηX)♭ : X ! X is a left and right unit for this composition.
Another calculation shows that FT and GT as described are indeed functors. By
construction, f ♭ 7! f is a bijection

AT(FTX, Y ) = AT(X, Y ) ∼= A(X,TY ) = A(X,GTY );
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it is natural in X and Y , so yields the desired adjunction φT. Its unit is η, and its
counit εT is given by (εT)Y = (idTY )♭ : TY ! Y . The resulting multiplication in
A is GTεTFT, which by the definition of GT is exactly the given multiplication µ.
Therefore the adjunction does define the original monad T.

For readers with familiarity with Moggi’s work [Mog88] on computational λ-
calculus, the Kleisli category construction can be interpreted as a way to model
computations with side effects, and the morphisms in the Kleisli category rep-
resent computations that produce values along with side effects encapsulated by
the monad T. However, attentive readers might ask, how is this construction re-
lated to the title of this section, Free Algebras for Monads? The answer is that the
Kleisli category AT is equivalent to the full subcategory generated by free algebras
for monad T. In this sense, there are more connections between Kleisli category
and Eilenberg-Moore category beyond both being resolutions of the same monad.
To see this, we first need to define what a free algebra for a monad is.

Theorem 3.4. Let (T, η, µ) be a monad on a category A. Then the Kleisli category AT is
equivalent to the full subcategory of AT generated by free T-algebras.

Proof. Denote FT for the full subcategory of AT generated by free T-algebras, we
get a functor Φ : AT ! FT by sending every object X in AT to the free T-algebra
(TX,µX) in FT, and every morphism

f ♭ : X ⇝ Y

in AT to the T-algebra homomorphism

Φ(f ♭) = µY ◦ Tf : TX ! TY

Φ(f ♭) is indeed a T-algebra homomorphism because

µY ◦ T(Φ(f ♭)) = µY ◦ TµY ◦ TTf
= µY ◦ µTY ◦ TTf
= µY ◦ Tf ◦ µTX

= Φf ♭ ◦ µX .

Meanwhile Φ is indeed a functor because it preserves identity

Φ(ηX) = µX ◦ TηX = idTX ,
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and composition

Φ(g♭ ◦ f ♭) = µZ ◦ Tg ◦ µY ◦ Tf
= µZ ◦ µTZ ◦ TTg ◦ Tf
= µZ ◦ TµZ ◦ TTg ◦ Tf
= µZ ◦ T(µZ ◦ Tg ◦ f)
= Φ(g♭) ◦ Φ(f ♭).

By the choice of FT, every object of FT is isomorphic to an object of the form ΦX ,
thus it remains to prove that Φ is full and faithful. If f, g : X ⇒ TY are such that

µY ◦ Tf = µY ◦ Tg

then

f = µY ◦ ηTY ◦ f = µY ◦ Tf ◦ ηX = µY ◦ Tg ◦ ηX = µY ◦ ηTY ◦ g = g,

so that Φ is faithful. Φ is also full since, given

h : (TX,µX) ! (TY, µY )

in FT, the composite h ◦ ηX is such that

µY ◦ T(h ◦ ηX) = µY ◦ Th ◦ TηX = h ◦ µX ◦ TηX = h.

3.3 Resolving Monads into Adjunctions
The two constructions given by Kleisli and Eilenberg-Moore not only provide us
with two different ways to resolve a monad into an adjunction, they are respec-
tively initial and terminal in a certain sense. In this section we will see, for any
monad (T, η, µ) on a category A, there is a category describing all such resolutions
of the monad T, called the category of resolutions, and the Kleisli and Eilenberg-
Moore constructions are respectively initial and terminal objects in this category.

Definition 3.7 (Category of Resolutions). The category of resolutions AdjT of a
monad (T, η, µ) on a category A is the category whose objects are fully-specified
adjunctions F ⊣ G : A ! B with

A B
F

G
⊥ η : idA ! GF, ε : FG ! idB
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inducing the monad T on A. A morphism from F ⊣ G : A ! B to F′ ⊣ G′ : A !
B′ is a functor H : B ! B′ making the diagram

B B′

A

H

G F′

F G′
⊥ ⊥

commute with both left and right adjoints. That is H ◦ F = F′ and G ◦ H = G′. H
is called the comparison functor from adjunction F ⊣ G to F′ ⊣ G′.

We say that Kleisli and Eilenberg-Moore constructions are respectively initial
and terminal in AdjT is because comparison functors from Kleisli category to any
other resolution exist uniquely, and so are comparison functors from any other
resolution to Eilenberg-Moore category, as stated in the following theorem.

Theorem 3.5 (Comparison Functor). Let F ⊣ G : A ! B be an adjunction with
associated monad (T, η, µ) on A (so T = GF, µ = GεF). Then there exist unique
functors

K : B ! AT and J : AT ! B

such that diagram (3.16) commutes:

AT B AT

A

J
∃!

K
∃!

FT

GT
F G

FT

GT

⊥ ⊥⊥ (3.16)

Moreover, FT ⊣ GT is initial in AdjT and FT ⊣ GT is terminal in AdjT.

Proof. We first prove the existence of the comparison functors, then show they are
unique. Consider functor K : B ! AT defined by:

KB ≜ (GB,GεB : GFGB ! GB) K(A f
−! B) ≜ GA

Gf
−! GB.
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Claim 3.1. K is a well-defined functor B ! AT making diagram (3.16) commute.

(1) Unit property is satisfied, i.e. diagram (3.8) commutes for T = GF

αB ◦ ηGB = GεB ◦ ηGB = idGB

by the triangular identity Gε ◦ ηG = idG.

(2) Action property is satisfied, i.e. diagram (3.9) commutes for T = GF

αB ◦ µGB = GεB ◦ GεFGB = G (εB ◦ εFGB) = G (εB ◦ FGεB) = GεB ◦ TαB,

where the middle equality is the horizontal composition for ε in an adjunction, i.e. the
monad associativity µ ◦ Tµ = µ ◦ µT unfolded at GB.

K also preserves algebra morphisms. For f : B ! B′,

Kf ◦ αB = Gf ◦ GεB = GεB′ ◦ GFGf = αB′ ◦ TGf,

by naturality of ε : FG ⇒ idB.
To see the uniqueness of K, suppose K′ : B ! AT satisfies GTK′ = G and

K′F = FT. Then for each a ∈ B, the underlying object of K′a must be Ga, so
K′a = (Ga, ha) for some ha : TGa ! Ga. Because K′ is a map of adjunctions from
(F,G, η, ε) to (FT,GT, η, eT) with identity on A, we have the compatibility

K′ε = eTK′,

hence at a we get ha = Gεa. Thus K′ = K objectwise and on morphisms (GTK′ =
G forces K′f = Gf). Therefore K is unique.

Similarly, we construct J : AT ! B as follows.

JA ≜ FA J(A f
−! TB) ≜ FA εFB◦Ff

−! FB.

the proof that J is a well-defined functor making diagram (3.16) commute and
that J is unique is a routine check similar to that of K.

Combining theorem 3.4 and the definition of comparison functor K : B ! AT,
we immediately get the following proposition.

Proposition 3.1. Let B = AT, then the comparison functor K : B ! AT is full and
faithful and its image consists of free T-algebras.
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We conclude this chapter with the definition of monadicity, the main topic of this
thesis, which describes a property that metrizes how much an adjunction behaves
like the canonical adjunction

FT ⊣ GT : A ! AT

induced by its associated monad T.

Definition 3.8 (Monadicity [Rie17]). An adjunction F ⊣ G : A ! B is called
monadic if the comparison functor K : B ! AT is an equivalence of categories.
Moreover, a functor G : B ! A is called monadic if it admits a left adjoint F such
that F ⊣ G is monadic. If the equivalence is further an isomorphism, then the
adjunction is called strictly monadic, and so is the functor G.
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Chapter 4

Monadicity Theorems

We gave the definition of monadic adjunctions and monadic functors in the end
of chapter 3, which are adjunctions that behave like the free-forgetful adjunctions
arising from the Eilenberg-Moore construction. However, several natural ques-
tions remain:

(1) Why do we care about this?
(2) How can we tell if a given adjunction is monadic?

To answer the first question, an intuitive answer is that monadic adjunctions
reveal deep connections between seemingly different mathematical structures. In
fact, every category determined by an algebraic theory presented by operations
and equations, for example Grp of groups and Mon of monoids, has a free and
forgetful adjunction over Set that is monadic. Moreover, beyond these algebraic
examples, some nonalgebraic categories, such as CHaus of compact Hausdorff
spaces, are also monadic. The connection between monadicity and algebraicity
will be elaborated in chapter 5.

As for the second question, Jonathan Mock Beck provided a criterion in his
Ph.D. thesis [Bec03] in 1967, originally known as Tripleability Theorem (because
monads were called triples at that time), and later popularized by Michael Barr
and Charles Wells in their book Toposes, Triples and Theories [BW00]. It turns out
that whether an adjunction is monadic can be determined by certain preservation
and exactness conditions, now known as the Barr-Beck Monadicity Theorem. In this
chapter, we will provide detailed intuition on coequalizers in section 4.1, which is
essential to understanding the exactness conditions in the Barr-Beck Monadicity
Theorem, and then present the theorem itself with various weaker variants in sec-
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tion 4.2. Finally, we illustrate the utility of these monadicity theorems by present-
ing several examples of monadic adjunctions in section 4.3.

4.1 Epimorphisms and Coequalizers
We begin with epimorphisms and coequalizers, since they play an important role
in a family of monadicity theorems. A helpful analogy is the First Isomorphism
Theorem in group theory: a surjective group homomorphism φ : G ! H induces
an isomorphism

G/ kerφ ∼= Imφ = H.

We know that essentially the same statement holds for rings and modules.
As we have seen in sections 2.1 and 2.2, epimorphisms capture and general-

ize the essence of surjective maps, while coequalizers capture and generalize the
essence of quotient constructions. Beck’s Monadicity Theorem says that a left ad-
joint G is monadic if and only if it respects such quotient structure to an appropri-
ate extent. More precisely, different monadicity theorems focus on different kinds
of quotient structures, and these correspond to different kinds of coequalizers. In
this section, we study and clarify the relationships among these various notions of
epimorphism and coequalizer, aimed at providing an intuitive understanding of
their roles in the monadicity theorems presented later in this chapter.

4.1.1 Coequalizers
The concept of coequalizer in a general category is the generalization of the con-
struction where for two functions f, g : X ! Y between sets X and Y , one forms
the set Y/∼ of equivalence classes induced by the equivalence relation generated
by the relation f(x) ∼ g(x) for all x ∈ X . This means that the quotient function
q : Y ! Y/∼ satisfies

q ◦ f = q ◦ g

In this form this may be phrased generally in any category.
Recall in definition 2.14 we have defined a coequalizer of a parallel pair of mor-

phisms in terms of a colimit and universal property, but in order to understand
the role of coequalizers in monadicity, we need to understand the intrinsic prop-
erties of coequalizers in more detail. Coequalizers are defined on a parallel pair of
morphisms called a fork.
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Definition 4.1 (fork). A fork in a category A is a diagram

X Y Q
f

g

q (4.1)

in A with q ◦ f = q ◦ g, where f, g : X ⇒ Y are morphisms in A. Sometimes we
call diagram (4.1) a cofork in order to distinguish from the diagram (4.2)

A X Ya
f

g
(4.2)

Through this thesis, we use the term fork to refer to diagram (4.1).

When f and g are clear from the context, we also call the morphism q a fork of f
and g. Obviously there is an underlying fork in the diagram of a coequalizer. We
can make this more explicit as follows.

Definition 4.2 (Coequalizer). Let

X Y Q
f

g

q (4.3)

be a fork in a category A. This diagram is said to be a coequalizer of f and g if q is
universal for this property, that is, for any other morphism h : Y ! Z such that
h ◦ f = h ◦ g, there exists a unique morphism z : Q ! Z such that h = z ◦ q. In
particular, diagram (4.4) commutes.

X Y Q

Z

f

g

q

h
z (4.4)

Similarly, when f and g are clear from the context, we also call q the coequalizer of
f and g, denoted by q = coeq(f, g). Coequalizers are colimits, thus unique up to
isomorphism when they exist.

Example 4.1 (Coequalizers in Grp). Let us consider the category of groups Grp.
Given a parallel pair of group homomorphisms f, g : X ⇒ Y , the coequalizer is
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given by quotient map q = y 7! yN from Y to the quotient group Y/N where N is
the normal closure in group Y defined as:

N = nclY {f−1(x)g(x) | x ∈ X}

We need to check the two requirements of q to be a coequalizer:

(1) q ◦ f = q ◦ g: For any x ∈ X , we have q(f(x)) = f(x)N and q(g(x)) = g(x)N .
Since f−1(x)g(x) ∈ N , we have f(x)N = g(x)N .

(2) Universal property: Given any group homomorphism h : Y ! Z such that
h ◦ f = h ◦ g, we need to show that there exists a unique homomorphism
h : Y/N ! Z such that h = h ◦ q. This is true because N ⊆ kerh, so h factors
uniquely through the quotient map.

4.1.2 Epimorphisms
A coequalizer can be intuitively understood as the quotient or projection map, in-
duced by identifying elements according to the enforced relation. Since quotient
maps are known to be surjective in Set or Grp, and this is also the case in general
categories. In particular, coequalizers are epimorphisms.

Definition 4.3 (Regular Epimorphism). A morphism h : Y ! Z is called a regular
epimorphism if it is the coequalizer of some parallel pair of morphisms f, g : X ⇒ Y .

X Y Z
f

g

h (4.5)

Lemma 4.1. Regular epimorphisms are epimorphisms.

Proof. Let h : Y ! Z be the coequalizer of f, g : X ⇒ Y . To show h is an epi-
morphism, we must show that for any pair of morphisms k1, k2 : Z ! W , if
k1 ◦h = k2 ◦h, then k1 = k2. The equation k1 ◦h = k2 ◦h implies that the morphism
k1 ◦ h : Y ! W coequalizes f and g, since (k1 ◦ h) ◦ f = k1 ◦ (h ◦ f) = k1 ◦ (h ◦ g) =
(k1 ◦ h) ◦ g. By the universal property of the coequalizer h, there exists a unique
morphism z : Z ! W such that z ◦ h = k1 ◦ h. Both k1 and k2 are candidates for
this unique morphism z. Therefore, by uniqueness, we must have k1 = k2.

Regular epimorphisms are indeed epimorphisms, and an even stronger class
of epimorphisms is split epimorphisms, which have a section (i.e. a right inverse).
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Definition 4.4 (Split Epimorphism). A split epimorphism in a category A is a mor-
phism e : A! B in A such that e has a section s : B ! A. In this case, we say e is a
retraction of s, B is a retract of A, and the pair (e, s) is a splitting of the idempotent
s ◦ e : A! A.

Lemma 4.2. Split epimorphisms are regular epimorphisms.

Proof. Every split epimorphism e : A ! B with section s : B ! A automatically
comes with the coequalizer of the parallel pair (idA, s ◦ e):

A A B
s◦e

idA

e

s

(4.6)

Fix a category A, let E, R and S be the class of epimorphisms, regular epimor-
phisms and split epimorphisms inA respectively. We have the following hierarchy:

E

R

S

⊆
⊆

4.1.3 Absolute, Split and Reflexive Coequalizers
A natural next question is how these structures behave when a functor is applied,
and in this section we care about functorial actions over coequalizers in particular.
A better scenario for a coequalizer is being stable under the action of more functors,
and the best such coequalizers are called absolute coequalizers. There are three
main actions of functorials that we consider: preservation, reflection, and creation.

Definition 4.5 (Actions of Functors over Coequalizers). Fix a pair of morphisms
f, g : X ⇒ Y in A. A functor F : A ! B is said to

(1) preserve coequalizers for this pair if
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q is a coequalizer of f, g
⇓

Fq is a coequalizer of Ff,Fg

(2) detect coequalizers for this pair if

Ff,Fg has a coequalizer
⇓

f, g has a coequalizer

(3) reflect coequalizers for this pair if

q coequalizes f, g and Fq is a coequalizer of Ff,Fg
⇓

q is a coequalizer of f, g

(4) create coequalizers for this pair if

Ff,Fg has a coequalizer q
⇓

∃! fork p of f, g s.t. p is a coequalizer of f, g and Fp ∼= q

where ∃! means unique existence up to isomorphism. Moreover if the exis-
tence is unique up to equality, then we say F strictly creates coequalizers for
this pair.

Note the subtlety between creation and strict creation in definition 4.5: Strict cre-
ation requires the lifted coequalizer to be exactly the given one under the functor,
while creation only requires them to be isomorphic.

The definition of preservation and reflection of coequalizers are intuitive, but cre-
ation of coequalizers is a bit more involved. In fact, there is an equivalent way to
define creation of coequalizers that is much more clear and reveals the relationship
among these actions more clearly.

Lemma 4.3. Let S be a collection of parallel pairs of morphisms in a category A, and let
F : A ! B be a functor. Then (1) and (2) are equivalent.

(1) A has, F preserves and reflects coequalizers for all pairs in S.
(2) B has coequalizers for all pairs (Ff,Fg) with (f, g) ∈ S, and F creates coequalizers

for all pairs in S.
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Proof. Fix a pair (f, g) ∈ S with f, g : X ⇒ Y .
(1) ⇒ (2). Assume (1). Since A has coequalizers for pairs in S, pick a coequal-

izer p : Y ! A of f, g in A. Because F preserves these coequalizers, the morphism

Fp : FY −! FA

is a coequalizer of Ff,Fg in B, so B has coequalizers of all pairs (Ff,Fg) with
(f, g) ∈ S.

To see the creation, suppose q : FY ! Q is a coequalizer of Ff,Fg in B, then q
and Fp are isomorphic via an isomorphismα : Q! FA, and p is such a coequalizer
of f, g in A that Fp ∼= q. with α ◦ q = Fp. Equivalently, α−1 : FA ! Q is an
isomorphism such that α−1 ◦ Fp = q. To see the uniqueness of p as a fork of f, g,
Let h : Y ! C be any morphism in A such that Fh is a coequalizer of Ff,Fg in B.
Since F reflects coequalizers by (1), it follows that h is a coequalizer of f, g in A.
Hence (2) holds.

(2) ⇒ (1). Assume (2). For our fixed pair (f, g) ∈ S, choose a coequalizer
q : FY ! Q of Ff,Fg in B which exists by assumption. By the creation property,
there is a coequalizer p : Y ! A of f, g in A and an isomorphism α : FA! Q with
α ◦ Fp = q. Thus A has a coequalizer of f, g.

To see that F preserves these coequalizers, let p′ : Y ! A′ be any coequalizer
of f, g in A. Applying F we obtain Fp′ : FY ! FA′. Since coequalizers are unique
up to unique isomorphism in B and q is a coequalizer of Ff,Fg, there exists an
isomorphism β : FA! FA′ such that β ◦ Fp = Fp′. Because Fp is a coequalizer of
Ff,Fg, so is Fp′. Hence F preserves the coequalizer of f, g.

Finally, to see that F reflects coequalizers for (f, g), let h : Y ! C be a fork such
that Fh is a coequalizer of Ff,Fg in B. By creation, h is then a coequalizer of f, g
in A. Since (f, g) was arbitrary in S, A has coequalizers for all pairs in S, and F
preserves and reflects them.

Lemma 4.3 can be intuitively understood as follows: assuming that coequaliz-
ers exist (for the relevant pairs) in both the domain and codomain categories, a
functor preserves and reflects those coequalizers if and only if it creates them.

What are coequalizers that behave well under functorial actions? One of the
robust coequalizers are those that are preserved by all functors. This property is
called absoluteness.

Definition 4.6 (Absolute Coequalizer). A coequalizer is called absolute if it is pre-
served by all functors.

Definition 4.6 itself, however, does not provide us any information about which
coequalizers are absolute. However, by adding a few conditions to coequalizers or
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even forks, will give rise to some well-behaved absolute coequalizers. A split fork
or split coequalizer is a sufficient condition for being an absolute coequalizer.

Definition 4.7 (Split Coequalizer). A split fork is a fork (4.1) with two additional
splitting morphisms

X Y Q
f

g

q

s t

(4.7)

such that
q ◦ f = q ◦ g f ◦ s = idB g ◦ s = t ◦ q q ◦ t = idQ

A split fork is also called a split coequalizer. When it is clear from the context, we
also call q the split coequalizer of this split fork. Note that a split coequalizer is
indeed a coequalizer.

Proof of well-definedness. Let the split fork be given in diagram (4.7), with splitting
morphisms s : Y ! X and t : Q ! Y . Suppose we have a morphism h : Y ! Z
such that h ◦ f = h ◦ g.
Claim 4.1. z = h ◦ t : Q! Z is the unique morphism such that h = z ◦ q.

z ◦ q = (h ◦ t) ◦ q
= h ◦ (t ◦ q)
= h ◦ (g ◦ s)
= (h ◦ g) ◦ s
= (h ◦ f) ◦ s
= h ◦ (f ◦ s)
= h ◦ idY
= h

To see the uniqueness, suppose there is another morphism z′ : Q ! Z such
that h = z′ ◦ q. Then:

z = h ◦ t
= (z′ ◦ q) ◦ t
= z′ ◦ (q ◦ t)
= z′ ◦ idQ
= z′
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Lemma 4.4. Split coequalizers are absolute coequalizers.

Proof. Let F : A ! B be any functor and let q : Y ! Q be a split coequalizer of
f, g : X ! Y with splitting morphisms s : Y ! X and t : Q ! Y . The defining
identities are

q ◦ t = idQ f ◦ s = idY g ◦ s = t ◦ q

Applying the functor F preserves these identities:

Fq ◦ Ft = idFQ Ff ◦ Fs = idFY Fg ◦ Fs = Ft ◦ Fq

This means the resulting diagram in B is also a split fork, and thus a coequalizer.
In particular, Fq is a split coequalizer of Ff and Fg in B.

The notion of splitting is ubiquitous in algebra: it captures when a morphism
admits a right inverse. Readers with familiarity with homological algebra may have
seen this in the context of split short exact sequences. In fact, a split short exact se-
quences give rise to a split coequalizer, and the reason is the underlying split epi-
morphism.

Example 4.2 (Split Epimorphisms give rise to split coequalizers). Given a category
A and a split epimorphism π : B ! C with a section s : C ! B. Then π is a
coequalizer of the parallel pair

s ◦ π, idB : B ⇒ B.

In particular, the diagram (4.8) is a split fork:

B B C
idB

s◦π
π

idB
s

(4.8)

The proof is a straightforward check of the four conditions of a split fork in defini-
tion 4.7. Let f = idB, g = s ◦ π, q = π, t = idB, and s be the section of π. We verify
the required identities:

(1) q ◦ f = π ◦ idB = π = π ◦ (s ◦ π) = q ◦ g

(2) f ◦ s = idB ◦s = s

(3) g ◦ s = (s ◦ π) ◦ s = s ◦ (π ◦ s) = s ◦ idC = s = t ◦ q

(4) q ◦ t = π ◦ idB = π = idC



49

This construction also aligns with lemma 4.2 which states that split epimorphisms
are regular epimorphisms.

In fact, split epimorphisms appear quite frequently in algebraic contexts. For
example consider a split short exact sequence of R-modules for a ring R:

1 A B C 1φ ψ

s

with a section s : C ! B of ψ, a known result in homological algebra 1 states
that ψ : B ! C is a epimorphism, then ψ is a split epimorphism, and a similar
argument as in example 4.2 shows that ψ gives rise to a split coequalizer.

B B C
idB

s◦ψ

ψ

idB
s

One of the most important examples of split coequalizers arises from monad
algebras, called Beck’s coequalizers. Every monad algebra induces a split coequalizer
diagram in the underlying category.

Example 4.3 (Beck’s Coequalizer). Given a monad (T, η, µ) on a category A, any
monad algebra (A,α : TA! A) defines a split coequalizer diagram (4.3) in A:

TTA TA A
Tα

µA

α

ηTA
ηA

(4.9)

To see that this is indeed a split coequalizer, we verify the four required identities:

(1) α ◦ Tα = α ◦ µA by the associativity axiom of monad algebras.

(2) Tα ◦ ηTA = idTA by the unit axiom of monad algebras.

(3) µA ◦ ηTA = idTA by the monad axiom.

(4) α ◦ ηA = idA by the unit axiom of monad algebras.

This example also illustrates an important conclusion that aligns with what we
have learnt in algebra courses: every (monad) algebra is a quotient of some free
(monad) algebra.

1We did not define exact sequence rigorously in Category Theory
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In addition to split coequalizers, another important class of well-behaved co-
equalizers are reflexive coequalizers, which are coequalizers of reflexive pairs.

Definition 4.8 (Reflexive Pair). A reflexive pair is a parallel pair f, g : A⇒ B having
a common section, that is, a morphism s : B ! A such that f ◦ s = g ◦ s = idB. The
coequalizer of a reflexive pair is called a reflexive coequalizer.

Why do we care about these variants of coequalizers? It turns out that variants
of monadicity theorems, which we will discuss in section 4.2, often require different
functorial behaviors of different types of coequalizers. For instance, the Reflexive
Monadicity Theorem requires the existence and preservation of reflexive coequaliz-
ers by the relevant functor.

4.2 Monadicity Theorems
In this section, we present several formulations of the monadicity (tripleability) the-
orem, which gives necessary and sufficient conditions for a functor to be monadic.
We begin with Beck’s classical theorem and then discuss variations.

4.2.1 Weak Monadicity Theorems
We now establish a convenient criterion, the Weak Monadicity Theorem or Wtt2,
originally due to Beck [Bec03], that breaks the verification of monadicity into parts.

Theorem 4.1 (Weak Monadicity Theorem, Wtt [Bec03, Theorem 1]). Let F ⊣ G :
A ! B be an adjunction, then G is monadic if

(1) B has all coequalizers.
(2) G preserves all coequalizers.
(3) G reflects all isomorphisms.

A functor is called conservative if it reflects all isomorphisms.

Proof. The proof strategy is by showing that

(1) ⇒ the comparison functor K : B ! AT admits a left adjoint L.
(1)(2) ⇒ the unit ηL : idAT =⇒ KL is a natural isomorphism.

2The first “T” stands for Tripleability, an antiquated synonym for Monadicity
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(1)(2)(3) ⇒ the counit εL : LK =⇒ idB is a natural isomorphism.

(1) We construct the left adjoint L : AT ! B by exhibiting a natural isomorphism
for each T-algebra (A,α) and object B in B:

AT((A,α),K−) ∼= B(L(A,α),−)
Recall from theorem 3.5 that the comparison functor K : B ! AT is defined by

KB = (GB,GεB : TGB ! GB) .
so a morphism h ∈ AT((A,α),KB) is determined by its underlying arrow h : A!
GB in A satisfying the T-algebra homomorphism condition

h ◦ α = GεB ◦ Th,

that is, diagram (4.10) should commute:

TA TGB

A GB.

Th

α GεB

h

(4.10)

Claim 4.2. a morphism h in A satisfies (4.10) if and only if its adjunct via F ⊣ G
coequalizes the pair of morphisms

FTA FA
εFA

Fα

Proof of claim 4.2. Denote the natural isomorphism of adjunction F ⊣ G by

⌊−⌋ : B(FA,B) ∼= A(A,GB) : ⌈−⌉

we know from theorem 2.1 that the morphism h in A corresponds uniquely to its
adjunct

⌈h⌉ = εB ◦ Fh : FA! B

in B, so
h ◦ α = GεB ◦ Th

⇐⇒ ⌈h ◦ α⌉ = ⌈GεB ◦ Th⌉
⇐⇒ εB ◦ F(h ◦ α) = εB ◦ F(GεB ◦ Th)
⇐⇒ (εB ◦ Fh) ◦ Fα = (εB ◦ FGεB) ◦ FTh
⇐⇒ ⌈h⌉ ◦ Fα = (εB ◦ FGεB) ◦ FGFh
⇐⇒ ⌈h⌉ ◦ Fα = εB ◦ FG(εB ◦ Fh)
⇐⇒ ⌈h⌉ ◦ Fα = εB ◦ FG⌈h⌉
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By the naturality of ε, for any morphism k : FA! B in B, we have

εB ◦ FGk = k ◦ εFA.

In this case let k = ⌈h⌉ = εB ◦ Fh, then

⌈h⌉ ◦ Fα = εB ◦ FG⌈h⌉ ⇐⇒ ⌈h⌉ ◦ Fα = ⌈h⌉ ◦ εFA

i.e. h satisfies (4.10) if and only if ⌈h⌉ coequalizes the pair (Fα, εFA).

From claim 4.2, we have a natural bijection

AT((A,α),KB) ∼= {⌈h⌉ : FA! B | ⌈h⌉ ◦ Fα = ⌈h⌉ ◦ εFA} (4.11)

By hypothesis, B has coequalizers. Let

q(A,α) : FA! coeq(Fα, εFA)

denote the coequalizer of the above parallel pair. By the universal property of the
coequalizer, every morphism ⌈h⌉ : FA ! B that coequalizes (Fα, εFA) factors
uniquely through q(A,α), so we have another natural bijection

{⌈h⌉ : FA! B | ⌈h⌉ ◦ Fα = ⌈h⌉ ◦ εFA} ∼= B(coeq(Fα, εFA), B). (4.12)

Combining (4.11) and (4.12), we obtain a natural isomorphism

AT((A,α),KB) ∼= B(coeq(Fα, εFA), B). (4.13)

Define L(A,α) := coeq(Fα, εFA) via the coequalizer diagram

FGFA FA L(A,α)
εFA

Fα

q(A,α) (4.14)

The natural isomorphism (4.13) shows that L(A,α) represents the functor

AT((A,α),K−)

which extends uniquely to a functor L : AT ! B left adjoint to K.
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(2) Now assume G preserves coequalizers. We want to show the unit

ηL : idAT =⇒ KL

is a natural isomorphism. Since G preserves coequalizers, applying G to the co-
equalizer diagram (4.14) yields another coequalizer in A:

GFGFA GFA GL(A,α)
GεFA

GFα

Gq(A,α) (4.15)

i.e.
T2A TA GL(A,α)

µA

Tα

Gq(A,α) (4.16)

But recall from example 4.3 that the T-algebra structure map α : TA! A is also a
coequalizer (Beck’s coequalizer) of the same parallel pair (Tα, µA), so there must
exist a unique isomorphism i : A! GL(A,α) in A such that diagram (4.17) com-
mutes:

TA A

GL(A,α)

α

Gq(A,α)
i (4.17)

The unit ηL
(A,α) : (A,α) ! KL(A,α), is a morphism in AT thus a T-algebra homo-

morphism whose underlying arrow in A is precisely this isomorphism i. Since a
morphism of T-algebras whose underlying arrow is an isomorphism is itself an
isomorphism in AT, it follows that ηL

(A,α) is an isomorphism. As this holds for any
algebra (A,α), the unit ηL is a natural isomorphism.

(3) Next, assume G is conservative. We want to show that the counit

εL : LK =⇒ idB

is a natural isomorphism. Recall from (1) that L(A,α) is defined as the coequalizer
of the pair (Fα, εFA). Apply L to the T-algebra KB = (GB,GεB), then the object
LKB is the coequalizer of the pair

FTGB FGB
FGεB

εFGB

(4.18)
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with the coequalizer map denoted by qB : FGB ! LKB. By the naturality of ε,

εB ◦ FGεB = εB ◦ εFGB.

i.e. εB coequalizes the pair in diagram (4.18). By universal property of coequaliz-
ers, the counit εL

B is the unique morphism making diagram (4.19) commute:

FGFGB FGB LKB

B

FGεB

εFGB

qB

εB
εL

B
(4.19)

The commuting triangle gives the identity εL
B ◦ qB = εB. Applying the functor G

to this equation yields:
GεL

B ◦ GqB = GεB

Now we analyze the morphisms in A. By (2), G preserves the above coequalizers.
Hence

GFGFGB GFGB GLKB
GFGεB

GεFGB

GqB

is a coequalizer in A, i.e.

T2GB TGB GLKB
TGεB

µGB

GqB (4.20)

is a coequalizer in A. By Beck’s coequalizer, GεB : TGB ! GB, which is the
T-algebra structure map on KB, is also a coequalizer of diagram (4.20), so GεL

B

must be an isomorphism in A. Since G reflects isomorphisms, it follows that εL
B is

an isomorphism in B.

By definition K is an equivalence of categories, i.e. G is monadic.

Theorem 4.1 is not the original formulation in Beck’s thesis, but a modernized
version by Mac Lane [ML98]. In fact, we can make this theorem even more sym-
metric by replacing theorem 4.1(3) with a reflection of coequalizers. This is true
by noticing that a functor reflecting all coequalizers is necessarily conservative.

Lemma 4.5. If functor G : B ! A reflects all coequalizers, then G is conservative.
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Proof. Let f : B ! B′ be a morphism in B such that Gf is an isomorphism in A.
Note that an isomorphism is the coequalizer of the identity pair, and specifically,
Gf is the coequalizer of the pair

(idGB, idGB) = (G idB,G idB)

Since G reflects coequalizers, the fact that Gf is the coequalizer of (G idB,G idB)
implies that f must be the coequalizer of (idB, idB) in B, which is necessarily an
isomorphism: If q = coeq(id, id), then q ◦ id = q ◦ id. For any h with h ◦ id = h ◦ id,
there is a unique u such that u ◦ q = h. Setting h = id gives a unique i such that
i ◦ q = id. Since q is epi, q ◦ i = id follows. Thus q is an iso. Therefore, f is an
isomorphism.

Theorem 4.2 (Weak Monadicity Theorem, Wtt∗ [ML98, Exercise VI.7.2]). Let F ⊣
G : A ! B be an adjunction, then G is monadic if

(1) B has all coequalizers.
(2) G preserves all coequalizers.
(3) G reflects all coequalizers.

Proof. By theorem 4.1 and lemma 4.5.

So far we can conclude that theorem 4.2 is stronger (at least not weaker) than the-
orem 4.1. We phrase this by saying:

Functor G has Wtt ⇒ G has Wtt∗.

In fact, the converse is also true, which asserts Wtt and Wtt∗ are equivalent con-
ditions.

Lemma 4.6. A conservative functor reflects any coequalizers that it preserves.

Proof. Let F : A ! B be a conservative functor. Suppose a parallel pair f, g :
X ⇒ Y has a coequalizer p : Y ! P in A and that F preserves it, so Fp is the
coequalizer of (Ff,Fg) in B. Let q : Y ! Q be any other morphism in A such that
Fq = coeq(Ff,Fg). Since both Fp and Fq are coequalizers of the same pair in B,
by the uniqueness of colimits, there exists a unique isomorphism h : FP ! FQ
such that h ◦ Fp = Fq. Back in A, since p is the coequalizer of (f, g), and q is a
fork for this pair (because F is faithful as it reflects isomorphisms), the universal
property of p guarantees that there exists a unique morphism k : P ! Q such that
k ◦ p = q. Applying F to this last equation gives Fk ◦ Fp = Fq. Comparing this
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with the equation from B, we have Fk ◦ Fp = h ◦ Fp. Since Fp is a coequalizer, it is
an epimorphism, so we get Fk = h. Since h is an isomorphism, so is Fk. Because
F is conservative, the morphism k must be an isomorphism in A. Thus, q = p ◦ k
is the composite of a coequalizer and an isomorphism, which means q is itself a
coequalizer. This shows that F reflects the coequalizer.

Proposition 4.1. Functor G has Wtt if and only if it has Wtt∗.

Proof. We have seen that G having Wtt∗ implies it has Wtt by lemma 4.5. Con-
versely, if G has Wtt, then by lemma 4.6, G reflects all coequalizers, so it has
Wtt∗.

4.2.2 Precise Monadicity Theorems
It is not until now that we arrive at the core result originally due to Beck. The-
orem 4.1 is termed weak because it requires stronger preconditions than strictly
necessary–G has to create all coequalizers– while the following theorem gives a
precise characterization of monadicity by weakening the preconditions, also known
as the Precise Monadicity Theorem or Ptt. Instead of requiring G to create all co-
equalizers, it only needs to create coequalizers of a special class of parallel pairs,
called G-split pairs.

Definition 4.9 (G-split pair). For a functor G : B ! A, a parallel pair f, g : B1 ⇒
B2 in B is called a G-split pair if the pair (Gf,Gg) has a split coequalizer in A.

Theorem 4.3 (Precise Monadicity Theorem, Ptt [BW00, Theorem 3.3.14]). Let F ⊣
G : A ! B be an adjunction, then G is monadic if and only if the following conditions
hold:

(1) B has coequalizers of all G-split pairs.
(2) G is conservative.
(3) G preserves coequalizers of all G-split pairs.

Proof. (⇒) We show that these conditions are sufficient to satisfy the hypotheses
of theorem 4.1, which in turn implies that G is monadic.

(1) asserts that B has coequalizers for all G-split pairs. Let L be the quasi-inverse
of K, recall that L(A,α) is defined as the coequalizer of Fα and εFA. Applying G
to this pair yields the pair

(GFα,GεFA) = (Tα, µA)
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This pair is part of the standard Beck’s (split) coequalizer diagram involving TηA
and ηTA. Therefore, this pair is G-split, so by hypothesis (1), its coequalizer exists
in B and is preserved by G. Thus, the condition in theorem 4.1 for the existence of
L is satisfied.
(2) satisfies theorem 4.1(3) for the counit of the adjunction L ⊣ K to be an iso-
morphism.
(3) asserts that G preserves these coequalizers, by theorem 4.1(2) the unit of the
adjunction L ⊣ K is an isomorphism. One subtlety is that we are not applying G
to all coequalizers in B, but only to those of G-split pairs, but the proves for both
cases are identical.

All necessary conditions of Wtt are met, so G is monadic.

(⇐) If G is monadic, there exists an equivalence B ≃ AT under which G corre-
sponds to the forgetful functor GT : AT ! A.

(2) GT reflects isomorphisms. Let h : (A,α) ! (B, β) be a morphism of T-
algebras such that the underlying morphism h is an isomorphism in A. We must
show that h−1 is also a morphism of T-algebras. Since h is a homomorphism, we
have

h ◦ α = β ◦ Th

Since h is an isomorphism in A, h−1 exists. Pre-composing with h−1 and post-
composing with (Th)−1 = Th−1 yields:

α ◦ T(h−1) = h−1 ◦ β

This is precisely the condition for h−1 : (B, β) ! (A,α) to be a T-algebra mor-
phism. Thus, h is an isomorphism in AT. Since the choice of h is arbitrary, GT

reflects isomorphisms.

(1) GT has all coequalizers of GT-split pairs and preserves them. Let f, g : (A,α)⇒
(B, β) be a pair of T-algebra morphisms. Suppose the underlying pair f, g in A has
a split coequalizer.

A B Q
f

g

q

t s
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Since split coequalizers are absolute, applying T yields a split coequalizer diagram
in A:

TA TB TQ
Tf

Tg

Tq

Tt Ts

Consider the map q ◦ β : TB ! Q, it coequalizes (Tf,Tg) because

(q ◦ β) ◦ Tf = q ◦ f ◦ α = q ◦ g ◦ α = (q ◦ β) ◦ Tg

Since Tq is a coequalizer, by the universal property, there exists a unique morphism
γ : TQ! Q such that γ ◦ Tq = q ◦ β. The pair (Q, γ) forms a T-algebra, because

1. Unit. We need γ ◦ ηQ = idQ.

γ ◦ ηQ ◦ q = γ ◦ Tq ◦ ηB = q ◦ β ◦ ηB = q ◦ idB = q

Since q is a split epimorphism, we have γ ◦ ηQ = idQ.
2. Associativity. Similarly, γ◦Tγ = γ◦µQ is true pre-composing with T2q (which

is epimorphic).

Finally, the equation γ ◦ Tq = q ◦ β states exactly that q : (B, β) ! (Q, γ) is a
homomorphism. Since GT creates limits, q is the coequalizer in AT.

Again, we can apply lemma 4.3 to rewrite preconditions of Ptt into several
equivalent forms as in theorems 4.4 and 4.5.

Theorem 4.4 (Precise Monadicity Theorem, Ptt⋄). Let F ⊣ G : A ! B be an
adjunction, then G is monadic if and only if the following conditions hold:

(1) B has coequalizers of all G-split pairs.
(2) G preserves coequalizers of all G-split pairs.
(3) G reflects coequalizers of all G-split pairs.

Proof. (⇒) The proof follows a similar strategy as in theorem 4.1. The idea is still
to show that

(1) ⇒ the comparison functor K : B ! AT admits a left adjoint L.
(1)(2) ⇒ the unit ηL : idAT =⇒ KL is a natural isomorphism.
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(1)(2)(3) ⇒ the counit εL : LK =⇒ idB is a natural isomorphism.

(1) We follow the construction of the left adjoint L from Wtt. Recall from the-
orem 4.1 that L(A,α) is defined as the coequalizer of the pair (Fα, εFA) in B. In
Wtt, we assumed B had all coequalizers. Here, we simply check if this specific
pair falls under hypothesis (1).
Applying G to the pair (Fα, εFA) yields the pair (GFα,GεFA) = (Tα, µA). Again,
it is part of the standard split coequalizer diagram for an algebra in A:

T2A TA A
µA

Tα

α

ηTA ηA

(4.21)

By hypothesis (1), the coequalizer q(A,α) : FA ! L(A,α) exists in B. The rest of
the construction of L remains identical to Wtt.
(2) We must show the unit ηL is an isomorphism. In the proof of Wtt, this relied
on G preserving the coequalizer of (Fα, εFA). As established in step (1), this pair
is G-split. Hypothesis (2) states that G preserves coequalizers of all G-split pairs.
Therefore, the image of the coequalizer diagram under G:

T2A TA GL(A,α)
µA

Tα

Gq(A,α)

is indeed a coequalizer in A. From this point, the proof is verbatim identical to
Wtt.
(3) Finally, we show the counit εL

B is an isomorphism. Recall from Wtt that LKB
is defined as the coequalizer of the pair (FGεB, εFGB). In Wtt, we used the fact
that G reflects isomorphisms. Here, we use the reflection of coequalizers.
First, observe that this pair is G-split. Applying G gives (GFGεB,GεFGB) =
(TGεB, µGB). This is the presentation of the free algebra on GB, which admits
a split coequalizer in A that is contractible to GB via GεB. Since the image under
G is a coequalizer diagram, and the pair is G-split, hypothesis (3) implies that the
original diagram in B is a coequalizer:

FGFGB FGB B
εB (4.22)

However, by definition of L, the object LKB is also the coequalizer of this exact
pair. Since colimits are unique up to unique isomorphism, there exists a unique
isomorphism LKB ∼= B. By the universal property, this isomorphism is exactly
the counit εL

B.
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Thus, G is monadic.
(⇐) When G is monadic, by theorem 4.3, theorem 4.4(1) is satisfied. Also the-
orem 4.3(2) ensures that G is conservative, and theorem 4.3(3) ensures that G
preserves coequalizers of all G-split pairs, so theorem 4.4(2) is satisfied. Finally,
by lemma 4.6, G reflects coequalizers of all G-split pairs, so theorem 4.4(3) is also
satisfied.

Theorem 4.4 shows in a direct way that what is precise about Ptt comparing
to Wtt–it only requires B to have and G to preserve and to reflect coequalizers
of a particular class of pairs, rather than all pairs. There is another equivalent
formulation of Ptt, which is often referred to as the standard formulation of Beck’s
Precise Monadicity Theorem, presented in theorem 4.5.

Theorem 4.5 (Precise Monadicity Theorem, Ptt∗). Let F ⊣ G : A ! B be an
adjunction, then G is monadic if and only if G creates coequalizers of all G-split pairs.

Proof. By theorem 4.3, G is monadic if and only if theorem 4.3(2)(1)(3) are satis-
fied.
(Ptt ⇒ Ptt∗)
By lemma 4.6, theorem 4.3(2) and theorem 4.3(3) implies that G reflects coequal-
izers of all G-split pairs. By lemma 4.3, this implies that G creates coequalizers of
all G-split pairs.

(Ptt∗ ⇒ Ptt⋄)
Note thatA has coequalizers of all pairs (Gf,Gg) where (f, g) is a G-split pair inB,
because a pair (f, g) in B is G-split if (Gf,Gg) has a split coequalizer in A, thus a
coequalizer certainly exists. So by lemma 4.3, Ptt∗ is equivalent to the conjunction
of theorem 4.3(1)(3) and that G reflects coequalizers of all G-split pairs, which is
exactly the condition of theorem 4.4.

(Ptt⋄ ⇔ Ptt)
As shown in theorem 4.4, Ptt⋄ is equivalent to Ptt.

Another precide monadicity theorem was presented on [ML98], which allows
us to replace split coequalizers with absolute coequalizers.

Theorem 4.6 (Precise Monadicity Theorem, Ptt•). Let F ⊣ G : A ! B be an
adjunction, then G is monadic if and only if the following conditions hold:

(1) B has coequalizers for all G-absolute pairs3.
3Similar to G-split pairs, a pair f, g is called G-absolute if Gf, Gg admits absolute coequalizers.
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(2) G preserves coequalizers of all G-absolute pairs.
(3) G reflects coequalizers of all G-absolute pairs.

Proof. One direction of the proof is straightforward.
(⇒) By lemma 4.4 every split coequalizer is absolute, so every G-split pair is a
G absolute pair. If G has, preserves and reflects coequalizers of all G-absolute
pairs, it must also have, preserve and reflect coequalizers of all G-split pairs, which
by theorem 4.4 implies that G is monadic.

(⇐) Assume G is monadic. As in the proof of theorem 4.4, we may (up to equiv-
alence) identify B with the Eilenberg–Moore category AT of the induced monad
T = GF, and identify G with the forgetful functor

UT : AT ! A.

Under this identification, it suffices to show that UT creates coequalizers of all
UT-absolute pairs. Then lemma 4.3 applied to the class of all UT-absolute pairs
immediately yields (1)-(3). Let f, g : (A,α) ⇒ (B, β) be a parallel pair in AT

which is UT-absolute. By definition, the underlying pair Uf,Ug : A ⇒ B admits
an absolute coequalizer q : B ! Q in A. Since q is absolute, it is preserved by
every functor, in particular by T . Thus Tq : TB ! TQ is a coequalizer of Tf,Tg
in A. Exactly as in the proof of theorem 4.4, we now lift q to a T-algebra morphism.
The composites q ◦ β : TB ! Q coequalize Tf,Tg, and therefore by the universal
property of the coequalizer Tq, there exists a unique map

γ : TQ! Q

such that
γ ◦ Tq = q ◦ β. (4.23)

The verification that γ satisfies the T-algebra axioms is identical to the calculation
already carried out in the proof of theorem 4.4: precomposing both sides of the
two required equations with the regular epis q and T2q reduces them to the corre-
sponding equations for (B, β). Thus (Q, γ) is a T-algebra, and (4.23) states exactly
that

q : (B, β) ! (Q, γ)

is a T-algebra morphism. To show that q is the coequalizer of f, g in AT, let

h : (B, β) ! (C, χ) in AT
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satisfyh◦f = h◦g. On underlying arrows inA, this says Uh◦Uf = Uh◦Ug, so since
q is a coequalizer of Uf,Ug, there is a unique map k : Q ! C in A with k ◦ q = h.
The standard argument from theorem 4.4 now applies verbatim: precomposing
k ◦ γ and χ ◦ Tk : TQ ! C with the coequalizer Tq and using (4.23) shows
that both composites equal h ◦ β. Since Tq is an epi as a coequalizer, we conclude
k ◦γ = χ◦Tk, so k is a T-algebra morphism. Uniqueness follows from uniqueness
of the underlying map in A.

Thus q is the coequalizer of f, g in AT and its underlying arrow is the absolute
coequalizer of Uf,Ug in A. Therefore UT creates coequalizers of all UT-absolute
pairs. Applying lemma 4.3 to this class yields that UT (hence G) has, preserves,
and reflects all coequalizers of G-absolute pairs, establishing (1)-(3).

4.2.3 Other Intermediate Monadicity Theorems
The power of precise monadicity theorems like Ptt or Ptt⋄ is that it provides nec-
essary and sufficient conditions for monadicity. In practice, verifying its conditions
directly can be complex. thus several simpler-to-verify but stronger sufficient con-
ditions were also proposed, following the classical terminology of Mac Lane. We
present them in order from the strongest to more specialized assumptions: the
Crude, Vulgar, and Reflexive monadicity theorems.

Theorem 4.7 (Crude Monadicity Theorem, Ctt). Let F ⊣ G : A ! B be an adjunc-
tion, then G is monadic if it satisfies the following conditions:

(1) B has coequalizers for all G-split pairs.
(2) G preserves all coequalizers.
(3) G reflects all coequalizers.

Proof. It is clear from definition that Ctt has a stronger precondition than Ptt, as
it requires G to preserve and reflect all coequalizers, not just those of G-split pairs.
Therefore, if G satisfies the conditions of Ctt, it also satisfies those of Ptt, and
hence is monadic.

Theorem 4.8 (Vulgar Monadicity Theorem, Vtt). Let F ⊣ G : A ! B be an adjunc-
tion, then G is monadic if it satisfies the following conditions:

(1) B has split coequalizers for G-split pairs.
(2) G reflects coequalizers of all G-split pairs.



63

Proof. Just notice that split coequalizers are absolute colimits, so G automatically
preserves them. Therefore the conditions of Vtt is stronger than those of Ptt, as it
requires B to have split coequalizers for G-split pairs, instead of just coequalizers.
Hence, if G satisfies the conditions of Vtt, it also satisfies those of Ptt, and thus
is monadic.

Theorem 4.9 (Reflexive Monadicity Theorem, Rtt [Rie17, Proposition 5.5.8]). Let
F ⊣ G : A ! B be an adjunction, then G is monadic if it satisfies the following conditions:

(1) B has all coequalizers of reflexive pairs.
(2) G is conservative.
(3) G preserves coequalizers of all reflexive.pairs.

Proof. We prove by showing that these conditions implies G creates reflective G-
split pairs. By hypothesis (1), since B has coequalizers of all reflexive pairs, it must
have coequalizers of all reflexive G-split pairs. By hypothesis (3), G preserves co-
equalizers of all reflexive pairs, so it preserves coequalizers of all reflexive G-split
pairs. By lemma 4.6, a concervative functor reflects any coequalizers that it pre-
serves. Therefore G reflects coequalizers of all reflexive G-split pairs, so G creates
coequalizers of all reflexive G-split pairs, which is stronger than the condition of
Ptt. Hence, if G satisfies the conditions of Rtt, it also satisfies those of Ptt, and
thus is monadic.

So far, we have seen nine (theorems 4.1 to 4.9, essentially five) monadicity theo-
rems in this section. and their relations can be summarized as a lattice in figure 4.1,
where arrows indicate implication relations from the upper theorem to the lower
one.

Ptt

Ctt Rtt Vtt

Wtt

Figure 4.1: Implication relations between monadicity theorems.

Interestingly, in proofs of theorems 4.2, 4.4 and 4.9, the problem is often re-
duced to “finding the set of coequalizers that G needs to create” and maintaining
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corresponding preservation and reflection properties, thus naturally there arises
a Galois correspondence between the class of coequalizers that G need to create
and the strength of the monadicity theorem. For example, given an adjunction
F ⊣ G : A ! B, S be a class of all coequalizers in B, SG be the class of coequal-
izers for all G-split pairs in B, and SG

r be the class of coequalizers for all reflexive
G-split pairs in B. The following correspondence summarizes this idea:

Ptt S

Rtt SG
r

Wtt SG

⇓

⇓

⊆
⊆

This correspondence shows that the fewer coequalizers G needs to create, the
stronger the monadicity theorem becomes–and the best we can do is the precise
monadicity theorem, which requires G to create only coequalizers of G-split pairs,
while the worst case as shown in Wtt requires G to create coequalizers in the
largest class S.

In fact, there are even more variants in the literature, including Strict Monadic-
ity Theorems[Rie17]4, Linton’s Monadicity Theorem[Lin66], Duskin’s Monadicity The-
orem[Dus06], Relative Monadicity Theorems[AM25] and many others, each focusing
on different aspects of characterizations and thus having different application sce-
narios.

4.3 Examples of Monadic Adjunctions
Having established the hierarchy of monadicity theorems and their requisite con-
ditions, we now turn to their practical application. To demonstrate the utility of
these criteria, we examine a canonical case wherein the algebraic structure is clear.
Consider our favorate example of the free-forgetful adjunction between Grp and
Set in example 4.4.

Example 4.4 (Forgetful functor G : Grp ! Set is Monadic). Let G : Grp ! Set
be the forgetful functor from the category of groups to the category of sets. Then
G is monadic. We verify the four conditions of the theorem 4.9

4Replacing creation with strict creation.



65

(1) G has a left adjoint F. This is satisfied by the free group functor F : Set ! Grp,
which sends any set X to the free group FX generated by the elements of X .
Thus F ⊣ G is the canonical free–forgetful adjunction.

(2) G reflects isomorphisms. If f : H ! K is a group homomorphism such that
its underlying function Gf : GH ! GK is a bijection, then f must be an iso-
morphism in Grp. Indeed, the set-theoretic inverse f−1 : GK ! GH is easily
checked to respect the group operation, hence it is a group homomorphism
and serves as the inverse to f in Grp.

(3) Grp has coequalizers of all reflexive pairs. In fact, Grp is cocomplete and has
coequalizers for all parallel pairs. For homomorphisms f, g : G ⇒ H , the
coequalizer is the quotient map q : H ! H/N , where N is the normal closure
of the set {f(x)g(x)−1 | x ∈ G}.

(4) G preserves coequalizers of all reflexive pairs. Consider the coequalizer q :
H ! H/N from (3). Applying G yields the diagram of sets

GH
Gq
−! G(H/N).

The set G(H/N) is the set of cosets of N in H , and the map Gq sends h 7! hN .
This is exactly the coequalizer of the set-maps Gf,Gg : GG ⇒ GH in Set,
since the underlying equivalence relation on GH generated by f(x) ∼ g(x) is
precisely the relation whose quotient is H/N . Thus G preserves coequalizers
of reflexive pairs.

What is a non-example of a monadic functor? Consider the forgetful functor
from topological spaces to sets.

Example 4.5 (The forgetful functor G : Top ! Set is not monadic). Let G : Top !
Set be the underlying-set functor with left adjoint F : Set ! Top sending a set
to the discrete topological space on that set. By theorem 4.3, if G were monadic,
it would have to be conservative. But G does not reflect isomorphisms, because
bijections are not necessarily homeomorphisms. To see this, choose a set X with
at least two elements and let Xd be X with the discrete topology, Xi the same set
with the indiscrete topology. The identity function

idX : (Xd ! Xi)

is a continuous bijection (every map into an indiscrete space is continuous). How-
ever, its inverse idX : (Xi ! Xd) is not continuous unless X has at most one point.
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Hence idX : Xd ! Xi is not a homeomorphism, although G(idX) is a bijection.
Therefore G fails to reflect isomorphisms.

What is the essence that makes the forgetful functor monadic? An intuition is
that the forgetful functor would have to forget as much as an algebraic structure
can be forgotten. In fact, Top is not an algebraic category over Set, thus Top cannot
be a category of models of a finitary algebraic theory. Does it mean that monadic
functors only arise from algebraic structures? Not necessarily. The free-forgetful
adjunction between the category of Stone Spaces and Set is monadic, even though
Stone spaces are not algebraic structures.
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Chapter 5

Algebraic Theories

One of the most important and well-studied application of the monadicity theorem
is to algebraic theories, where it provides a powerful framework for understand-
ing the relationship between algebraic structures and their underlying sets. In this
chapter, we will see why the Eilenberg-Moore category is often called the cate-
gory of monad algebras. In particular, We will discuss present several examples of
monadic adjunctions arising from categories of concrete algebraic structures, and
then prove an equivalence between category of algebras and category of monad al-
gebras over Set in section 5.1. We will finish the thesis with some following studies
related to free constructions and monadicity, in universal algebra and theoretical
computer science section 5.2.

5.1 Algebras are T-Algebras
At the beginning of chapter 3, we posited that monads could be intuitively un-
derstood as generalized algebraic structures. To formalize this intuition, we must
examine how classical algebraic structures align with the categorical definition of
algebras for a monad. In fact, many familiar algebraic structures can be character-
ized as algebras for certain monads. Moreover, the forgetful functors from cate-
gories of these algebraic structures to Set are often monadic.

We will firstly recall the definition of single-sorted algebraic theories, or equational
theories.

Definition 5.1 (Equational Theory). An equational theory or single-sorted algebraic
theory is a pair (Σ, E) where the signature Σ = {On}n∈N is a family of operation-
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symbol sets, and E is a set of equations between Σ-terms in finitely many variables.
For each σ ∈ On, we say it has arity n, written ar(σ) = n.

For readers familiar with notions from Model Theory, an equational theory is
essentially a first-order theory without relation symbols and only with function
symbols of finite arity, where all axioms are equations between terms. In particular,
all equations are in Skolem normal form, which are universally quantified equations
between terms.

Definition 5.1 is not categorical, as Σ,On and E are just formal notions, However
there is a beautiful categorical formalization of equational theories. First, we need
to categorize the notion of signature using functors.

Definition 5.2 (Signature functor). Given an equational theory (Σ, E), the signature
endofunctor Σ : Set ! Set is defined as a coproduct of functors X 7! Xn for each
operation symbol with arity n in Σ, explicitly,

ΣX =
∐
n∈N

On ×Xn

From definition 5.2, to define functor Σ we implicitly require the underlying
category to have finite coproducts and finite products. Since in classical algebraic
theories we are often working over sets, we may as well assume the underlying
category is Set, which indeed has all small limits and colimits.

There is a known result from monadicity theorem that, given a signature func-
tor Σ : A ! A over a category A with finite coproducts, the category of Σ-algebras
is monadic over A if and only if that the forgetful functor has a left adjoint. In par-
ticular, the following theorem characterizes this.

Theorem 5.1. [Awo06] Let A have finite coproducts and Σ : A ! A be an endofunctor.
The following are equivalent:

(1) There exists an monad T on Σ such that

AT ≃ Σ-Alg.

(2) The forgetful U : Σ-Alg ! A has a left adjoint.

(3) For each A ∈ ObA, the endofunctor ΣA(−) = A+ Σ(−) has an initial algebra.

Proof. I’ll prove by showing (1) ⇒ (2) ⇒ (3) ⇒ (2) ⇒ (1).
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(1) ⇒ (2) Consider the comparison functor K : Σ-Alg ! AT, since K is an
equivalence, it has a quasi-inverse J, and in particular, J ⊣ K. Consider
the adjunction FT ⊣ UT between A and the Eilenberg-Moore category AT.
By lemma 2.2 adjunctions are composable, we have J ◦ FT ⊣ GT ◦ K ∼= U,
by lemma 2.1 left adjoints are unique up to isomorphism, so J ◦ FT is left
adjoint to U.

(2) ⇒ (3) Suppose that U has a left adjoint F : A ! Σ-Alg and consider the
endofunctor ΣAX = A+ ΣX . Given a ΣA-algebra (X, γ : A+ ΣX ! X), by
the universal property of coproduct, γ uniquely decomposes as [α, β], where

α : A! X β : ΣX ! X

and conversely any pair (α, β) gives a unique γ. Thus, a ΣA-algebra is exactly
the same data as

a Σ algebra (X, β) and a morphism α : A! U(X, β) = X

For each A in A, denote FA by

FA = (Σ∗A, µA : ΣΣ∗A! Σ∗A)

where Σ∗ = UF, and consider the unit ηA : A ! Σ∗A of the adjunction
F ⊣ U.

Claim 5.1. IA = (Σ∗A, [ηA, µA] : A+ ΣΣ∗A! Σ∗A) is the initial ΣA-algebra.

Proof of claim 5.1. To see the universal property, let (X, [α, β]) be any ΣA-algebra,
where α : A ! Σ∗A and β : ΣΣ∗A ! Σ∗A. By definition 2.17 of the adjunc-
tion F ⊣ U, there exists a unique Σ-algebra homomorphism h : FA ! X
such that

Uh ◦ ηA = α

Using the universal property of coproducts,

[α, β] (idA +Σh) = [α, β ◦ Σh] h ◦ [ηA, µA] = [h ◦ ηA, h ◦ µA]

But meanwhile,

1. h ◦ ηA = Uh ◦ ηA = α, by the universal property of adjunction, and
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2. h ◦ µA = β ◦ Σh, because h : (Σ∗A, µA) ! (X, β) is a Σ-algebra homo-
morphism.

so we have
[α, β] (idA +Σh) = h ◦ [ηA, µA]

implying that the following diagram commutes

A+ ΣΣ∗A A+ ΣX

Σ∗A X

idA +Σh

[ηA,µA] [α,β]

h

so there is always a morphism from IA to any arbitrary ΣA-algebra (X, [α, β]).
To see the uniqueness, let k : Σ∗A ! X be any ΣA-algebra homomorphism,
then similarly we have

[α, β] (idA +Σk) = k ◦ [ηA, µA]

precomposing the coproduct injections gives

k ◦ ηA = α

so k is a Σ-algebra homomorphism with Uk ◦ ηA = α. By the adjunction, the
Σ-algebra homomorphism with this property is unique, hence k = h. This
shows the initiality of IA, i.e. IA is the initial ΣA-algebra.

(3) ⇒ (2) Assume for each A ∈ ObA, the endofunctor ΣA(−) = A+ Σ(−) has an
initial algebra

(IA, ιA : A+ ΣIA ! IA)

By the coproduct property, write ιA = [ηA, µA], with

ηA : A! IA µA : ΣIA ! IA

so (IA, µA) is a Σ-algebra, and ηA : A ! IA is a chosen morphism into its
underlying object. Define F : A ! Σ-Alg on objects by

FA = (IA, µA)
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and on morphisms as follows. Let f : A! B be any morphism inA, consider
the Σ-algebra FB = (IB, µB) together with the morphism α := ηB ◦ f : A !
IB. This forms a ΣA-algebra

(IB, [ηB ◦ f, µB] : A+ ΣIB ! IB)

By initiality of (IA, [ηA, µA]), there exists a unique morphism Ff : (IA, µA) !
(IB, µB) such that the following diagram commutes

A+ ΣIA A+ ΣIB

IA IB

idA +ΣFf

[ηA,µA] [ηB◦f,µB ]

Ff

The uniqueness of Ff guarantees functoriality of F, i.e.

FidA = idFA F(g ◦ f) = Fg ◦ Ff

so F is a well-defined functor from A to Σ-Alg.

Claim 5.2. F ⊣ U.

Proof of claim 5.2. Define function Φ : Σ-Alg(FA, (X, β)) ! A(A,X) by map-
ping a Σ-algebra homomorphism h : (IA, µA) ! (X, β) to the composite

Φ(h) = h ◦ ηA : A! X

Define function Ψ : A(A,X) ! Σ-Alg(FA, (X, β)). Consider a morphism
α : A ! X , then (X, [α, β]) forms a ΣA-algebra, by initiality of (IA, [ηA, µA]),
there exists a unique Σ-algebra homomorphism

α : (IA, µA) ! (X, β)

such that α ◦ ηA = α. Define Ψ(α) = α.

1. Φ(Ψ(α)) = Φ(α) = α ◦ ηA = α, so Φ ◦ Ψ = id,
2. Let h : (IA, µA) ! (X, β) be a Σ-algebra homomorphism, set α = h ◦
ηA,then Ψ(Φ(h)) = α, which is the unique Σ-algebra homomorphism
such that α ◦ ηA = α = h ◦ ηA, by uniqueness, α = h, so Ψ ◦ Φ = id.
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The bijection is natural because both Φ and Ψ are defined using only com-
position with Σ-algebra morphisms, which is functorial. This shows that
F ⊣ U.

(2) ⇒ (1) This is true by applying theorem 4.5 Ptt∗, that U is monadic if it has a
left adjoint and creates U-split coequalizers. Let F be the left adjoint of U,
(X, β) and (Y, γ) be Σ-algebras, and let f, g : (X, β) ⇒ (Y, γ) be a pair of
parallel morphisms, so we have a parallel of morphisms f, g : X ⇒ Y for the
underlying objects with the additional usual homomorphism condition

f ◦ β = γ ◦ Σf g ◦ β = γ ◦ Σg

Assume this pair is U-split. That means that in A we have a split coequalizer
diagram:

X Y A
Uf=f

Ug=g

q

s t

with maps s : Y ! X and t : A! Y satisfying

q ◦ f = q ◦ g q ◦ s = idA f ◦ t = idY g ◦ t = s ◦ q

Define α : ΣA! A via the composite

ΣA ΣY Y A.Σs

α

γ q

Observe that q : (Y, γ) ! (A,α) is a well-defined Σ-algebra homomorphism,
because

α ◦ Σq = (q ◦ γΣs) ◦ Σq = q ◦ γ ◦ Σ(s ◦ q)
= q ◦ γ ◦ Σ(g ◦ t) = q ◦ γ ◦ Σg ◦ Σt
= q ◦ (γ ◦ Σg) ◦ Σt = q ◦ g ◦ β ◦ Σt
= (q ◦ g) ◦ β ◦ Σt = q ◦ f ◦ β ◦ Σt
= q ◦ (f ◦ β) ◦ Σt = q ◦ γ ◦ Σf ◦ Σt
= q ◦ γ ◦ Σ(f ◦ t) = q ◦ γ ◦ ΣidY
= q ◦ γ
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Meanwhile, q is a coequalizer of f, g in Σ-Alg, because consider k : (Y, γ) !
(Z, δ) be any Σ-algebra homomorphism that coequalizes f and g in Σ-Alg,
i.e.

k ◦ f = k ◦ g
applying U to both sides, we have Uk coequalizes Uf = f and Ug = g, i.e.

Uk ◦ Uf = Uk ◦ Ug =⇒ Uk ◦ f = Uk ◦ g

Since q : Y ! A is a coequalizer in A, there exists a unique morphism ℓ : A!
UZ in A such that ℓ ◦ q = Uk, i.e. the following diagram in A commutes.

X Y A

Z

f

g

q

Uk
ℓ (5.1)

Claim 5.3. ℓ is a Σ-algebra homomorphism, because

ℓ ◦ α = ℓ ◦ q ◦ γ ◦ Σs = (ℓ ◦ q) ◦ γ ◦ Σs
= Uk ◦ γ ◦ Σs = (Uk ◦ γ) ◦ Σs
= (δ ◦ Σ(Uk)) ◦ Σs (k is a homomorphism)
= δ ◦ Σ(Uk ◦ s) = δ ◦ Σℓ

i.e. the following diagram commutes

ΣX ΣZ

A Z

α

Σℓ

δ

ℓ

which means that ℓ : (A,α) ! (Z, δ) is indeed a Σ-algebra homomorphism. Since
ℓ ◦ q = Uk = k as Σ-algebra homomorphisms, k factors through q in Σ-Alg.

To see the uniqueness of ℓ, suppose ℓ1, ℓ2 : (A,α) ! (Z, δ) are a parallel
pair of Σ-homomorphisms that are equalized q, i.e. ℓ1 ◦ q = ℓ2 ◦ q as maps
(Y, γ) ! (Z, δ). Applying U, we get Uℓ1 and Uℓ2 that are equalized by q in
Σ-Alg, i.e.

Uℓ1 ◦ q = Uℓ2 ◦ q
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Since q is a coequalizer in A, it’s an epimorphism, so Uℓ1 = Uℓ2, but since
U is faithful, ℓ1 = ℓ2. So ℓ is a coequalizer of f, g in Σ-Alg. Since the choice
of f and g is arbitrary, by definition U creates U-split coequalizers. By theo-
rem 4.5, T = UF satisfies AT ≃ Σ-Alg, which is exactly the statement in (1).

Before moving on, let us take a moment to inspect the free functor F : A !
Σ-Alg. In theorem 5.1(3) ⇒ (2), we constructed F as follows

FX = µY.X + ΣY

which is the initial algebra of the endofunctor ΣX(−) = X + Σ(−). Unfolding this
definition, FX = (Σ∗X,α) could be understood as the algebra whose underlying
set Σ∗X of Σ-terms is the smallest set such that

1. Every element in X is a Σ-term, and

2. For every operation symbol σ ∈ On and elements x1, . . . , xn in Σ∗X , the for-
mal expression σ(x1, . . . , xn) is also a Σ-term.

and the reason we say smallest is exaclty due to Lambek’s Lemma (lemma 3.1),
which asserts that the structure map α : X + ΣΣ∗X ! Σ∗X is an isomorphism.
Moreover, the free-forgetful adjunction F ⊣ U induces an universal property of
FX

Proposition 5.1 (Universal property of free Σ-algebras). Let Σ : Set ! Set be the
signature functor for an equational theory (Σ, E). Then the free Σ-algebra FX = (Σ∗X,α)
on a set X satisfies the following universal property: for any Σ-algebra (Y, β) and any
interpretation function J−K : X ! Y , there exists a unique Σ-algebra homomorphism
J−K : FX ! (Y, β) such that the following diagram commutes

X Σ∗X

Y

ηX

J−K
J−K

where ηX : X ! Σ∗X is the unit of the adjunction.
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That is great! Theorem 5.1 tells us once given an algebraic theory (Σ, E), we can
just routinely construct the signature functor Σ : Set ! Set, and the problem of
inspecting what does Σ-algebras looks like would be reduced to checking whether
the forgetful functor U : Σ-Alg ! Set has a left adjoint–because if it has one, there
is an equivalence between the category of Σ-algebras and the Eilenberg-Moore
category SetT for the induced monad T. In fact, functors defined in definition 5.2
are called polynomial functors for obvious reasons, and ΣA, which is a coproduct
of identity functor and a polynomial functor, is also a polynomial functor. It is a
well-known fact that polynomial functors are finitary1 on Set always have initial
algebras, thus we get an equivalence Σ-Alg ≃ SetT for free!

But there is one thing we left out–how to enforce the equations E in the theory
(Σ, E)? Consider T1 = (Σ, E1), the theory of groups, where Σ consists of a binary
operation symbol ·, a unary operation symbol (−)−1 and a nullary operation sym-
bol e, and E1 consists of the usual group axioms.

(x · y) · z = x · (y · z)
e · x = x

x · e = x

x · x−1 = e

x−1 · x = e

The signature functor Σ : Set ! Set is given by

ΣX = X ×X +X + 1

But also consider the theory T2 = (Σ, E2) of abelian groups, where Σ is the same
as before, but

E2 = E1 ∪ {x · y = y · x}

without changing the signature functor Σ. Our equivalence Σ-Alg ≃ SetT cannot
distinguish between these two theories yet, without considering the equations E1
and E2.

To see this, we need to extend Σ-Alg to more refined categories called equational
categories, which are categories consisting of Σ-algebras that satisfy the equations
in E . To define this we will firstly need to explain what does it mean to satisfy an
equation.

1preserve filtered colimits, skipped in this thesis
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Definition 5.3 (Equation). Given an equational theory (Σ, E), an equation in E is a
pair of Σ-terms (t1, t2) in n variables, written as

{x1, . . . , xn} | t1 = t2

for some n ∈ N. A Σ-algebra (X,α : ΣX ! X) satisfies the equation t1 = t2 if for
variable interpretation J−K : {x1, . . . , xn} ! X , the induced Σ-algebra homomor-
phism J−K : F{x1, . . . , xn} ! (X,α) satisfies

Jt1K = Jt2K

Definition 5.4 (Equational Category). Let (Σ, E) be an equational theory with sig-
nature functor Σ : Set ! Set. The equational category of this theory is the full
subcategory of Σ-Alg formed by all small (Σ, E)-algebras, which are Σ-algebras
that satisfy all equations in E . We denote such a category by (Σ, E)-Alg.

In theorem 5.1, we have actually only seen an equivalence between the three
conditions, that is, AT ≃ Σ-Alg under certain conditions. The following theo-
rem proves the free-forgetful adjunction between Set and the equational category
(Σ, E)-Alg is indeed monadic.

Theorem 5.2. The forgetful functor U : (Σ, E)-Alg ! Set is monadic.

Proof. Let U : (Σ, E)-Alg ! Set be the forgetful functor. Recall from theorem 5.1
we constructed the left adjoint F : Set ! Σ-Alg ∼= (Σ, ∅)-Alg via

FX = (Σ∗X,α : ΣΣ∗X ! Σ∗X)

It would be a straightforward check to see that here U also has a left adjoint F :
Set ! (Σ, E)-Alg defined by

FX = (Σ̃∗X,α : ΣΣ̃∗X ! Σ̃∗X)

and Σ̃∗X is the quotient of Σ∗X by the smallest congruence relation ∼ generated
by the equations in E . By the Precise Monadicity Theorem 4.6 and lemma 4.3, it
suffices to show that U creates coequalizers of all U-absolute pairs. So let

f, g : (X,α)⇒ (Y, β)

be a parallel pair of (Σ, E)-homomorphisms such that the underlying maps Uf,Ug
admit an absolute coequalizer

X Y A
Uf

Ug

q



77

in Set. By absoluteness, q is preserved by every endofunctor on Set, in particular
by the signature functor Σ : Set ! Set. Hence

Σq : ΣY ! ΣA

is a coequalizer of the pair

Σf,Σg : ΣX ⇒ ΣY.

Since f and g are (Σ, E)-homomorphisms, in particular they are Σ-algebra homo-
morphisms, so

β ◦ Σf = f ◦ α, β ◦ Σg = g ◦ α.
Using that q coequalizes Uf and Ug, we compute

(q ◦ β) ◦ Σf = q ◦ β ◦ Σf = q ◦ f ◦ α = q ◦ g ◦ α = q ◦ β ◦ Σg = (q ◦ β) ◦ Σg.

Thus q ◦ β : ΣY ! A coequalizes Σf,Σg, and since Σq is their coequalizer, there
exists a unique map γ : ΣA! A such that

γ ◦ Σq = q ◦ β. (5.2)

This endows A with the structure of a Σ-algebra (A, γ), and (5.2) is precisely the
condition that

q : (Y, β) ! (A, γ)
is a Σ-algebra homomorphism.

To show that (A, γ) satisfies the equations E , let t = s be an equation in E with
n free variables. For any (Σ, E)-algebra (Z, ζ), write

tZ , sZ : Zn ! Z

for the corresponding Σ-term operations. It is standard (and follows by induction
on the structure of terms) that for any Σ-algebra homomorphism h : (Z, ζ) !
(Z ′, ζ ′), we have

h ◦ tZ = tZ′ ◦ hn, h ◦ sZ = sZ′ ◦ hn.
Since (Y, β) is a (Σ, E)-algebra, it satisfies t = s, i.e. tY = sY . Applying the above
with h = q : (Y, β) ! (A, γ), we get

q ◦ tY = tA ◦ qn, q ◦ sY = sA ◦ qn,

so
tA ◦ qn = q ◦ tY = q ◦ sY = sA ◦ qn.
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Because q is an absolute coequalizer, its n-th power qn : Y n ! An is again a co-
equalizer and hence an epimorphism in Set. Thus tA = sA, and the equation t = s
holds in (A, γ). Since t = s was arbitrary, (A, γ) is a (Σ, E)-algebra, which we de-
note (A, γ) to stress that it satisfies all of E .

To show the universal property of q in (Σ, E)-Alg, let h : (Y, β) ! (C, δ) be
a (Σ, E)-homomorphism with h ◦ f = h ◦ g. Forgetting algebra structure, q is a
coequalizer of Uf,Ug in Set, so there exists a unique function k : A ! C that
factors h through q. Now we can see that k is a (Σ, E)-homomorphism (A, γ) !
(C, δ), because

k ◦ γ ◦ Σq = k ◦ q ◦ β by (5.2)
= h ◦ β k ◦ q = h

= δ ◦ Σh h is a homomorphism
= δ ◦ Σ(k ◦ q) = δ ◦ Σk ◦ Σq.

Because Σq is a coequalizer and hence epi, we conclude

k ◦ γ = δ ◦ Σk,

so k is a Σ-algebra homomorphism (A, γ) ! (C, δ). Since (A, γ) already satisfies
all equations in E , k is in fact a (Σ, E)-homomorphism.

Uniqueness of k as a homomorphism follows from uniqueness of the underly-
ing function factoring h through q in Set. Hence q : (Y, β) ! (A, γ) is a coequalizer
of f, g in (Σ, E)-Alg, and its underlying map Uq is the given absolute coequalizer
of Uf,Ug in Set.

Since the choice of the U-absolute pair (f, g) was arbitrary, we have shown that
U creates coequalizers of all U-absolute pairs. By lemma 4.3, U therefore has, pre-
serves, and reflects coequalizers of all U-absolute pairs, and the hypotheses of the-
orem 4.6 Ptt• are satisfied. Thus U is monadic.

In fact, the forgetful functor U : (Σ, E)-Alg ! Set is more than just monadic,
it is strictly monadic, as proved in [ML98].

5.2 Monads and Algebraic Theories
In the proof of theorem 5.1, we constructed the left adjoint functor F : A ! Σ-Alg
via

FX = (Σ∗X,µX : ΣΣ∗X ! Σ∗X)
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and similarly in theorem 5.2 but with the consideration of equations. It is not hard
to see that Σ∗ is a monad on A, and it is related to two concepts called free monads
and algebraically free monads.

5.2.1 Free Monad
The free monad is defined in terms of a universal property, similar to free objects
in general.

Definition 5.5 (Free monad). Let F : A ! A be an endofunctor. A free monad on
F is a monad (F∗, η, µ) on A equipped with a natural transformation ι : F ⇒ F∗

such that for every monad T on A and every natural transformation α : F ⇒ T,
there exists a unique monad morphism α : F∗ ⇒ T with α ◦ ι = α. In particular,
diagram (5.3) commutes.

F F∗

T

ι

α α (5.3)

While an algebraically free monad captures the idea of monadicity of algebras
for an endofunctor.

Definition 5.6 (Algebraically free monad). Let T be a monad on A, F an endo-
functor on A. We say T is algebraically free on F if AT ≃ F-Alg.

Corollary 5.1 shows that being algebraically free for a monad is a stronger con-
dition than being free.

Corollary 5.1 (Algebraically free ⇒ free). Let A be a category with finite coproducts
and Σ : A ! A be an endofunctor, then any algebraically free monad on Σ is a free monad
on Σ.

Proof. Since T is algebraically free on Σ, by theorem 5.1 the forgetful functor U :
Σ-Alg ! A has a left adjoint F : A ! Σ-Alg and the induced monad is T = UF.
For each X ∈ A, write Σ∗X = TX with structure map µX : ΣΣ∗X ! Σ∗X and
(Σ∗X,µX) = FX is the initial Σ-algebra on X .
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Define a natural transformation ι : Σ ⇒ T by the composite

ΣX ΣΣ∗X Σ∗X
ΣηX

ιX

µX

Now let (M, η′, µ′) be any monad on A and let α : Σ ⇒ M be a natural transfor-
mation. For each object X ∈ A, consider the object MX equipped with its canon-
ical M-algebra structure µ′

X : MMX ! MX . Using α, this induces a Σ-algebra
structure on MX :

µ′
X ◦ αMX : ΣMX ! MX.

Since Σ∗X is the free Σ–algebra on X , the universal property gives a unique Σ–
algebra morphism

fX : Σ∗X ! MX

such that
fX ◦ ηX = η′

X . (5.4)

Diagram (5.5) commutes by (5.4). It remains to show that diagram (5.6) com-
mutes.

X Σ∗X

MX

ηX

η′
X

fX
(5.5)

Σ∗Σ∗X Σ∗X

MMX MX

µX

fΣ∗X fX

µ′
X

(5.6)

Consider the following larger diagram:

ΣΣ∗Σ∗X Σ∗Σ∗Σ∗X Σ∗Σ∗X

ΣMMX MMMX MMX

ιΣ∗X

ΣfΣ∗X

µΣ∗X

fΣ∗Σ∗X fΣ∗X

αMMX µ′
MX

(5.7)

The left square commutes by naturality of ι and α. The right square commutes
because fΣ∗X is a Σ-algebra morphism, that is,

fΣ∗X ◦ µΣ∗X = µ′
MX ◦ αMX ◦ ΣfΣ∗X .
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Therefore the outer rectangle of (5.7) commutes. Now apply the universal prop-
erty of the free Σ-algebra Σ∗(Σ∗X): the two composites

ΣΣ∗Σ∗X −! MMX

coincide, hence there exists a unique Σ-algebra morphism

fΣ∗X : Σ∗Σ∗X ! MΣ∗X

making the outer rectangle commute.
Unwinding the definition of ι and of the Σ-algebra structures, this is exactly

the commutativity of the right-hand one in diagram (5.3). Finally, suppose g :
T ⇒ M is another monad morphism satisfying gX ◦ ηX = η′

X for all X . Then each
gX : Σ∗X ! MX is a Σ-algebra morphism agreeing with fX on ηX : X ! Σ∗X . By
initiality of Σ∗X , we must have gX = fX . Hence g = f and f is unique. Therefore
T satisfies the universal property of the free monad on Σ.

Corollary 5.1 in some sense proves the well-definedness of algebraically free
monads, that, they are indeed free! In fact, corollary 5.1 can be generalized to
any category, while the proof would need to involve higher categories [Kel80].
The other direction–that whether free monads are algebraically free–is not true in
general.

5.2.2 Lawvere Theory and Algebraic Effects
Historically in the same period as the development of monads, F.W. Lawvere in-
troduced his notion of algebraic theories in [Law63], also known as Lawvere theories,
based on the observation that: algebraic theories are categories T with finite prod-
ucts whose objects are the natural numbers, and algebras are then functors from T

to the category of sets which preserve finite products. Homomorphisms of alge-
bras are represented by natural transformations. This provides a more generalized
framework that allows higher-order reasoning about algebraic structures.

In this section, we only provide a brief introduction to Lawvere theories.

Definition 5.7 (Lawvere Theory). An Lawvere (algebraic) theory is a small category
T with finite products. A model or algebra for the theory T is a functor A : T ! Set
preserving finite products. We denote by ModT the category of models or algebras
of T, which is a full subcategory of the functor category [T,Set]. Morphisms, also
called homomorphisms, are the natural transformations.
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To better understand the shift in perspective offered by Lawvere theories, we
compare the classical syntactic approach to algebra with the categorical approach
of functorial semantics in Table 5.1.

Concept Classical Algebraic View Functorial Semantics (Lawvere)

Theory A presentation consisting of a
signature (operation
symbols) and a set of
equational axioms between
terms.

A structured category T with
finite products. This captures
the algebraic structure
independent of a specific
presentation.

Models A set equipped with concrete
operations that interpret the
signature and satisfy the
given axioms.

A functor A : T ! Set (or
another category) that
preserves finite products.
The preservation of limits
ensures axioms are satisfied.

Homomorphisms Functions between
underlying sets that respect
the operations (commute
with the structure).

Natural transformations
between functors. This
definition arises
automatically from the
structure of the functor
category.

Logic Relies on equational logic,
consisting of substitution of
equals and equivalence
relation laws.

Admits universal models
within a classifying category
CT, allowing for results on
logical soundness and
completeness relative to
categorical semantics.

Table 5.1: Comparison of classical equational theories and Lawvere’s functorial
semantics. [AB09]

While the distinction between free and algebraically free monads addresses the
internal structure of the category of algebras, a parallel development in theoreti-
cal computer science utilizes this framework to model computational semantics.
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Specifically, we can view the side effects of imperative programming through the
lens of algebraic operations. In imperative programming, a function A ! B is of-
ten impure because it implicitly reads from and writes to a mutable register, called
the state. The output depends not just on the argument A passed in, but on the
current value in the state V . Furthermore, the function might change V as a side
effect. To model this in a purely functional and categorical setting, we must make
this dependency explicit, which is implemented by performing a transformation
on the function signature:

Input: The function requires the current state V to run. Thus, the domain
becomes V × A.

Output: The function produces a result B, but also a (potentially modified)
new state V . Thus, the codomain becomes V ×B. This transforms the impure
arrow into a pure arrow:

V × A −! V ×B

By Currying2, we move the state input to the right side, isolating the domain A.
This yields the type definition of the State Monad:

A −! (V ! V ×B)

which further leads to the formal definition as follows.

Definition 5.8 (State Monad). Let A be a Cartesian Closed Category and let V be
a fixed object in A representing the set of possible states. The State Monad T is
defined by the functor T : A ! A where:

TA = (V × A)V

Here, an element of TA is a computation—a function that waits for an initial
state v ∈ V and returns a pair containing the new state and the result. To see that
T is indeed a monad, we must firstly verify that T is indeed an endofunctor on A,
by defining its functor action. Given a function f : A ! B, we need a function
Tf : TA ! TB. This is defined by composing the internal result with f without
touching the state mechanics, using the following Haskell-like pseudocode:

T (fg) = λv.let (v′, a) = g(v) in (v′, f(a))
2Often need the category to be Cartesian-closed
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Then we need to show the unit η and multiplication µ. The unit transformation
ηA : A ! TA represents injecting a pure value into the monad. In the context
of State, this means returning a value without inspecting or modifying the state
register.

ηA(a) = λv.(v, a)

This creates a computation that leaves the state v unchanged. The multiplication
µA : TTA ! TA is responsible for flattening layers of state. If we have TTA, we
effectively have a computation that produces another computation, which has a
type of

V ! (V × (V ! (V × A)))

To flatten this, we run the outer layer to get the inner layer, then run the inner layer:

µA(φ) = λv.let (v′, ψ) = φ(v) in ψ(v′)

This threads the state v through the first computation to get v′, and then passes v′

to the second computation.
The above definitions and constructions should feel natural for anyone familiar

with functional programming and monads. However, monads can be harder to
compose directly [JD93]. In fact, if T1 and T2 are two monads, their composition
T1◦T2 is not necessarily a monad. To address this, Plotkin and Power [PP02, PP03]
observed that many computational effects, including state, can be described using
algebraic operations and equations. That is, (some) effects are algebras of algebraic
theories, which are therefore called effect theories.

In particular, for the state monad, we can define two basic operations:

Definition 5.9 (Mnemoid). A mnemoid on Set is an algebra with a underlying set
A and the corresponding signature Σ induced by the following operations

(1) a V -ary operation
get : AV ! A

(2) a unary operation for each v ∈ V .

putv : A! A

such that the following diagram commutes for all v, v1, v2 ∈ V :
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A AV

A

putv

idA

get (5.8)
A A

A

putv2

putv2

putv1
(5.9)

AV A

A A

get

πv putv

putv

(5.10)

There is an intuitive explanation3 of these equations.

(5.8) corresponds to the equation

get(λv.putv(κ)) = κ

which means that if we read the state and immediately write it back, the state
remains unchanged.

(5.9) corresponds to the equation

putv1(putv2(κ)) = putv2(κ)

which means that if we write v1 to a register and then write v2, the first write is
overwritten, and only v2 remains.

(5.10) corresponds to the equation

putv(get(f)) = putv(f v)

which means that if we write v to the state, and then read the state to pass it to
a function f , it is equivalent to directly passing v to f and writing the result.

It turns out that these three equations are Hilbert-Post complete [Pre10], that
is, if we add any equation that does not already follow from these, the theory
trivializes in the sense that all equations become derivable. In 2002, Plotkin and
Power [PP02] proved that the category of mnemoids is equivalent to the category
of algebras of the state monad, i.e.

ModT ≃ SetT.

where T is the effect theory of State, and T is exactly the State monad defined
in definition 5.8. The proof involves three main steps:

3We use continuatin-passing style because it aligns with the order of computation.
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(1) establish that the state monad T is finitary.

(2) construct a functor
ι : ΘM ! ΘT

starting from the Lawvere theory ΘM of mnemoids by interpreting the get
and put operations and by checking that the equations are valid in ΘT

(3) show that the functor ι is full and faithful.

This shows a deep connection between algebraic theories and monads in modeling
computational effects, and provides a powerful framework for reasoning about
and composing effects in programming languages.
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Chapter 6

Conclusion

This thesis has explored the fundamental interplay between Free Constructions
and Monadicity, uniting these concepts within the rigorous framework of Cate-
gory Theory. Our objective has been to clarify how the intuitive notion of free-
ness—generating structure without unnecessary constraints—is formally realized
through adjunctions and their associated monads.

A central focus of this work was the systematic analysis of Beck’s Monadicity
Theorem. Rather than presenting the theorem as a singular result, we explicated a
hierarchy of monadicity conditions—ranging from Weak to Precise and Reflexive
variants. By organizing these theorems into a coherent lattice structure, we high-
lighted that the exactness of a functor is determined by its behavior toward specific
classes of coequalizers, particularly split and absolute coequalizers. This analysis
demonstrates that monadicity is essentially a measure of how faithfully a functor
preserves the algebraic structure inherent in these colimits.

Furthermore, we applied this machinery to Algebraic Theories, detailing the
equivalence between the category of models for an equational theory and the Eilenberg-
Moore category of its induced monad. We also extended this perspective to the do-
main of theoretical computer science, illustrating how computational effects, such
as state, can be rigorously treated as algebraic structures governed by operations
and equation.

Ultimately, this thesis serves to demonstrate that the abstract machinery of
Monadicity is not merely a technical criterion, but the essential bridge between
Syntax and Semantics. It provides the formal language to understand how alge-
braic structure is generated, preserved, and recognized across both mathematical
and computational contexts.
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Appendix A

Special Categories

Definition A.1 (Category of Sets). The category Set has:

• Objects: all sets

• Morphisms: functions between sets

• Composition: composition of functions

• Identity morphisms: identity functions idX : X ! X where idX(x) = x for all
x ∈ X

Proof of well-definedness. Function composition is associative: if f : A ! B, g :
B ! C, and h : C ! D, then (h ◦ g) ◦ f(x) = h(g(f(x))) = h ◦ (g ◦ f)(x) for all
x ∈ A. Identity morphisms satisfy idB ◦f = f and f ◦ idA = f for any function
f : A! B.

For a family of sets {Xi}i∈I , their product (or cartesian product) ∏
i∈I Xi is the set

of all functions f : I !
⋃
i∈I Xi such that f(i) ∈ Xi for all i ∈ I . For each j ∈ I ,

there is a canonical projection πj : ∏
i∈I Xi ! Xj defined by πj(f) = f(j).

Their coproduct (or disjoint union) ∐
i∈I Xi is the set ⋃

i∈I(Xi×{i}) with canonical
inclusions ιj : Xj !

∐
i∈I Xi defined by ιj(x) = (x, j).

Definition A.2 (Null Object). A null object 0 in a category A is an object that is both
initial and terminal.

Definition A.3 (Zero Morphism). Let A be a category with a null object 0. For any
objects A,B in A, the zero morphism 0 : A! B is the unique morphism that factors
through 0.
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Definition A.4 (Kernel and Cokernel). In a categoryAwith a null object, the kernel
of f : X ! Y is an equalizer of f and 0 : X ! Y . The cokernel of f is a coequalizer
of f and 0.

Definition A.5 (Image). In a category with kernels and cokernels, the image of f
is Im f := ker(coker f).

Definition A.6 (Biproduct). A diagram X
iX−! Z

pY−! Y with pX : Z ! X and
iY : Y ! Z is a biproduct if pXiX = idX , iY pY = idY , and pY iX + pXiY = idZ .

Definition A.7 (Abelian Category). A category A is abelian if: (i) it has a null ob-
ject; (ii) it has binary biproducts; (iii) every morphism has a kernel and a cokernel;
(iv) every monomorphism is a kernel and every epimorphism is a cokernel.

Example A.1 (Category of Abelian Groups). The category Ab is abelian. The triv-
ial group is a null object; direct sums give biproducts; kernels and cokernels are
the usual ones; every mono is a kernel and every epi is a cokernel.

Definition A.8 (Exact and Short Exact Sequences). A sequence · · · ! An−1
fn−!

An
fn+1
−−! An+1 ! · · · is exact if Im fn = ker fn+1 for all n. A short exact sequence is

0 ! A
f
−! B

g
−! C ! 0.

Definition A.9 (Split Short Exact Sequence). The short exact sequence 0 ! A
f
−!

B
g
−! C ! 0 is split if there exist s : B ! A and t : C ! B with sf = idA, gt = idC ,

and fs+ tg = idB.

Theorem A.1 (Characterization of Split Short Exact Sequences). The sequence 0 !

A
f
−! B

g
−! C ! 0 is split iff B ∼= A⊕ C.

Definition A.10 (Category of Finite Sets). The category Setfin has:

• Objects: all finite sets

• Morphisms: functions between finite sets

• Composition: composition of functions

• Identity morphisms: identity functions

Proof of well-definedness. This follows from the same argument as Set, since com-
position of functions between finite sets remains a function between finite sets, and
identity functions on finite sets are identity morphisms.
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Definition A.11 (Category of Posets). The category Pos has:

• Objects: all partially ordered sets (P,≤)

• Morphisms: order-preserving functions f : (P,≤P ) ! (Q,≤Q) such that p ≤P

p′ implies f(p) ≤Q f(p′)

• Composition: composition of functions

• Identity morphisms: identity functions

Proof of well-definedness. The composition of order-preserving functions is order-
preserving: if f : (P,≤P ) ! (Q,≤Q) and g : (Q,≤Q) ! (R,≤R) are order-
preserving, then for p, p′ ∈ P with p ≤P p′, we have f(p) ≤Q f(p′) and thus
g(f(p)) ≤R g(f(p′)). Identity functions are trivially order-preserving. Function
composition is associative by the same argument as in Set.

Definition A.12 (Category of Groups). The category Grp has:

• Objects: all groups

• Morphisms: group homomorphisms f : G! H such that f(g1·Gg2) = f(g1)·H
f(g2) and f(eG) = eH

• Composition: composition of functions

• Identity morphisms: identity functions

Proof of well-definedness. The composition of group homomorphisms is a group ho-
momorphism: if f : G! H and g : H ! K are homomorphisms, then (g ◦f)(g1 ·G
g2) = g(f(g1·Gg2)) = g(f(g1)·Hf(g2)) = g(f(g1))·Kg(f(g2)) = (g◦f)(g1)·K (g◦f)(g2).
Identity functions are group homomorphisms. Function composition is associa-
tive as in Set.

For a family of groups {Gi}i∈I , their direct product ∏
i∈I Gi is the group whose

underlying set is the cartesian product ∏
i∈I Gi with componentwise multiplica-

tion. For each j ∈ I , there is a canonical projection πj : ∏
i∈I Gi ! Gj .

Their free product (coproduct in Grp) ∗i∈IGi is the group of all words in the
disjoint union of the Gi modulo the relations that hold within each Gi and the
identification of identity elements. For each j ∈ I , there is a canonical inclusion
ιj : Gj ! ∗i∈IGi.

Definition A.13 (Category of Topological Spaces). The category Top has:
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• Objects: all topological spaces (X, τ)

• Morphisms: continuous functions f : (X, τX) ! (Y, τY ) such that f−1(U) ∈ τX
for all U ∈ τY

• Composition: composition of functions

• Identity morphisms: identity functions

Proof of well-definedness. The composition of continuous functions is continuous: if
f : (X, τX) ! (Y, τY ) and g : (Y, τY ) ! (Z, τZ) are continuous, then for any U ∈ τZ ,
we have (g ◦ f)−1(U) = f−1(g−1(U)) ∈ τX since g−1(U) ∈ τY and f is continuous.
Identity functions are trivially continuous. Function composition is associative as
in Set.

For a family of topological spaces {(Xi, τi)}i∈I , their product ∏
i∈I Xi has the

product topology: the coarsest topology for which all canonical projections πj :∏
i∈I Xi ! Xj are continuous.

Their coproduct (disjoint union) ∐
i∈I Xi has the disjoint union topology: a set

U ⊆ ∐
i∈I Xi is open if and only if U ∩Xi is open in Xi for all i ∈ I .

Definition A.14 (Category ofR-Modules). LetR be a ring. The categoryR-Mod has:

• Objects: all R-modules

• Morphisms: R-module homomorphisms f : M ! N such that f(m1 +m2) =
f(m1) + f(m2) and f(r ·m) = r · f(m) for all m,m1,m2 ∈ M and r ∈ R

• Composition: composition of functions

• Identity morphisms: identity functions

Proof of well-definedness. The composition of R-module homomorphisms is an R-
module homomorphism: if f : M ! N and g : N ! P are R-module ho-
momorphisms, then (g ◦ f)(m1 + m2) = g(f(m1 + m2)) = g(f(m1) + f(m2)) =
g(f(m1)) + g(f(m2)) = (g ◦ f)(m1) + (g ◦ f)(m2) and (g ◦ f)(r ·m) = g(f(r ·m)) =
g(r · f(m)) = r · g(f(m)) = r · (g ◦ f)(m). Identity functions are R-module homo-
morphisms. Function composition is associative as in Set.

For a family of R-modules {Mi}i∈I , their direct product ∏
i∈IMi is the R-module

whose underlying set is the cartesian product ∏
i∈IMi with componentwise ad-

dition and scalar multiplication. For each j ∈ I , there is a canonical projection
πj : ∏

i∈IMi !Mj .
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Their direct sum ⊕
i∈IMi is the R-submodule of ∏

i∈IMi consisting of tuples
(mi)i∈I where only finitely many mi are nonzero. For each j ∈ I , there is a canon-
ical inclusion ιj : Mj !

⊕
i∈IMi sending m ∈ Mj to the tuple with m in the j-th

position and zero elsewhere.
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