Fibred Computational Effects

Danel Ahman

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2017

Abstract

We study the interplay between dependent types and computational effects, two im-
portant areas of modern programming language research. On the one hand, dependent
types underlie proof assistants such as Coq and functional programming languages
such as Agda, Idris, and F*, providing programmers a means for encoding detailed
specifications of program behaviour using types. On the other hand, computational
effects, such as exceptions, nondeterminism, state, I/O, probability, etc., are integral to
all widely-used programming languages, ranging from imperative languages, such as
C, to functional languages, such as ML and Haskell. Separately, dependent types and
computational effects both come with rigorous mathematical foundations, dependent
types in the effect-free setting and computational effects in the simply typed setting.
Their combination, however, has received much less attention and no similarly exhaus-
tive theory has been developed. In this thesis we address this shortcoming by providing
a comprehensive treatment of the combination of these two fields, and demonstrating
that they admit a mathematically elegant and natural combination.

Specifically, we develop a core effectful dependently typed language, eMLTT,
based on Martin-Lof’s intensional type theory and a clear separation between (effect-
free) values and (possibly effectful) computations familiar from simply typed lan-
guages such as Levy’s Call-By-Push-Value and Egger et al.’s Enriched Effect Calculus.
A novel feature of our language is the computational X-type, which we use to give a
uniform treatment of type-dependency in sequential composition. In addition, we de-
fine and study a class of category-theoretic models, called fibred adjunction models,
that are suitable for defining a sound and complete interpretation of eMLTT. Specifi-
cally, fibred adjunction models naturally combine standard category-theoretic models
of dependent types (split closed comprehension categories) with those of computa-
tional effects (adjunctions). We discuss and study various examples of these models,
including a domain-theoretic model so as to extend eMLTT with general recursion.

We also investigate a dependently typed generalisation of the algebraic treatment of
computational effects by showing how to extend eMLTT with fibred algebraic effects
and their handlers. In particular, we specify fibred algebraic effects using a depen-
dently typed generalisation of Plotkin and Pretnar’s effect theories, enabling us to cap-
ture precise notions of computation such as state with location-dependent store types
and dependently typed update monads. For handlers, we observe that their conven-
tional term-level definition leads to unsound program equivalences becoming derivable

in languages that include a notion of homomorphism, such as eMLTT. To solve this

problem, we propose a novel type-based treatment of handlers via a new computation
type, the user-defined algebra type, which pairs a value type (the carrier) with a family
of value terms (the operations). This type internalises Plotkin and Pretnar’s insight that
handlers denote algebras for a given equational theory of computational effects. We
demonstrate the generality of our type-based treatment of handlers by showing that
their conventional term-level presentation can be routinely derived, and this treatment
provides a useful mechanism for reasoning about effectful computations. Finally, we
show that these extensions of eMLTT can be soundly interpreted in a fibred adjunction

model based on the families of sets fibration and models of Lawvere theories.

Lay Summary

Dependent types provide a lightweight and modular means to integrate programming
and formal program verification. In particular, the types of programs written in depen-
dently typed programming languages (Agda, Idris, F*, etc.) can be used to express
specifications of program correctness. These specifications can vary from being as
simple as requiring the divisor in the division function to be non-zero, to as complex
as specifying the correctness of compilers of industrial-strength languages. Successful
compilation of a program then guarantees that it satisfies its type-based specification.
While dependent types allow many runtime errors to be eliminated by rejecting
erroneous programs at compile-time, dependently typed languages are yet to gain pop-
ularity in the wider programming community. One reason for this is their limited
support for computational effects, an integral part of all widely used programming lan-
guages, ranging from imperative languages, such as C, to functional languages, such
as ML and Haskell. For example, in addition to simply turning their inputs to out-
puts, programs written in these programming languages can raise exceptions, access
computer’s memory, communicate over a network, render images on a screen, etc.
Therefore, if dependently typed programming languages are to truly live up to
their promise of seamlessly integrating programming and formal program verification,
we must first understand how to properly account for computational effects in such
languages. While there already exists work on this topic, ingredients needed for a
comprehensive theory are generally missing. For example, foundations are often not
settled; available effects may be limited; or effects may not be treated systematically.
In this thesis we address these shortcomings by providing a comprehensive treat-
ment of the combination of dependent types and general computational effects. Specif-
ically, we 1) define a core effectful dependently typed programming language; ii) study
its category-theoretic denotational semantics; and iii) demonstrate how to extend the
algebraic treatment of computational effects (including the handlers of algebraic ef-
fects) to the dependently typed setting, enabling us to uniformly specify a wide range
of computational effects in terms of operations and equations. In particular, in this
thesis we demonstrate that dependent types and computational effects admit a math-
ematically natural combination, in which well-known concepts and results from the
simply typed setting can be reused and adapted, but which also reveals new and inter-

esting programming language features and corresponding mathematical structures.

Acknowledgements

I would like to thank the many people who have been important to my PhD studies.
This long journey would not have been possible without their support and guidance.

First and foremost, I would like to express my sincerest gratitude to my supervisor
Gordon Plotkin for all the guidance, support, and encouragement he provided during
my time in Edinburgh. Although we often found ourselves working in different geo-
graphic locations and timezones, he always found time to comment on my work and
come up with useful suggestions, and provide a great deal of invaluable feedback.

I would also like to thank my second supervisor Alex Simpson for discussions and
suggestions concerning my research in the earlier stages of my PhD studies. I am also
grateful to Ian Stark for taking over the second supervisor’s duties when Alex moved
to Ljubljana. 1 would also like to thank Phil Wadler for agreeing to be on my yearly
review meeting panels, and for all the feedback and constructive criticism he provided.

I am also grateful to Paul Levy and James Cheney for agreeing to be my examiners,
for spending many hours of their time carefully reading through a thesis of this length,
and for all their feedback that helped to greatly improve the final version of this thesis.

I am very grateful to LFCS and its members for providing an excellent research
environment. In particular, I would like to thank my fellow PhD students of IF 5.32,
past and present, for many interesting discussions about work and life in general:
Alyssa Alcorn, Simon Fowler, Weili Fu, Jiansen He, Ben Kavanagh, Craig McLaugh-
lin, Fabian Nagel, Shayan Najd, Jack Williams, and Jakub Zalewski. I am also grate-
ful for the support and friendship of many other LFCS students: Daniel Hillerstrom,
Theodoros Kapourniotis, Karoliina Lehtinen, Kristjan Liiva, Einar Pius, Panagiotis
Stratis, and Marcin Szymczak. I would also like to thank the occupants of IF 5.28,
past and present, for having time to discuss various aspects of research, both mine and
theirs: Bob Atkey, Brian Campbell, Sam Lindley, James McKinna, and Garrett Morris.

I would also like to thank the members of the MSP group at the University of
Strathclyde for many interesting visits, seminars, and reading groups; these provided
a useful and much needed distraction from my studies. In particular, I would like to
thank Neil Ghani with whom I and Gordon co-authored the FoSSaCS’ 16 paper on de-
pendent types and computational effects which became the basis of the work presented
in this thesis. I would also like to thank Fredrik Forsberg and Conor McBride for
many interesting discussions about dependent types, both conventional and cubical.

More generally, I would like to thank all the various Scottish programming languages

vi

and semantics research groups for making Scotland such a wonderful research environ-
ment, in particular, by organising events such as SPLS, ScotCats, and CLAP Scotland.

I am also grateful to the past and present members of the Logic and Semantics
Group at the Institute of Cybernetics (now at the Department of Software Science)
at the Tallinn University of Technology for hosting my visits, and for organising great
events such as the Estonian Winter School in Computer Science and the Estonian Com-
puter Science Theory Days. Specifically, I would like to thank James Chapman and
Tarmo Uustalu for their encouragement and support regarding my PhD research, and
also for our continued collaborations on directed containers and related topics.

I would also like to thank Mihai Budiu and Nikhil Swamy for inviting me to do
internships at Microsoft Research, and Gordon for putting me in contact with them in
the first place. During these two internships, I learnt a lot about conducting research
and working in a large corporate environment. Both internships also greatly broadened
my knowledge about the more practical aspects of programming language research.

I am also grateful to Ohad Kammar, Justus Matthiesen, and Kayvan Memarian for
many interesting discussions about programming language research, hiking, cycling,
and life in general, and for accommodating me during my visits to Cambridge.

Special thanks are reserved to the many people I shared the Bruntsfield Gardens
flat during my four and half year stay in Edinburgh, and who helped to make it a true
home away from home: Barbara Balazs, Krzysztof Geras, Michaela Keil, Stephen
McGroarty, Zséfia Neményi, Toomas Remmelg, and Michael Wilson.

I am also forever indebted to Ege Ello and Veiko Vostrjakov who have offered
immense emotional support over the past years, provided me with a place to stay when
visiting Estonia, and more generally have taken me in as a member of their family.

Finally, I would like to acknowledge the financial support of the University of
Edinburgh (through the Principal’s Career Development PhD Scholarship) and the
Archimedes Foundation (in collaboration with the Estonian Ministry of Education and
Research, through the scholarship program Kristjan Jaak). I am also grateful for the
travel funding provided by the LFCS, the Archimedes Foundation, the ACM SIG-
PLAN PAC, the ERDF funded Coinduction project, and the EUTypes Cost Action.
I am also grateful for Catdlin Hritcu and the ERC SECOMP project for funding me

while this thesis was under examination and during the preparation of its final version.

Vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Chapters are expanded and extended versions of work that has appeared in a joint
paper with Neil Ghani and Gordon Plotkin [9]. The examples of update monads dis-
cussed in Chapters [2 and [f] are taken from a joint paper with Tarmo Uustalu [13]. A

single-author manuscript based on Chapters [6|and[7]is currently under peer review.

(Danel Ahman)

viii

Table of Contents

I__Introduction|

(1. Two guiding questions| 2

(.2 Contributionsl
(1.3 Organisation|. e 10
(.4 Relatedworkl 10
[2° Semantic preliminaries| 17
2.1 Models of computational effects| 17
1.1 Monadsl 17
2.1.2 Adjunctions|. oo 21
[2.1.3 Algebraic treatment of computational effects| 26
[2.2 Fibred category theory| oL 33
3 eMLTT: Martin-Lof’s type theory with fibred computational effects| 49
.................................. 49
[3.2 Well-formed syntax and equational theory| 59
3.3 Meta-theory| 73
3.4 _Derivable elimination forms| 92
[3.5 Dernvableequations| o0 oo 102
4 Fibred adjunction models| 107
.1 Category theory for modellingeMLT'T} 108
@.1.1 Il-and X-types|o 108
4.1.2 Empty type and coproduct type] 120
1 ral pumbers|o L 124
4.1.4 Propositional equality| 126
4.1.5 Homomorphic functiontype| 128
4.2 Fibred adjunctionmodels| o000 131

4.3 Examples of fibred adjunction models|

4.3.1 Identity adjunctions|.,
#4.3.2 Simple fibrations and models of EECH.

4.3.3 Families of sets fibration and liftings of adjunctions|.

4.3.4 Eilenberg-Moore fibrations of fibred monads|

4.3.5 Continuous families fibration and general recursion|

5D ronal fics of eMLTT

eMLTT,_ : an extension of eMLTT with fibred algebraic effects|

6.1 Fibred algebraiceftects|,

[6.1.1 Fibred effect signatures|.

1.2 Fibred effecttheortes|

(6.2 Extending eMLTT with fibred algebraic effects|
6.3 Meta-theory|

6.4 Dertvable equations| L Lo oo

6.5 Interpreting eMLT Ty 1n a fibred adjunction model|

eMLTTgf : an extension of eMLT T with handlers
eff e

(/.1 Handlers of algebraiceffects|
2 Problems with the term-level definition of handlers]

[/.3 Extending eMLTTy = with a type-based treatment of handlers|

[/.4 Deriving the conventional presentation of handlers|

[7.5 Using handlers to reason about algebraic effects|

[7.5.1 Lifting predicates from return values to computations|.

[7.5.2 Specifying patterns of allowed effects|
[/.6 Meta-theory|
(/.7 Derivableequations| o0 oL
7.8 Alternative presentations of eMLTT, eMLTTz, and eMLTT,;e[f g
[7.8.1 Different equational proof obligations|

[7.8.2 Omitting homomorphism terms|

7.9 Interpreting eMLTT;{f) in a fibred adjunction model|

165
165
183
207

237
238
238
243
249
252
261
262
273

nclusion and futur rk

[8.1.1 Fibred notions of Lawvere theory|

[8.1.2 Extending eMLT'T with more expressive computation types|

[8.1.3 Fibrational account of Dyjkstramonads|

[8.1.4 Allowing types to depend on effectful computations|

[8.1.5 Normalisation and implementation|.

|A" Dependently typed parsing example mentioned in Chapter 1|

B~ Proofs for Chapter 4|
[B.1 Proof of Proposition|4.1.19
[B.2 Proof of Proposition4.1.20(.o
[B.3 Proof of Proposition|4.1.23|,
[B.4 Proof of Proposition{4d.1.24)
[B.5 Proof of Proposition{4.3.23|
Proof of Theorem 240 .

[C Proofs for Chapter 3|
[C.1 Proof of Proposition[5.2.4{.

(C.2 Proof of Proposition[5.2.7[.,
(C.3 Proof of Proposition[5.2.8[.

D Proofs for Chapter[6]
[D.T Proof of Proposition]6.5.6].

[Notation and Subject Index|

Xi

329
331
331
332
334
336
338

341

347
347
350
355
358
368
377
382
385

395
395
413
415

419
419

429

441

Chapter 1
Introduction

In this thesis we study the interplay between dependent types and computational ef-
fects, two important areas of modern programming language research.

On the one hand, dependent types underlie modern proof assistants such as Coq [[71],
and programming languages such as Agda [78], Idris [26]], and F* [108]. In particular,
dependent types provide a lightweight and modular means to formally specify and ver-
ify properties of programs using their types. These specifications can vary from being
as simple as requiring the divisor in the division function to be non-zero, to as complex
as specifying the correctness of compilers of industrial-strength languages [1]].

On the other hand, computational effects, such as exceptions, nondeterminism,
state, interactive I/O, etc., are an integral part of all widely used programming lan-
guages, ranging from imperative languages, such as C [57], to functional languages,
such as ML [73]] and Haskell [68]. While some computational effects can be repre-
sented in languages that do not support them off the shelf, e.g., stateful programs can
be naturally encoded as functions St — A x St, having primitive support for computa-
tional effects such as state means that compilers can perform effect-dependent optimi-
sations (e.g., see [52]) which can lead to programs being executed more efficiently.

Consequently, if dependently typed languages are to truly live up to their promise of
providing a lightweight means for integrating formal verification and practical (func-
tional) programming, we must first understand how to correctly account for compu-
tational effects in this setting. At the moment, the level of support for them varies
greatly in existing languages. For example, Agda does not offer any principled support
except for a very basic foreign function interface to Haskell; Idris represents compu-
tational effects using a domain specific language that is elaborated to the underlying

pure language; and F* includes primitive support for state and exceptions via extrac-

1

2 Chapter 1. Introduction

tion to OCaml, and allows some other effects to be represented using monads defined
in a simply typed definition language. As a testament to the benefits of including
computational effects primitively in the design of dependently typed languages, F*,
with its support to program with and reason about primitively supported effects such
as state, has a central role in Microsoft’s Everest project [2] that aims to deliver a
high-performance, standards-compliant, verified implementation of the full HTTPS
ecosystem.

While the Everest project demonstrates the potentially groundbreaking impact that
effectful dependently typed programming languages could have in the years to come,
the intersection of these two fields still lacks a general and exhaustive treatment. This
is in stark contrast to our rigorous understanding of computational effects in the simply
typed setting. We address this shortcoming by providing a comprehensive language-
based, category-theoretic, and algebraic treatment of the combination of dependent

types and computational effects. Our goal is to establish the following claim:
Dependent types and computational effects admit a natural combination.

It is worth noting that compared to the kinds of computational effects supported by
languages such as Idris and F*, we take a step back and investigate more foundational
questions in the design and semantics of effectful dependently typed languages, leaving
questions about a general treatment of more expressive type-and-effect systems (such
as the ones used in Idris and F*) for future work—see Sections [8.1.2]and [8.1.3]

1.1 Two guiding questions

That the above claim is non-trivial was already recognised by Moggi [[75]. In this thesis
we identify two key questions that one needs to answer in order to provide a general

treatment of the combination of dependent types and computational effects:

e Should one allow effectful computations to appear in types?

e How should one treat type-dependency in sequential composition?

We discuss both of these questions and some possible answers to them in detail below,
separately highlighting the answers that form the basis of the effectful dependently
typed language we develop in this thesis, and its denotational semantics. For both
questions, our choice of answers is based on being able to maximally reuse and natu-

rally combine respective existing work on dependent types and computational effects.

1.1. Two guiding questions 3

We assume that the reader has basic knowledge of both dependent types and com-
putational effects. For a good overview of dependent types and their denotational
semantics, we suggest [45 51, 107]. For computational effects, there are a variety of
sources one can consult, ranging from the seminal monad-based work of Moggi [74,
73], to the more recent adjunction-based work of Levy [61], to the algebraic treat-
ment pioneered by Plotkin and Power [88, 92]]. For functional programmers, a good
overview of the algebraic treatment and a source of further references is Pretnar’s tu-

torial [100]. We give a short overview of these three approaches in Section [2.1]

Should one allow effectful computations to appear in types?

To make the first question more concrete, let us consider the prototypical example of
a dependent type, namely, the type of vectors of values from some type A, written

Vec A M, where M is a term of type Nat. We can then rephrase the question as follows:
e Should one allow M to raise an effect in Vec A M, e.g., perform I/O?

In practice, the answer to this question depends on the kinds of computational
effects one considers. In particular, it depends on whether we can expect to evaluate
a closed M to a natural number at compile-time, which is crucial to typecheck the
constructors of Vec A M and to compare two such types for equality.

For computational effects that do not involve interaction with the runtime envi-
ronment, M does not need to be restricted. For example, such effects include local
names (86, |32] and recursion [29]]. While M might diverge in the latter case, making
typechecking undecidable, it is important that its evaluation does not get stuck because
of, for example, the need to perform I/O. On the other hand, if one wants to accommo-
date a wide range of different computational effects, including both local names and
I/0, M should be restricted to a value so as to guarantee that it evaluates to a natural
number during typechecking. Furthermore, while there exists semantics for these two
specific computational effects (see [86] and [82], respectively), we do not know of a
denotational semantics that would account for type-dependency on an unrestricted M.

It is worthwhile to note that the problem with general M only arises when one takes
a coarse-grained language, such as Moggi’s computational A-calculus [74]], as a basis
for building an effectful dependently typed language. In particular, in such languages
neither the types nor the typing judgements contain information about whether and
which computational effects a term might perform. As a result, a closed term of type

Nat can “surprisingly” perform I/O or raise an exception, instead of evaluating to a

4 Chapter 1. Introduction

natural number. While this style of programming is convenient in many situations, it
contradicts the spirit of dependently typed programming, namely, that types ought to be
as precise descriptions of program properties as possible. For example, when pattern-
matching on a vector of type Vec A 5, the typechecker can readily use the knowledge
that this vector must be exactly of length 5. Thus, when combining dependent types
and computational effects, one naturally expects similar precision to also apply to the
types of effectful computations, i.e., we had better not be able to assign just the type

Nat to a program that can potentially perform I/O or raise an exception.

Our solution: Guided by the above discussion, we allow types to depend only on
values in order to support a wide range of computational effects. While this decision
might seem limiting at first, we recover the ability to depend on effectful computa-
tions via thunks and handlers (see Section for examples of this). To ensure that
types depend only on values, we make a clear distinction between value types A and
computation types C, and between value terms V and computation terms M, as is done
in simply typed effectful languages such as Levy’s Call-By-Push-Value (CBPV) [61],
and Egger, Mggelberg, and Simpson’s Enriched Effect Calculus (EEC) [35].

Specifically, the well-formed types of the effectful dependently typed language we
develop in this thesis are defined using judgements I' = A and I" - C, where the vari-
ables in contexts I are required to range exclusively over value types. As a result, our
language lends itself to a very natural denotational semantics that combines standard
category-theoretic models of dependent types and the corresponding generalisation of
standard adjunction-based models of computational effects.

It is worth noting that we could have chosen other effectful simply typed languages
as the basis of our effectful dependently typed language, such as Moggi’s monadic
metalanguage [75] or Levy’s fine-grain call-by-value language [61, Appendix A.3.2].
Each of these languages distinguishes between effect-free values and possibly effectful
computations. The former does so by assigning effectful computations monadic types
TA, while the latter makes this distinction already in the grammar of terms. However,
as we next discuss, by basing our work in this thesis on CBPV and EEC, we are able

to give a more uniform treatment of type-dependency in sequential composition.

How should one treat type-dependency in sequential composition?

In order to make the above question more concrete, we recall the typing rule for the

1.1. Two guiding questions 5

sequential composition of effectful computations from CBPV:

I'-M:FA T,x:AFN:C
I'EMtox:AinN:C

It is important to observe that in the dependently typed setting, this typing rule is no
longer correct because the second premise allows the value variable x to appear freely
in C, meaning that x can also appear free in the conclusion where it ought to be bound.

Based on this observation, we rephrase our second guiding question as follows:

e How should one fix this typing rule for sequential composition so that the value

variable x would not appear free in its conclusion?

As already suggested by Levy [61, Section 12.4.1], the most straightforward so-
lution to this problem would be to not allow the variable x to appear free in the com-

putation type C, i.e., require that C is well-formed in I" and change the typing rule to

I'EM:FA THC T ,x:AFN:C
I'EkMtox:AinN:C (+)

On the one hand, this solution would have two important advantages: 1) it solves the
above-mentioned problem with minimal changes; and ii) sequential composition typed
using this rule can be given a denotational semantics using split fibred adjunctions,
naturally generalising the semantics of CBPV’s simply typed sequential composition.
On the other hand, this solution can be somewhat restrictive in some situations. For
example, when M involves opening a file and the return values of M model whether the
file was opened successfully or not, the computation type C and the computation terms
allowed to inhabit it could crucially depend on the return values of M. For instance, if
the given file was not opened successfully in M, we might want to use dependency on
the variable x in C to prohibit reading from and writing to the given file in N.

In recent unpublished manuscripts [112} [111], Vékar has proposed an alternative
solution in which C is allowed to depend on thunks of computations. In particular,

Viékar studies a dependently typed CBPV in which sequential composition is typed as

T\ FM:FA Ty,y:UFA,T,+C
['),x:A,T[thunk (return x)/y| = N : C[thunk (return x)/y]
I'),I2[thunk M/y|F M to x:A in N : C[thunk M /y]

However, while this rule solves the above-mentioned problem with the typing rule of
sequential composition, its thunks-based type-dependency introduces new problems in

the presence of algebraic effects. We discuss these problems further in Section [I.4}

6 Chapter 1. Introduction

Finally, if we would have chosen Moggi’s monadic metalanguage as the basis of
our language, instead of CBPV and EEC, we would have had the option to simply use
the standard (value) X-type to fix the typing rule of sequential composition. In par-
ticular, given two terms I' =M : TA and I',x:A = N : TB, we could have considered
“closing-off™ the type of the sequential composition of M and N as T (£x:A.B). How-
ever, it is not immediate whether this proposed use of the X-type is the right solution

to this problem, e.g., why not use Xx:A.T B, or why use the X-type in the first place?

Our solution: Guided by the above discussion, we choose to use the restricted rule (x)
to type sequential composition for the reasons listed earlier, namely, because it solves
the above-mentioned problem with minimal changes and the resulting language lends
itself to a denotational semantics that naturally generalises that of simply typed CBPV.
We overcome the restrictive nature of this rule (see earlier discussion) by “closing-off”
C using a X-type. However, as C is a computation type, we cannot use the standard
(value) X-type from Martin-Lof’s type theory (MLTT) [69]. Instead, we introduce
a computational variant of it, written £x:A.C, to complement the typing rule (x). In

particular, by combing the typing rule (x) with the computational X-type, we can derive

x:AFx:A T, x:AFN:C
I'M:FA T'HXx:A.C [x:AF (x,N):Xx:A.C
I'Mtox:Ain (x,N):Xx:A.C

where the type of N is allowed to depend on the values returned by M, but we “close
it off”” using the introduction form for Xx:A.C, given by computational pairing, before
concluding the derivation by applying the typing rule (x) for sequential composition.
Our use of the computational X-type is inspired by the algebraic treatment of com-
putational effects in which computational effects are specified using equational the-
ories, whose algebras then model computation types. To explain this further, let us
consider the effect of accessing read-only memory that stores a single bit. Follow-

ing [106]], this effect can be represented using a binary operation ? and the equations:
MIM=M (M ?M3)? (N1 ?N2) =M1 7N,

The idea is that M ? N is a computation that first reads the bit in the store and then
continues by following either M or N, depending on whether the bit was 0 or 1.

Next, let us consider the following program:

((return4) ? (return2)) tox:Natin N

1.1. Two guiding questions 7

When we examine how this program would evaluate, assuming that x:Nat /N : C and
x:NatF C, we see that after reading the bit in the store, we continue either by evaluating
N[4/x], that has type C[4 /x|, or by evaluating N[2/x], that has type C[2/x|, leading us
to naturally conclude that the whole program denotes an element of the coproduct of
algebras denoted by C[4/x] and C[2/x|. The elements of this coproduct are equivalence
classes of binary computation trees whose leaves are given by elements of the algebras

denoted by C[4 /x| and C[2/x]. For example, the given program denotes the tree

7\

N[4/x] N[2/x]

As the same pattern also reoccurs with computational effects other than reading a
bit and dependency on arbitrary value types, we introduce the computational X-type as
a uniform means to account for general type-dependency in sequential composition.
In particular, if x: A F C denotes an A-indexed family of algebras, then the computa-
tional X-type Xx:A.C denotes an A-indexed coproduct of algebras C|a;/x]. However,
as already demonstrated in the above derivation of M to x:A in (x,N), we separate
concerns by not making the computational X-type part of the typing rule for sequen-
tial composition, but instead equip it with its own introduction and elimination formes,
given by pairing and pattern-matching, analogously to the (value) X-type from MLTT.

This general treatment also justifies our earlier proposal of using the (value) X-type
to “close-off” free variables to type sequential composition in a dependently typed ver-
sion of Moggi’s monadic metalanguage. In particular, based on the above discussion,
an embedding of Moggi’s monadic metalanguage in ours by taking TA = UFA, and a
computation type isomorphism I'F F(Xx:A.B) = Lx:A. FB provable in our language,
we get that the canonical treatment of type-dependency in sequential composition for

Moggi’s metalanguage amounts to using the following derivable typing rule:

I'kM:TA T, x:A-N:TB
I'Mtox:Ain (N toy:Bin return (x,y)): T(Xx:A.B)

The above discussion also shows us why using Xx:A.7T B to type sequential com-
position in a dependently typed version of Moggi’s monadic metalanguage would not
have the desired effect. In particular, if Xx:A.TB were used to type the sequential
compositionof '=M : TAand I',x:A+ N : TB, then M would need to return the same

exact value of type A in each of its branches. From an algebraic perspective, if B

8 Chapter 1. Introduction

denotes an A-indexed family of sets, then Xx:A.T B would denote an A-indexed co-
product of sets of computation trees, where each tree in an a’th component of this
coproduct would have all its leaves given by elements of the set denoted by Ba/x]|. As
a result, the example program ((return 4) ? (return 2)) to x:Nat in N, where now
x:Nat = N : TB, could not be modelled as an element of the set denoted by Xx:Nat. 7 B.

While useful for providing a general treatment of type-dependency in sequential
composition, we note that we have yet to find interesting examples involving computa-
tion types Xx:A. C where C would not be of the form FB. In particular, a natural imple-
mentation of the dependently typed parsing example we alluded to in [9]] also turns out
to only require types of the form FB (and Xx:A.FB), e.g., as sketched in Appendix
using a shallow embedding of Moggi’s monadic metalanguage in Agda [78]. However,
we would like to draw the reader’s attention to that in the context of more expressive
typing disciplines than considered in this thesis, the combination of the computational
Y-type and computation types of the form F B (where F is now indexed by a value

term W) can give rise to interesting consequences, e.g., as discussed in Section [8.1.2]

1.2 Contributions

The main contributions of this thesis are:

o An effectful dependently typed language, called eMLTT, that naturally combines
intensional MLTT with general computational effects, based on a clear separa-
tion between values and computations. The most notable feature of eMLTT is
the computational X-type that provides a uniform treatment of type-dependency

in the sequential composition of effectful computations.

e A class of category-theoretic models, called fibred adjunction models, with re-
spect to which eMLTT is both sound and complete. These models naturally com-
bine standard category-theoretic models of dependent types (split closed com-

prehension categories) and computational effects (adjunctions). Further, they
— provide evidence that one can keep using monads and adjunctions to model
computational effects in the dependently typed setting;

— demonstrate that computational Il- and X-types can be modelled analo-

gously to their value counterparts, as adjoints to weakening functors; and

1.2. Contributions 9

provide a category-theoretically natural axiomatisation of structures needed

for modelling type-dependency in the elimination forms of value types.

e A collection of natural examples of fibred adjunction models, based on

simple fibrations and models of EEC (i.e., enriched adjunctions);
the families of sets fibration and lifting of adjunctions;

the Eilenberg-Moore resolutions of split fibred monads, where we give suf-
ficient conditions for the Eilenberg-Moore fibration to support computa-
tional II- and X-types, generalising known results about the existence of

products and coproducts in the Eilenberg-Moore category of a monad; and

the fibration of continuous families of w-complete partial orders and lifting

of CPO-enriched adjunctions, so as to accommodate general recursion.

e An extension of eMLTT with algebraic effects and their handlers, including

a notion of fibred effect theory that allows computational effects to be spec-
ified using dependently typed operation symbols (and equations), enabling
one to capture precise notions of computation, such as state with location-

dependent store types and dependently typed update monads;

an observation that naively following the literature and defining handlers at
the term level leads to unsound program equivalences becoming derivable

in languages involving a notion of homomorphism, such as eMLTT;

a novel computation type, called the user-defined algebra type, that pairs a
value type (the carrier) to a family of value terms (the operations), allowing

us to safely extend eMLTT with handlers of fibred algebraic effects;

a demonstration that the conventional term-level presentation of handlers

can be routinely derived from our type-based treatment; and

a proof that this extended language can be soundly interpreted in a fibred
adjunction model based on the families of sets fibration and models of a

countable Lawvere theory we derive from the given fibred effect theory.

e A demonstration that our type-based treatment of handlers provides a useful

mechanism for reasoning about effectful computations, e.g., allowing us to

lift predicates given on return values to predicates on computations;

10 Chapter 1. Introduction

— define Dijkstra’s weakest precondition predicate transformers; and

— specify detailed patterns of allowed (I/O-)effects in computations.

1.3 Organisation

Chapter [1]is this introduction which also includes an overview of related work.

Chapter 2] recalls some preliminaries of category-theoretic models of computational

effects and dependent types that are needed to understand the rest of the thesis.
Chapter [3]introduces and studies our effectful dependently typed language eMLTT.
Chapter [defines and studies fibred adjunction models, including various examples.
Chapter 5|defines and studies the interpretation of eMLTT in fibred adjunction models.
Chapter [6| extends eMLTT with fibred algebraic effects.

Chapter [7|extends eMLTT with handlers of fibred algebraic effects.

Chapter [§| concludes the thesis and discusses some possible future work directions.
Appendix [A| presents an example of dependently typed monadic parsing.
Appendices B} [C| and [D]contain detailed proofs of results in Chapters and|[6]

1.4 Related work

In this section we give an overview of existing work on combining dependent types

and computational effects. In particular, these works either

e develop new dependently typed languages in which computational effects are

included primitively in the design of the language; or

e use domain specific languages to represent computational effects in existing de-

pendently typed languages.

Compared to our treatment of the combination of dependent types and computa-
tional effects, all these languages lack ingredients needed for a general theory, e.g.,
the foundations are often not settled; the available effects may be limited; or they may
lack a systematic treatment of (equational) effect specification. However, it is also im-
portant to note that by being more specialised than eMLTT, and focussed on specific
computational effects and effect-typing disciplines, some of these languages support

more sophisticated types for effectful computations than eMLTT (see below).

1.4. Related work 11

Dependently typed CBPV

A dependently typed CBPV was already briefly discussed as a potential future work
direction in Levy’s original work [61, Section 12.4.1]. In particular, similarly to us,
Levy recognises that one cannot use CBPV’s typing rule for sequential composition in
the dependently typed setting. To solve this problem, Levy suggests the same solution

that we have adopted in eMLTT, i.e., to type sequential composition as follows:

I'EM:FA THC T,x:AFN:C
I'EMtox:AinN:C

However, Levy does not investigate this dependently typed version of CBPV further.
In particular, he does not consider the computational X-type or any other means to
overcome the restrictive nature of this typing rule. On the other hand, he highlights
an important drawback of allowing type-dependency only on values and typing se-
quential composition using this rule. Namely, there is no obvious translation from a
dependently typed A-calculus into this version of CBPYV, in contrast to the simply typed
setting where there exists two canonical translations (call-by-value and call-by-name).

The closest work to ours appears in recent unpublished manuscripts by Vékar [[112,
111]], which appeared independently of the author’s paper [9] that large parts of this
thesis are based on. In particular, Vakéar develops a dependently typed version of
CBPV, gives it a denotational semantics based on indexed categories and indexed ad-
junctions between them, and an abstract machine based operational semantics. Com-
pared to eMLTT, Vékar’s language lacks the computational X-type, he only considers
algebraic operations whose possible continuations are listed explicitly, and he does not
provide any treatment of handlers in the dependently typed setting. On the other hand,

Vékar fixes the typing rule for sequential composition differently from us and Levy, by

Fl =M :FA Fl,y:UFA,rz |—Q
I'1,x:A,T>[thunk (return x)/y| = N : C[thunk (return x)/y]
['),I[thunk M/y|F M to x:A in N : C[thunk M /y]

However, while this typing rule enables Vakar to define call-by-value and call-by-
name translations from a dependently typed A-calculus into his language, he observes
that not all computationally natural monads support this typing rule for sequential com-
position, when considering liftings of their Eilenberg-Moore resolutions to families of
sets. For example, while the exceptions monad supports this typing rule, the standard

monads for reading, writing, state, and continuations fail to do so. Significant problems

12 Chapter 1. Introduction

also arise in the presence of algebraic effects due to the thunks-based type-dependency
in his proposed typing rule for sequential composition. For example, in order to prove
that the subject reduction property holds of his language in the presence of algebraic
effects that involve equations, such as nondeterminism and state, Vakér needed to fur-

ther extend his language with the following typing rules (for all algebraic operations

I'-M : Clthunk M, /x]
' M : C[thunk (op(M,...,My))/x]

It is however not immediate if and how these typing rules could be adapted to general
algebraic operations that involve variable bindings, such as the ones we use to extend
eMLTT in Chapters [6|and[7} In summary, we conjecture that in order to make Vakar’s
proposed approach work in general, the computation type C should be allowed to de-
pend directly on computations of type FA rather than their thunks. We discuss some

possibilities for extending eMLTT with this kind of type-dependency in Section [8.1.4]

Linear dependent types

While not directly addressing the combination of dependent types and computational
effects, the recent works of Krishnaswami et al. [S9] and Vékar [110] on integrating
dependent and linear types have many features in common with our work. In particu-
lar, they develop languages that contain both intuitionistic and linear fragments, based
on adjunction models of linear logic, with both kinds of types allowed to depend only
on intuitionistic variables. Compared to eMLTT, where the contexts of (linear) com-
putation variables contain exactly one variable, the contexts of linear variables in their
work can contain arbitrary number of variables, which can be used in any order. Fur-
ther, while the type of homomorphisms between computation types (the homomorphic
function type C —o D) has to be treated as a value type in eMLTT, so as to be able to
capture a wide range of computational effects, the adjunctions used to model linear
logic enable them to treat the corresponding type of linear functions as a linear type.
Krishnaswami et al. also investigate extending their language with computational ef-
fects via a state monad on the linear types, allowing them to support state with strong

(type-changing) updates and to encode the effectful primitives of Hoare Type Theory.

'In other words, without these additional typing rules for algebraic operations, one would be unable
to assign a single canonical computation type to the left- and right-hand sides of definitional algebraicity
equations of the form op(Mj,...,M,) tox:Ain N =op(M; tox:Ain N,...,M, tox:A in N).

1.4. Related work 13

Hoare Type Theory

Hoare Type Theory (HTT) [[/7] was developed by Nanevski et al. to allow program-
mers to specify and verify stateful computations in a dependently typed setting using
the Hoare type {P}x:A{Q}, where P and Q are logical pre- and postcondition formulae
over the heap, and A is the type of values returned by a computation of this type. The
resulting language is a dependently typed version of Moggi’s monadic metalanguage,
with the ordinary monad replaced by the Hoare type, and with the typing rules of rel-
evant terms adapted accordingly. HTT resolves the problem with type-dependency in
sequential composition by restricting the free variables in the return type, and by using
existential quantification to “close-off” the free variable in the logical formulae. In

particular, using idealised syntax, HTT’s typing rule for sequential composition is

I'EM:{P}x:A{Q} THB T ,x:A-N:{Q}y:B{R}
I'Mtox:Ain N:{P}y:B{3x:A.R}

HTT has been given both an abstract machine based operational semantics [/7] and
a realisability based denotational semantics [83]. The latter is organised using a split
fibration of uniform families of chain-complete partial equivalence relations, a split
comprehension category of uniform families of assemblies, and a split fibred reflection
between them, based on Jacobs’s fibrational models of higher-order dependent predi-

cate logic and full higher-order dependent type theory, see [S1, Sections 11.2 and 11.6].

F*

Swamy et al.’s F* [108] is a closely related language to HTT. As well as state, F* sup-
ports other computational effects such as exceptions and divergence, and their com-
binations, organised in a lattice of effects. Compared to the pre- and postconditions
based reasoning in HTT, F* instead uses weakest precondition predicate transformers,
structured as Dijkstra monads 7 A wp, to reason about the behaviour of effectful com-
putations. Here, A is the type of values returned by a computation of this type and wp

is the weakest precondition transformer. For example, for the state effect one has
wp : (A — St — Type) — St — Type

Namely, wp transforms a type-theoretic predicate on return values and final states to
a predicate on initial states. Specifically, in a total correctness setting, being able to
assign the type TA wp to a stateful computation M guarantees that if M is executed

in a state Vs that satisfies wp Vp Vs (for some postcondition Vp), then the execution of

14 Chapter 1. Introduction

M produces a value V and a state Vg that satisfy Vp V V{. In a recent joint work by
the author and Hritcu et al. [[10]], F* has been extended with a means for representing
computational effects and their combinations using monads defined in a simply typed
definition language, with the corresponding predicate transformers and Dijkstra mon-
ads derived automatically using a selective CPS-transformation; this includes global
state, exceptions, and continuations, but currently excludes I/O and probability.

F* resolves the problem with type-dependency in sequential composition by re-
stricting the free variables in the return type, and by using the monad structure of the
weakest precondition predicate transformers. In particular, using idealised syntax, F*

includes the following typing rule for sequential composition:

I't-M:TAwpy T'HB T x:AFN:T Bwp>
I'FMtox:Ain N:T A (wpj tox:A in wpp)

While F* has been equipped with an operational semantics, a (category-theoretic) de-
notational semantics and a general algebraic account of it remain open problems. Fi-
nally, it is worth noting that while the treatment of computational effects in F* is based
on weakest precondition predicate transformers, its end users are usually presented

with a HTT-style programming interface that uses pre- and postconditions.

Dependent types and local names

Pitts et al. [86] and Cheney [32] have successfully combined dependent types with
another important notion of computation, namely, local names. A significant differ-
ence between these works and eMLTT, and the languages described above, is that the
languages developed Pitts et al. and Cheney do not include a distinct layer of effectful
computations, i.e., return and sequential composition. As a result, types can depend di-
rectly on terms that contain name abstractions and concretion. This is possible because
local names, when considered as a computational effect, do not require interaction
with the runtime environment, and so a closed term of type A will always evaluate to a
value of type A in these languages during typechecking. Pitts et al. show how to define
a sound interpretation of their language in a category with families (CwF, see [43])
of nominal sets. Meanwhile, Cheney develops a sound and complete normalisation
algorithm for the equational theory of his language.

A somewhat different approach to combining dependent types with local names has
been taken by Schopp and Stark [[103] (also [102]) who extend an extensional MLTT

with ideas from the logic of bunched implications [101]]. In particular, they derive the

1.4. Related work 15

operations for local names, such as name abstraction, from a central notion of freshness
that they formalise using monoidal versions of X- and I1-types. Similarly to the work of
both Pitts et al. and Cheney, the resulting language does not include a distinct layer of
effectful computations. Schopp and Stark give their language a denotational semantics
based on split closed comprehension categories that have affine monoidal bases, and

that additionally support monoidal versions of split dependent sums and products.

Dependent types and general recursion

Casinghino et al. [29] have studied combining dependent types with another impor-
tant computational effect, namely, general recursion and the possibility of divergence.
While their language also does not include combinators for returning values and se-
quential composition, similarly to the work on local names discussed earlier, their
language includes separate typing judgements to distinguish between code that is guar-
anteed to terminate (used for logical reasoning) and code that can potentially diverge
(used for programming). Casinghino et al. equip their language with an operational
semantics but they do not investigate a corresponding denotational semantics.

A domain-theoretic denotational semantics has been developed by Palmgren and
Stoltenberg-Hansen [82] for intensional MLTT that supports recursion via an iteration
type . In contrast to Casinghino et al.’s work, this variant of MLTT does not distin-
guish between terminating and diverging code. As a result, it is inconsistent as a logic
because all its types are inhabited, including the empty type 0. In comparison, when
we extend eMLTT with general recursion in Section we take care to ensure that
recursion can only be used in computation terms, thus ensuring that the pure fragment
of eMLTT can be used to reason about programs. This is similar to the distinction
between terminating and possibly diverging code in Casinghino et al.’s work.

It is worth noting that Agda /8], Idris [26], and F* also support general recursion.
While the first two use syntactic termination checkers to ensure the totality of general
recursive definitions and therefore the consistency of logical reasoning, F* supports a

semantic termination check based on a well-founded partial order on its terms.

Representing computational effects using interaction structures

Regarding the use of domain specific languages to represent computational effects
in existing dependently typed languages, a general treatment has been developed by

Hancock and Setzer [41], who embed Moggi’s monadic metalanguage in type theory.

16 Chapter 1. Introduction

They achieve generality by specifying computational effects using interaction struc-
tures; these are an abstract representation of single-sorted signatures, also known in
the literature under the name of containers [4]. The corresponding monad is then gen-
erated freely on the polynomial endofunctor induced by the given interaction structure.
It is worth noting that while this work is general enough to capture all single-sorted sig-

natures, it does not support the equational specification of computational effects.

Representing effects using monads on indexed sets and parameterised monads

We conclude our overview of related work by discussing the work of McBride [[72]] and
Brady [27], who also use existing languages to monadically represent computational
effects. Compared to Hancock and Setzer’s work, McBride and Brady also support
sophisticated effect-typing disciplines to specify and verify properties of effectful pro-
grams, e.g., that one can read from a file only after it has been opened. McBride’s
representation of computational effects and the corresponding effect-typing is based
on monads on indexed sets, using a custom version of Haskell as the underlying lan-
guage. Brady, on the other hand, uses a natural dependently typed generalisation of
Atkey’s parameterised monads (see Section [8.1.2) to represent computational effects
in Idris, and to use pre- and postconditions to track the “worlds” of computation, e.g.,
whether a file is open or closed. For example, the type of the function representing

sequential composition in Brady’s work can be described using the following rule:

I'M:Twiw2A T'HFB T'FW3:World T'x:AFN:Tyow3 B
I'FMtox:A inNITWl7w3B

More recently, Brady has extended his (dependently typed parameterised) monads
with additional type-dependency [28], by allowing the postcondition worlds to depend
on return values, thus alleviating the limitation that W, is not allowed to depend on the
return values of M (via x) in the above typing of sequential composition. However, as
part of our exploratory investigations into extending eMLTT with dependently typed
effect typing, we observed that there does not seem to be a category-theoretically nat-
ural axiomatisation of the corresponding adjunctions. Instead, our preliminary work
has shown that this more dependently typed version of Brady’s monad turns out to
be simply the composite of the less dependently typed parameterised adjoints and our

computational X-type. We discuss this observation in more detail in Section[8.1.2]

Chapter 2
Semantic preliminaries

To make our work accessible to a wider audience, we begin by recalling some prelim-
inaries of category-theoretic models of computational effects (monads, adjunctions,
and Lawvere theories) and dependent types (split fibrations and split comprehension
categories). We assume familiarity with basic category theoretical concepts such as
categories, functors, and natural transformations—we refer the reader to Mac Lane’s
book [66] for an in-depth overview. Later in the thesis, we also assume familiarity with
basic enriched category theory—see Kelly’s book [56] for an in-depth overview.

We also note that throughout this chapter (and more generally, throughout this

entire thesis), we assume the Axiom of Choice in results involving sets and functions.

2.1 Models of computational effects

We begin by recalling the definitions and key properties of category-theoretic struc-
tures used for modelling computational effects: monads, adjunctions, and Lawvere

theories, including their relationships. For more details, see [66, 20,167, 25, 97].

2.1.1 Monads

The uniform category-theoretic study of computational effects dates back to the semi-
nal work of Moggi [74,[75]], who recognised that all computational effects commonly

used in programming languages can be modelled using (strong) monads.

Definition 2.1.1. Given a category v/, amonad T = (T,m,u) on V is given by a functor
T : vV — v and two natural transofrmations, the unit 1 : id,y — T and the multipli-

17

18 Chapter 2. Semantic preliminaries

cation u: T oT — T, subject to the following commuting diagrams:

T T por I g ToToT —* . ToT
oT
N2
T Tol ——— T

Through the work of Wadler [[115], who popularised the use of monads as a conve-
nient means to structure functional programs, and the subsequent adoption of monads
as a uniform mechanism to include computational effects in Haskell, functional pro-

grammers are probably more familiar with the Kleisli triple presentation of monads.

Definition 2.1.2. Given a category ¥V, a Kleisli triple (T,n,(—)") on ¥/ is given by a
mapping T : ob(?) — ob(?’), a family of morphisms M4 : A — T(A) (for all A in
) and morphisms f': T(A) — T(B) (for all f : A — T(B) in V) such that

N =idray floma=f goff=(gof)
forall f:A— T(B)and g: B — T(C).
As is well-known, these two definitions are in fact equivalent.

Proposition 2.1.3 ([67, Theorem 3.18]). Monads and Kleisli triples on a category V

are in a 1-to-1 correspondence, with f' and u defined respectively as follows:

fTEupoT(f) ma=idy,

Moggi’s insight was that for a suitable monad (7,m,u), the object T(A) can be
used to model effectful computations that return values modelled by A; the unit 1 can
be used to model the effect-free computation that returns a value and does not perform
any effects; and the multiplication u (or, equivalently, the Kleisli extension (—)T) can
be used to model the sequential composition of effectful computations, e.g., the let-
expression in the ML-family of languages. Based on this monadic approach to denota-
tional semantics, Moggi also developed two simply typed languages to provide a for-
mal basis for proving equivalences between effectful programs, namely, the computa-
tional A-calculus [[74] and the monadic metalanguage [75]. These languages were later
refined by Levy to a single fine-grain call-by-value language [61, Appendix A.3.2].

Below we list some computational effects that Moggi considered and recall the

underlying functors of the corresponding monads (for simplicity, on the category Set):

2.1. Models of computational effects 19

def

for exceptions, the monad is given on objects by Tgxc(A) =A+E;

for nondeterminism, the monad is given on objects by Tap(4) =

P (A);

for global state, the monad is given on objects by Tgs(A) = S = (A x S);

for I/0, the monad is given on objects by Tyo(A) = uX.A+ (I = X) + (0 x X);

and

e for continuations, the monad is given on objects by Tcont(4) = (A = R) = R,

where E is a set of exception names, S of store values, I of input values, O of output
values, and R of results. We omit the definitions of 1 and u for each of these monads;
they can be readily found in [[75]. These monads also generalise straightforwardly to
categories ‘V other than Set, as long as 7 has appropriate structure, e.g., coproducts
for the exceptions monad, and Cartesian products and exponentials for global state.

It is worth noting that the global state monad only models state where the store
is changed by overwriting. In contrast, the author has also studied models of a more
fine-grained notion of state where the store is changed by applying (potentially small)
updates to it. For this notion of state, the store is modelled using a set S, the updates
using a monoid (P,0,®), and the interaction of the two using an action | of the monoid
on S. The corresponding update monad is given on objects by Typp(A) =S = (P x A).
For more details about update monads, see the author’s joint paper with Uustalu [[13]].

This paper also describes a natural dependently typed generalisation of update
monads, where one uses a dependently typed generalisation of a monoid, a directed
container (S,P,|,0,®) [8]. In short, in (S,P,|,0,&), P is not a set but instead an S-
indexed family of sets, with |, o, and & typed accordingly, thus providing fine-grained
control over which updates are applicable to specific stores—see Example for
more details. The corresponding dependently typed update monad is then given on
objects b Toupp(A) = [1ses(Ps x A). We discuss the equational presentations of

(dependently typed) update monads in Examples[6.1.9][6.1.10,[6.1.25] and [6.1.26]

Moggi also observed that monads by themselves are not sufficient to model com-

putations in non-empty contexts of variables. Correspondingly, one requires the given
monad (7,m,u) to also be strong, so as to ensure that every morphism of the form

A X B — T(C) canonically induces a morphism of the form A x T(B) — T(C).

!Given a set X and an X-indexed family of sets Y, then [, Yy is the X-indexed product of ¥;’s.

xeX

20 Chapter 2. Semantic preliminaries

Definition 2.1.4. A monad T = (7,m,u) on a category ¥ with Cartesian products is

said to be strong if it is equipped with a natural transformation
0: (=) xT(=) —=T((-)*x(=))

making the following four diagrams commute:

IxT(A) — 22~ T(1xA)
T (A,
Aren (Aa)
T(A)
(AxB)x T(C) onxne T((A x B) x C)
Op B T(C) T(0aB.C)
AX (BxT(C)) Ton AXT(BxC) SV T(Ax (BxC))
AxB WM 4 T(B)
NAxB A%
T(A xB)
T
AXT(T(B)) "% T(Ax T(B)) " T(T(A x B))
idg X up HAx B
AXT(B) g T(A X B)

where A4 : I X A =y Aand Ospc:(AXB)xC LA X (B x C) are components of
the canonical natural isomorphisms induced by the Cartesian monoidal structure of V.

The notion of strength easily generalises to arbitrary monoidal categories, see [38]].

2.1. Models of computational effects 21

We conclude by recalling a well-known result that every monad on Set has a unique
strength G, given by 64 g = (a,d) ~ T (b~ {(a,b))(d). One way to show this result
is to first observe that a strong monad on a monoidal closed category ¥/ can be equiv-
alently characterised as a V-enriched monad on ¥ (see [58]]), and as it happens, ev-
ery monad on Set is trivially Set-enriched. The uniqueness of ¢ then follows from
Set having enough points, in that for any two functions f,g:A — B, we have that

(Vh:1 — A. foh = goh) implies f = g (see [75} Proposition 3.4] for more details).

2.1.2 Adjunctions

A decade after Moggi’s seminal work, Levy [61] gave a more fine-grained analysis of
effects based on adjunctions, using them to account for the clear separation between
values and computations in his Call-By-Push-Value (CBPV) language. Adjunctions
were also important in Egger et al.’s [35] subsequent work on the linear aspects of ef-

fects, and for giving a denotational semantics to their Enriched Effect Calculus (EEC).

Definition 2.1.5. An adjunction F 4 U : C — ‘V between categories v and C is given
by two functors, the left adjoint F : 1V — C and the right adjoint U : C — V, and
two natural transformations, the unitn :id;) — U o F and the counite: FoU — id,

subject to the following two commuting diagrams:

U-2Y UsFoU F - FoUoF
Uoeg eoF
idy idp
U F

As a convention, we write A, B, ... for the objects of 1/ and C, D, ... for the objects
of C. While this notation coincides with our notation for value and computation types,
we make sure that it is clear from the context whether A and C mean types or objects.

Similarly to monads, there are other, equivalent ways in which one can define ad-

junctions. We recall the other commonly used definition based on hom-sets.

Definition 2.1.6. A hom-set presentation of an adjunction F < U : C — ‘V consists
of two functors, the left adjoint F : 7/ — C and the right adjoint U : C — ¥/, and an
isomorphism of hom-sets C(FA,C) = V(A,UC) that is natural in both A and C.

A useful property of adjoints is that they are unique up-to-isomorphism.

22 Chapter 2. Semantic preliminaries

Proposition 2.1.7 ([66, Section IV.1)). Given F 41U : C — Vand F'1U : C — ¥V,
then there exists a natural isomorphism F = F'. Analogously, given F 41U : C — V
and F AU’ : C — V, then there exists a natural isomorphism U = U'.

Analogously to using monads for giving denotational semantics to effectful lan-
guages, adjunctions by themselves are not sufficient to model CBPV and EEC’s terms
in non-empty contexts. To this end, one requires the adjunction ¥ U : C — ¥ to be
Set”” -enriched in the models of CBPV and -enriched in the models of EEC.

Next, we recall the close relationship between adjunctions and monads.

Proposition 2.1.8 ([66, Section VI.1]). Given an adjunction F 4 U : C — V between
categories V and C, we get a monad (U o F,m,U o€o F) on the category V.

Definition 2.1.9. Given a monad (7,m,u) on a category V, a resolution of (T,n,u) is
given by a category C and an adjunction F - U : C — ¥/ such that (T,m,u) coincides

with the monad canonically derived from this adjunction, as given in Proposition(2.1.8

While there does not exist a unique resolution of a monad, it is well-known that
there exist two canonical resolutions: the Kleisli and Eilenberg-Moore resolutions. In
fact, these two resolutions turn out to be the initial and terminal object in the category
of resolutions of a monad, respectively—see [66, Chapter VI] for more details. These

resolutions are also a common source of models of languages such as CBPV and EEC.

Definition 2.1.10. Given a monad T = (7,m,u) on a category ‘V, its Kleisli resolution
is given by a category ¥t and an adjunction Fy - Uy : Vp — v/, where the objects
of Vr are the objects of 7/; and the morphisms A — B in U are the morphisms
A — T(A) in V. The left and right adjoints are defined as follows:

def def def

Fr(A)=A Fr(f)=mpof Ur(A)=T(A) Ur(h) =ugoT(h)
where f:A — Bin YV and h:A — Bin 1.
Definition 2.1.11. Given a monad T = (7,m,u) on a category V, its Eilenberg-Moore
(EM-) resolution is given by a category ¥’T and an adjunction FT 4UT : VT — .

The objects of 9’1 are given by pairs (A, o) of an object A in 9’ and a morphism

o:T(A) — A in ¥ such that the following two diagrams commute:

nNa

A T(A) T(T(A)) T(A)
N
A T(A) A

2.1. Models of computational effects 23

A morphism & : (A,a) — (B,B) in VT is given by a morphism 4 : A — B in 9 such
that the following diagram commutes:

T@4) . 7(B)

“l

The left and right adjoints are defined as follows:

B

B

h

def

FYA)=(T(A)m) FUNET) UlA)=A UNh)=h
where f:A — Bin V and h: (A,a) — (B,p) in VT.

The category VT is called the Eilenberg-Moore (EM-) category of the monad T.
Its objects are commonly known as the Eilenberg-Moore (EM-) algebras of T and its
morphisms as the EM-algebra homomorphisms. For a given EM-algebra (A, o), the
object A is typically called the carrier, and the morphism o the structure map.

It is worth noting that some computationally important monads can be naturally
decomposed into resolutions other than their Kleisli and EM-resolutions. Below we

assume that the monads in question are given on some Cartesian closed category V.

Proposition 2.1.12. The global state monad, given by Tgs(A) £ S = (A x S), can be
decomposed into the resolution given by (—) xS4S=(—): ¥V — V.

Proposition 2.1.13. The continuations monad, given by Tconr(A) Z (A = R) = R,

can be decomposed into the resolution given by (—) = R- (=) = R: VP — V.

We conclude our discussion about monads and adjunctions by recalling some known
results about the existence of products and coproducts in the EM-category of a monad.
We later use these results and their natural fibrational generalisations as a basis for
constructing examples of models of eMLTT—see Section 4.3 for details.

In the interest of generality, we state these existence results in terms of limits and
colimits, from which the results for Cartesian products and coproducts follow as simple

corollaries. To this end, we first recall the definitions of limits and colimits.

Definition 2.1.14. Given any category V and a small category D, we say that a functor
J: D — YV is adiagram of shape D.

Definition 2.1.15. Given a diagram J : D — ©/ and an object A in ¥/, we say that a

natural transformation o : A(A) — J is a cone over J. We call A the vertex of .

24 Chapter 2. Semantic preliminaries

In the above definition, A : ¥/ — V2 is the standard diagonal functor that maps

an object A in v to the constant functor that maps every D in D to the given A in V.

Definition 2.1.16. Given a diagram J : D — v/, and two cones o : A(A) — J and
B:A(B) —> J, we say that a morphism i : A — B in V' is a morphism of cones from
o to B if for all objects D in D, we have Bpoh = ap.

Definition 2.1.17. Given a diagram J : D — v/, a limit of J is the terminal cone over
J, which we write as pr/ : A(lim(J)) — J. For any other cone a.: A(A) — J, we

write (o) for the unique mediating morphism of cones from o to pr’.

Definition 2.1.18. If the category 4/ has limits for all diagrams J : D — v/, we say
that ¥ has limits of shape D. Further, if the category ¥ has limits of all shapes D, we
say that 7V has all small limits and that V is complete.

Definition 2.1.19. A pullback of morphisms f:A — C and g: B — C in V is the
limit of a diagram J : D — v/, where D is given by morphisms i : D; — D3 and

def

j:Dy — D3; and J is given by J(i) = f and J(j) = g.

As standard, we denote the existence of the pullback of f:A — Candg: B —C

in 7/ using a diagram of the following form, commonly called a pullback square:

pry,
lim(J) ——~ A
-

PrD, f

B C

8

As also standard, we often leave the diagram J and the corresponding terminal cone
implicit, and instead write pullback squares as in Definition [2.1.20| below.

Definition 2.1.20. A kernel pair of a morphism f : A — B is a pair of morphisms
g,h : C — A that form the pullback of f and f, as illustrated in the following diagram:

C A
|
g f
A B
f

Definition 2.1.21. Given a diagram J : D — 7/ and an object A in 7/, we say that a

natural transformation o : J — A(A) is a cocone over J. We call A the vertex of .

2.1. Models of computational effects 25

Definition 2.1.22. Given a diagram J : D — ¥/, and two cocones o : J —» A(A) and
B:J — A(B), we say that a morphism i : A — B in V is a morphism of cocones

from o to B if for all objects D in D, we have hodap = Bp.

Definition 2.1.23. Given a diagram J : D — v/, a colimit of J is the initial cocone
over J, which we write as in’ : J — A(colim(J)). For any other cocone a.: J — A(A),

we write [o] for the unique mediating morphism of cocones from in’ to .

Definition 2.1.24. If the category ¥ has colimits for all diagrams J : D — v/, we say
that ¥ has colimits of shape D. Further, if the category V has colimits of all shapes
D, we say that V has all small colimits and that V is cocomplete.

Definition 2.1.25. A pushout of morphisms f:A — Band g: A — C in 7V is the
colimit of a diagram J : D — ¥/, where D is given by morphisms i : D; — D; and
j:Di — D3; and J is given by J(i) = f and J(j) = g.

Definition 2.1.26. A coequalizer of a parallel pair of morphisms f,g:A — Bin ¥ is
the colimit of a diagram J : D — ¥/, where D consists of a parallel pair of morphisms
i,j: Dy —> Dy; and J is given by J(i) = f and J(j) = g.

Definition 2.1.27. A section of a morphism f : A — B is a morphism g : B — A that

is a right inverse to f, i.e., fog = idp.

Definition 2.1.28. A reflexive coequalizer is a coequalizer of a parallel pair of mor-

phisms f,g : A — B that have a common section.

We now list the results about the existence of limits and colimits in the EM-category
of a monad. The cases of Cartesian products and coproducts follow as simple corollar-

ies to these results if we take D = 2, where 2 is the discrete two-object category.

Proposition 2.1.29 ([25] Proposition 4.3.1]). Given a monad T on a category V and
a diagram J : D —s VY, then there exists a limit of J if there exists a limit of the
composite diagram U o J. In particular, if V has all limits of shape D, then VT also
has all limits of shape D.

Proposition 2.1.30 ([25| Proposition 4.3.2]). Given a monad T = (T,n,u) on a cate-
gory V and a diagram J : D — VT such that there exists a colimit of the composite
functor U o J which is preserved by T, then there exists a colimit of J and it is pre-
served by UY. In particular, if V has all colimits of shape ‘D and they are preserved
by T, then VY also has all colimits of shape D and they are preserved by UT.

26 Chapter 2. Semantic preliminaries

Proposition 2.1.31 ([65, Corollary 2]). Given a monad T on a cocomplete category

V, then VY is cocomplete if it has reflexive coequalizers.

Proposition 2.1.32 ([25, Theorem 4.3.5 (i)]). Given a monad T on a complete, cocom-
plete, and regular category V' in which every regular epimorphism has a section, then

VT is complete, cocomplete, and regular.

In particular, recall that a category is regular when i) every morphism in it has a
kernel pair, ii) every kernel pair has a coequalizer, and iii) the pullback of a regular
epimorphism (a coequalizer of some parallel pair of morphisms) along any morphism
exists and is again a regular epimorphism—see [25, Chapter 2] for more details.

Finally, it is worth highlighting a useful result about the EM-categories of monads

on Set that follows as a straightforward corollary to Propositions [2.1.29] and [2.1.32]
We use this result in Section [4.3.3]to construct examples of models of eMLTT.

Proposition 2.1.33. For any monad T on Set, Set? is both complete and cocomplete.

Proof. Completeness of SetT follows directly from Proposition because it is
well-known that Set is complete. Cocompleteness of SetT then follows from Proposi-
tion[2.1.32]because it is well-known that Set is also cocomplete, and that by the Axiom
of Choice, every epimorphism (i.e., surjective function) in Set has a section. Further,

it is also well-know that Set is a regular category (e.g., see [25, Example 2.4.2]). [

2.1.3 Algebraic treatment of computational effects

While Moggi’s seminal work shows that strong monads provide a uniform means to
model basic combinators on effectful computations (returning values and sequential

composition), it leaves two important questions unanswered:

e Given any programming language with its computational effects, which monad

should we use to model this language?

e Given monads for two or more computational effects, how should we combine

them into a monad for the combination of these effects?

In particular, recall that the monads Moggi considered were defined on a case-by-case
basis for specific computational effects. Further, while his subsequent work with Cen-
ciarelli [31] on monad transformers (pointed endofunctors on the category of strong
monads) provides some means of modularity for combining monads, these transform-

ers are defined on a similar case-by-case basis for specific computational effects.

2.1. Models of computational effects 27

An elegant answer to both questions is provided by the algebraic treatment of com-
putational effects, as originally proposed and developed by Plotkin and Power [88, 92,
89]. In this approach, one represents computational effects algebraically using a set
of operation symbols (representing the sources of effects) and a set of equations (de-
scribing their computational properties). Consequently, computational effects that fit
this approach are commonly called algebraic. A good source of examples of algebraic

effects is [95]. We also discuss examples of common algebraic effects in Section [6.1]

Plotkin and Power’s key insight was that computational effects themselves, when
represented using operations and equations, canonically determine the monads and
adjunctions that one can use to model effectful languages. For example, the global state
monad is determined by operations for reading from and writing to the store, together
with a set of equations describing the natural computational behaviour of reading and
writing, as given in [92]]. In the same way one can recover most of Moggi’s monads,

with the notable exception of the continuation monad that is not algebraic [48]].

Focussing on operations and equations also enables computational effects and the
corresponding monads to be composed modularly. For example, Hyland et al. [49]
explain various commonly used monad transformers in terms of two canonical con-
structions on equational theories, the sum and tensor product of equational theories.
For both constructions, the set of operation symbols of the resulting theory is given by
the union of the sets of operation symbols of the given theories, and the set of equations
of the resulting theory includes the union of the sets of equations of the given theories.
For the tensor product, the set of equations of the resulting theory additionally includes
equations ensuring that operations from different given theories commute with each
other. The algebraic treatment of computational effects has also resulted in a general
account of effect handlers [93]], and has been successfully applied to effect-dependent

optimisations [54], operational semantics [90, 5], and a logic of effects [93]].

In more detail, Plotkin and Power modelled algebraic computational effects using
equationally presented Lawvere theories, making use of the wealth of existing theory
and the particularly good properties of Lawvere theories and their models. Informally,
a Lawvere theory is an abstract, category-theoretic description of the clone of equa-
tional theories. Plotkin and Power’s original work has since been extended to account
for more general notions of algebraic effects. For example: 1) countable Lawvere theo-
ries [97] enable one to model natural number valued global state, ii) enriched Lawvere
theories [96, 49, 50] enable one to model partiality and recursion, and iii) indexed

Lawvere theories [98] and parameterised algebraic theories [106]] enable one to model

28 Chapter 2. Semantic preliminaries

local computational effects, such as the allocation of fresh names and references.

In this thesis, we use countable Lawvere theories for modelling algebraic effects.
We recall their definition and some key properties below—see [97]] for more details. In
particular, on the one hand, countable Lawvere theories are general enough to be used
to model the corresponding extensions of eMLTT we discuss in Chapters[6]and[7] On

the other hand, they are sufficiently concrete to be accessible to a wide audience.

Definition 2.1.34. A countable Lawvere theory is given by a small category L with
countable products and a strict countable-product preserving identity-on-objects func-
tor [: Nlo P 1, where ¥, is the skeleton of the category of countable sets and all

functions between them (countable coproducts in X; are given by cardinal sum).

It is worthwhile to note that the objects of L are exactly those of N]OP, or equiva-
lently, those of ¥;. In more concrete terms, every object of L is either a natural number
or the distinguished symbol ® denoting the cardinality of countable sets.

In the rest of this thesis we let n,m, ... to range over the objects of X;; we ensure

that it is clear from the context whether n denotes a natural number or the symbol .

Definition 2.1.35. A morphism of countable Lawvere theories, from /; : X — £, to
bL: NIO P 15, is given by a strict countable-product preserving functor from £; to

L, that commutes with the functors /7 and /. This gives us the category Lawc.

Definition 2.1.36. A model of a countable Lawvere theory [: NIO P L in a category

9 with countable products is a countable-product preserving functor M : L — V.

Definition 2.1.37. A morphism of models M : L — V and M : L — V of a
countable Lawvere theory [: NIO P L in a category 4V with countable products is

given by a natural transformation from M to M;. This gives us a category Mod (L, V).

The category Mod (L, V) comes equipped with a canonical forgetful functor to V/,

whose left adjoint, if it exists, enables us to derive the corresponding monad on V.
Definition 2.1.38. The canonical forgetful functor Uy : Mod(L, V) — V/ is given by
U(M) =M(1) Ur(o) = o

Proposition 2.1.39. If the forgetful functor U, has a left adjoint F,, then it exhibits
Mod(L, V) as equivalent to the EM-category for the monad given by T, LU, oF.

Proposition 2.1.40. The left adjoint F exists when V is locally countably presentable.

2.1. Models of computational effects 29

We recall that V is locally countably presentable if it is cocomplete and there is
a set 4 of countably presentable objects such that every object in ¥/ is a countably
directed colimit of objects in 4. We also recall that A is a countably presentable object
if its hom-functor V(A, —) : 1/ — Set preserves countably directed colimits. Finally,
we recall that a countably directed colimit is the colimit of a diagram J : D — V
whose shape D is given by a partial order in which every countable subset has an
upper bound. See [7, Chapter 1] for more details about locally presentable categories.

In particular, we recall from op. cit. that Set is locally countably presentable.

Corollary 2.1.41. Given any countable Lawvere theory I : Nf P — L, there exists an
adjunction Fr = Uy : Mod(L,Set) — Set.

We later use these adjunctions as a basis for giving a denotational semantics to the
extensions of eMLTT with fibred algebraic effects and their handlers, see Chapters [0]
and [/| for details. In order to show that these models of eMLTT support the computa-
tional X- and IT-types, we recall another important property of Mod(L, Set) from [97]].

Proposition 2.1.42. For any countable Lawvere theory I : NIO P — L, the category

Mod(L,Set) is both complete and cocomplete.

Next, we show how to specify countable Lawvere theories using operation sym-
bols and equations, the key idea underlying the algebraic treatment of computational
effects, as discussed earlier. We follow Plotkin and Pretnar [93] in using countable
equational theories [40] for freely generating countable Lawvere theories. Equiva-
lently, and more abstractly, one could also specify countable Lawvere theories using
single-sorted countable-product sketches [21], e.g., as discussed by Power in [97]. We
choose to use countable equational theories instead of the corresponding sketches with

the aim of making our work more accessible to a functional programming audience.

Definition 2.1.43. A countable signature is given by set S of operation symbols op,

and an assignment op : n of an arity to each op in S, where 7 is an object of ¥j.

Definition 2.1.44. Given a countably infinite set of variables ranged over by x,y,...,

the set of terms t,u, ... derivable from a countable signature S is given by the grammar

t = x| op(ti)i<i<n

where n is the arity of the operation symbol op, given either by a natural number or the

distinguished symbol (xﬂ As a convention, if n = 1, we write op(¢) for op(#;)1<i<1.

’In this thesis, we use the convention that if the arity 7 of op is the distinguished symbol , then the
notation 1 < i < n stands for i € N, where N is the set of natural numbers.

30 Chapter 2. Semantic preliminaries

We can then define substitution by straightforward structural recursion.

Definition 2.1.45. Given terms ¢, uq, ..., u,, and variables xi, ..., x,;, then the simul-
taneous substitution of uy, ..., u, for xy, ..., x, in ¢, written t[u; /xy,...,u, /x|, or

t[u} /%] for short, is defined by recursion on the structure of 7 as follows:

xi[i/ Xi
y[ﬁ?/ﬁ] g y (ifyg{xl,...,xn})
op(tj)1<j<m[ut /X £ op(t;[ui /¥])1<j<m

Definition 2.1.46. A context A is a countable list of distinct variables.

Definition 2.1.47. We say that a term ¢ derived from S is well-formed in context A
when there exists a derivation for the judgement A I ¢ using the following rules:
xeA AFt (1<i<n)
Abx At op(t)i<i<n

(op:nes)
It is then straightforward to show that these derivations are closed under the stan-
dard rules of weakening, exchange of variables, and substitution.
Proposition 2.1.48.
e Given a termt and a variable x such that A&t and x € A, then we have A, x - t.
e Given a termt such that A,x,y,A' - t, then we have A,y,x,A - t.
e Given a termt and terms uy,...,u, such that Y? Ft and A u; (for all x;), then
we have AV t[u} | x7).
Proof. All three cases are proved by induction on the given derivation. 0

Definition 2.1.49. A countable equational theory T is given by a countable signature
S and a set [E of equations A -t = u between well-formed terms A+ ¢ and A+ u, closed

under the rules of reflexivity, symmetry, transitivity, replacement, and substitution:

At AFu=t AFt1 =1 Abth =13
AFt=t AFt=u At =18

X Ft Aru=u, (forallx) X Ft=1 Abu (forall x;)
AR 1[@ /) =l /) AT (@ /7] = ([/7]

Next, we show how to construct a countable Lawvere theory from a given countable
equational theory, based on the intuition that a countable Lawvere theory [: NIO —
is an abstract, category-theoretic description of a clone of countable equational theo-

ries. In particular, one should think of morphisms n — 1 in L as terms in n variables.

2.1. Models of computational effects 31

Definition 2.1.50. Given a countable equational theory T = (S,E), we define a cate-

gory L, whose

e objects n are those of X; (i.e., n is either a natural number or the distinguished

symbol ® denoting the cardinality of countable sets);

e morphisms n —s m are given by m-tuples (x} tj)1< j<m of equivalence classes
of terms in n variables (for convenience, we refer to these equivalence classes

via their representatives, i.e., we write YZ = t; for the equivalence class [YZ F tj]);

e identity morphisms are given by tuples of variables, i.e., given an object n in L,

the identity morphism id, : n — n is given by the tuple (X} - Xj)1<j<n; and

e composition of morphisms is given by substitution, i.e., given two morphisms
n1 — ny and ny —> n3, given by the tuples (7? F1;)1<j<n, and (7} = k) 1<k<ns»

then their composite is given by the tuple (%} - uk[? / yj)])lgkg,ﬁ.
Proposition 2.1.51. The category Lt has countable products.

Proof. Given a countable set I and objects n; in L, for all i in [, their countable product
[]icp i is given by their cardinal sum +;cyn;. By the Axiom of (Countable) Choice, the
cardinal sum of countably many objects ® is again ®, and therefore an object of L.
The j’th projection proj; : []icii — n; is given by the following n;-tuple of variables:
_>
(X7 Xy oy mt k) 1<k
Given morphisms m — n;, represented by tuples of terms ()712 Ftij)1<j<n foralliin
I, the unique mediating morphism m — [|,y n; is given by the +;crn;-tuple of terms
(37 F t0)1 <k < tream

where the auxiliary function f is given by

FEj (= +a<k<ion) (When +j<p<i—1) m < J < +1<k<i))

The proof that these definitions indeed equip L with countable products is straight-
forward. It involves unfolding the definition of composition of morphisms in L and
then using standard properties of substitution. We omit the details of this proof. [
Proposition 2.1.52. The functor It : Nf’p — L, given by

def

It(n)=n Ir(f) g(?fl—xf(j))lgjgmzn%m (where f:n— me X/T)

is a countable Lawvere theory.

32 Chapter 2. Semantic preliminaries

Proof. First, we prove that I is indeed a functor, by proving the following equations:

I (id,) It(gof)
= (Xf FXig,(j)1<j<n = (X7 X (o)1 <k <
= (X Fx))1<j<n = (57 F Yoo 7/ 3 D1 <k<ny
= idp(n) = (3 F Yok 1<k © (X4 X)) 1< j<m,
=Ir(g)oIr(f)

where f : ny — ny and g : np — n3 are morphisms in NIOP.
We also need to show that I strictly preserves countable products in Nlo P Specifi-

cally, we need to prove that the following three equations hold:
([Jn) =] |Ue(n)) Ix(proj;) =proj; In({fi)ier) = {In(fi))iex
icl icl

To this end, we recall from [97] that the countable products in N{’p are given by
countable coproducts in X;, which are in turn given by the cardinal sum of objects in
X;. In particular, given a countable set I and objects n; in Nlo P (for all i in I), their

countable product [|,y #; is given by 41 n;. Consequently, we can show that

IT(I_lieH n;) = Hie]lni = tier i = Hie]lni = I—liell(IT(ni>>

Next, we recall that the j’th projection morphism proj; : [icgni — nj in NIO P
is given by the corresponding j’th injection function in ¥;, namely, by a function

nj — +ie1 n; given by k — + << ;1) n; + k. Consequently, we can show that

Ir(proj;) = (X Xy, m+ k)1 <k<n = Proj; < [Lier(Fr(ni)) — Ir(n))

Finally, we recall that given a countable set I and morphisms f; : m — n; in Nlo P
(for all i in I), the unique mediating morphism (f;);er : m — [];pni in X, 7 is given by
the corresponding unique mediating morphism for countable coproducts in ¥, namely,

by a function [fj)icr : +ie1 ni — m defined as

[flier = j = fi(j =+ <k<i—1) n) (When —+(j <p<iony me < J <+ <k<iy M)

Now, if we write #; £,x) for y £, and unfold the definitions of I1(f;) and (It (fi))ic1, we
see that showing IT((f;)ic1) = (Ir(f;))icr amounts to proving the following equation:

(F F Yo <k< e m = O F)1 <k< 410

2.2. Fibred category theory 33

where the auxiliary function f is defined as in the proof of Proposition We
prove this equation by showing that for every k, the k’th terms in the two tuples are
equal. As 1 <k < +jepn;, there must be a i such that 4+ <;<; 1y <k < +q<j<jn.

Based on this observation, we can show that the k’th terms in these tuples are equal:

Yfilier(k) = Yfilk—+1<i<i—1ym) tivﬁ(k_+(1§l§i—l)) = Tf(k)

]

We conclude this section by formally presenting the equational theory of global
state which we used as an informal example of algebraic effects towards the beginning
of this section. In particular, given a countable set S of store values, the countable equa-
tional theory of global state is given by an |S]—ar operation symbol get : | S| and an

| S |-indexed family of unary operation symbols put, : 1, and the following equations:

x k- get(puty(x))1 <5< 5] =X
%k puty (get(xs)i<s<|s|) = Puty(xy)
x pUts(pUts’ ()C)) = puty (X)

closed under the rules of reflexivity, symmetry, transitivity, replacement, and substitu-
tion. The monad one obtains from the corresponding countable Lawvere theory is the

def

standard one for global state, given on objects by Tgs(A) = |S| = (A x |S]), see [92].

2.2 Fibred category theory

In this section we recall some basic definitions and results from fibred category theory
which we use through Chapters for giving a denotational semantics to eMLTT and
its extensions. A much more detailed overview of fibred category theory, including
its use in modelling various type theories and logics, can be found in [S1)]. While the
results we present in this section are well-known (see op. cit.), we spell out some of
the proofs to introduce the reader to the style of proofs used in fibred category theory.

We have chosen to work with fibred category theory because it provides a natural
framework for developing denotational semantics of dependently typed languages. In
particular, i) functors model type-dependency; ii) split fibrations model substitution;

and iii) the notion of comprehension models context extension. However, it is worth

3 As standard in the literature, we write |X | for the cardinality of a given set X.

34 Chapter 2. Semantic preliminaries

noting that the ideas we develop in this thesis also apply to other models of depen-
dent types, such as categories with families, categories with attributes, and contextual
categoriesﬂ We suggest [45) [85]] for an overview of these models of dependent types.

We begin our overview of fibred category theory with some common terminology.

Definition 2.2.1. Given a functor p : 1/ — B, we say that an object A in V/ is over an
object X in B when p(A) = X. Analogously, we say that a morphism f: A — Bin V
is over a morphism g : X — Y in B when p(A) =X, p(B) =Y, and p(f) = g.

Definition 2.2.2. Given a functor p : 1/ — B, we say that a morphism f : A — B in
V is vertical when p(A) = p(B) =X and p(f) = idx.

Definition 2.2.3. Given a functor p : %/ — B and an object X in B, we write Vx for
the fibre (category) over X, i.e., for the subcategory of consisting of objects over X

and vertical morphisms over idy.

Next, we define two important concepts in fibred category theory: Cartesian mor-

phisms and fibrations. We also recall some basic but useful facts about these concepts.

Definition 2.2.4. Given a functor p : // — B, amorphism f : A — Bin 7V is said to
be Cartesian over a morphism g: X — Y in B if p(f) =g, and if forall i : C — B
in 7 and j: p(C) — X in B such that p(i) = go j, there exists a unique mediating
morphism 4 : C — A over j such that f o h =i, as illustrated in the following diagram:

C-—--->~A B in vV
p
p(C) — x g=p(f) % ‘n B
~_
p(i)

Throughout the rest of this thesis, we often do not mention the morphism g ex-
plicitly because it is equal to p(f). In that case, we simply say that f is a Cartesian
morphism. In addition, we often omit the lower part of such diagrams and only work
with the top part when the morphism j is clear from the surrounding context.

An important property of Cartesian morphisms worth noting is that they are unique

up-to a unique isomorphism, as made precise in the next proposition.

“In the field of homotopy type theory, the latter are also known under the name of C-systems [[114].

2.2. Fibred category theory 35

Proposition 2.2.5 ([51, Exercise 1.1.1 (i)]). Given a functor p:V — B, and two
Cartesian morphisms f : A — C and g : B— C such that p(f) = p(g), then there is
a unique vertical isomorphism Yy ¢ : A =+ B such that f=goVys,.

Proof. To improve readability, we let X = p(A). As a consequence, also p(B) = X.

Then, we define Yy, : A —> B as the unique mediating morphism over idy in

f
A__qff;_>B g C

8
B ———— - A C
Vi f

Clearly, both W;; oyre,:A— A and Yy, 0 \uffg : B — B are vertical over

idy : X — X, and they are determined uniquely. Therefore, it remains to show that

W}éo\pﬁg:idA wﬁgow;}g:idB

which we do by using the universal properties of the Cartesian morphisms f and g,

respectively. In particular, we observe that the following two diagrams commute:

f

def. of yy,
B g
~1
%nposiNf of "’;,zir
4 ‘I’;; OVye A f ¢
8

def. of w7,
A .
-1
Vrg Ve
/:nposition\: £ of Vs
B B 2 C

—1
wf-,gowf,g

from which it follows that the composite morphisms qf]?; oYye and Yy g0 \p;i, are

equal to the unique mediating morphisms over idy induced by f and g, respectively.

36 Chapter 2. Semantic preliminaries

Namely, the commutativity of these two diagrams shows that these composite mor-
phisms satisfy the same universal properties that uniquely determine these mediating
morphisms. However, as the identity morphisms id4 and idp also satisfy the same

universal properties, these composite morphisms are in fact equal to id4 and idg. [

Proposition 2.2.6 ([51, Exercise 1.1.4 (ii)]). The composition of two Cartesian mor-

phisms is itself a Cartesian morphism.

Proof. According to the definition of Cartesian morphisms, given a functor p: ‘1 — B,
two Cartesian morphisms f:A — B and g: B— C, a morphism i : D — C in V/,
and a morphism j: p(D) — p(A) in B such that p(i) = p(g) o p(f) o j, we need to
construct a unique mediating morphism 4 : D — A over j such that go foh =i, asin

i

T

D——h—>A 7 B 2 C

First, we use the universal property of the Cartesian morphism g : B — C to con-

struct a unique mediating morphism /' : D — B over p(f) o j, as illustrated below:

C

Next, we use the universal property of the Cartesian morphism f: A — B to

construct a unique morphism 4 : D — A over j, as illustrated below:

After combining goh’ =iand foh = I, we see that h also satisfies go foh =i.
Finally, we need to show that % is the unique morphism over j satisfying go foh =1i.

This follows straightforwardly from the definitions of 4’ and 4. Namely, given any

other morphism 4" : D — A over j such that go foh” =i, we first get foh” = I’ by

using the uniqueness of /', and then 4 = h by using the uniqueness of /. O

Definition 2.2.7. A functor p : 1V — B is called a fibration if for every object B in v
and every morphism g : X — p(B) in ‘B, there exists a morphism f : A — B that is

Cartesian over g. We refer to ‘V/ as the roral category and to B as the base category.

Definition 2.2.8. A fibration p : 1/ — B is said to be cloven if it comes with a choice
of Cartesian morphisms. As standard, we write f(A): f*(A) — A for the chosen

Cartesian morphism (and f*(A) for its domain) over a morphism f : X — p(A) in B.

2.2. Fibred category theory 37

See Examples|[2.2.14H2.2.16/below for common cloven fibrations.

Definition 2.2.9. Given a cloven fibration p : %/ — B and a morphism f : A — B in

YV, then we write f7 : A — (p(f))*(B) for the unique mediating morphism induced

by the universal property of the Cartesian morphism p(f)(B) : (p(f))*(B) — B, as in

A - ke (p(£))*(B) G B

Proposition 2.2.10 ([51), Section 1.4]). Given a cloven fibration p : V — ‘B, then any
morphism f : X — Y in ‘B induces a reindexing functor f* : V4 — Tk, which maps
an object A to the domain f*(A) of the chosen Cartesian morphism f(A) over f; and

a morphism g : A — B to the unique mediating morphism induced by f(B), as in

Proposition 2.2.11 ([51}, Section 1.4]). Given a cloven fibration p : V — ‘B, the rein-

dexing functors f* : Vy — Vi satisfy the following two natural isomorphisms:
(idx)" Zidy, (hog)* =g ok’
where g: X — Y andh:Y — Z.

Definition 2.2.12. A cloven fibration is said to be split if the isomorphisms given in
Proposition |2.2.11|are identities, i.e., when (idx)* =idq;, and (hog)* = g* oh*.

Definition 2.2.13. For any category-theoretic structure ®, such as products, coprod-
ucts, etc., a split fibration p : VV — B is said to have split fibred ® if every fibre Vx

has ® and this structure is preserved on-the-nose by reindexing functors.

Example 2.2.14. A prototypical example of a cloven fibration is given by the codomain
functor codg : B~ — B, for any category B with pullbacks. In this case, given an
object f : X — Y in B~ and a morphism g : Z — Y in B, the chosen Cartesian

38 Chapter 2. Semantic preliminaries

morphism over g is given by the following pullback square:

Here, B is the arrow category of ‘B. Its objects are given by morphisms f: X — Y
of B; and its morphisms from f : X; — Y| to g : Xo — Y» are given by pairs (hy,h;)
of morphisms hy : X1 — Xo and hy : Y1 — Y2 in B such that goh; = hy o f.

While codg is cloven, it is well-known that it fails to be split because pullback

squares are closed under composition only up-to-isomorphism, and not up-to-equality.

Example 2.2.15. Another common example of a cloven fibration is given by the V-
valued families functor famg, : Fam(1) — Set, for any category V. Here, the objects
of Fam(V) are pairs (X,A) of a set X and a functor A : X — V, i.e., an X-indexed
family of objects of V. Similarly, a morphism from (X,A) to (Y,B) is given by a pair
(f,g) of a function f:X — Y and a natural transformation g : A — Bo f, i.e., an
X -indexed family of morphisms {g, : A(x) — B(f(x)) }xex in V. For an object (Y,A)

in Fam(V) and a function f : X — Y, the chosen Cartesian morphism over f is

F(¥,A) Z (f {ida(r() brex) - (X Ao f) — (Y,A)
A typical example of families fibrations is the families of sets fibration with V £ Set.

Compared to the codomain fibrations, the families fibrations are split because com-

position of morphisms is strictly associative, see [S1, Section 1.4] for more details.

Example 2.2.16. The third and final class of examples of cloven fibrations we consider
in this section is given by the simple fibration construction on any category V' that
has Cartesian products, see [31, Definition 1.3.1]. In particular, we can construct a
category s(V') whose objects are given by pairs (X,A) of objects of V, and whose
morphisms (X,A) — (Y,B) are given by pairs (f,g) of morphisms f : X —Y and
g:X xA—>Bin V. The simple fibration s :s(V) — V is then given by the functor

sp(X,A)ZX sy(f.9)=f

Given a morphism f: X — Y in 'V and an object (Y,A) in s(‘V), the Cartesian mor-

def

phism over f can be shown to be given by f(Y,A) = (f,snd) : (X,A) — (Y,A).

2.2. Fibred category theory 39

Analogously to the families fibrations, the simple fibrations are also split. In fact,
one can view the simple fibrations as a non-indexed version of the families fibrations.

As the main use of fibred category theory in this thesis is to give a denotational
semantics to eMLTT and its extensions, we only focus on split fibrations and con-
structions on them that preserve Cartesian morphisms on-the-nose. Informally, the
on-the-nose preservation of Cartesian morphisms corresponds to the up-to-equality
preservation of type- and term-formers by substitution in dependently typed languages.
Therefore, we only consider split versions of fibred functors, fibred natural transfor-
mations, fibred adjunctions, etc. The non-split variants of these constructions can be
easily recovered by relaxing the preservation conditions for reindexing so that they
hold up-to-isomorphism rather than equality. In addition, it is well-known that one
can transform every (possibly non-split) fibration into an equivalent split fibration—
see [S1, Lemma 5.2.4, Corollary 5.2.5] for details of this construction.

Next, we equip split fibrations over some base category B with the structure of a

2-category, given by split fibred functors and split fibred natural transformations.

Definition 2.2.17. Given two split fibrations p: ©V — B and g : C — B, a split fi-
bred functor F : p —> q is given by a functor F : V — (such that the diagram

4 . C
N4
‘B

commutes and F preserves the chosen Cartesian morphisms on-the-nose.

Proposition 2.2.18. Given split fibrations p: V — B and q : C — ‘B, a split fibred
functor F : p — q, an object B in V, and a morphism f : X — p(A) in ‘B, then

[H(F(A) = F(f"(A))

Proof. This equality follows directly from the on-the-nose preservation of the chosen
Cartesian morphisms by F, i.e., from f(F(A)) and F(f(A)) being equal. O

In the diagrammatic proofs we present in the rest of this thesis, we represent such

equalities on objects using morphisms which we write as f*(F(A)) — F(f*(A)).

Definition 2.2.19. Given two split fibrations p: ¥/ — B and ¢ : C — B, and two
split fibred functors F : p — g and G : p — g, a split fibred natural transformation
o : F — G is given by a natural transformation o0 : F — G, whose every component

au : F(A) — G(A) is vertical over id, 4).

40 Chapter 2. Semantic preliminaries

Proposition 2.2.20. Given two split fibrations p : V — B and q : C — B, two split
fibred functors F : p — q and G : p — q, and a split fibred natural transformation

o : F — G, then the components of . are preserved by reindexing, i.e., we have
f(0a) = o)
in Cx, for any object A of V and any morphism f : X — p(A) in B.

Proof. First, we observe that the following two diagrams commute in C:

F(A)
AW e ota 76
PFWA) —or— F(G(A) ——=— G(f"(4) —=—— G()
F(A) (077
F(f(A)) nat. of o
F is split fibred
PF(A) ——=— F(f"(4) —gm— G () — G(4)

As we also know that g(f*(aa)) = g(0t+(4)) = idx, the universal property of the Carte-

sian morphism G(f(A)) tells us that the vertical morphisms f*(0t4) and 0z« (4) are both
equal to the unique mediating morphism over idx induced by a4 o f(F(A)). O

Proposition 2.2.21 ([S1}, Section 1.7]). Split fibrations with a base category ‘B, split fi-
bred functors, and split fibred natural transformations form the 2-category Fibgpic(B).

The denotational semantics of eMLTT and its extensions is based on split fibred
adjunctions. These are defined in Fibgpit(B) analogously to how ordinary adjunctions

are defined in the 2-category Cat of categories, functors, and natural transformations.

Definition 2.2.22. Given two split fibrations p: ¥V — B and q: C — B, a split
fibred adjunction F 4 U : q — p is given by two split fibred functors F : p — g
and U : ¢ — p, and two split fibred natural transformations 1 :idyy — U oF and
€:FoU — id., subject to the standard two unit-counit laws (see Definition .

Proposition 2.2.23. Given two split fibrations p:V — B and q: C — ‘B, and a
split fibred adjunction F 4 U : ¢ — p, then, for every object X in ‘B, the restriction of
F and U to the fibres over X determines an adjunction Fx - Ux : Cx — V.

2.2. Fibred category theory 41

Proof. The adjunction Fx - Uy : Cx — Vx follows directly from F and U being split

fibred functors, and the components of 1 and € being vertical morphisms. [

As we know by definition that Fx(A) = F(A) and Fx(f) = F(f), and similarly for
Uy, we often omit the subscripts in Fx and Uy when X is clear from the context.
Next, we define split fibred monads. Similarly to split fibred adjunctions, these are

defined in Fibgyit(B) analogously to how ordinary monads are defined in Cat.

Definition 2.2.24. A split fibred monad T = (T,m,u) on a split fibration p: ©V — B
is given by a split fibred functor T : p — p, and split fibred natural transformations
N:id, — Tandu:ToT — T, subject to standard monad laws (see Definition2.1.1]).

Analogously, we can also define a split fibred variant of resolutions of monads.

Definition 2.2.25. Given a split fibred monad (7,1, u) on a split fibration p : V — B,
its split fibred resolution is given by a split fibration ¢ : C — ‘B and a split fibred
adjunction F 4 U : ¢ — p such that (T,m,u) coincides with the split fibred monad
canonically derived from this split fibred adjunction (this monad is derived analogously

to the ordinary, non-fibred case discussed in Proposition [2.1.8)).

Analogously to monads in Cat, there are again two canonical split fibred resolu-
tions of a split fibred monad, the Kleisli and Eilenberg-Moore resolutions. As before,
these are the initial and terminal objects in the category of split fibred resolutions. As
we only use the split fibred Eilenberg-Moore resolution in this thesis, we omit the

definition of the Kleisli resolution—it can be found in [51} Exercise 1.7.9 (1)].

Proposition 2.2.26 ([51} Exercise 1.7.9 (ii)]). Given a split fibred monad T = (T,m,)
on a split fibration p : V — B, its split fibred Eilenberg-Moore resolution is given by
a split fibration p¥ : VY — B and a split fibred adjunction F* 4 UT : p¥ — p, where
the category VY and the adjunction F* 4 U : YT — U are defined as if we were
constructing the EM-resolution of the monad (T,n,u) on V (see Definition .

In Proposition [2.2.26, the functor pT : ¥T — B is given by pT(4,a) = p(A) and
pT(h) = p(h). We call pT the split Eilenberg-Moore (EM-) fibration of T. The chosen

Cartesian morphism in pT over a morphism f : X — pT(B,B) in B is given by

F(B,B) = F(B): (f*(B).f*(B)) — (B,B)

We conclude our overview of fibred category theory by discussing structures that

are commonly used to model the core features of dependently typed languages.

42 Chapter 2. Semantic preliminaries

The general idea behind modelling a dependent type I' = A in a split fibration
p: YV — Bis to interpret the context I" as an object [I'] in the base category B and
the dependent type A as an object [A] in the total category 7/, such that p([A]) = [I].

Regardless of the particular grammar of types, a crucial step in the definition of
the interpretation of contexts I (lists of distinct variables x annotated with types A)
involves defining the interpretation of extended contexts I',x:A. In fibrational models
of dependently typed languages, I',x: A is most naturally interpreted using the notion

of comprehension, which we define below, in terms of a terminal object functor for p.

Definition 2.2.27. A split terminal object functor for a split fibration p : ¥V — B is
given by a functor 1 : B — 7/ that is a split fibred right adjoint to p in Fibgyit(B), i.e.,

Below we note that the existence of a such terminal object functor equips every

fibre Vx with a terminal object 1y, and these are preserved on-the-nose by reindexing.

Proposition 2.2.28. If p : V — B is a split fibration, then p comes equipped with a
split terminal object functor 1 : B — V' if and only if every fibre of p has a terminal

object and these terminal objects are preserved on-the-nose by reindexing.

Proof. For a detailed proof, we refer the reader to [S1, Lemma 1.8.8], where a non-
split version of this proposition is proved. The proof of this split version is proved
analogously, but using the additional information that for any morphism f: X — Y
in B, we have f*(1y) = 1x. Here, we simply sketch the definitions one uses to prove
both directions of this proposition. First, in the if-direction, we define the terminal
object functor 1 : B — ¥ by mapping an object X in B to the terminal object 1y
in Vx; and by mapping a morphism f: X — Y in B to the composite morphism
Ix — f*(1ly) M ly. In the opposite direction, we define the terminal object 1y in
Vx to be 1(X). The on-the-nose preservation of terminal objects by reindexing follows

from the on-the-nose preservation of Cartesian morphisms by 1: B — V. [

As noted by Jacobs [S1, Section 1.8], this characterisation is a fibred analogue of a
category V having a terminal object if and only if the unique functor !, : %/ — 1 has

a right adjoint. In Fibgpjit(B), the terminal object is given by idg : B — B.

2.2. Fibred category theory 43

Based on this correspondence, we use the convention of writing 1x for 1(X).

Definition 2.2.29. A split fibration p : ¥V — B is called a split comprehension
category with unit if i) p comes equipped with a split terminal object functor
1:B — ¥; and ii) this terminal object functor has a (not necessarily fibred) right

adjoint {—} : %/ — B in Cat, called the comprehension functor, as illustrated below:

v

Proposition 2.2.30 ([S1, Section 10.4]). Given a split comprehension category with
unit p . V — B, then there exists a functor P : ‘V — B~ such that p = codgo P
and P sends the chosen Cartesian morphisms in V' to pullback squares in B~. A
Sfunctor with these properties is called a comprehension category.

We recall from [51], Section 10.4] that the functor P : // — B~ is given on objects

B 14—}
by mapping an object A in ¥ to the morphism {A} — p(14}) P(SA%) p(A), and by

mapping a morphism f : A — B in ¥ to the following commuting diagram:

= pol=idg -
(1{h)
P(Efli{i}) nat. of ¢!} p(gg“{*})
A B
PA) p(f) p(B)

Definition 2.2.31. Given a split comprehension category with unit p : %/ — B and an
object A in V, the morphism P(A) : {A} — p(A) is called a projection morphism and

commonly written as 4. The reindexing functor 1) is called a weakening functor.

Definition 2.2.32. A split comprehension category with unit p : ¢/ — B is said to be
full if the corresponding comprehension category P : ¥V — B is full and faithful.

44 Chapter 2. Semantic preliminaries

Returning to the interpretation of dependently typed languages (such as MLTT),
we now briefly describe how to interpret well typed terms in a full split comprehension
category with unit p : %/ — B. In the literature, a well typed term 'V : A is usually
interpreted either i) as a global element 1jrj — [A] of [A] in Vjry, or ii) as a section
of the projection morphism 74y : {[A]} — [I] in B. However, as is well known,
these two ways of interpreting terms are interchangeable, see Proposition[2.2.33|below.
Therefore, one often switches between 1) and ii) when working with the denotations of
terms. In particular, ii) corresponds to the fact that the fully-faithfulness of 2 allows

us to consider T4 : {[A]} — [I] in B as an equivalent denotation of a type I' - A.

Proposition 2.2.33. Given a split comprehension category with unit p : V — B and

an object A in ‘V, then there exists an isomorphism
Vo) (Lp(ayA) = {f : p(A) — {A} T4 o f =ida)}

Proof. This proposition is a special case of [S1, Lemma 10.4.9 (i)], whose proof is
omitted in op. cit. Here we give the proof of the above isomorphism explicitly.

First, given a global element f: 1,,4) — A of A in rl/p(A), we define the corre-
sponding section s(f) : p(A) — {A} in B as the following composite morphism:

14{-}

Mp(a) {r}

p(A) {1} {A}

The required equation 74 os(f) = id,(4) then follows from the commutativity of the

following diagram:

s(f)
nH{_} def. of s(f) 0
(A)
p(A) : {1} {A}
_ pol =idg _ _

2(f) p(liay) |

def. of my

pleyh

— p(A)

2.2. Fibred category theory 45

Next, given a morphism f: p(A) — {A} in 4V such that Ty o f = id ,(4), we define
the corresponding global element s~ (f) : 1 p(A) —>AIn v as the composite
14{-}

1(f) 1 &4
{A}

Lpa)

and show that s~!(f) is in ’Vp() by proving that the following diagram commutes:

(1(f) pley
P(1pa) —= p(lggy) —— p(A)
= pol=idg = def. of Ty idp(a)
p(A) 7 (A} — p(A)

id(a)

Next, we show that the equation s~!(s(f)) = f holds for all f : 1 p(a) — A in

‘Vp(A)> by proving that the following diagram commutes:

1{rY)

1{1”<A)} nat. of g (-}

14{-}
8}4{*}
p(A)

Lpa)

Finally, we show that the equation s(s~!(f)) = f holds for all f : p(A) — {A} in

46 Chapter 2. Semantic preliminaries

V with g o f = (4)» by proving that the following diagram commutes:

s(s”' (/)

def. of s(s™!(f))

PA) —5— {Lw}

M) {s7' ()}
i
a def. of s (f%

{1}

nat. of n! -}

14{-}
Niay

{A}

]

To make better use of this interchangeability of the global elements f: 1,4y — A
in the fibres and the sections s(f) : p(A) —> {A} in the base category, we now descrlbe

a construction for s(f) that corresponds to applying a reindexing functor to f.

Proposition 2.2.34. Given a split comprehension category with unit p : V — B, a
global element f : 1,4y — A of A in V),4) and a morphism g : X — p(A) in B, then

s~ (h) = g"(f)

where h: X — {g*(A)} is the unique mediating morphism in the following pullback

situation:

The composite morphisms that make up the outer perimeter from X to p(A) are equal
because of Proposition [2.2.33| namely, because we know that ws os(f) = id p(A):

2.2. Fibred category theory 47

Proof. In order to prove the required equation

we instead prove an auxiliary equation

h=s(g*(f))

from which the required equation follows because s and s~! form an isomorphism.
We show that this auxiliary equation holds by observing that the morphism s(g*(f))
satisfies the same universal property as the unique mediating morphism /% given above

in the proposition. In particular, we first show that the following diagram commutes:

g nat. of ' (-} {1(g)} |Lissplitfibred {g"(1,(4))}

def. of g*(f)

ny (& ()}

Next, we note that Ty« (4) 0s(g"(f)) = idx by Proposition [2.2.33, As a result, we get
that s(g*(f)) is equal to the unique mediating morphism /#: X — {g*(A)}. O

In addition to allowing us to translate between the global elements f: 1,4) — A
in the fibres and the sections s(f) : p(A) — {A} in the base category, the unitn' *{~}
of the adjunction 1 - {—} has a further useful property, namely, it is in fact a natural

isomorphism, as noted in [S1, Section 10.4] and proved in detail below.

Proposition 2.2.35 ([51, Exercise 10.4.7 (i)]). Given a split comprehension category
with unit p : V — B and an object X in ‘B, then the component ny{_} X — {lx}

of the unit n! Yisan isomorphism, with its inverse given by 1, : {1x} — X.

48 Chapter 2. Semantic preliminaries

Proof. A neat way to prove this proposition is to note that 1! 7{-} must be a natural
isomorphism to start with because the left adjoint 1 in 1 4 {—} is fully-faithful. In more
detail, as highlighted in [51, Section 10.4], the fact that p - 1 is a fibred adjunction,
means that po 1 = idg, resulting in the counit €” ! being identity and therefore also a
natural isomorphism. However, it is well-known that the counit of an adjunction is a
natural isomorphism if and only if the right adjoint is fully-faithful, e.g., see [66, Sec-
tion IV.4]. In the context of this proposition, this means that 1 must be fully-faithful.
The dual of this fact states that the unit of an adjunction is a natural isomorphism if and
only if the left adjoint is fully-faithful. Therefore, as we know that 1 is fully-faithful,
and it is the left adjoint in 1 4 {—}, the unit n! 7{=} must be a natural isomorphism.

14{-}

Now, as we know that for each object X in B, Ny must have an inverse

)1(%{7})_1, we are left with showing that (n)lﬂ{*})—l = T1,. To this end, we first

M
. . 14{-} . H{-} . . .
show that 7y, is the left inverse of 1y ,1.e., that Ty, ony = idy. This equation

follows straightforwardly from the commutativity of the following diagram:

1+4{-} -

T]X {IX} X X

= pol=idg = def. of m;, =

(1my) ple))
p(lx) ——— p(l,)) ———— p(Ix)

W

idﬁ('x)

Finally, we show that the equation (1 ; {_})’1 = 71, holds by observing that

my T =idxomy TH T =my oy oy TH T =y 0idgyyy = my

]

Chapter 3

eMLTT: Martin-Lof’s type theory

with fibred computational effects

In this chapter we introduce and study eMLTT—our take on intensional MLTT with
general computational effects. Specifically, eMLTT combines dependently typed pro-
gramming in MLTT with features familiar from simply typed languages with compu-
tational effects such as CBPV and EEC. Similarly to CBPV and EEC, eMLTT makes a
clear distinction between values (i.e., effect-free programs) and computations (i.e., po-
tentially effectful programs), at both the level of types and the level of terms, with both
kinds of types only allowed to depend on values—see the discussion in Section|I.1

In Section [3.1] we present the syntax of eMLTT; in Section [3.2] we equip eMLTT
with a type system and define its equational theory; and in Section [3.3] we establish
some basic meta-theoretic properties of eMLTT, including the closure of well-formed
expressions under weakening and substitution. We conclude this chapter by discussing
syntax that is not part of the definition of eMLTT but that is nevertheless derivable. In
Section |3.4, we show how to eliminate various value types into computations; and in
Section we derive some standard equations that are familiar from other computa-

tional languages, such as the unit and associativity laws for sequential composition.

3.1 Syntax

We begin by assuming two disjoint and countably infinite sets of value variables and
computation variables, respectively. We use x,y,... to range over value variables and
Z,... to range over computation variables. The former are treated intuitionistically,

as in MLTT, and enjoy structural properties of weakening and contraction. The latter

49

50 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

are treated linearly, as in EEC, so as to ensure that effectful computations are not
duplicated or discarded arbitrarily—an important property for the correct formulation
of the elimination rule for the computational X-type, as discussed later in this section.

For types, we use A,B,... to range over value types; and C,D, ... to range over
computation types. For terms, we use V,W,... to range over value terms; M,N, ...
to range over computation terms; and K,L,... to range over homomorphism terms.
As is common for dependently typed languages, eMLTT’s types and terms are given

by a mutually inductive definition—see Definitions [3.1.1| and [3.1.2] respectively. We

discuss these different kinds of types and terms after their respective definitions.

Definition 3.1.1. eMLTT’s value and computation types are given by

A = Nat type of natural numbers
| 1 unit type
| ZXx:A.B value X-type
| TIIx:A.B value IT-type
| 0 empty type
| A+B coproduct type
| V=4 W propositional equality
| UC type of thunked computations
| C—D homomorphic function type
C == FA type of computations that return values of type A
| Xx:A.C computational X-type
| Ix:A.C computational I1-type
where

e inXx:A.BandIlx:A.B, the value variable x is bound in B; and

e inXx:A.CandIlx:A.C, the value variable x is bound in C.

We write FVV (A) and FVV (C) for the sets of free value variables of a value type
A and a computation type C, respectively.

eMLTT’s value types coincide with the types of MLTT, except for the type UC of
thunks of computations of type C and the homomorphic function type C — D; these
are respectively based on analogous types in CBPV and EEC. The inhabitants of the
former are suspended computations of type C. The inhabitants of the latter are effect-

ful functions that accept computations of type C as their arguments and additionally

3.1. Syntax 51

guarantee that the argument computation “happens first” in function application—see
the homomorphic lambda abstraction in Definition [3.1.2] To keep the presentation fo-
cussed on the computational aspects of eMLTT, we omit general inductive types and
use the type of natural numbers as a representative example. If needed, general induc-
tive types can be added using standard techniques, e.g., using W-types [70]. As is com-
mon in presentations of dependently typed languages, we use simply typed notation
for Xx:A.B and I1x:A.B when x € FVV(B), writing A x B and A — B, respectively.

eMLTT’s computation types include the type FA of computations that return val-
ues of type A. Computation types also include computational variants of the - and
II-types, written Xx:A.C and IIx:A.C. The former is a natural dependently typed
generalisation of EEC’s computational tensor type. The latter is a natural dependently
typed generalisation of EEC and CBPV’s computational function type. Based on this
relationship, we use simply typed notation for Xx:A.C and [1x:A.C whenx & FVV(C),
writing A ® C and A — C, respectively. Compared to EEC and CBPV, we omit binary
(and nullary) coproducts and products of computation types. In the models we study
in this thesis, these are special cases of Xx:A.C and [1x:A.C. In order to define them
in terms of Xx:A.C and I1x:A.C in the language itself, one needs to extend eMLTT,
e.g., either with large elimination forms or universes (see the next paragraph).

We note that as our focus is on the general principles of combining dependent
types and computational effects, we treat type-dependency abstractly in most parts of
this thesis, leaving the exact means through which one defines dependent types implicit
(with the exception of propositional equality). Analogously to accommodating general
inductive types, one can easily extend eMLTT using standard techniques. For example,

one can extend its value and computation types with large elimination forms, such as

A == ... | pnVas(x:A],x:A2) in A
C == ... | pmVas(x:A1,x:A) inC

and analogously for eliminating other value types. Alternatively, one could also extend
eMLTT with universes of value and computation types, e.g., as discussed and used in
Section Finally, we note that in Section we discuss a possible way to also
accommodate type-dependency on computations directly, rather than only via thunks.

We also highlight that eMLTT is a minor extension of the language the author
studied in the paper [9] large parts of this thesis are based on. eMLTT additionally
includes the empty type, the coproduct type, and the homomorphic function type. The

first two extensions better align it with dependently typed languages such as Agda and

52

Idris, and enable us to specify signatures of fibred algebraic effects in Chapter [6} the
latter extension enables us to eliminate various value types into computations. We also

note that in Section #.3.5| we extend the core language presented in this chapter with

Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

general recursion, and in Chapters [6] and [7| with algebraic effects and their handlers.

Definition 3.1.2. eMLTT’s value, computation, and homomorphism terms are given

by

X

zero

succV

nat-elim 4(V,,y1.y2.Vs,V)

*

(V.W) (xa).B

pmV as (x1:A1,x2:A42) in, g W

Ax:AV

V(W) xa).8

case V ofy 4 ()

inly4pV

inrg4pV

case V ofy p (inl(y;:A;) — Wi,
inr(yr:Az) — Wh)

refl V

eg-elimy (x1.x2.x3.B,y. W, V|, V»,V,)

thunk M
Az:C.K

returnV

M tox:Ainc N
<V>M>(x:A).Q

M to (x:A,z:C) inp K

AX:AM

value variable

Zero

successor

primitive recursion
unit

pairing
pattern-matching
lambda abstraction
function application
empty case analysis
left injection

right injection

binary case analysis

reflexivity of
propositional equality

elimination of
propositional equality

thunked computation

homomorphic
lambda abstraction

returning a value
sequential composition
computational pairing

computational
pattern-matching

computational
lambda abstraction

3.1. Syntax

53

M(V)(xa).c computational

function application
forcecV forcing a

thunked computation
V(M)cp homomorphic

function application

K Z computation variable

Ktox:Ainc M sequential composition
(V,K) (x:a).c computational pairing

where

K to (x:A,z:C) inp L

computational
pattern-matching

Ax:A.K computational
lambda abstraction

K(V)(xa).c computational
function application

V(K)cp homomorphic

function application

e innat-elim, 4(V,,y1.y2.Vs, V), the value variable x is bound in A, and the value

variables y; and y, are bound in Vj;

e in (V,W)(,.a) p, the value variable x is bound in B;

inpmV as (x1:A1,x2:45) iny, p W, the value variable x; is bound in A, and W,

the value variable x, is bound in W, and the value variable y is bound in B;
in Ax:A.V, the value variable x is bound in V;

in V(W) (x.a). > the value variable x is bound in B;

in case V of, 4 (), the value variable x is bound in A

in case V of, p (inl(y;:Ay) — Wi, inr(y2:Az) — Wh), the value variable x is
bound in B, the value variable y; is bound in Wi, and the value variable y, is
bound in W»;

in eg-elim, (x1.x2.x3.B,y.W,V1,V,,V,), the value variables xi, x», and x3 are

bound in B, and the value variable y is bound in W

in Az:C. K, the computation variable z is bound in K;

54

Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

in M to x:A inc N, the value variable x is bound in N;
in (V,M) r.a).c- the value variable x is bound in C;

in M to (x:A,z:C) inp K, the value variable x is bound in C and K, and the

computation variable z is bound in K

in Ax:A.M, the value variable x is bound in M;

in M(V)(x.).c» the value variable x is bound in C;

in K to x:A inc M, the value variable x is bound in M;
in (V,K) x.4).c» the value variable x is bound in C;

in K to (x:A,z:C) inp L, the value variable x is bound in C and L, and the

computation variable z is bound in L;
in Ax:A.K, the value variable x is bound in K; and

in K(V)(x.4).c- the value variable x is bound in C.

For better readability, we sometimes use left and right projections instead of pattern-

matching in our examples. These projections are derived from pattern-matching as

fstV & pnV as (x1:A,xp:B) in x) sndV = pnV as (x1:A,xp:B) in x;

We write FVV(V), FVV(M), and FVV (K) for the sets of free value variables of

a value term V, a computation term M, and a homomorphism term K, respectively.

In particular, the free value variables of terms also include the free variables of type

annotations. Regarding free computation variables, we have the following properties:

Proposition 3.1.3.

(a) Value types A, computation types C, value terms V, and computation terms M do

not contain free computation variables.

(b) Every homomorphism term K contains exactly one free computation variable

which we write as FCV (K).

Proof. We prove (a) and (b) by simultaneous induction: the former by induction on

the structure of A, C, V, and M, and the latter by induction on the structure of K. [

3.1. Syntax 55

eMLTT’s value terms coincide with the terms of MLTT, except for thunked com-
putations thunk M and the homomorphic lambda abstraction Az:C.K. In contrast
to CBPV, eMLTT’s value terms include elimination forms for value types in order to
accommodate effect-free programs that the types of eMLTT could depend on.

eMLTT’s computation terms include standard combinators for programming with
computational effects, namely, returning values and sequential composition of compu-
tations. They also include introduction and elimination forms for the computational
Y- and II-types, forcing of thunked computations, and homomorphic function appli-
cations. We deliberately use similar notation for sequential composition and compu-
tational pattern-matching—compare M to x:A in N and M to (x:A,z:C) in K—so
as to emphasise that the effects of M are performed before the effects of N and K,
respectively. Further, notice that in order to account for the fact that M produces a pair
of a value and a computation, the second term in computational pattern-matching is
necessarily a homomorphism term.

eMLTT’s homomorphism terms are analogous to EEC’s linear terms. Similarly
to computation terms, they also include sequential composition, and introduction and
elimination forms for the computational X- and II-types. However, unlike computation
terms, they do not include returning values and forcing of thunked computations but
instead include computation variables z that are required to be used linearly. Further,
the definition of homomorphism terms also requires computation variables to be used
so that effects of a computation bound to z always “happen first” in a term containing
it. For example, when eliminating a computational pair (V,M), the effects of M are
guaranteed to be performed before the effects of K in (V,M) to (x:A,z:C) in K.

This linear use of computation variables, together with leaving out returning values
and forcing thunked computations, ensures that homomorphism terms denote algebra
homomorphisms in the examples based on Eilenberg-Moore algebras of monads (see
Section 4.3.4), or on algebraic effects (see Section [6.5): hence their name. A similar
form of linearity is also present in CBPV with stacks, as defined in [61, §2.3.4]. Indeed,
homomorphism terms can be viewed as a programmer-friendly syntax for dependently
typed CBPV stack terms (or equivalently, for one-hole evaluation contexts).

Later, in Section[/.8] we also briefly discuss an alternative presentation of eMLTT
in which one omits computation variables and homomorphism terms, and instead uses
value variables and computation terms, in combination with equational proof obliga-
tions ensuring that the value variables are used analogously to computation variables.

It is worth observing that compared to the corresponding terms in CBPV and EEC,

56 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

eMLTT’s computation terms (resp. homomorphism terms) do not include elimination
forms for value types as they can be easily derived from the corresponding elimination
forms included in eMLTT’s value terms using thunking and forcing (resp. homomor-
phic lambda abstraction and function application). We show this in Section[3.4]

The reader should also note that eMLTT’s terms are decorated with more type an-
notations than one usually expects to see in a high-level (dependently typed) program-
ming language. We later use these annotations to define the interpretation of eMLTT
in fibred adjunction models by recursion on (raw) types and terms rather than the (non-
unique) typing derivations. This is a standard technique in the literature to avoid having
to define the interpretation simultaneously with proving its coherence, see [107, 43l
Nevertheless, we conjecture that this annotated syntax is equivalent to the correspond-
ing unannotated syntax, based on analogous results for MLTT, e.g., see [107,30]. We
leave a formal proof of this conjecture for future work. However, for better readability,
we often omit these annotations in our examples and informal discussion.

We conclude this section by establishing some useful properties of substitution in
eMLTT. In order to keep our definitions and propositions concise and readable, we
refer to types and terms collectively as expressions and use E, ... to range over them.

In detail, expressions are given by the following grammar:
E:x=A|C|V|MI|K

When working with expressions involving bound variables, we follow the stan-
dard conventions: i) we identify expressions that differ only in the names of bound
variables, i.e., we identify expressions up-to o-equivalence; and ii) we assume that in
any mathematical context (definitions, theorems, proofs, etc.), the bound variables of

expressions are chosen to be different from the free variables appearing in that context.

Definition 3.1.4. The substitution of a value term V for a value variable x in an ex-

pression E, written E[V /x], is defined by recursion on the structure of E as follows:

Nat[V /x| = Nat
x[V /x] = vy
Y[V /] =y (if x # y)

(return W)[V /x|
(M toy:A inc N)[V /x|

return (W[V /x])
M[V /x] to y:A[V /x] incy /g NIV /]

def

3.1. Syntax 57

(KW)ya).0lV/xl = (KIV/X)WIV /X)) yaw /x).clv
(W(K)ep)lV/x] = (WIV/x)(KV /X)) ey .0 4

where the bound value variables are assumed to be different from the value variable x

we are substituting W for, according to the variable conventions we have adopted.

Later, in Section we also demonstrate that this definition of unary substitutions
naturally generalises to a definition of simultaneous substitutions. We then use simul-
taneous substitutions in op. cit. when constructing the classifying categorical model of
eMLTT, and in Chapters [0 and [7] when extending eMLTT with algebraic effects and
their handlers. Meanwhile, we found it more convenient to work with unary substitu-
tions when presenting the well-formed syntax and meta-theory of eMLTT (Sections[3.2]
and[3.3), and its denotational semantics and the soundness proof (Sections[5.T]and[5.2).

Proposition 3.1.5. Given a value variable x, a value term V, and an expression E,
then E[V /x] is the same kind of expression as E, e.g., if E is a computation term, then

E|V /x| is also a computation term.
Proof. By induction on the structure of E. O

Proposition 3.1.6. Given a value variable x, a value term V, and an expression E,

then FVV(E[V /x]) C (FVV(E) —{x}) UFVV (V).
Proof. By induction on the structure of E. [

Proposition 3.1.7. Given a value variable x, a value term 'V, and an expression E such
that x ¢ FVV(E), then E|V /x| = E.

Proof. By induction on the structure of E. [
Proposition 3.1.8. Given a value variable x and an expression E, then E[x/x| = E.
Proof. By induction on the structure of E. [

Proposition 3.1.9. Given value variables x and y, value terms Wy and W», and an ex-
pression E such that x #y and x ¢ FVV (W), then E[V /x][W /y] = E[W /y|[V[W /y]/x].

Proof. By induction on the structure of E. [

58 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Definition 3.1.10. The substitution of a computation term M for a computation vari-
able FCV (K) = z in a homomorphism term K, written K[M /7], is defined by recursion

on the structure of K as follows:

z[M /7] =M

(K tox:Ainc N)[M /7] = K[M/z) tox:Ainc N
((V,K) (xa).c) M /2] = (V,K[M/2])(a).c

(K to (x:A,7:C) inp L)[M/z] = K[M/z] to (x:A,7:C) inp L
(Ax:A.K)[M /7] £ Ax:A.K[M/7]
(K(V)(a).c)[M/7] = (KIM/)(V)a).c
(V(K)cp)[M/7] = V(K[M/Z])cp

Proposition 3.1.11. Given a homomorphism term K with FCV (K) = z and a compu-

tation term M, then K[M /7] is a computation term.
Proof. By induction on the structure of K. [

Proposition 3.1.12. Given a homomorphism term K with FCV (K) = z, a computation
term M, a value variable x, and a value termV, then K[M /z][V /x| = K[V /x][M|V /x]/z].

Proof. By induction on the structure of K. [

Definition 3.1.13. The substitution of a homomorphism term K for a computation
variable FCV (L) = z in a homomorphism term L, written L[K /z], is defined by recur-

sion on the structure of L as follows:

z[K /7] = K

(Ltox:A inc N)[K/Z] < LIK/zJtox:Ainc N

(V. L) (xa).c) [K /2] = (V.LIK/2])(xa).c

(Ly to (x:A,7:C) inp L)[K/z) = Li[K/z] to (x:A,7:C) inp L,
(Ax:A.L)[K /7] = Ax:A.LK/Z

(L(V)(xa).c) [K/7] = (LIK/Z)(V)(ea).c

(V(L)c,)[/2] = V(LIK/d)cp

Proposition 3.1.14. Given homomorphism terms K and L with FCV(K) = z, then

KI[L/7] is also a homomorphism term.

Proof. By induction on the structure of K. [

3.2. Well-formed syntax and equational theory 59

Proposition 3.1.15. Given homomorphism terms K and L with FCV (L) = z, then
FCV(LIK/Z]) = FCV(K).

Proof. By induction on the structure of L. [
Proposition 3.1.16. Given a homomorphism term K with FCV (K)=z, then K|z/z] =K.
Proof. By induction on the structure of K. [

Proposition 3.1.17. Given homomorphism terms K and L with FCV (L) = z, a value
variable x, and a value term V, then LK /z][V /x] = L[V /x][K[V /x]/z].

Proof. By induction on the structure of K. [

Proposition 3.1.18. Given homomorphism terms K and L with FCV (L) = z; and
FCV(K) = zp, and a computation term M, then LK /z1][M/z2) = LIK|M /z2]/z1]-

Proof. By induction on the structure of Kj. [

Proposition 3.1.19. Given homomorphism terms Ki, K>, and K3z with FCV (K}) = 71
and FCV (Ky) = 22, then K| [K»/z1|[K3/z2] = K1[K2[K3/22] /21)-

Proof. By induction on the structure of Kj. [

3.2 Well-formed syntax and equational theory

In this section we present the well-formed syntax of eMLTT and its equational theory.
First, we define the notions of value and computation contexts, and prove some

basic properties about the former.

Definition 3.2.1. A value context I' is a finite list x; : Ay,...,x, : A, of pairs of value
variables x; and value types A; such that all the value variables x; are distinct. We write

o for the empty value context and Vars(I') for the set of value variables in T

Definition 3.2.2. A computation context z:C is a pair of a computation variable z and

a computation type C.

Definition 3.2.3. Given two value contexts I'; and I'», we say that I'; and I, are
disjoint when Vars(I'y) N Vars(I'z) = 0.

60 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Definition 3.2.4. Given two disjoint value contexts I'y and I, their concatenation is

written I'1, 1%, and defined by recursion on the length of I':

1—‘170 = F]
[y, (To,x:A) = ([1,1),x:A

where the second case is well-defined because of the disjointness assumption.
Proposition 3.2.5. Given that I'y,T" exists, then Vars(I'1,I'2) = Vars(I'y) U Vars(I2).

Proof. By induction on the length of 1. [

Next, we note that the notion of substitution of value terms for value variables

extends straightforwardly from value types to value contexts:

Definition 3.2.6. The substitution of a value term V for a value variable x in a value

context ' =y :Ay,...,yn:Ap, written I'[V /x], is defined by

F[V/x] d:ef)’l 3A1[V/x]7 <os¥n :An[V/X]

Proposition 3.2.7. Propositions[3.1.7)3.1.8| and[3.1.9 extend to Definition

Proof. By applying the cases of value types of Propositions [3.1.7] [3.1.8] and [3.1.9|to
each of the value types A; in the given value context ' =y :Aq,...,y,:A,. [

Finally, we define the well-formed syntax of eMLTT and its equational theory. To
this end, it is worth recalling that eMLTT is based on MLTT with intensional proposi-
tional equality. As a consequence, we do not include an n-equation for the elimination
form of propositional equality. We also do not include an m-equation for primitive
recursion. In both cases, we do so to avoid a known source of undecidability for the
equational theory of eMLTT, see [44] and [80], respectively. While we do not in-
vestigate normalisation of eMLTT’s equational theory in this thesis, it would be an
important property for future implementations of eMLTT (see Section [8.1.5).

In addition, as discussed in Section the rules for sequential composition (both
for computation and homomorphism terms) disallow the type of the second computa-
tion to depend on the variable bound by sequential composition. As also discussed in
Section [I.1) we can uniformly recover this type-dependency using the computational
Y-type. A similar restriction on type-dependency also appears in the rules for compu-
tational pattern-matching; this type-dependency can be recovered analogously to the
case of sequential composition. These restrictions on type-dependency enable us to
give eMLTT a denotational semantics using a natural fibrational generalisation of the
adjunction-based semantics of CBPV and EEC—see Chapters [and [5]for details.

3.2. Well-formed syntax and equational theory 61

Definition 3.2.8. The well-formed syntax of eMLTT and its equational theory are de-

fined using the following judgement forms:

FIT well-formed value context

FI =17 definitionally equal value contexts
'-A well-formed value type

I'FA=B definitionally equal value types

r-c well-formed computation type
'-C=>bD definitionally equal computation types
I'-v:A well-typed value term

r-v=w:A definitionally equal value terms
'=m:C well-typed computation term
'-M=N:C definitionally equal computation terms
['|z:C-K:D well-typed homomorphism term
['|z:C-FK=L:D definitionally equal homomorphism terms

These judgements are defined mutually inductively, using the rules given below. We
have organised these rules so that closely-related rules for different judgements are
grouped together. For example, we group the formation rule for the type of natural

numbers together with the corresponding typing rules and definitional equations.

Well-formed value contexts

Formation rules for value contexts:

FI' THA x¢Vars()
ko FT,x:A

Rules for definitionally equal value contexts:

FIy =T, TITFA=B x¢Vars(I'1) x¢&Vars(In)
Fo=o FI,x:A=1%,x:B

Context and type conversions

Context conversion rules for types:

F]f—A |—F1:F2 FH—Q I_1—‘1:1—‘2

LFA LFC
IMFA=B FI}=I, Ii+C=D +Ii=I,
LFA=B IL-C=D

62 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Context and type conversion rules for terms:

Fll—VIA I—F1:F2 F1|—A:B Fll_MIQ l—Flzrz Fll—QZQ
IhFV:B IhFM:D

I'|z:C,+-K:Dy FI=Iy, I'+HC,=C, T''FD;=D,
[,|2:C,FK: D,

LiFv=w:A +FI''=1I, I''HFA=B
ILh-FV=W:B

F]l—M:N:Q FF]IFQ F]FQ:Q
[LbFM=N:D

I'|z:C,FK=L:D;, +I't'=I, TI''HFC,=C, T'+FD; =D,
I|z:C,FK=L:D,

Reflexivity, symmetry and transitivity

Rules for reflexivity:

A TFC
TFA=A TFC=C
TFV:A THM:C T|z:CFK:D

'FVv=V:A 'EM=M:C I'|z:CFK=K:D

Rules for symmetry:

Rules for transitivity:

A =A, THA,=A; I'C,=C, T'HFC,=0C5
CHA =A; C-C, =G,

I'vi=V,:A THEWL=V;:A I'EMy=M,:C THEFMy=M;5:C
F|—V1:V33A F|—M1:M3:Q

F‘Zigl—Klszig F|Z:Q}—K2:K3ZQ
F‘ZZQFK1:K3ZQ

3.2. Well-formed syntax and equational theory

Replacement

Replacement rules for value and computation types:

F],XIA,le—B F1|—V1=V2:A Fl,x:A,le—Q F1|—V1:V2:A

FI,FZ[Vl/x] F B[Vl/x] = B[Vz/x] Fl,FQ[Vl/.X] H Q[Vl/x] = (_:[Vz/x]
Replacement rules for value, computation, and homomorphism terms:

I, x:AILbFW:B Th'FVi=V:A
Fl,Fz[Vl/x] + W[Vl/x] = W[Vz/x] 1B[V1/x]

F],XIA,FZ I—MIQ Fl |_V1 :V2 .\
Fl,rz[Vl/x] FM[V]/X] :M[Vz/x] :Q[Vl/x]

F1,X:A7F2|Z:QFK21_) Fl f‘V] :V2 tA
L1, Do[Vi/x][2:C[Vi /x] = K[Vi /x] = K[V2 /x] : D[V} /4]

I''z:CFK:D THFM=N:C
TFK[M/J=K[N/7:D

F|Z]ZQI FK:QQ F|Z2:Q|—L1 :L2:QI
[|z22:CHK[Li/z1] = K[L2/z1] : Dy

Variables

Typing rules for value and computation variables:

FFI,XZA,FZ FI_Q
I, x:ATh)Fx:A ['z:Ckz:C

Natural numbers

Formation rule for the type of natural numbers:

FT
I'+ Nat

Typing rules for zero, successor, and primitive recursion:

I I'+V :Nat
I'F zero: Nat I't succ V: Nat

I''x:NatFA TI'FV:Nat
'V, :Alzero/x] T,yi:Nat,ys:A[y1/x]F Vs:A[succ y/x]
[+ nat-elimy 4(V,,y1.2.Vs,V) 1 A[V /4]

63

64 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Congruence rules for successor and primitive recursion:

'V =W:Nat
I'+succ V =succ W: Nat

[x:NatFA=B T'FV=W:Nat
I'FV,=W,:A[zero/x] T,y;:Nat,ys:Aly;/x]F Vs =W;:Alsuccy;/x]
' nat-elimy 4 (V;,y1.y2.Vs,V) = nat-elim, (W, y1.v2. W5, W) : A[V /x]

B-equations for primitive recursion:

[,x:NatFA T'FV;:A[zero/x] T,yi:Nat,ys:A[y1/x]F Vs:A[succy/x]
' nat-elimy 4 (V;,y1.y2.Vs,zero) =V, : A[zero/x]

Ix:NatHFA TI'FV:Nat
I'FV,:Alzero/x] T,y;:Nat,yy:Aly1/x]F Vi :Alsucc y;/x]

I' + nat-elimy 4(V;,y1.y2.V;,succ V)
= V[V /yi1][nat-elime 4 (V;,y1.y2. V5, V) /y2] : A[succ V /x]

Unit type
Formation rule for the unit type:
£
=1
Typing rule for the unit:
FI
'=x:1
Mn-equation for the unit:
r-v:i
F'v=x:1
Value X-type
Formation rule for the value X-type:
I'x:A-B
I'-Xx:A.B

Typing rules for pairing and pattern-matching:

'vV:A T''x:AEB THW:B[V/4]
L (V,W)(ea).: Zx:A.B

Iy:Xx1:A1.A B
I'tv: le 2A1.A2 Dxl :Al,XQiAz FW: B[<x17x2>(x1:A1).A2/Y]
I'FpmV as (X1 IAI,XzZAz) iny, g W: B[V/y]

3.2. Well-formed syntax and equational theory 65

Congruence rules for the value X-type, pairing, and pattern-matching:

F"A] =A2 F,x:Al |—Bl =Bz
Ff—Zx:Al.Bl :ZXIAQ.Bz

Fl—Al :A2 F,x:A1 I—Bl :Bz Fl‘V] :V2:A1 F"W] :WztBl[Vl/x]
'+ <V17W1>(x:A1).Bl = <V27W2>(XZA2).BZ 1 Xx:A1.By

F"A]] =A12 F,x1 :A11 |—A21 =A22 F,y:ZX] ZA]].A2] |—Bl =Bz
I'EVI=Vy:Xx1:A11.421 T,x1:A11,x0: Ay FW =W, :Bl[<X1,X2>(x1:A11)-A21/y]

I'-pmVjas (X1 :All,XQ:Azl) iny B, Wi
=pmV; as (x1 (A1, X2 :Azz) iny.B2 W, : By [Vl/y]

B- and n-equations for pattern-matching:

F,y:le IA1.A2 FB T'F V1 :A1 '+ V2 :Az[Vl/xl]
Loxi:A1,x: Ao B W 2 BI(x1,%2) (x4,). 4, /Y]

I' - pm <V17V2>(x1:A]).A2 as (xl 1A1,X2:A2) iny B w
=WVi/xi][Va/x2] : B[(V1,V2) (x;:4,).4, /Y]

FI—AI F,XIZAII—AQ Fl—VileiAl.Az
F,y1:ZX1:A1.A2|—B F,yz:leiAl.Azf—WZB[yz/yl]

IEpmV as (x1:A1,x2:A2) iny, g W[(x1,%2) (1:4).4,/¥2] = W[V /y2] : B[V /y1]

Value I1-type
Formation rule for the value I1-type:

I'x:AFB
I'HIIx:A.B

Typing rules for lambda abstraction and function application:

Ix:AFV:B 'x:AFB THV:IIx:A.B THW:A
I'-Ax:A.V:IIx:A.B C=V(W)(a).s: BIW /x|

Congruence rules for the value Il-type, lambda abstraction, and function application:

Fl—Al :A2 F,X:Al I—Bl 232
FI—HXZAI.Bl :HX:AQ.BZ

THFA =Ay, T,x:A FVi=V,:B
I'Ax:A.V] =Ax:A>. V5 :TIx:A|.B

F|—A1 :A2 F,XZAI |—Bl :Bz F|—V1 :V2 . Hx:A1.81 Fl—Wl :W2 2A1
CEVIWL) (eay). B, = V2W2) (x:).8, * B1[W1 /4]

66 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

- and m-equations for lambda abstraction and function application:

x:AFV:B THW:A
'+ (kx:A.V)(W)(x:A),B =V[W/x] : B]W /x|

I'x:AFB T'HV:IIx:A.B
[EV=Ax:AV(X)(xa).p: 1x:A.B

Empty type

Formation rule for the empty type:

Typing rule for empty case analysis:

x:0FA THV:O0
't caseV of, 4 () : AV /x]

Congruence rule for empty case analysis:

F,x:O |—A1 :A2 F"Vl :V2 :0
't case V) ofy 4, () = case Vo ofy 4, () : A1[V1/%]

Mn-equation for empty case analysis:

I'x:0FA TFHV:0 I'x:0FW:A
['tcaseV ofya () =W[V/x]:A[V/x]

Coproduct type

Formation rule for the coproduct type:

I'tA I'B
I'FA+B

Typing rules for the left and right injections, and binary case analysis:

I'FV:A I'V:B
I'-inlyypV:A+B I'-inrgaypV:A+B

I'x:Ai+AFB THV:AI+A)
Loy1:Ar B Wi Blinla, ya, y1/x] Toy2:Ao W Blinra, 14, y2/x]
I'tcaseV of, p (inl(y1 IAl) — Wi, inr(yQ:Az) — Wz) :B[V/x]

3.2. Well-formed syntax and equational theory 67

Congruence rules for the coproduct type, left and right injections, and binary case

analysis:

THA =A, TFB =8
I'A +B1 =A>+B>

I'FAj=A, T'HFBi=B, THVI=V,:A;
'+ inla, B, Vi = inla, 4B, V2 : A1+ B

Ff‘A]ZAz Fl—Blsz 1—‘|—V1:V2:Bl
I'H inrg, g, Vi = inrg,4p, V2 : A1+ B

I'FA1=A1 THA) 3 =A»n T x:Ai1+AxFB =8B
F'EVi=VaiAnn+Aa Tyi:Ay E Wi =Wip i By[inly, 44, Y1/
[,y2:A1p = Way =Wt Bi[inra,,+4,, ¥2/X]

'+ case V) ofy B, (inl(y1 :AH) — Wll,inr(yQ:Agl) — W21)
= case V, of, B, (inl(y1 3A12) — Wi, inr(y2 :A22) — W22) :Bl[Vl/x]

B- and m-equations for binary case analysis:

Ix:Ai+AFB T'HV:A;
Loy :Ar W ZB[inlA1+A2 yl/x] [y iAo EWse B[inIA]+A2 yz/x]

I' - case (inly, 44, V) ofy g (inl(y;: A1) — Wi, inr(y2:Az) — Wa)
=Wi[V/y1] : Binla, 44, V /x|

I'x:Ai+AFB T HV:A;
L,y1:Ar =Wy :Blinlg 4, y1/x] T,y2:A2 = Wa @ Blinry, 44, y2/%]

I' - case (inrg, 44, V) ofy p (inl(y;:A1) — Wi, inr(y2:4z) — Wa)
= WalV /y2| : B[inra, 44, V /x|

I'xi:Ai+A B THV:A+A) F,xZ:Al—f-Az'—W:B[xZ/)C]]

I't-case V ofy, p (inl(y1:A1) — W[inla, 44, y1/X2],
inr(yz 1A2) — W[inrAl+A2 yz/XQ]) = W[V/XQ] ZB[V/xl]

Propositional equality

Formation rule for propositional equality:

I'rV:A THFW:A
'tV =W

68 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Typing rules for the introduction and elimination forms of propositional equality:

I'FV:A
I'FreflV:V=,V

I'HA F,xl:A,xz:A,X3:x1 :Afo—B Fl—Vl -\ Fl—VziA
IEV,:Vi=aVo Ly:AEW :Bly/xi][y/x2][refl y/x3]
'k eqg-elimy (x1.x2.x3.B,y.W,V1,V»,V,)) : B[V1 /x1][V2/x2] [V}, /%3]

Congruence rules for propositional equality, and its introduction and elimination forms:

I'FA I =Ay, THVI=VWV,:A; TEW=W,:A;
'V =A, W) = (W, =A, Wa)

F|—V1:V21A
I'FreflVi=reflV,:V, =4V

Fl—Al :A2 F,xliAl,XQ:Al,X32xl =A XQl—Blsz
F"Vll =Vi2: A Fl—Vzl =V ZA] F"Vpl :sz Vi =A; Va1
Ly: Ay E Wi =Wa: Bi[y/xi][y/xo][refl y/x3]

'+ eq-elimAl(xl.XQ.X3.Bl,y.W1,V11,V21,Vp1)
= eq—elimAz(xl.XQ.)@.Bz,y. WQ,Vlz,sz,sz) 1B [Vll/xl][V21/X2HVp1/X3]

-equation for the elimination form of propositional equality:

I'FA T ,x1:A,x:A,x3:x1 =ax2FB
I'FV:A T,y:AEW:Bly/x][y/xz][refl y/x3]
't eg-elimy (x;.x2.x3.B,y.W,V,V,refl V) = W[V /y| : B[V /x1|[V /x2][refl V /x3]

Thunked computations

Formation rule for the type of thunked computations:

T-C
TFUC

Typing rules for thunking and forcing:

r'=M:C r=v.uc
I'-thunk M : UC I'FforcecV:C

3.2. Well-formed syntax and equational theory 69

Congruence rules for the type of thunked computations, thunking, and forcing:

Fl_gl :QZ
Fl-UQl :UQZ
F'—M1 :Mzig

'+ thunk M| = thunk M, : UC

I'-¢,=¢, I'r=vi=v,:UC,
' forcec, Vi =forcec, V2 : C;

Equations relating thunking and forcing:

r-v.uc r'=m:C
I't thunk (forcec V) =V :UC I'+ forcec (thunk M) =M : C

Homomorphic function type
Formation rule for the homomorphic function type:
I'C T'ED

Typing rules for the homomorphic lambda abstraction and function application:

I'|z:CHK:D
I'FAz:C.K:C—D

I'-v:C—D THM:C I'tV:D,—D, T'|z:CHK:D,
r'_V(M)Q,Q:Q F|Z:Q|_V(K)217Qz 1Dy

Congruence rules for the homomorphic function type, lambda abstraction, and function

application:

I'cC,=C, I'ED; =D,
I'FC— Dy =C, — D,

T-C,=C, T|z:C,FKi=K>:D

I'-C,=C, T+D,=D, TFV=V,:C,—D, THM =M,:C,
I'=Vi(Mi)c, p, = V2(M2)c,p, : D

Fl_Qll:QIZ FFQZIZQZZ Fl_VIZVzigll—OQzl F’Z:gl_Klsz:Qll

F‘Z:Q Vi (Kl)2117221 = VZ(KZ)Q127222 : Dy,

70 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

- and n-equations for homomorphic lambda abstraction and function application:

I'M:C T|z:CFK:D
I'+ (kz:Q.K)(M)QQ:K[M/z] 22

I'z;:C+-K:D; T|z:DFL:D,
[|z1:CH (Az2:Dy.L)(K)p, .p, = LK /22] : D,

'-v.:C—D
FFVI)\,ZZQ.V(Z)Q,QZQ—OQ

Type of computations that return values of a give value type

Formation rule for the type of computations that return values of a give value type:

A
I'FA

Typing rules for returning a value and sequential composition:

I'+V:A
I'FreturnV : FA

I'EM:FA THC T ,x:AFN:C
I'EMtox:Ainc N:C

['|z:CH-FK:FA THD T, x:A-M:D
['z:CHKtox:AinpM:D

Congruence rules for the type of computations that return values of a given value type,

returning a value, and sequential composition:

A=A,
'+ FA| = FA,
F"V[:V2:A

I'FreturnV; =return V> : FA

FI—A1:A2 F|—M1:M2:FA1 Fl—glzgz F,XZA1|_N1:NQZQI
I'M| tox:A4 ianleMztOXZAQingzNzlgl

FI—AIZAZ F‘ZZQ"KIZKleAI Fl—l_)IZQZ F,x:All—MI:MZ:QI
['|z:CHKj tox:Ay inp, M1 = K to x:Ay inp, M> : D,

3.2. Well-formed syntax and equational theory 71

B- and n-equations for sequential composition:

I'cv:A IT'+C T ,x:AF-M:C
I'FreturnV tox:A inc M =M|[V /x]: C

I'EM:FA T'HC T|z:FAFK:C
I'~M tox:A inc K[return x/z) = K[M /7] : C

I'z;:CFK:FA T'"ED T|z:FAFL:D
I'|z1:CFK tox:A inp L[return x/z3] = LK /2] : D

Computational X-type

Formation rule for the computational X-type:

I''x:A-C
I'-Xx:A.C

Typing rules for computational pairing and pattern-matching:

I'EV:A TLxtAEC THEM:C|V /x|
L (V,M)(xa).c: Zx:A.C

I'M:Xx:A.C TFD T,x:A|z:CHFK:D
I'-Mto (x:A,z:C) inp K : D

'v:A TI''xtAFD T|z:CHK:D[V/x]
F‘ZS(_)" <V,K>(x:A).Q :Xx:A.D

['|z1:CHFK:Xx:A.D, THD, T,x:A|z:D;+-L:D,
I'|z1:CHK to (x:A,z2:Dy) inp, L: D,

Congruence rules for the computational X-type, computational pairing, and pattern-

matching:

Fl—Al :A2 F,XZAI l—gl :QZ
THXx:A;.C,=2Xx:4,.C,

Fl—Al :A2 F,x:Al |—Ql :QZ Fl—Vl :V2 1A1 Fl—Ml :legl[vl/x]
T (Vi,M1) (ea)).c, = (V2:M2) (x4y).c, : ZX:A1.C4

I'FA =A;, T,x:Aj+C,=C, THD, =D,
FI—M1:M2:Zx:A1.Q1 F,XZA]|Z:Q||_K1:K2:I_)1
I'EM; to (x:Ay,z:Cy) inp, K1 = M3 to (x:A2,2:C;) inp, K> : D,

72

Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects
Fl—Al :A2 F,x:Al |—l_)1 :Qz Fl—Vl :V2 :A1 F|Z:g|—K1 :K2 Zl_)l [Vl/x]
[|z:CH (Vi,K1) (va)).0, = (V2,K2) (v:a).D, ZX:A1.D)

I'FA1=Ay TI''x:AiEDy =Dy, T'EDy =Dy
F|Z1:Q|—K1:K2:ZXZA1.QH F,x:A1|Z2:l_)11|—L1=L22221

F‘Zl :CFHKj to (x:Al,ZQZQ“) inp,, Li =K to (X:Az,Zz:le) inp,, Ly : Dy

- and m-equations for computational pattern-matching:

I'cV:A TTEM:ClV/x] TED T'x:A|z:CHK:D
T (V,M)(ca).c to (x:A,2:C) inp K = K[V /x][M/z] : D

[Lx:AFC THEM:Xx:A.C THD T|z:Xx:A.CFK:D
I'=Mto (x:A,21:C) inp K[(x,21) (xa).c/22] = K[M /22] : D

I'tV:A T|z1:CHK:Dy[V/x] TFD, T, x:A|zp:D,FL:D,
I'|z1:CH(V,K)(xa).p, to (x:A,22:Dy) inp, L= L[V /x|][K/2]: D,

[x:AFD; Tl|z1:CHK:Xx:A.D,

F}_l_)z F|Z3:ZX:A.QI|_K:22
['|z1:CEK to (x:A,22:Dy) inp, L[(x,22) (x.a).p, /23] = LIK/z3] : D,

Computational I1-type
Formation rule for the computational II-type:

'x:A-C
I'FIIx:A.C

Typing rules for computational lambda abstraction and function application:
Ix:AEM:C Ix:AFC TEM:IIx:A.C TFHV:A
I'EAx:AM:TIx:A.C CEM(V)a).c: ClV/x]

I'-C T,x:A|z:CHK:D Ix:AFD T|z:CHK:TIx:tA.D TFV:A
['z:CHAx:A.K:TIx:A.D [|z:CFK(V)(xa).p: D[V /x]

Congruence rules for the computational II-type, lambda abstraction, and function ap-

plication:

Ff—Al :A2 F,X:Al I—QI :Q2
CFIIx:A.C, =IIx:A>.C,

I'FA1=A, T'\'x:AitF-M{=M,:C

Fl‘)\.XiAl.Ml :7\,X:A2.M2 . Hx:Al.(_f

3.3. Meta-theory 73

THA =A; Tox:AFC,=C, TFM =M :TIx:A.C; THVi=Vs:A
LM (Vi) ay).c, = M2(Va) (xay).c, : C1[V1 /%]

FI—A1 :A2 FI—Q F,x:A1 |ZZQF—K1 :K2 ZQ
F|ZIQ|‘7\.XZA1.K1 :kX:Az.KZZHX:AI.Q

F|—A1 =A2 F,X:Al I—QI 222 Fl—Kl =K;: HXZAI.QI Fl—Vl =V IA1
[|z2:CEKi(Vi)(xa,).0, = K2(V2) (x:a,).D, : D1[V1/X]

B- and n-equations for computational lambda abstraction and function application:

I'x:AFM:C THV:A
'+ (kx:A.M)(V)(x:A),Q =M|[V /x]: C[V /x]

I'x:AFC THEM:IIx:A.C
CEM=Ax:A.M(x)(za).c: [Ix:A.C

I'C T,x:A|z:CFK:D TFV:A
[|z:CF (Ax:A.K)(V)(xa).p = K[V/x] : D[V /x]

'x:AFD T'|z:CHK:1Ix:A.D
[|z:CHK=Ax:A.K(x)(z.).p : Ix:A.D

Convention for proving definitional equations

In this thesis we use the following convention: when we say that we prove a definitional
equation I' V) =V, : A, we formally mean constructing a corresponding derivation
using the rules given above. In order to improve the readability of these proofs, we

omit the full derivations and instead present the proofs as sequences of equations
F"Vl =V2=...= n—1 :VniA

where each individual equation corresponds to a derivation of I'=V; =V, : A, and the
sequence as a whole corresponds to the derivation of 'V =V, : A by repeated use of
the transitivity rule on these individual derivations. These individual derivations often

consist of an application of a 3- or n-rule under some number of congruence rules.

3.3 Meta-theory

In this section we prove various meta-theoretical properties of the well-formed syntax

of eMLTT we introduced in the previous section; these include closure under weaken-

74 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

ing and substitution, and that well-typed terms are assigned only well-formed types.
We begin with some properties of well-formed value contexts. First, we show that

all value types in a well-formed value context are themselves well-formed.

Proposition 3.3.1. Given value contexts I'y and I'y, a value variable x, and a value

type A such that =1'1,x:A,I'y, then we also have I'1 |- A.

Proof. By induction on the length of I'; and by observing that in each of the cases the

derivation of - I'1,x:A,I» has to end with the context extension rule. [

Next, we observe that our axiomatisation of definitionally equal value contexts in
terms of a reflexivity rule for the empty context and a congruence rule for context

extension gives rise to an equivalence relation.

Proposition 3.3.2. The following rules are admissible for value contexts:

FT |—F2:F1 |—F1=F2 |—F2=F3
FI'=T FI'y=1» FI=1I%

Proof. We prove reflexivity by induction on the derivation of - I', symmetry by in-
duction on the derivation of - I'; = I'{, and transitivity by induction on the sum of
the heights of the derivations of - I'y =1% and 1, =13. We use the reflexivity,

symmetry, transitivity, and context conversion rules for value types where needed. [
Next, we show that definitionally equal value contexts have the same structure.

Proposition 3.3.3. Given I'y and Ty such that - T'y =Ty, then Vars(T'1) = Vars(I2);

and moreover, these value variables are given in the same exact order in both contexts.
Proof. By induction on the derivation of - 1"y =17. [

Proposition 3.3.4. Given value contexts I'y and 1'> and I'3 such that - 1"1,I'y = I3,
then there exist value contexts I'y and I's such that I's =14, I's and =11 =T'4.

Proof. By induction on the length of I';. 0

Corollary 3.3.5. Given value contexts I'y and I'; and I'3, a value variable x, and a
value type A such that - 1'1,x:A,I'y = I'3, then there exist value contexts I'y and s,
and a value type B such that '3 =Ty, x:B,I'sand 1"y =Ty andT'1 A =B.

Proof. We use Proposition [3.3.4] with value contexts I';,x:A and I'; and I'3, and ob-
serve that the last rule used in the derivation of -1"1,x:A =I'4 has to be the congruence

rule for definitionally equal value contexts, giving us the required value type B. [

3.3. Meta-theory 75

Proposition 3.3.6. Given value contexts I'y and 1, and 1" such that =11 =1, and
FIy, L then =1, =15,T.

Proof. By induction on the length of I'. 0

Next, we show that the free value variables of a well-formed expression are con-

tained in the value context in which the given expression is well-formed.
Proposition 3.3.7.

(a) GivenT'\- A, then FVV(A) C Vars(T').

(b) GivenT'+A =B, then FVV(A) C Vars(I') and FVV (B) C Vars(T').
(c) GivenT' FC, then FVV(C) C Vars(T').

(d) GivenT'+C =D, then FVV(C) C Vars(I') and FVV (D) C Vars(T').
(e) GivenT FV : A, then FVV (V) C Vars(I') and FVV (A) C Vars(T').

(f) GivenT'FV =W : A, then FVV (V) CVars(I'), FVV(W) C Vars(I'), and
FVV(A) CVars(T).

(g) GivenT' =M : C, then FVV (M) C Vars(T') and FVV(C) C Vars(T').

(h) GivenT'" =M =N :C, then FVV (M) C Vars(I'), FVV(N) C Vars('), and
FVV(C) C Vars(T).

(i) GivenT'|z:Ct+ K : D, then FVV (C) C Vars(T'), FVV(K) C Vars(I'), and
FVV (D) CVars(T').

(j) GivenT'|z:CF K =L:D, then FVV(C) C Vars('), FVV(K) C Vars(T'),
FVV(L) CVars(T'), and FVV (D) C Vars(I').

Proof. We prove (a)—(j) simultaneously, by induction on the derivations of the given
judgements, using Proposition [3.1.6|for rules involving the substitution of value terms

for value variables. [

Analogously, we can also show that the free computation variable of a well-typed
homomorphism term matches the computation variable mentioned in its typing judge-

ment, and analogously for definitional equations between homomorphism terms:

76 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Proposition 3.3.8.
(a) GivenT|z:CHK : D, then FCV (K) =z
(b) GivenT|z:CHK =L:D, then FCV(K)=zand FCV(L) = z.

Proof. We first prove (a) and then (), by induction on the given derivations of
I'z:CHK:DandT'|z:CF K = L: D, respectively. In the cases that involve substitut-

ing homomorphism terms for computation variables, we use Proposition[3.1.15] [

We are now ready to prove that the judgements of eMLTT are closed under weak-

ening of value contexts and under substitution of value terms for value variables.
Theorem 3.3.9 (Weakening). Assuming that x ¢ Vars(I'1,12) and '} - A, we have:
(a) Givent-T1"1,I, thentT"1,x:A,I,.

(b) Givent-1"1,I'y =173,1"4, thentT1,x:A,I» =13,x:A,T4.

(c) GivenT'|,I, B, then'1,x:A,I» F B.

(d) GivenT'{,I» By =By, thenT'{,x:A, I’ - B = B».

(e) GivenT'|, I, FC, thenT'|,x:A, T, -C.

(f) GivenT'|, I -C =D, thenT'1,x:A, I, +C =D.

(g) GivenT'{,I2 -V :B, thenT'{,x:A,I, -V :B.

(h) GivenT'|,I, -V =W :B, thenT'|,x:A,I, -V =W :B.

(i) GivenT'|, I, M :C, thenT'|,x:A,I, =M :C.

(j) GivenT'1,I, =M =N :C, thenT'|,x:A,I,-FM=N:C.

(k) GivenT'|,I'2|2:CHK :D, thenT'1,x:A,T»|z:C+HK:D.

(1) GivenT'1,I|z:CFK=L:D, thenT';,x:A,I,|z:C-K=L:D.

Proof. We prove this theorem simultaneously with Theorem[3.3.10] We prove all cases
simultaneously: (a)—(b) by induction on the length of I'; and (¢)—(/) by induction on
the derivations of the given judgements. We sketch the proofs of two cases that need

extra work, namely, those involving context and type conversions, and substitution.

3.3. Meta-theory 77

Context and type conversion rule for computation terms: In this case, the given
derivation ends with
Fg'—MZQ |—F3=F1,F2 F3|—Q:Q
F] s Fz FM: Q

and we are required to construct a derivation of I'j,x:A, I =M : D.

First, by using Proposition[3.3.4] together with the symmetry of definitionally equal
value contexts, we get that '3 =14,I's and - I'y = I'4, for some I'y and I's.

Next, by combining this definitional equation with the context and type conversion
rule for value types, we get a derivation of I'4 - A.

Next, we observe that our assumptions give us that x & Vars(I';,I';), and Proposi-
tion[3.3.3 gives us that Vars(I'|,I2) = Vars(I'3) = Vars(I',Ts).

Therefore, we can use the induction hypothesis on the derivation of I'y,I's =M : C
to get a derivation of I'y,x:A,T's = M : C. Analogously, we can use (b) on the derivation
of FTy,I's =I'1,I; to get a derivation of - T'g,x:A,I's =I'1,x:A, T, and (f) on the
derivation of I'4,I's = C = D to get a derivation of I'4,x:A,I's - C = D.

As a result, we can now construct the required derivation, as shown below:

F4,X:A,F5 =M : Q H F4,)CIA,F5 = Fl,x:A,rz F4,)C:A,F5 FQ:Q
Fl,x:A,rz |—M:Q

Other cases involving context and type conversion rules are proved analogously.

Replacement rule for computation terms: In this case, the given derivation ends

with
F3,yZB,F4 I—MZQ F3 |—V1 =WV:B

D3, TuVi/yl = M[V1 /y] = M[V2/y] : C[V1 /3]
with I'1, I = F3,F4[V1/y].

We now have two possibilities to consider, according to how I'; and I'3 overlap. In

both cases, we note that our adopted variable convention does not apply because y is
not a bound value variable. As a result, it is not guaranteed that x and y are different.

To overcome this, we choose a fresh y' satisfying y & Vars(I's,y:B,I'4) and y # x.

Case for Vars(I's) C Vars(T'1): In this case, the value context I'4[V; /y] is of the form
La1[V1/y],Ta2[V1/y], with T’} =T3,T'41[V;/y] and I, = T'42[V}/y], and we are required

to construct a derivation of

3, T [Vi/y],x: A, Tan[Vi [y E MV /y] = M[V2/y] : C[V1 /Y]

Based on that y' & Vars(I's,y:B,T4), we can use (i) on the given derivation of
I3,y:B,I41,T4p F M : C to get a derivation of I'5,y :B,y:B,I'41,Tso =M : C,

78 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

on which we can in turn use (i) of Theorem to get a derivation of
U3,y B, L[/3], Ty /] E MY /y] - CIY' /Y.

Next, we observe that x & Vars(I's,y" : B,T41[y' /y],T42[y'/y]). Therefore, we can
use (i) on the derivation of ',y : B,Ta1[y'/y],Tazly’ /y] = M[Y'/y] : C[y'/y] to get a
derivation of '3,y : B,Ta1[y//y],x: A, Tay /y] E M[Y'/y] : C[Y' /).

Now, by applying the replacement rule for computation terms on this derivation,

we get a derivation ending with

I3,y :B,Ta1 [y /y],x: A, Taa[y [yl - MY /y] : ClY'/y] TaFVi=V2:B
T3, Ty 511 /Y].x: ALY] Tl /¥ Vi /Y] = MY 5]V /Y]
=M /yI[V2/y']: ClY /y1[V1/Y]

Next, according to Proposition we know that FVV(V)) C Vars(I'3) and
FVV(V,) C Vars(I's). Therefore, we have that y € FVV(V}) and y & FVV(V,).
Furthermore, as a consequence of the way we have chosen y’, we also know that
Y EFVV(T4),Y €FVV L),y € FVV(M),y € FVV(A),and y € FVV(C).

By combining these observations with Definition[3.1.4Jand Propositions[3.1.7]
and[3.2.7] we can show that the following equations hold:

(%)

Ca [y IV =TaVi /Y1 V1/Y'1/y] = Ty V1 /Y] /3] = Tar [V1 /Y]

Vi/y']
AVi/y]=A
Cooly YIVi/y] = TaVi /Y [Vi/¥1/y] = Taly Vi /¥']/y] = Tz V1 /3]
ML [yIVi/y'] =MV YT [Vi/y/y) = MY V1 /Y] /y] = MIV1 /Y]
MU' V2 /[y =MV Y'Y V2 /Y/y] = MY V2 /Y] /] = M[V2 /]
CY Iy =Ccvi/ylly' i /yl/yl = €' vi/y]/yl = CVi /Y]

As a result, the derivation we constructed above that ends with (x) gives us the
required derivation of I'3,T41[Vi /y],x: A, Taz[V1/y] = M[V1/y] = M[Va/y] : C[V1/y].

Case for Vars(I'3) Z Vars(I'1): In this case, the value context I'5 is of the form I'3;, '3z,

with I'; =T'3; and I'; = I'3p,T4[V}/y], and we are required to construct a derivation of

[31,x:A, T30, Ta[Vi /y] = M[V1 [y] = M[Va /y] : C[V1 /]

Based on that ¥y & Vars(I's,y: B,I'4), we can use (i) on the derivation of
I'31,13,y:B,T4 = M : C to get a derivation of I'5;,I'32,y :B,y:B, T4 M : C,
on which we can in turn use (i) of Theorem to get a derivation of
U351, T3,y : B, Tuly' /y] = MDY /3] - CIY' /).

3.3. Meta-theory 79

Next, we observe that x & Vars(I'3;,I32,y" : B,T4[y'/y]). Therefore, we can use
(i) on the derivation of I'31,I'3p,y": B, T4[y'/y] = M[y'/y] : C[y’/y] to get a derivation
of I'31,x:A, T30,y : B, T4y /y] = M[y'/y] : C[y' /y]. Furthermore, as we also know that
x ¢ Vars(I'31,T'3,), we can use () on the derivation of I'31,I'30 -V, =V, : Bto geta
derivation of I'31,x:A,I'5o F Vi =V, : B.

Now, by applying the replacement rule for computation terms on these derivations

we get a derivation ending with

F31,x A F32,y :B F4[y /y] I—M[y /y] [y /y] F31,x:A,F32 ~ V1 = V2 :B
La1,x0:A, T, Ta[y [y Vi /YT = MDY /y] Vi /Y] = MY /y][V2 /Y] CLY /31 IVi /Y]

(%)

Next, according to Proposition [3.3.7, we know that FVV (V;) C Vars(I'31,T'32) and
FVV(Va) C Vars(I'3;,I'3p). Therefore, we have thaty ¢ FVV(Vy) and y & FVV (V2).
Furthermore, as a consequence of the way we have picked y’, we also know that
Y €FVV(Ly),y € FVV(M),and y € FVV(C).

By combining these observations with Definition|3.1.4{and Propositions
and[3.2.7] we can show that the following equations hold:

Laly'[Vi/y']/y] = Ta[V1/y]
=My'[V1/y']/y] = M[V1/y]

Laly Sivi Y] =Tai Y IY i /Y1 /5] =
ML [y]Vi/y']= MWV /Y Vi /Y]] =My
My /yIV2/y] =MW /Y IY V2 /Y] /3] = MY [V2/y']/3] = M[V2 /Y]
Cy' /Iy =Cvi/yIY iy = /Y1y = Cvi/y]
As a result, the derivation we constructed above that ends with (xx) gives us the
required derivation for I'31,x:A, '3, T4[Vy /y]| = M[Vi/y] = M|V, /y] : C[V1/y].

Other cases that involve substitution in rule conclusions are proved analogously.
O]

L 2 L

Theorem 3.3.10 (Value term substitution). Assuming I'1 FV : A, we have:
(a) GivenT1,x:A, T, thentT1,T>[V /x].

(b) GiventT1,x:A, Ty =T3,x:A" Ty, thent-T,15[V /x] =T3,T4[V /x].
(c) GivenT|,x:A,I'2 F B, then I', IV /x] - B[V /x].

(d) GivenT'1,x:A, T2 = By = By, then I'1, 12V /x| = B1[V /x] = B2[V /x].
(e) GivenT'|,x:A,I', FC, thenT|, I,V /x| - C[V /x].

(f) GivenT'|,x:A,T,+C =D, thenT|,I':[V /x| C[V /x| = D[V /x].

80 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

(g) GivenI'1,x:A,To =W : B, thenT'|,I':[V /x| = W|V /x| : B[V /x].
(h) GivenTy,x:A,Ts Wi =W : B, then T1, T2V /x] F WiV /x] = Wa[V /x] : B[V /x].
(i) GivenT'1,x:A, T2 =M :C, then ', IV /x| = M[V /x| : C[V /x].
(j) GivenT1,x:A, T, =M =N :C, then ', I,V /x| - M[V /x] = N[V /x| : C[V /x].
(k) GivenT'1,x:A, T |z:CHK : D, thenT'|,I[V /x| |z:C[V /x| - K[V /x| : D[V /x].
() GivenT'1,x:A,T2|z:CHK=L:D, then

',V /x]|z:C[V /x] - K[V /x| = L[V /x] : D[V /x].

Proof. We prove this theorem simultaneously with Theorem We prove all cases
simultaneously: (a)—(b) by induction on the length of I'; and (¢)—(!) by induction on
the derivations of the given judgements. We sketch the proofs of three cases that need

extra work, namely, those involving context and type conversions, and substitution.

Context and type conversion rule for computation terms: In this case, the given
derivation ends with
[3-FM:C FIz=I1,x:A 1, I3FC=D
Fl,xZA,Fz I—M . Q

and we are required to construct a derivation of I';,I'2[V /x| = M[V /x| : D[V /x].

First, using Corollary together with the symmetry of definitionally equal
value contexts, we get that ['3 =4, x:B,I'sand 1"y =Ty and I'{ - A = B, for some
value contexts I'4 and I'5, and a value type B.

Next, by combining these definitional equations with the context and type conver-
sion rule for value terms, we get a derivation of 'y =V : B.

As a result, we can use the induction hypothesis on the given derivation of
I'4,x:B,I's =M : C to get a derivation of I'4, I's[V /x] - M|V /x] : C[V /x|. Analogously,
we can use (b) on the derivation of - I'y,x:B,I's =I'1,x:A,I'; to get a derivation of
FT4,I's[V/x] =T'1,T2[V /x|, and (d) on the derivation of I'y,x:B,I's - C = D to get a
derivation of I'4,I's[V /x| = C[V /x] = D[V /x].

As a result, we can now construct the required derivation, as shown below:

(1) FT4,Ts[V/x|=T1,12[V/x] T4,Is[V/x]FC[V /x| =DV /x]
[, [V /x| E M|V /x]: D[V /x]

where (1) denotes a derivation of

4, Ts[V /x| EM[V /x]: C[V /x]

3.3. Meta-theory 81

Other cases involving context and type conversion rules are proved analogously.
Typing rule for computational pairing: In this case, the given derivation ends with

Fl,xZA,FQI—WZB F],XIA,Fz,yIBI—Q FI,XZA,le—MIQ[W/y]
Fl,x:A,Fz H <W,M>(y:3)'g . Zy:B.Q

and we are required to construct a derivation of
L, oV /x| =WV /x|, MV /x]) -8y /4).cv /) : ZY:BIV /x].C[V /x]

First, we use (g) on the derivation of I'j,x:A,I, = W : A to get a derivation
of I'1,I[V /x| = W[V /x] : A[V /x]. Analogously, we use (e) on the given derivation
of I'1,x:A,T,y: B C to get a derivation of I'y, I [V /x],y: B[V /x] - C[V /x].

Next, we use the induction hypothesis on the derivation of I'j,x:A, I’y =M : C[W /]
to get a derivation of I'1,I2[V /x] = M[V /x] : C[W /y][V /x|, which is the same as a
derivation of I'1,I2[V /x| = M[V /x] : C[V /x][W[V /x]/y] due to Proposition In
particular, based on our adopted variable convention, we have y & Vars(I'|,x:A,I),
from which it follows that y ¢ Vars(I'}). Further, according to Proposition we
also know that FVV (V) C Vars(I'y). Therefore, y ¢ FVV (V). Combining these ob-
servations with Proposition we get that C[W /y|[V /x] = C[V /x][W[V /x]/y].

Finally, we can construct the required derivation by using the typing rule for com-

putational pairing with the derivations we have constructed above, as shown below:

DDV EWV/A]BV/X] (1) TLp[V/x]EMV /] CIV/XWIV/x]/y]
U,V /x| =WV /x|, MV /) vy a).cv x5 :BIV /x].C[V /x]

where (1) denotes a derivation of
T4, TalV /,y: BV /] C[V /]

Other cases that involve substitution in rule premises are proved analogously.

Replacement rule for computation terms: In this case, the given derivation ends

with
I5,y:BI4yFM:C TI3FVi=V,:B

3,04 [Vi/y] = MV /y] = M[V2/y] : C[V1 /]

where ', x: A, I, =13,T4[V1 /y].
Similarly to the analogous case in the proof of Theorem [3.3.9] we now have two

possibilities to consider, depending on whether x € Vars(I's) or x € Vars(I'4[Vi/y]).

82 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Case for x € Vars(I'3): In this case, the value context I'; is of the form I'3;,x:A, '3,

with I'y =T'3; and I'; = I'31,T4[V;/y], and we are required to construct a derivation of
L3, La[Vi 3|V /2] B MV Y]V /x] = MV /Y] [V /2] - C[Vi /)Y /]

First, we use (i) on the derivation of I'31,x:A,I'3,y:B, T4 M :C to get a
derivation of I'31,I'32[V /x|,y : B[V /x],T4[V /x] = M[V /x] : C[V /x].

Next, we use (%) on the derivation of I'31,x:A,T'3 V) =V, : B to get a derivation
of I'31,32[V /x| = V1[V /x] = V1V /x] : B[V /x].

Using these derivations, we can use the replacement rule for computation terms to
get a derivation ending with

[3,y:BlV/x|,[4]V /x| - M[V /x] :C T3V /x| V[V /x| =V2[V/x]: B[V /x]

D3, L[V /x][Vi[V /x] /3] = MV /x| [Vi[V /4] /)]
= MV /x][Va[V /x]/y] : C[V /x][V1[V /x] /]

Next, according to Proposition we know that FVV (V) C Vars(I'3;). There-
fore, as y & Vars(I'31), we also know thaty ¢ FVV (V).

By combining these observations with Propositions [3.1.9] and [3.2.7, we can show

(%)

that the following equations hold:

La[V/x]VilV /x]/y] = TaVi /y][V /4]
MV /x][Vi[V /x]/y] = M[V1/y][V /x]
M[V /x][Va[V /x]/y] = M[V2/y][V /x]
ClV/xWi[V /x]/y] = CVi /y][V /4]

As a result, the derivation we constructed above that ends with (x) gives us the re-
quired derivation of I's, T4 [Vy /y][V /x] = M[Vy /y][V /x| = M[V2 /y][V /x] : C[V1 /y][V /x].
Case for x € Vars(I'4[V1/y]): In this case, the value context I'4[V;/y] is of the form

F41[V1/y],x:A[Vl/y],F42[V1/y], with I'| = F3,F41[V1/y] and I, = F42[V1/y], and we

are required to construct a derivation of

03, T [Vi/y], Taa[Vi Y]V /x] = MV1 Y]V /x] = M[Va /Y] [V /x] : C V1 /Y] [V /]

First, we use (i) on the derivation of I'3,y:B,T'41,x:A,T4p =M : C to get a derivation
of I'3,y:B,T41,Lap[V /x| = M[V /x| : C[V /x].
Using this derivation, together with the given derivation of I'; -V, =V, : B, we can
use the replacement rule for computation terms to get a derivation ending with
[3,y:B,Ta1,Tap[V/x]EM[V /x| :C[V/x] T3V, =V,:B
o, T Ve o] CaalV /I] MUV Vi o] = M1V 72/ CV v o])

3.3. Meta-theory 83

Next, according to Proposition we know that FVV (V) CVars(I'3,T41[V1/y]).
Therefore, as y & Vars(I'3,T'41[V1/y]), we also know that y € FVV (V).

In addition, according to Proposition we know that FVV (V) C Vars(I'3) and
FVV(V,) C Vars(I'3). Therefore, as x € Vars(I'3), we also have that x ¢ FVV (V) and
x @ FVV(Wy).

By combining these observations with Propositions [3.1.7,[3.1.9] and[3.2.7] we can

show that the following equations hold:

LapV/xVi/y] = TaalV/xViV /x/y] = Taa[Vi/31IV /]
MV /x][Vi/y] = MV /x][V1[V /x]/y] = M[V1 /y][V /x]
MV /x][Va/y] = MIV /x][Va[V /x]/y] = M[V2/y][V /x]
ClV /i /yl = ClV /" VilV /] /3] = CVi /] 1V /4]

As a result, the above derivation ending with (xx) gives us the required derivation
of I3, Ty [Vi /y], Ca[Vi /YIIV /x| = MV V]IV /] = M[V2/y][V /%] - €IV Y]V /]

Other cases involving substitution in rule conclusions are proved similarly. In the
cases that involve substituting computation terms and homomorphism terms for com-

putation variables, the proofs use Propositions [3.1.12] and [3.1.17] respectively. [

In addition to the substitution theorem for value variables, we also prove two sub-
stitution theorems for computation variables, one for substituting computation terms

and one for substituting homomorphism terms.

Theorem 3.3.11 (Computation term substitution). Assuming I't=M : C, we have:
(a) GivenT'|z:CHK:D, thenT - K[M /7] : D.

(b) GivenT'|z:CH-K=L:D, thenTF-K[M/z] =LIM/z]: D.

Proof. We first prove (a) and then (b), by induction on the given derivations of
['z:CHK:DandT'|z:CH K = L: D, respectively. We sketch the proof of a case that

needs extra work compared to other cases, namely, the case that involves substitution.

Replacement rule for homomorphism terms: In this case, the given derivation ends

with
F|Z1:QI FK:Qz F|Z2:Q|—L1 :LQ:QI

[|z22:CHK[L1/z1] = K[L2/z1] : Dy

and we are required to build a derivation of I' - K[L /z1][M /z2] = K[L2/z1|[M /23] : D5.
First, we use the induction hypothesis on the derivation of I'|z:C+ L = L, : D,
to get a derivation of '+ L [M/z2] = L»[M/z2] : D;.

84 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Next, using this derivation, together with the derivation of I'|z;:D; - K : D,, we
can use the replacement rule for homomorphism terms to get a derivation ending with

F‘Zl ZQl f—K:l_)z F|—L1[M/Zz] :LQ[M/Zz] :l_)l
[K[Li[M/2]/z1] = K[L2[M/22]/21] : D,

(%)
Next, we can use Proposition [3.1.18|to show that the following equations hold:

K[Li[M/z]/z1] = K[Li/z1][M/z2] K[L2[M/z2]/z1] = K[L2/21][M /2]

As a result, the derivation we constructed above that ends with (x) gives us the
required derivation of I' - K[L1 /z1][M/z2] = K[L2/z1][M/z2] : D;.
Other cases involving substitution are proved similarly. In the cases that involve
substituting value terms for value variables, the proofs use Propositions[3.1.7|and[3.1.12]
O

Theorem 3.3.12 (Homomorphism term substitution). Assuming I'|z1:CF K : D;, we

have:
(a) GivenT'|zp:D;FL:D,, thenT|z1:CF LK /7] : D,.
(b) GivenT'|zp:D - Ly =Ly :D,, thenT'|z1:CF Li[K/z] = L,[K/7] : D,.

Proof. We first prove (a) and then (b), by induction on the derivations of
['|z2:DyFL:D, and T'|z5: Dy + Ly = Ly : D,, respectively. We sketch the proof
of a case that needs extra work compared to other cases, namely, the case that involves

substitution.

Replacement rule for homomorphism terms: In this case, the given derivation ends

with
F\zg:Q3P—L:QZ F|Z2:Ql|_L1:L2:Q3

[lz2:Dy FL[L1 /z1) = L[L2/z1] : Dy

and we are required to construct a derivation of
['|z1:CE L[Li/z1][K/22] = LIl /21][K/z2] : Dy

First, we use the induction hypothesis on the derivation of I'|zp: D F Lj = L, : D5
to get a derivation of I'| 71 :C + L1[K /73] = L2 [K /z2] : D;.
Next, using this derivation, together with the derivation of I'|z3: D5 F L : D5, we
can use the replacement rule for homomorphism terms to get a derivation ending with
['|z3:D3FL:D, T|z1:CkLi[K/z2] =L2[K/22] : Dy
Ulz1:CF LILi[K/2]/21] = LIL2[K /22 /21] : Dy

(%)

3.3. Meta-theory 85

Next, we can use Proposition [3.1.19|to show that the following equations hold:

LILi[K/z]/z1] =L[Li/21][K/z2] L{L2[K/z]/z1] = LIL2/21][K/22]

As a result, the derivation we constructed above that ends with (x) gives us the
required derivation of I'|z; : C - L[L1 /z1][K/z2) = L|L2/z1][K /z2] : D;.
Other cases involving substitution are proved similarly. In the cases that involve
substituting value terms for value variables, the proofs use Propositions[3.1.7jand3.1.17]
O]

In the next proposition we show that the value types that are assigned to the same

variable in definitionally equal contexts are themselves definitionally equal.

Proposition 3.3.13. Given value contexts I'1 and 1", a value variable x, and a value
type A such that -1y =1 and x:A € I'y, then there exists a value type B such that
x:BelyandT'1HA=B.

Proof. We prove this proposition by induction on the derivation of - 1"] =I",, using
Theorem[3.3.9|when the last variable of I'; and I'; is different from x in order to weaken

the definitional equation given by the induction hypothesis. [

Next, we prove inversion lemmas for well-formed expressions, showing that the

corresponding formation and typing rules can be inverted.

Proposition 3.3.14. The following inversion principles are valid for value types:
(a) GivenT' FXx:A.B, thenT' FAandT',x:A\ B.

(b) GivenI'-11x:A.B, thenI'A andI',x:A + B.

(c) GivenT'A+B, thenI'-A and '+ B.

(d) GivenT'FV =4 W, thenT'-AandT'+V :Aand'EW : A.

(e) GivenT' - UC, thenT'FC.

(f) GivenT'=C — D, thenT'-C and I' - D.

Proof. We prove (a)—(f) independently of each other, by induction on the given deriva-
tions.

First, by recalling the rules that define the judgement I' = A from Definition
we can see that the given derivation can only end with the corresponding type forma-

tion rule or with the context conversion rule for value types.

86 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

If the given derivation ends with a type formation rule, the required derivations
follow immediately from the premises of that rule.

If the given derivation ends with the context conversion rule, we apply the con-
text conversion rule on the derivations given to us by the induction hypotheses. For
example, in the case of the context conversion rule for (a), the given derivation ends

with
|—F1 :FQ Fl FXx:A.B
Fz FXx:A.B

By using the induction hypothesis on the derivation of I'y - Xx:A. B, we get derivations
of 'y A and I'j,x:A - B. We can then use the context conversion rule with 1"y =1

on these derivations to get the required derivations of I'; - A and I'2,x:A - B. [
Proposition 3.3.15. The following inversion principles are valid for computation types:
(a) Given '+ FA, then T' - A.

(b) GivenT' FXx:A.C, thenT' A andT',x:A - C.

(c) GivenT' F1Ix:A.C, thenT' FA and T',x:AF C.

Proof. We prove (a)—(c) independently of each other, by induction on the given deriva-
tions. As in the proof of Proposition[3.3.14] we again observe that the given derivations
can only end with a corresponding type formation rule, or with a context conversion

rule. Both cases are treated analogously to the proof of Proposition 3.3.14] [
Proposition 3.3.16. The following inversion principles are valid for value terms:

(a) GivenT'F-x:A, thenx:B el and ' - A = B, for some value type B.

(b) GivenT'F-zero: A, then '+ A = Nat.

(c) GivenT'FsuccV :A, thenI'A =Natand 'V : Nat.

(d) GivenT'+ nat-elimy4(V;,y1.v2.Vs,V) : B, thenT' = B =A[V /x] and
'V, :Natand T',y; :Nat,y, :Aly; /x| - Vi : A[succ y1 /x] and T =V : Nat.

(q) GivenT'FAx:C.K: A, thenTHFA=C —-oDandT'|z:C+K:D,
for some computation type D with I' = D.

3.3. Meta-theory 87

Proof. We prove (a)—(g) independently of each other, by induction on the given deriva-
tions.

First, by recalling the rules that define the judgement 'V : A from Definition(3.2.8}
we can see that the given derivation can only end with the corresponding typing rule,
or with a context and type conversion rule.

If the given derivation ends with a typing rule, the required derivations of the sub-
terms of the given term follow immediately from the premises of that rule. Further, we
prove the required definitional equations using the reflexivity of ' A = B.

If the given derivation ends with a context and type conversion rule, we apply the
context and type conversion rule on the derivations given by the induction hypotheses.
For example, in the case of the context and type conversion rule for (g), the given
derivation ends with

F]"?uZZQ.K:A |—1—‘1:1—‘2 F]"AZB
IhFAz:C.K:B

Now, by using the induction hypothesis on the derivation of I'j F Az:C.K : A, we get
a type D, and derivations of ' D, ') FA=C — D, and I'; |z:C+ K : D. We can
then use the context and type conversion rules on these derivations, in combination
with the assumed derivations of - I'y =1 and I'y - A = B, to get the required deriva-
tionsof I, FDand I, FB=C—oDandI,|z:CHK:D.

In the induction step case for (a), we further use Proposition to show that

the types assigned to x in definitionally equal contexts are definitionally equal. [
Proposition 3.3.17. The following inversion principles are valid for computation terms:
(a) GivenT' FreturnV :C, thenT'-C = FA and ' -V : A, for some value type A.
(b) GivenI'FM tox:Ainc N:D,thenI'D=Candl'-M :FAandT',x:A+-N:C.
(c) GivenT't=(V,M)(y.a)c:D, thenT-D=Yx:A.CandT'FV :Aand =M : C[V /x].

(d) GivenT't=M to (x:A,z:Cy) inc, K : D, thenI' - D = C, and
'-M:Xx:A.Cyand',x:A|z:C,F K : C,.

(e) GivenT'FAx:A.M:D, thenT'-D=TIx:A.CandT",x:A-M:C,
for some computation type C with ', x:A + C.

(f) GivenT'=M(V)(y.a).c:D, thenT =D =C|V /x| and =M :T1x:A.Cand =V : A,

(g) Givenl'-forcecV :D, thenI'-D=CandI'=V :UC.

88 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

(h) GivenT' =V (M)c, c, : D, thenT =D =C, andT'FV :C; — Cyand =M : C,.

Proof. We prove (a)—(h) independently of each other, by induction on the given deriva-
tions. Similarly to the proof of Proposition we again observe that the given
derivation can only end with a corresponding typing rule, or with a context and type
conversion rule. Both cases are treated analogously to the proof of Proposition [3.3.16

]

Proposition 3.3.18. The following inversion principles are valid for homomorphism

terms:
(a) GivenT'|z1:Ctzp:D, thenT D = C and 71 = 25.

(b) GivenT'|z:C+ K tox:A inp, N:D,, thenT'+ D, = Dy and
I'z:CHK:FAandT',x:A+- N :D.

(c) GivenT'|z:CF (V,K) (x:a)p, : Dy, thenT' D, =Xx:A.D; and
I'-V:AandT|z:CHK:D;[V/x].

(d) GivenT'|z1:CFK to (x:A,z2:Dy) inp, L: D3, then T'= D3 = D, and
['z1:CHK:Xx:A.DyandTU,x:A|z:Dy + L: D,.

(e) GivenT|z:CHAx:A.K :D,, thenT' - D, =TIx:A.D; and',x:A|z:CF K : Dy,
for some computation type Dy withI',x:A F D;.

(f) GivenT'|z:Ct K(V)(x.a).p, : Dy, then T D, = D, [V /x] and
['z:CHK:TIx:A.Dyand TV : A.

(g) GivenI'|z:CFV(K)p, p, : D3, thenT' = D3 = D, and
F|_V:QI _OQZ andF]le-K:Ql.

Proof. We prove (a)—(g) independently of each other, by induction on the given deriva-
tions. Similarly to the proof of Proposition [3.3.16] we again observe that the given
derivation can only end with a corresponding typing rule, or with a context and type
conversion rule. Both cases are treated analogously to the proof of Proposition [3.3.16

O]

As a direct consequence of these three inversion lemmas, we can prove that the

type assignment in eMLTT is unique up to definitional equations between types.

3.3. Meta-theory 89

Proposition 3.3.19.

(a) GivenT'FV Ay andT'FV 1 Ay, then T A = Aj.

(b) GivenI' =M :CyandT'=M : C,, thenT't=Cy = C,.

(c) GivenT|z:CHK:D; andT|z:CFK : D,, thenT' - D; = D,.

Proof. We prove (a)—(c) simultaneously: (a) by induction on the structure of V, (b)
by induction on the structure of M, and (c) by induction on the structure of K. In each
of these cases, we use the corresponding case of Proposition[3.3.16] [3.3.17] or[3.3.18]

For example, in the case when V is a value variable x, the case (a) of Proposi-

tion [3.3.16] gives us that x: B € I, for some value type B, together with derivations of
I'A; =Band I'- Ay = B. By combining these derivations using the symmetry and
transitivity rules for definitionally equal value types, we get the required derivation of
I'FA] =A;.

As another example, in the case when M is of the form Ny tox:A inc N,, the
case (b) of Proposition[3.3.17| gives us derivations of '+ D; =C and '+ D, = C. By
combining these derivations using the symmetry and transitivity rules for definitionally
equal computation types, we get the required derivation of I' = D = D,.

As a final example, in the case when K is of the form Ax:B.L, the case (e) of
Proposition [3.3.18| gives us derivations of I'- D; =IIx:B.Dj and I' - D, =T1x:B.D,,
together with derivations of I',x:B|z:CF L: Dy and I',x:B|z:CF L : Dy, for some
computation types D3 and D,. Next, by using the induction hypothesis on the lat-
ter two derivations, we get a derivation of I',x: B+ Dy = D,. Further, by using the
congruence rule for the computational I1-type on this derivation, we get a derivation of
I'=1Ix:B.D; =I1x:B.D,. Finally, by combining this derivation with the derivations
of '-D; =IIx:B.D; and I' - D, = Ilx: B.D, using the symmetry and transitiv-
ity rules for definitionally equal computation types, we get the required derivation of
I'=D,=D,.]

We conclude this section by showing that the judgements of well-formed expres-
sions and definitional equations only involve well-formed contexts, well-formed types,

and well-typed terms.
Proposition 3.3.20.

(a) GivenT'F A, thentT.

90 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

(b) GivenI'FA =B, thenT'-A and '+ B.

(c) GivenT'C, then-T.

(d) GivenT' FC=D, thenT'-C and '\~ D.

(e) GivenT'FV : A, thenT' - A.

(f) GivenT'-V =W :A thenl'-V :Aand "W : A.

(g) GivenT' =M :C, thenT'-C.

(h) GivenT'"FM =N :C, thenT'-M:CandTFN :C.

(i) GivenT'|z:C+K : D, thenT'=C and '+ D.

(j) GivenT'|z:CHFK=L:D, thenT|z:C+K:DandT'|z:CFL:D.

Proof. We prove (a)—(j) simultaneously, by induction on the given derivations. Below
we sketch the proofs of four cases that demonstrate the use of the weakening and
substitution theorems, the inversion lemmas from Proposition (3.3.14] and the well-

formedness assumptions for type annotations.
Typing rule for value variables: In this case, the given derivation ends with

|—F1,XZA,F2
Fl,x:A,Fz Fx:A

and we are required to construct a derivation of I'j,x:A,I» - A.

First, we use Proposition to get a derivation of I'j - A. Next, we use (c) of
Theorem on this derivation of I'j - A to get a derivation of I'j,x:A - A.

Finally, we turn this derivation of I'j,x:A = A into the derivation of I'j,x:A, I, - A
by induction on the length of I",, using (c¢) of Theorem and by observing that
in each of the cases the last rule used in the derivation of - I'{,x:A,I» has to be the

context extension rule.

Typing rule for forcing a thunked computation: In this case, the given derivation

ends with
r-v:.ucC

I'FforcecV:C

and we are required to construct a derivation of I' - C.

3.3. Meta-theory 91

We observe that by using (e) on the derivation of 'V : UC, we get a derivation
I'=UC. As aresult, by using Proposition [3.3.14{ on this derivation of I' - UC, we get
the required derivation of I' - C.

Typing rule for computational pairing: In this case, the given derivation ends with

I'W:B T,x:AEC THM:C[W/y]
I+ <W7M>(XA)Q . EXAQ

and we are required to construct derivations of —I"and ' Xx:A.C.
We observe that by using the derivation of I', x:A - C, we can construct the required

derivation of I' - Xx:A.C simply by using the corresponding type formation rule.

Replacement rule for computation terms: In this case, the given derivation ends

with
F],XZA,Fz |—MZQ F] |—V1 =V2 tA

Ty, D[V /x] - MV /x] = M[Va/x] : C[V1 /4]

and we are required to construct derivations of I';,I'2[Vy/x] = M[Vy/x] : C[V1/x] and
[, 0o[Vi /x| = M[Va/x] - C[V; /x].

First, we use (g) on the given derivation of I';,x:A, I, = M : C to get derivations of
FI',x:A, I and I'1,x:A, I FC.

Next, we use (f) on the given derivation of I'j -V} =V, : A to get derivations of
IMEVi:Aand I} V5@ Al

Further, we use (i) of Theorem on the derivations of I'1,y:A, T, - M : C,
[MEVi:A and 'y -V, 1 A to get derivations of I'1,I2[Vy /x| = M[V; /x] : C[V; /x] and
[, 2[Va/x] = M[Va/x] : C[Va/x].

Finally, we construct the required derivation of I'1,I'2[V} /x] = M [V, /x] : C[V} /x] by
combining the context and type conversion rule for computation terms with replace-
ment rules for value contexts and computation types, as shown below

(2) (3)
(1) FI,TaVa/x] =Ty, o[Vi/x] Ty, Ia[Va/x] FCVa /x| = C[Vi /4]
[, o [Vi /x| = M[Va/x] - C[V) /x]

where (1) is given by
[, 2[Va/x] = MV, /x]: C[Va/x]

and (2) by
FI,x:A,I> I'EVi=W:A
FI,x:A, b =T1,x:A I, T'h'EFV,=V:A
FI, Vo /x| =T, T2 [V /4]

92 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

and (3) by
Fl,xiA,l—é'_Q F]FV]ZVZIA
Fl,x:A7F2 FQ:Q I |—V2 =V:A
[, o[Va/x] B CVa /x] = CVi /x]

Proposition 3.3.21. Givent=1"1 =1, then F1"| and - T",.

Proof. We prove this proposition by induction on the derivation of - I'j =1%.

In the case of the congruence rule for context extension, when the equation is of the
form FI'j,x:A =T, x:B, we use (b) of Proposition [3.3.20]to get derivations of I'; - A
and I'y F B from the derivation of I'; H A = B. We then use the context conversion rule
on I'| - B to get a derivation of I'; - B. Finally, we use the context extension rule on
I'y = A and I'; = B to get the required derivations of - 1",x:A and - I, x:B. [

3.4 Derivable elimination forms

In this section we show how to eliminate value types into computation and homomor-
phism terms. In addition, we show that the corresponding - and n-equations hold.
Recall that the type of natural numbers, the value X-type, the empty type, the
coproduct type, and propositional equality are only eliminated into value terms in
eMLTT. While being able to eliminate these types into value terms is necessary to
accommodate effect-free programs on which eMLTT’s types could depend on, it is
also desirable to be able to eliminate these types into computation and homomorphism
terms, e.g., to use primitive recursion in effectful programs. Below we show that such
elimination forms are derivable using thunking and forcing for computation terms, and
homomorphic lambda abstraction and function application for homomorphism terms.

First, we show how to derive the elimination forms for computation terms.
Definition 3.4.1. The computation term variant of

e primitive recursion is defined as

def

nat-elim, c(M;,y1.y2.M;,V) =
forcecy/y (nat-elim, yc(thunk My, y;.y2. thunk My, V))

e pattern-matching is defined as

def

pmV as (Xl 1A1,X2:A2) iny,QM:

forcecyyy (pmV as (x1:A1,x2:A2) iny yc thunk M)

3.4. Derivable elimination forms 93

e empty case analysis is defined as
case Vof,c () = forcecy/y (case V of, yc ()

e binary case analysis is defined as

case V of, ¢ (inl(xj:A1) — M, inr(x:Ap) — N) =

forcecpyy (case V ofy yc (inl(x;:Ay) = thunk M,
inr(x;:Ay) — thunk N))

e climination of propositional equality is defined as

eq-elimy (x1.x2.x3.C,y. M, V1, V3, V,) =

forcecy, /x|[va/xa][V,/xs] (€a-elimy(x1.x2.x3.UC,y. thunk M,V,V2,V)))
Next, we show that these derived elimination forms are well-typed.

Proposition 3.4.2. The following typing rules are derivable for the computation term
variant of:

® primitive recursion

[x:Nat-C T'FV:Nat
I'-M,:Clzero/x] T,y;:Nat,y2:UCly;/x]F M, :C[succ y;/x]
I'Fnat-elimy ¢(M;,y1.y2. My, V) : C[V /x]

e pattern-matching

F,y:le :Al.Az |—Q
I'tv: le IA1.A2 F,x1 :Al,xz :Az FM:

I'FpmV as (x1:A1,x2:42) iny,c M :

[(x1,%2) /Y]
V/y]

]I

e empty case analysis
'cv:0 I'x:0FC
I't-caseV of, ¢ (): C[V/x]

e binary case analysis

Iy:Aj+AFC THV:A+A;
[x1:ArEM:Clinlg 44, x1/y] T,x2:A2F N:Clinrs, 44, x2/Y]
I'Fcase V of, ¢ (inl(x1:A1) — M,inr(xp:A2) = N) : C[V /y]

94 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

e climination of propositional equality

I'FA T x1:A,x:Ax3:x1=4x2FC THFVI:A THFV;:A
'V, Vi=aVo T,y:AEM:Cly/x1][y/x2][refl y/x3]
'+ eq-elim, (x1.x2.x3.C,y.M,V1,V2,V,,) : C[V1 /x1][V2/x2] [V}, /x3]

Proof. We prove this proposition by constructing the corresponding typing derivations.

For example, the typing derivation for primitive recursion is given by

I''x:Nat-C
Ix:NatFUC T'HV:Nat (1) (2)
I'tnat-elim, yc(thunk M,,y;.y;2. thunk M, V) : UC[V /x]
I't forcec (nat-elimy yc(thunk M;,y;.ys. thunk M, V)) : C[V /4]
I'+nat-elim, c(M,,y1.y2.M;,V) : C[V /x]

where (1) is given by
I'-M,:C[zero/x]
I' - thunk M, : UC[zero/x]

and (2) by
I, y1:Nat,y2:UCly1 /x| - M : C[succ y; /4]
I',y;:Nat,y2 :UCly; /x] F thunk M, : UC[succ y; /x]
Derivations of the other typing rules listed above are constructed similarly. 0

We finish our discussion about these derived elimination forms by proving that they

satisfy computation term variants of the - and n-equations given in Definition[3.2.8]

Proposition 3.4.3. The following B- and n-equations are derivable for the computation

term variant of:

® primitive recursion

Ix:Nat-C
I'+M,:Clzero/x] T,y;:Nat,y,:UCly;/x]F M;: C[succ y;/x]
' nat-elimy, c(M,,y1.y2. M, zero) = M : C[zero/x]

I'x:Nat-C T'FV:Nat
I'M,:Clzero/x] TI,y;:Nat,y2:UC|y;/x]F M;:C[succ y;/x]

I' - nat-elim, c(M;,y1.y2. My, succ V)
= M,[V /y1][thunk (nat-elim,c(M;,y1.y2.M;,V))/y2] : C[succ V /x]

3.4. Derivable elimination forms 95

e pattern-matching

Iy:Xx1:A1.AHC
I'+ V1 1A1 I'+ V2 ZAQ[Vl/Xl] F,xl ZAl,XQ:Az M : Q[(xl,xz)/y]

I'F pm (Vi,V2) as (x1:A1,x2:A2) iny c M
= M[Vi/x1][V2/x2] : C[(V1,V2) /]

Fl‘A] T,xl :Al |—A2 I'tv: le 2A1.A2
CoyiiXxiAr A2 EC o ToyaiExi A Ao =M : Clyz/yi]
I'FpmV as (x1:A1,x2:A2) iny, ¢ M[(x1,x2) /y2] = M[V [y2] : C[V /y1]

e empty case analysis

Ix:0bkC TFHV:0 TI''x:0FM:C
I'caseV of, ¢ () =M[V/x]:C[V/x]

e binary case analysis

Iy:Aj+A,-C T'HV:A;
Ix1:A1 =M :Clinla, 44, X1/y] T x2:A2 = N:Clinrg,4a, x2/y]

I' - case (inla, 44, V) ofy ¢ (inl(x1:A1) — M,inr(x;:Az) — N)
= M[V /x1] : Clinla, 14, V /Y]

Iy:Aj+AHC THV:A;
[x1:AiEM :Clinla 44, x1/y] T,x2:A2F N :Clinrs, 44, x2/Y]

I' - case (inry, 44, V) ofy ¢ (inl(xy:Ay) — M,inr(xy:A2) — N)
= N[V/xz] : Q[inrAl+A2 V/y]

[y1:Ai+A-C THV:IAI+Ay Tyt Ai+AsEM:Clya/yi]

I' - case V ofy, ¢ (inl(x1:A1) — M[inla, 44, X1/y2],
inr(xp:As) — M[inra, 4, X2/y2])
= MI[V /y2] : C[V /y1]

e climination of propositional equality

I'+A F,xl :A,X2:A,X3ZX1 =A X2 |—Q
VA Ty:AEM:Cly/xi][y/x][refl y/x3]

I'F eg-elimy(x1.x2.x3.C,y.M,V,V,refl V)
=M[V/y]: ClV /x1][V /x2][refl V /x3]

96 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Proof. We prove this proposition by using the corresponding - and n-equations for
the value term variants of these elimination forms, together with the equations for
thunking and forcing.

For example, the first B-equation for primitive recursion is proved as follows:

I' - nat-elim, c(M;,y1.y2. M, zero)
= forcecizero/x] (nat—elimx,UQ(thunk M, y1.y,.thunk M, zero))
= forcecizero/y (thunk M)
=M, : C|zero/x]

and the second B-equation as follows:

I' - nat-elim, c(M;,y1.y2.Ms,succ V)
= forcecisuce v/ (nat-elimy yc(thunk M,,y;.y;. thunk My, succ V))

= forceg[succ V /x| ((thunk Ms)[v/yl]
[nat-elim, yc(thunk M;,y;.ys. thunk MS,V)/yz])

= forceg[succ V /x| (thunk (MY [V/YI]
[nat-elim, yc(thunk M,y;.y,. thunk My, V)/y]))

M|V /yi1][nat-elim, yc(thunk M, y;.y2. thunk M, V) /ys]

MV /]

[thunk (forcecyy (nat-elimy yc(thunk Mc,y;.ys. thunk My,V)))/y2]
= M,[V /yi][thunk (nat-elimy c(M;,y1.y2.Ms,V))/y2] : C[succ V /x]

As another example, the n-equation for pattern-matching is proved as follows:

I'FpmV as (x1:A1,x2:A2) iny, ¢ M[(x1,x2) /Y]
= forcecyyy (puV as (x1:A1,x2:42) iny ¢ (thunk M[(x1,x2)/y]))
= forcecyy/y (pmV as (x1:A1,x2:A2) iny ¢ (thunk M)[(x1,x2)/y])
= forcecyy /y ((thunk M)[V /y])
= forcecyy /) (thunk M[V /y))
=M[V/y| : C[V /)]

The other B- and n-equations listed above are proved similarly. [

Next, we show how to derive the elimination forms for homomorphism terms.

3.4. Derivable elimination forms 97
Definition 3.4.4. The homomorphism term variant of

e primitive recursion is defined as

def

nat-elimc(K,,y.K;,V) =
(nat-elimy . c—oc(Az:C.K;,y.x20.A2:C. Ki[x22/2),V)) z

given that FCV (K;) = FCV(K,) = z, and where x; and x; are chosen fresh;

e pattern-matching is defined as

def

pmV as (y1:A,y2:B) iny, cy,.p K=

(pmV as (y1:4,y2:B) iny cle/ys]—oplx/ys] (M2:CLO1,Y2) /73] K)) 2

given that FCV(K) = z, and where x is chosen fresh;
e empty case analysis is defined as

case V ofy, cy,.0 () “ (case V of . Clx/y1]—oDlx/y] ()) Z

where x is chosen fresh;

e binary case analysis is defined as

def

case V ofy, ¢y, p (inl(y3:A) — K,inr(ys:B) — L) =
(case \% Ofx.qx/yl}ﬂg[x/yz} (inl(y3:A) — Az:C[inlatp y3/y1].K,
inr(ys:B) > Az:Clinrayp y4/y1].L)) z

given that FCV(K) = FCV (L) = z, and where x is chosen fresh; and

e climination of propositional equality is defined as

def

eg-elimy (y1.y2.¥3.C,y4.y5.¥6.D,y7. K, V1,V2,V,,) =

(eq-elimy (x1.x2.x3.Clxy /y1][x2/y2] [x3/y3] —o Dlx1 /ya][x2/ys][x3/ye),
y1-A2:Cly7/v1[y7/v2][refl y1/y3]. K, Vi,Va, V) 22

given that FCV (K) = z, and where x|, x, and x3 are chosen fresh.

98 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

Proposition 3.4.5. The following typing rules are derivable for the homomorphism

term variant of:

e primitive recursion
'-C I'kV:Nat T'|z:CHK,:C T,y:Nat|z:CHK,:C
I'|z:CFnat-elimc(K;,y. K, V) : C

e pattern-matching
[y;:2y1:A.BEC T,ys:Xy1:A.BED
IEV:Eyi:A.B Tyi1:A,y2:B|z2:C[{y1,y2)/y3] = K : D[(y1,y2) /4]
[[z:C[V/ys] - pmV as (y1:4,y2:B) iny, cy,.p0 K : D[V /y4]

e empty case analysis
r-v:0 I'y;:0-C T,y,:0FD
C[2:ClV/n]F case V ofy, cynn () : DIV/y2)

e binary case analysis

T.y:A+BFC T.y2:A+BFD TFV:A+B
[,y3:A|z:Clinlayp y3/y1] - K : D[inla g y3/y2]
[,ya:B|z:Clinrayp ya/y1] b L: D[inrasp ya/ys]

['|z:C[V /yi1]F case V ofy, ¢y, p (inl(y3:A) — K,
inr(ys:B) — L) : D[V /y2]

e climination of propositional equality

I'FA oy1:Ay2:A,ysiyi =aya B C I'ys:Ays:A,ye:ya=ays =D
Ff—Vl .\ F|—V2 .\ Fkszvl :AV2
L, y7:A|z:Cly7/y1][y7/y2)[refl y7/y3] = K : Dly7/y4][y7/y5][refl y7/ys]

Clz:CVi/y1][Va/y2] [V /y3]
eq-elimy (y1.y2.y3.C,y4.¥5.¥6.D,y7. K, V1,V2,V},)
: DIV1 /ya][V2/ys][Vp/ ve]

Proof. 'We prove this proposition by constructing the corresponding typing derivations.

For example, the typing derivation for the homomorphism term variant of pattern-
matching is constructed as follows:
I'cv:2y1:A.B T y3:Xy;1:A.BFC
' C[V /ys]
(1) L|z:C[V/ys]Fz: C[V /y3]
[lz:C[V/ys] F
(pmV as (y1:A4,y2:B) iny cle/ys)—onixfys] (M2:Cl(V1,32)/y3].K)) 2: DIV /y4]
[|z:C[V/y3]FpmV as (y1:A,y2:B) iny, cy,.p K : D[V /y4]

3.4. Derivable elimination forms 99

where (1) is given by

I'EV:EZy:A.B (2) (3)

CpmV as (y1:A,y2:B) ing cl/ys|—oDfx/ys] (A2:C[(V1,32)/¥3]- K)
:C[V /y3] —o D[V /y4]

and (2) by

x is chosen fresh x is chosen fresh
[y3:Xy1:A.BEC x¢Vars(D)U{ys} T,ys:Xy;:A.BED x¢&Vars(I')U{ya}
[x:Xy :A.B,y3:Xy;:A.BEC (4) [,x:Xy :A.B,ys:Xy;:A.BED (4)
[,x:Xy;:A.BF Clx/y3] [,x:Xy;:A.BF D[x/y4]
[x:Xy1:A. Bt Clx/ys] — Dlx/ya]

and (3) by

[,y1:A,y2:B|z:C[(y1,y2)/y3] = K : D[{y1,y2)/Y4]
,y1:A,y2:BEAz:C[(y1,y2) /y3]- K : C[(y1,¥2) /y3] — D[(y1,¥2)/y4]

and (4) by
x is chosen fresh
T T'HXy:A.B x¢Vars()
FILx:Xy1:A.B
Ix:Xy1:A.BFx:Xy:A.B
Derivations of the other typing rules listed above are constructed similarly. [

Proposition 3.4.6. The following B- and n-equations are derivable for the homomor-

phism term variant of:

® primitive recursion

'EC T|z:CHK,:C T,y:Nat|z:CFHK;:C
I'|z:CF nat-elim¢(K;,y. Ky, zero) =K, : C

'C T'FV:Nat T'|z:CHK,:C T,y:Nat|z:CHK;:C

I'|z:CF nat-elimc(K;,y. Ky, succ V) = K[V /y][nat-elimc (K, y. K, V) /z] : C
e pattern-matching

F,y312y1:A.B|—g F,y4:):y1:A.BFQ Ff—VllA
IEV2iBVi/yi] Toyi:A,y2:B|z:Cl{y1,y2)/y3] F K : D[(y1,y2)/y4]

T|z:C[(Vi,V2) /y3] F pm (V1,Va) as (y1:A,y2:B) iny, cyp K
= K[Vi/y1][V2/y2] : D[(V1,V2) /y4]

100 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

[y;:2y1:A.BEC T,ys:Xy1:A.BED
IEV:Zyi:A.B T,ys:Xy;:A.B|z:Clys/y3] - K : D]ys/y4]

[|z:C[V/ys] - pmV as (y1:A,y2:B) iny, cy,.p K[(y1,Y2)/Y5]
= K[V /ys] : D[V /y4]

e empty case analysis

[yi:0FC Ty:0-D T'EV:0 I,y3:0|z:Clyz/y1]+ K : D[y3/ys]
[|z:ClV/yi]Fcase V ofy .cy.p () = K[V/ys] : D[V /y2]

e binary case analysis

I'yi:A+BFC T',y,:A+BFD TFV:A
[,y3:Alz:Clinlayp y3/y1] - K : D[inlayp y3/y2]
[,ya:B|z:Clinrayp ya/y1] b L: D[inrasp ya/ys]

I'|z:Clinla4p V/y1] I case (inly4p V) ofy, cy,.p (inl(y3:A) = K,
inr(y4:B) — L)

= K[V /y3]: D[inlasp V /y]

I'yi:A+BFHC T',y,:A+B+-D T'+V:B
[,y3:Alz:Clinlayp y3/y1] - K : Dlinlayp y3/y2]
F,y4ZB’Z:Q[inI‘A+B y4/y1] FL: Q[inrA+3 y4/y2]

I'|z:Clinra1p V /y1] I case (inra;g V) ofy, cy,.p (inl(y3:A) — K,
inr(y4:B) — L)

= L[V /ya] : D[inra,p V /y2]

'yi:A+BHC T,y::A+BFD
I'FV:A+B T,ys:A+B|z:Clys/yi| - K : Dlys/y]

[[z:C[V /y1] I case V ofy, cy,.p (inl(y3:A) — K[inlayp y3/ys],
inr(y4:B) — K[inrayp ya/ys))
= K[V /ya] : D[V /]

3.4. Derivable elimination forms 101

e climination of propositional equality

I'FA THFV:A
UoyiiA,yaiAyysiyr =aye 2C Tya:Ays:A,ye:ya =ays D
[,y7:A|z:Cly1/y1][y71/y2][refl y7/y3] = K : Dly7/ya][y7/ys][refl y7/ye]
Llz:C[V/]V /y2llrefl V/ys] F
eq-elimy (y1.y2.y3.C,v4.5.¥6.D,y7.K,V,V,ref1 V)
= K[V /y7]: D[V /4][V /ys|[xrefl V /ye]

Proof. We prove this proposition by using the corresponding B- and n-equations for
the value term variants of these elimination rules, together with the B-equation for
homomorphic lambda abstraction and homomorphic function application.

For example, the first B-equation for primitive recursion is proved as follows:

I'|z:C F nat-elim¢ (K, y. K;, zero)
= (nat-elimy, coc(Az:C.K;,y.x2.A2:C.K,[x22/2],zer0)) 2
=(Az:C.K;) z
=K,:C

and the second B-equation as follows:

I'|z:C Fnat-elim¢ (K, y. Ky, succ V, z3)
= (nat-elimy, c—c(Az:C.K;,y.x2.M2:C.K,[x22/2],succ V)) z

= ((Mz:C.Kslxaz/2))[V /]
[nat-elimy, ¢—c(Az:C. K, y.x2.A2:C. Ki[x22/2),V) /x2]) 2

= K[x22/7][V /y|[nat-elimy, ¢ oc(A2:C.K;,y.x2.Az2:C. K{[x22/2], V) /x2]
= K[V /y|[x2z/7][nat-elimy, coc(Az:C. Ky, y.x2.A2:C. K{[x22/2],V) [x2]
= K[V /y][nat-elimc(K;,y.Ks,V) /2] : C
As another example, the n-equation for pattern-matching is proved as follows:
[[z:C[V/y3] FpmV as (y1:A,y2:B) iny cy,.p (K[(y1,52)/¥5])
= (pmV as (y1:4,y2:B) iny ¢lv/ys) —oDl/y]
(Az:Cl{y1,32) /y3]- K[(y1,2)/¥5])) 2
= (Az:C[V /y3]. K[V /ys]) z
=K[V/ys]: D[V /ya]

The other B- and n-equations listed above are proved similarly. [

102 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

3.5 Derivable equations

We conclude this chapter by presenting some useful derivable equations.

We begin with equations that are familiar from other (monadic) effectful languages,
such as Moggi’s computational A-calculus [[74]]. Specifically, we show how to derive
the right unit and associativity equations for for sequential composition. Note that the

left unit equation is already included in the definition of eMLTT’s equational theory.

Proposition 3.5.1. The following right unit and associativity equations are derivable

for sequential composition:

I'-M:FA x¢Vars(D)
I'Mtox:Ainreturnx=M: FA

['|z:CHK:FA x¢&Vars(I)
I'z:CFKtox:Ainreturnx=K:FA

I'EM:FA T)x:AF-My:FB T,yv:BFM3:C T'HC x#y
I'-M; tox:Ain (My toy:Bin M3) = (M) tox:Ain M) toy:Bin M3:C

['z:CHFK:FA T,x:AFM:FB T,y:BEN:D THFD x#y
I'z:CHFKtox:Ain (Mtoy:Bin N)=(Ktox:AinM)toy:Bin N:D

Proof. All four equations are proved using the 3- and n-equations for sequential com-

position. In particular, the two right unit equations are proved as follows:

' =M tox:A in returnx ['|z:CFKtox:Ain returnx
=M tox:A in z[return x|/z =K to x:A in z[return x|/z
=z[M/7] =z[K/7]
=M:FA =K:FA

the associativity equation for computation terms is proved as follows:

I'-M; tox:Ain (M, toy:Bin M3)
=M tox:Ain ((returnxtox':A in M>[x'/x]) to y:B in M3)
=M tox:Ain ((ztox':A in My[x'/x]) to y:B in M3)[return x/z]
= (Mj tox':A in M[x'/x]) to y:B in M3
= (M;tox:Ain M) toy:BinM3:C

3.5. Derivable equations 103

and the associativity equation for homomorphism terms is proved as follows:

I'z:CFKtox:Ain (M toy:BinN)
=K tox:Ain ((returnxtox:A in M[x'/x]) to y:B in N)
=K tox:Ain ((ztox':A in M[x'/x]) to y:B in N)[return x/z]
= (Ktox:Ain M[x'/x]) toy:Bin N
=(Ktox:AinM)toy:BinN:D

]

Next, we observe that we can also derive analogous right unit and associativity

equations for computational pattern-matching.

Proposition 3.5.2. The following right unit and associativity equations are derivable
for computational pattern-matching:

I'EM:Xx:A.C
I'EMto (x:A,z:C) in (x,z) =M : Xx:A.C

['z1:CHK:Xx:A.D
['|z1:CHKto (x:A,z2:D) in (x,z2) =K : Zx:A.D

I'EM:Xx:A.C; T,x:A|z1:C;FK:Xy:B.C, T,y:B|zp:C,+FL:D TFD

' Mto (x:A,z1:Cy) in (K to (y:B,z22:C,) in L)
= (M to (x:A,z1:Cy) in K) to (y:B,z2:C,) in L: D

I'z;:CHK;:Ex:A.D; T ,x:A|z:D{FK,:Xy:B.D,
F,y:B’Z?,:Qzl_K}:Q:; Fl_Q:),

['|z1:CF Kjto (x:A,z3:Dy) in (K3 to (y:B,z3:D;) in K3)
= (K1 to (x:A,z22:D;) in K3) to (y:B,z3: D) in K3 : D3

Proof. These four equations are proved similarly to the equations given in Proposi-

tion[3.5.1} using the B- and n-equations for computational pattern-matching. O

Next, we can show that sequential composition commutes with other computational

term formers from the left.

Proposition 3.5.3. Sequential composition commutes with computational pairing,

computational pattern-matching, lambda abstraction, computational function appli-

104 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

cation, and homomorphic function application from the left:

I'M:FA THV:B T''xtAEN:C[V/y] T,y:B-C
I'Mtox:Ain (V,N)=(V,M tox:Ain N):Xy:B.C

I'z:CFK:FA THV:B T,xtA-M:D[V/y] T,y:BFED
I'z:CHKtox:Ain (V.M)=(V,K tox:AinM):Xy:B.D

I'M:FA T,x:AFN:Xy:B.C T,y:B-C T,y:B|z:C-FK:D TFD

' Mtox:Ain (N to (y:B,z:C) in K)
=(Mtox:Ain N) to (y:B,z:C) in K: D

I'z1:CHFK:FA T ,x:AF-M:Xy:B.D,
Iy:B-D, T,y:B|zp:CFL:D, T'FD,

['|z1:CF Ktox:Ain (M to (y:B,z2:D;) in L)
=(Ktox:Ain M) to (y:B,z2:Dy)in L: D,

I'M:FA T.,x:A,y:BEN:C T'+B TI,y:B-C
I'EMtox:Ain (Ay:B.N)=Ay:B.(M tox:A in N):Ily:B.C

I'z:CFK:FA T,x:A,y:BFM:D T+HB TI,y:BFD
I'z:CFKtox:Ain (Ay:B.M)=Ay:B.(Ktox:Ain M) :1ly:B.D

I'-M:FA T, x:AFN:Mly:B.C TFHV:B TI,yv:BFC
I'EMtox:Ain NV =(Mtox:Ain N)V :C[V/x]

I'z:CFK:FA T,x:tAF-M:Nlly:B.D T'-V:B TI,y:BFD
I'z:CFKtox:Ain MV = (K tox:Ain M)V : D[V /x]

I'M:FA TFHV:C—oD TI'x:AFN:C
I'FMtox:AinVN=V (M tox:Ain N):D

['|z:C-FK:FA THV:D,—D, T ,x:A-M:D,
['z:CHFKtox:AinVM =V (Ktox:AinM):D,

Proof. All these equations are proved using the B- and n-equations for sequential com-

position, following a similar pattern to the proofs of Propositions[3.5.1/and 3.5.2]

3.5. Derivable equations 105

For example, commutativity with homomorphic function application is proved as

follows:

I'z:CHFKtox:Ain VM
=K tox:AinV (returnxtoy:A in M[y/x])
=Ktox:AinV (ztoy:A in M|y/x])[return x/7]
=K tox:Ain (V(ztoy:A in M[y/x]))[return x/z]
=V (K toy:A in Mly/x])
=V(Ktox:AinM):D,

]

Analogously to sequential composition, computational pattern-matching also com-

mutes with other computational term-formers from the left, as shown next.

Proposition 3.5.4. Computational pattern-matching commutes with sequential com-
position, computational pairing, computational lambda abstraction, computational

function application, and homomorphic function application from the left:

I'EM:Xx:A.C T',x:A|z:CFK:FB T,y:B-N:D T'FD
I'Mto (x:A,z:C) in (Ktoy:Bin N) = (M to (x:A,z:C)inK)toy:Bin N: D

['|z1:CHK:Xx:A.D;, T,x:A|zp:D;-L:FB T,y:B-M:D, TFD,

['|z1:CF Kto (x:A,z2:D;) in (Ltoy:Bin M)
= (K to (x:A,z2:D)in L) toy:Bin M : D,

I'M:EXx:A.C THV:B T,x:A|z:C+K:D[V/y] T,y:BFD
I'=M to (x:A,z:C) in (V,K) = (V,M to (x:A,z:C) in K) : Xy:B.D

[|z1:CHK:Zx:A.D;, THV:B T,x:A|z:D;-L:D,[V/y] T,y:BFD,
['|z1:CHK to (x:A,z2:Dy) in (V,L) = (V,K to (x:A,z2:D;) in L) : Xy:B.D,

I'EM:Xx:A.C T',x:A)y:B|z:CFK:D T.,y:BFD
I'Mto (x:A,z:C) in (Ay:B.K) =Ay:B.(M to (x:A,z:C) in K) : I1y:B.D

['z1:CHK:Xx:A.D; T,x:A,y:B|z:D;+-L:D, T,y:BFD,

['|z1:CF K to (x:A,z2:D¢) in (Ay:B.L)
=Ay:B.(Kto (x:A,z2:D;) in L) : I1y:B.D,

106 Chapter 3. eMLTT: Martin-L6f’s type theory with fibred computational effects

I'EM:Xx:A.C T,x:A|z:CHK:Mly:B.D T+HV:B TI,y:B-D
I'EMto (x:A,z:C)in KV = (M to (x:A,z:C) in K) V : D[V /y]

['z1:CHK:Xx:A.D; T,x:A|z:D;+L:1ly:B.D, THV:B T,y:B-D,
['z1:CFKto(x:A,z2:D;)in LV = (K to (x:A,z2:D;) in L) V : D,[V /y]

I'EM:Xx:A.C TFHV:D —D, TI''x:A|z:CFK:D,
I'Mto (x:A,z:C) in VK =V (M to (x:A,z:C) in K) : D,

I'z;:CHK:Xx:A.D; THV:D,—oD; I'x:A|zp:D,-L:D,
['z1:CFKto (x:A,z2:Dy) in VL=V (K to (x:A,z2:D;) in L) : Dy

Proof. All these equations are proved by using the - and n-equations for computa-
tional pattern-matching, following a similar pattern to the proof of Proposition

For example, commutativity with sequential composition is proved as follows:
I'Mto (x:A,z:

C)
=M to (x:A,z:C) in (((x,z) to (x":A,7:C[¥'/x]) in K[x'/x][Z'/2]) to y:B in N)
=M to (x:A,z:C)

in (K toy:B in N)

in (
(2" to (x:A,7:C[¥' /x]) in K[x'/x][Z/2])[(x,2) /"] to y:B in N)
=M to (x:A,z:C) in (
(" to («':A,Z:C[¥' /x]) in K[x'/x][</2]) to y:B in N)[(x,z) /"]
(M to (x':A,7:C[¥' /x]) in K[x'/x]['/z]) toy:Bin N
= (M to (x:A,z:C) in K) toy:Bin N:D

As another example, commutativity with homomorphic function application is

proved as follows:

I'-Mto (x:A,2:C) in VK
=M to (x:A,z:C) in V ({x,2) to (y:A,Z:C[Z/2]) in K[y/x][Z/2])
=M to (x:A,z:C) in (V (" to (y:A,7:C[Z/2]) in K[y/x][Z'/2])) [{x,2) /2]
=V (M to (y:A,7:C[Z /7)) in K[y/x][Z' /2])
=V (Mto (x:A,2:C) in K) : D,

Chapter 4
Fibred adjunction models

In this chapter we discuss the category-theoretic structures we use in Chapter[5]to give
eMLTT a denotational semantics. Specifically, we work in the setting of fibred cate-
gory theory because it provides a natural framework for developing the semantics of
dependently typed languages, where i) functors model type-dependency, ii) split fibra-
tions model substitution, and iii) split closed comprehension categories model X- and
IT-types. See Section [2.2] for a brief overview of fibred category theory. It is impor-
tant to note that the ideas we develop in this chapter can also be expressed in terms
of other equivalent category-theoretic models of dependent types, such as contextual

categories [[107], categories with families [45]], or categories with attributes [85].

Specifically, in Section 4.1} we study the category-theoretic structures needed to
model value and computation X- and II-types, the empty type, the coproduct type,
the type of natural numbers, intensional propositional equality, and the homomorphic
function type. It is worth highlighting that in the case of the empty type, the coproduct
type, and type of natural numbers, we identify category-theoretically more natural

axiomatisations than commonly used in the semantics of dependently typed languages.

In Section 4.2}, we combine these category-theoretic structures into a class of mod-
els suitable for giving a denotational semantics to eMLTT, called fibred adjunction
models. These models are a natural fibrational generalisation of adjunction-based
models of simply typed computational languages such as CBPV and EEC. Finally,
in Section[4.3] we discuss some examples of these models, arising from i) identity ad-
junctions, ii) simple fibrations and models of EEC, iii) families fibrations and lifting of
adjunctions, iv) the Eilenberg-Moore fibrations of split fibred monads, and v) the fibra-
tion of continuous families of ®w-complete partial orders and lifting of CPO-enriched

Eilenberg-Moore adjunctions (so as to extend eMLTT with general recursion).

107

108 Chapter 4. Fibred adjunction models

4.1 Category theory for modelling eMLTT

In this section we discuss the category-theoretic structures that we use in Chapter [5|to
give eMLTT a sound and complete denotational semantics. Similarly to the overview
of fibred category theory we gave in Section we only discuss split versions of
these structures. The non-split versions can be recovered by relaxing the preservation

conditions for reindexing so that they hold up-to-isomorphism rather than equality.

4.1.1 II- and X-types

We begin by discussing the structures we use to model the value I1- and X-types. As
standard in categorical semantics of dependent types, we use well-behaved right and

left adjoints to weakening functors to model these types, e.g., see [S1, Section 10.5].

Definition 4.1.1. A split comprehension category with unit p : 7/ — B is said to have
split dependent products if every weakening functor T} : ’Vp(A) — ’V{ A} has a right
adjoint Iy : Vjqy — V), (4) such that the split Beck-Chevalley condition holds: for

any Cartesian morphism f : A — B in ¥, the canonical natural transformation

n*—(HAO *oll _
(p(f))*olly LU e o (p(f)) oTTp == a0 (p(f) oma)* oIl

l:

Myo{f} ompollp <— Ilyo(ngo{f})*ollp

Myo{f}*

HAO{f}* OSRE_{HB
is required to be an identity. In particular, we must have (p(f))* oIl =TI4 o { f}*.

Definition 4.1.2. A split comprehension category with unit p : 7/ — B is said to have
weak split dependent sums if every weakening functor 7 : V),4) — V4 has a left
adjoint X4 : ’V{ A} — ‘Vp() such that the split Beck-Chevalley condition holds: for any

Cartesian morphism f : A — B in ‘V/, the canonical natural transformation

* Zaoif *OnZB_”% * * = *
Spo{ff — Spo{f} omyoTp —= Tao(mpo{f}) oTs

l:

Ypomyo(p(f)) oXp <= Zao(p(f)oma) oXp

(p(f))*oZp

€47 o (p(f)) 02z
is required to be an identity. In particular, we must have X4 o {f}* = (p(f))* o L.

Observe that these Beck-Chevalley conditions seem to guarantee that only the IT4-
and X4-functors are preserved by reindexing. However, as we show below, they in fact

ensure that the units and counits of the corresponding adjunctions are also preserved.

4.1. Category theory for modelling eMLTT 109

Proposition 4.1.3. Given a split comprehension category with unit p : V — B with
split dependent products, and a Cartesian morphism f : A — B in 'V, then we have

(p(f) om™ W =n@ o (p(f))* {f}roe™ =gt Mo f1*

Proof. These two equations follow from the commutativity of the next two diagrams.

[Myomyo(p(f))”

Ty o} o (p(f))* on™
nat. of 1% T (p(N) ={f}o
(p(f)ron™ M8 | TIy oy o (p(f))* ollpomy > Mo {f} ongollgomy

split Beck-Chevalley M40 {f}*omyon™ s
%o (p(f)) o Tlpomy
HAO{f}*OSTC;}%HBoﬂ:E T = I1p
(p(f)) eTlgony ——=—— Mo {f} om
iy (f)* o

[po{f} omy

{f}* OSTEE—(I'IB

{f}*onpollp {ry

ERX%HA O{f}*OTCEOHB

nat. of g™ T

T, ollsom;o(p(f)) ong = Mollso{f} onjollp |e%Mois)r

8“24H"OTEZO(p(f))* TCZOHRZ%HAO(p(f))*OHB

7, ol o {f}* ol

nj; = HA -
split Beck-Chevalley /

(p(f))" ollp ——=—— myollyo{f}*

idnj;o (p(f))*ollp

myo(p(f)*ollp

110 Chapter 4. Fibred adjunction models

In both diagrams, we write 1} o (p(f))* = {f}* o my for the composite equation

mio (p(f))" = (p(f)oma)” = (mao{f})" = {f} omp

where the middle equation holds because ({f},p(f)) : T4 — Tp is a morphism in
B~ given by P(f)—see Proposition 2.2.30|for the definitionof ?: ¥V — B~. [

Proposition 4.1.4. Given a split comprehension category with unit p : ‘V — B with

weak split dependent sums, and a Cartesian morphism f : A — B in V, then we have

{fYron™ ™ =n= "o} (p(f)) oe™ ™ =" Mo (p(f))"

Proof. By straightforward diagram chasing, analogously to Proposition #.1.3] O

Analogously to [S1, Section 10.5], we also require these split dependent sums to
be strong, as made precise in Definition |4.1.5] so as to be able to model the type-

dependency appearing in the typing rule of the elimination form for the value X-type.

Definition 4.1.5. A split comprehension category with unit p : %/ — B is said to have
strong split dependent sums if it has weak split dependent sums, as defined above, and

if for every two objects A in ¥ and B in ’V{ A}» the canonical composite morphism

Ty

ur } {TA(Za(B

s 2 (B} D (xa(B))

{m3(Za(B))}
is an isomorphism.

Following [51} Section 10.5], we next combine split dependent products and strong
split dependent sums into a structure that forms the basis of our semantics of eMLTT’s
value fragment. In particular, this structure allows us to model the core features of
eMLTT such as the empty value context, the extension of value contexts, and the value

Y- and I1-types, including the corresponding introduction and elimination forms.

Definition 4.1.6. A split closed comprehension category (SCCompC) is a full split
comprehension category with unit that has both split dependent products and strong

split dependent sums, and a terminal object 1 in its base category.

Similarly to how we defined the product type A x B and the function type A — B
as non-dependent versions of £x:A.B and ITx:A.B in Chapter 3] the split dependent
products and strong split dependent sums make each fibre of a given SCCompC into a

Cartesian closed category (CCC), as illustrated in the next proposition.

4.1. Category theory for modelling eMLTT 111

Proposition 4.1.7. Given a SCCompC p : V — B, then every fibre Vx is a CCC with

def

AxxBZZ,(ni(B)) A=xBZT(n;(B))
and this structure is preserved on-the-nose by reindexing, i.e., p is a split fibred CCC.

We omit the details of the proof of this proposition and refer the reader to the proof
of the non-split version of this proposition given in [S1, Proposition 10.5.4].

However, as the fibre-wise Cartesian products A X y B play an important role in the
interpretation of sequential composition in Section we spell out the definitions of
the corresponding vertical projection and pairing morphisms.

We obtain the first projection fst : A xy B — A by using the fully-faithfulness of

?: V¥V — B~ on the following morphism between Ty, (;(8)) and T4 in B~

—1
Ka (B) Tk (B)
R A

{Za(ma(B))} {my(B)}

{A}

):A—m;)

Kaz: (8) 1S an iso. ?(nn;(g)

IpAmy
{ TEZ(B) }

T (24 (w5 (B))
def. of KAJ'::; (B) A 4

{my (Za(my (B)))}

T p (% (B)) {Ta(Za(my(B)))} A

P(Ta(Za(m3(B))))

{Za(ma(B))}

id. law s p (0 (B))

X 0 X

We obtain the second projection snd : A Xy B— B by defining

def Xp 1T
snd =g 4

Finally, given two vertical morphisms f : C — A and g: C — B in Tk, we

obtain the unique mediating (pairing) morphism (f,g) : C — A Xx B using the fully-

faithfulness of 2 on the following morphism between T¢c and 7y, (. (B)) in B7:

112

Kam (B)

{c} —— (m(B)}

def. of KA,ﬂ:/’; (B)

def. of h {Ta(Za(my (B)))}

idns (8))

{m) (ep
def. of } (e ™)
h B {B} ey ™)
T (B)
P(Ta(B))
g
{A}
A
T id. law
X " X

where £ is the unique mediating morphism in the following pullback situation:

{g}

A (B
(cy -t - qmym)y = gy
_
T (B) P(Ta(B)) T
{r}
Ay ———X

and where 4 o {f} = ¢ = mwp o {g} follow from P(f) and P(g), respectively.

Chapter 4. Fibred adjunction models

{Za(ms(B))}

Next, we prove two useful results (Proposition [4.1.8] and Corollary that we
later use to relate different ways of modelling non-dependent substitution. At a high
level, Proposition says that given value terms 'V : A and I',x:A+ W : B,

where the value type B does not depend on x, i.e., I' = B, we can model the substitution

I' = WIV /x| : B either by applying a reindexing functor, or by composing morphisms.

Proposition 4.1.8. Given a full split comprehension category with unit p : V — B

with strong split dependent sums, an object X in ‘B, objects A and B in Vx, a morphism

4.1. Category theory for modelling eMLTT 113

[1x — Ain V, and a morphism g : 114y — T3 (B) in Vi4y, then

(s()"(2)

Ix ——— (s(f)*(1ay) ———= (s(f))*(m4(B)) = B
fl F;Am;;
(ida,ta) La(my(lx)) ——=— Za(lyay) e Za(my(B))

commutes in Vx.

Proof. This diagram commutes because we have

*

(s(f)(e) -

Ix (s())*(gay) ———= (s(/)*(m4(B)) B
1iss. fib. pisas. fib.
s(N)(1gap) s(f)(m3(B))
def. of (s(/))"(2) *
f (a) 1{A} 2 njg (B) 8§A Ay
ep =) using the fully-faithfulness of P on (b)

A i La(my(1x)) ———=— Za(l{ay) e Za(my(B))

where (a) commutes because we have

1(s(f))

def. of s(f)

Ix Loty) Liay

Further, we note that (b) refers to a diagram in B~ between 7y, : {141} — {A} and

7 : {B} — X that commutes because i) we have the following sequence of equations:

p(i(B)) o plg) = p(a(B)) oidguy = s = pley)

idx o p(ey) = pleg' ™) o p(Zalg)) o p((ida, ta)) o pley)

114

Chapter 4. Fibred adjunction models

for the morphisms between the codomains of 7 () and 7tp; and i1) we can show for the

morphisms between the domains of 7y) and mp that the following diagram commutes:

{g}

{1gay}

ey Ty

(idata) | defof (idata) {7} (1x)}

idn;8)) © {8} = {g} o id(1,

(my(B)} —

):A _|TCX

Kam (1x)
(Za(m (1x)) } ek ofum | f;‘azf‘} {n i*‘af“}
nat. of n* 1™
{ma (Za(my (1x)))}
{my (Za(m}(1x)))}
(ep
= 1 is split fibred =
{my (Za(lgay))} RETATITS {ma(Za(my(B)))}
{Ta(Za(134y))} def. of 5 (Za(g)) %A (Za(ma(B)))}

{Za(lay)}

def. of T} (e*7™)

{Za(e)}

{B}

):—H'EA}

{e

{Za(my (B))}

4.1. Category theory for modelling eMLTT 115

In the previous diagram, 4 is defined as the unique mediating morphism into the pull-
back square given by P(Tt4(1x)), for {!a} : {A} — {1x} and id(4y : {A} — {A}.
14{-}

Finally, we show that (¢) commutes by observing that 1 (A} satisfies the same

universal property as A, as shown in the following diagram:

{1x}

T

I

is an iso.

ny)

nat. of n' 71}

{1a}

1 is split fibred

A (1
)} —— 2 {1y}

_

{A} i)

n‘l{:}{f}is an iso.

P(ma(1x)) A

A

]

Corollary follows from Proposition by setting B 2 UC. Intuitively, it
says that given a value term I' -V : A and a computation term I',x:A = M : C, where the

computation type C does not depend on x, we can model the substitution ' M[V /x| : C

either by applying a reindexing functor, or by composing vertical morphisms.

Corollary 4.1.9. Given a full split comprehension category with unit p : V — B
with strong split dependent sums, a split fibration q : C — ‘B, a split fibred functor
U :q — p, an object X in ‘B, an object A in Vk, an object C in Cx, a morphism

116 Chapter 4. Fibred adjunction models

fi1x — Ain Vx, and a morphism g : 114y — U (%} (C)) in Vi), then

(s(f)* ()

Ix ———— (s(f)"(lgay) ——= ()" (U(4(C)) — (s(N)" (M (U(©)))

f -

A U(C)
(ida,la) A

La(my (1x)) —=— Za(lyay) Za(U(m3(C)))

Ta(g)

commutes in Vx.

Next, we define the structures we use to model the computational II- and X-types.
Similarly to their value counterparts, we also model these types using well-behaved
right and left adjoints to weakening functors, but in a different fibration. These defini-

tions are based on P-products and -coproducts discussed in [S1), Definition 9.3.5].

Definition 4.1.10. Given a split comprehension category with unit p : 7V — B, a split
fibration g : C — B is said to have split dependent p-products if every weakening
functor Ty : C,a) — Ca) has a right adjoint Is : Cray — Cp(a) such that the split
Beck-Chevalley condition holds: for any Cartesian morphism f : A — B in V, the

canonical natural transformation

0" Mo (p(f))* 0Ty

(p(f)) oIl IMyom;o(p(f)) ollp = Mo (p(f)oma)*ollp
l:
Myo{f}* HAo{f}*ongoHB ~— Ilyo(mgo{f})*ollp

Myo{f}* OEEE*HB
is required to be an identity. In particular, we must have (p(f))* oIlp =II4 0 {f}".

Observe that while the projection morphism 74 : {A} — p(A) in B is still induced
by the split comprehension category with unit p, as in Definition 4.1.1] the weakening

functor 7y : Cp(4) — Cja} is now induced by reindexing along 7, in g.

Definition 4.1.11. Given a split comprehension category with unit p: %/ — B, a
split fibration g : C — B is said to have split dependent p-sums if every weakening
functor y : C,a) — Cya) has a left adjoint £4 : Cjqy — Cpy(a) such that the split
Beck-Chevalley condition holds: for any Cartesian morphism f : A — B in v/, the

4.1. Category theory for modelling eMLTT 117

canonical natural transformation

Yao{f}* Zaolffon ¥ Ypo{f}ompoXy —= Ego(mpo{f}) oXp
(p(f))*oZg Lyomyo(p(f)) oXp < Zao(p(f)oma) oLy

€4 o (p(f)) o Lp
is required to be an identity. In particular, we must have X4 o {f}* = (p(f))* o Lp.

Observe that compared to the split dependent sums of p (see Definition d.1.5)), we
do not attempt to define a notion of strength for the split dependent p-sums of g. We do
so because the typing rule of the elimination form for the computational X-type does
not involve type-dependency, compared to the elimination form for the value X-type.

Analogously to Propositions 4.1.3|and[d.1.4], these split Beck-Chevalley conditions

again ensure that the units and counits of these adjunctions are preserved by reindexing.

Proposition 4.1.12. Given a split comprehension category with unit p . ‘V — B, a
split fibration q : C — B with split dependent p-products, and a Cartesian morphism
f:A— Bin YV, then we have

(p() o™ Mo =qm Mo (p(f))" {f} oe™ =B o}
Proposition 4.1.13. Given a split comprehension category with unit p : V — B, a

split fibration q : C — ‘B with split dependent p-sums, and a Cartesian morphism
f:A— Bin Y, then we have

{f}* On):B#nE — nZA%njf‘ o {f}* (p(f))* OEZB#TCE — 82;41‘52 o (P(f))*

Proof. Propositions . 1.12]and [d.1.13|are proved by straightforward diagram chasing,

analogously to the proof of Proposition4.1.3] O

We conclude this section by showing that if the split comprehension category with
unit p : ¢/ — B and the split fibration ¢ : C — ‘B are connected by a split fibred
adjunction F 4 U : ¢ — p, then U preserves split dependent products and F preserves

split dependent sums.

Proposition 4.1.14. Given a split comprehension category with unit p : V — B
with split dependent products (resp. weak split dependent sums), a split fibration
q : C —> B with split dependent p-products (resp. split dependent p-sums), and a
split fibred adjunction F U : ¢ — p, then we have the natural isomorphism

Uolly E1I40U : C{A} e r,/p(A) (resp. FoXy=XYyo0F: rV{A} — Cp(A))

for all objects A in V.

118 Chapter 4. Fibred adjunction models

Proof. Both natural isomorphisms follow straightforwardly from the fact that adjoints
are unique up-to a unique natural isomorphism.
Specifically, in order to prove that the left-hand natural isomorphism involving U

and Iy exists, we first observe that we have the following two composite adjunctions:

F Ty
/\ /\
Vp(a) 1 Cpa) L Ciay
\/ \/
U I
T F
/—\ /\
Vo) L Viay L Ciay
\/ \/
I, U

We also recall that F is a split fibred functor, meaning that 7y o F = F o }.

By combining these two observations, we get that both U oI14 and II4 oU are right
adjoints to 7y o F (or, equivalently, to F' o7}). Therefore, as right adjoints are unique
up-to a unique natural isomorphism, we get that U oI14 = I14 oU. In detail, this natural

isomorphism is given by the following two vertical natural transformations:

K k.
N M oyor, [yoUoe™ A

Uolly [yomioUolly — IyoUom,olly [MyoU
and
FAU O, 0U Uon™ M o Foll, oU
[IyoU i A UoFollpoU i A Uollpom,oFollyoU
Uolly UollpjoFoU - UollpoFom,olljoU
Uollyoe" Y UoTlyoF o™ Moy

We denote this natural isomorphism by CH,A U olly i I140U.
The other natural isomorphism is constructed similarly, by combining the adjunc-

tions ¥4 7 with the fact that U is a split fibred functor. In detail, it is given by

oXonf U oY, ol om™ %n*o
FoXy Foraom FoXjoUoF FoZaoUon® "4oF FoXYyoUom,oXyoF
YpoF FoUoXyoF FoXYyomyoUoXyoF

"
eF U oy, oF Foe"A ™ol oX, oF

4.1. Category theory for modelling eMLTT 119

and

¥ F ZA#RZ _ ng*”: FoX
YioF A0ron YpoFomyoXy —— Xyom oFoX, 2o FoX,
We denote this natural isomorphism by {5 4 : FoXy — X40F. O

We now show that the corresponding units and counits are also preserved by U and F'.

Proposition 4.1.15. Given a split comprehension category with unit p : ‘V — B with
split dependent products, a split fibration q : C — ‘B with split dependent p-products,
and a split fibred adjunction F 4 U : ¢ — p, then the next two diagrams commute.

ot I * 411
nA Aol el aoy
U [MyomyoU miollpjoU —————= U
Uon™ = oGl Uog™ M
Uollyomy — [lyoUom), myoUolly Uomyolly
IT,A O Ty

Proof. We show the commutativity of these two diagrams by straightforward diagram

chasing. For example, the left-hand square commutes because we have

nj\ﬂIAOU
U i [MyomyoU

TE:Z %HA

I_IAonjf‘oUon

nat. of T]n:%HA U is s. fib.

«
HAoUonjgon"jimA T, 11y

7'5*4HA
A MyomyoUollyom, — [MyoUom, ollyomy =

Uon

11 s 11
MA “AoUolljomy IyoUog™ "Aomy

def. Ofgl_LA
U OHA 071',:2

[IyoUoTm}
naomy A A

The commutativity of the second square is proved analogously. U
Proposition 4.1.16. Given a split comprehension category with unit p : V — B with

weak split dependent sums, a split fibration q : C — ‘B with split dependent p-sums,
and a split fibred adjunction F 4 U : ¢ — p, then the next two diagrams commute.

Ty iy T ik
nA"AoF e A TAoF
F ———— W oY oF YpomyoF ————— F
FOnEA%nz wiolsa _ Fog Ly
FomoXy — TioF oXy YpoFomy — FoXyom,

N
yACTy

120 Chapter 4. Fibred adjunction models

Proof. This proposition is proved analogously to Proposition |4.1.15| also by straight-

forward diagram chasing, and by unfolding the definitions of (s 4 and (. }4. [

4.1.2 Empty type and coproduct type

As their syntax suggests, the empty type 0 and the coproduct type A + B are respectively
most naturally modelled in terms of split fibred initial objects and split fibred binary
coproducts in some split fibration p : 1/ — B. However, it is important to observe that
assuming such split fibred structure by itself does not suffice to model the dependently
typed elimination forms for these types, i.e., the empty and binary case analysis.

For the coproduct type, an appropriate fibrational structure has been characterised
by Jacobs in [S1, Exercise 10.5.6]. Specifically, Jacobs requires a certain mediating
functor, induced by the injections of the split fibred coproducts, to be fully-faithful.

In this section we observe that the structure Jacobs suggested for modelling the de-
pendently typed elimination form for the coproduct type is in fact an instance of a more
general phenomenon. Namely, we show that Jacobs’s ideas apply to arbitrary split fi-
bred colimits, including split fibred initial objects, enabling us to also model the empty
type and the empty case analysis. In addition, we demonstrate that in fact one does not
need to separately assume the existence of split fibred colimits of a given shape before
imposing the fully-faithfulness condition—every split fibred cocone of a given shape
for which the fully-faithfulness condition on the induced mediating functor holds turns
out to be a split fibred colimit of that shape. We refer the reader to Section [2.1.2] for
the definitions of shapes, diagrams, cones, cocones, limits, and colimits.

We begin by defining a notion of strong colimits, based on the fully-faithfulness

condition that Jacobs proposed for fibred coproducts in [S1, Exercise 10.5.6].

Definition 4.1.17. Let us assume a small category D and a full split comprehension
category with unit p : %/ — B. Then, given an object X in B, we say that the fi-
bre Vx has strong colimits of shape D if for every diagram J : D — T, there ex-
ists a cocone in’ : J — A(colim(J)) over J such that the unique mediating functor
{inp} nep) : Vicolim(s)} — lim(J), induced by the universal property of the limit
pr/ : A(lim(J)) — J, is fully-faithful. Here, the diagram J : D° — Cat is given by

ID)E Vypy T =)}

More specifically, the functor ({in},}_,,) arises as the unique mediating morphism

in Cat for lim(J) because the reindexing functors {in},}* form a cone over J. In partic-

4.1. Category theory for modelling eMLTT 121

ular, for all morphisms g : D; — D in D, the outer triangle commutes in

Vi colim(J)}

lim(J)
Y

because we have the following sequence of equations:

{inp,}* = {inp, 0 J(g)}" = {J(g)}" o {inp }"

where the left-hand equation holds because colim(J) is the vertex of the cocone in’.

Definition 4.1.18. A full split comprehension category with unit p : 7V — B has split
fibred strong colimits of shape D if every fibre of p has strong colimits of shape D
and this structure is preserved on-the-nose by reindexing, i.e., given any morphism

f:X —Y in B and any diagram J : D — 1%, then we must have
f*(colim(J)) = colim(f* o J) f*(in}) :i_ngOJ : f(J(D)) — colim(f* o J)

It is instructive to see what the above characterisation means for modelling the
empty type and the coproduct type in a full split comprehension category with unit p.

To model the empty type, we require p to have split fibred strong colimits of shape
0, i.e., we require p to have split fibred strong initial objects. Writing Ox for the split
fibred strong initial object in the fibre 7V, its strength ensures that in the fibre ‘V{OX}
there is exactly one morphism between any two objects. In particular, when later
defining the interpretation of eMLTT, we make use of the fact that there is a unique
vertical morphism from 1,1 to any other object A in ‘V{OX}, written 74 : 11,1 — A.

To model the coproduct type, we require p to have split fibred strong colimits of
shape 2, i.e., we require p to have split fibred strong coproducts. Writing A +x A, for
the split fibred strong binary coproduct of A and A in V%, its strength ensures that ver-
tical morphisms of the form By — By in ‘V{Al 4xA,} are in one-to-one
correspondence with pairs of vertical morphisms {inl}*(B;) — {inl}*(B2) and

{inr}*(B1) — {inr}*(B2) in V4, and Vu,), respectively, where we write

122 Chapter 4. Fibred adjunction models

inl for i |n0 Ay —> A| +x Ay and inr for iny : Ap — A +x Ap, with J(0) = A; and
J(1) = A,. This one-to-one correspondence gives us a dependent case analysis prin-
ciple for A| +x A,, arising as a special case of a corresponding dependent elimination

principle for arbitrary split fibred strong colimits whose existence we show next.

Proposition 4.1.19. Let us assume a full split comprehension category with unit
p: V — B that has split fibred strong colimits of shape D, a diagram of the form
J: D — YV, and an object A in IV{M(J)}' Then, given a family of vertical mor-
phisms fp : 1 pyy — {inh,}*(A), for all objects D in ‘D, such that for all morphisms
g:Di — Djin Dwe have {J(8) }*(fp;) = fb,, there exists a unique vertical morphism

[fplpen : Vcolim(z)y — A in Vicolim(y)} Satisfying the following “B-equations”:

{inp,}*(fplpen) = foi : Ly — {inh,}*(4)
for all objects D; in D.

Proof. We postpone the lengthy details of this proof to Appendix where much of
the space is taken up by straightforward but laborious diagram chasing. At a high level,
the proof is based on using the universal property of the limit prf : A(Iim(f)) — Jand
the fully-faithfulness of the induced functor ({in},}5_,) : Vicolim()} — lim(J). O

In particular, when we define the interpretation of eMLTT’s coproduct type in
Chapter |5, we write [f,g] : 14,444, — B for the corresponding unique copairing
of any two vertical morphisms f : 1y4y — {inl}*(B) and g : 114,1 — {inr}*(B).

Finally, notice that we have suggestively written the cocone in Definitions
and asin’ :J — A(colim(J)). As the notation suggests, and as promised earlier,
it turns out that the fully-faithfulness condition ensures that in’ forms a colimit of J in
7% in the standard sense. In particular, the next proposition generalises an analogous

result for strong fibred coproducts in codg, as given in [S1, Exercise 10.5.6 (ii)].

Proposition 4.1.20. Let us assume a full split comprehension category with unit
p V' — B that has split fibred strong colimits of shape D. Then, given a diagram
of the form J : D — V, the cocone in’ : J — A(colim(J)), induced by the existence
of split fibred strong colimits of shape D, is a colimit of J in Vx in the standard sense,

i.e., the cocone in’ : J — A(colim(J)) is initial amongst the cocones over J in V.

Proof. We prove this proposition by appropriately instantiating Proposition 4.1.19
In particular, given another cocone o : J — A(A) in V%, we choose the object in
‘V{Cohm to be 7 . colim(J) (A) and derive each fp from the corresponding component

op of the given cocone o.. We postpone the details of this proof to Appendix[B.2] [

4.1. Category theory for modelling eMLTT 123

Further, observe that according to Definition 4.1.18}, if the given full split compre-
hension category with unit has split fibred strong colimits, the colimiting cocones in
the fibres are preserved on-the-nose by reindexing. To add to this, we show below that

the unique mediating morphisms are also preserved on-the-nose by reindexing.

Proposition 4.1.21. Given a full split comprehension category with unit p : ‘V — B
that has split fibred strong colimits of shape D, a diagram J : D — Vy, a cocone
o:J—AA)in Vy, and a morphism f : X — Y in ‘B, then we have

fH([od) = [f* (e)]

where f*(a.) is a cocone with (f*(0))p Z f*(otp). Analogously, the unique morphisms

arising from Proposition are also preserved on-the-nose by reindexing, i.e.,

{f(colim(1))}*([fplpen) = {f(/(D)}" (fb)lpen

Proof. As [0 is a morphism of cocones from in’ to o, we know that

for all D in D. Next, using the functoriality of the reindexing functor f*, we get that
£ ([od) o f*(in) = f* (o)
Now, as we have assumed split fibred strong colimits of shape D, we have that
f*(inp) = inf, "’
from which we get that
. f*oJ
F(lod)oing * = f* (o)
meaning that f*([o]) is a morphism of cocones from in/ °” to f*(ot). But as we know
that in” °/ is the colimit of f*oJ, there is exactly one such morphism of cocones,
namely, [f*(a)]. Therefore, we have successfully shown that f*([at]) = [f*(at)].
The proof that the unique morphisms [fp]pcp arising from Proposition are
also preserved on-the-nose by reindexing proceeds similarly: we show that the mor-

phism {f(colim(J))}*([fp]pen) satisfies the same universal property as the unique
morphism [{f(J(D))}*(fp)|pen, i-e., we show for all D in D that we have

{inf, '} ({F(colim() Y ([folpen)) = {F (D)} (fp)

which follows by straightforward diagram chasing, based on p being a split fibration,
and using the equations given in Definition [4.1.18|and the definition of f*(in})). [

124 Chapter 4. Fibred adjunction models

4.1.3 Natural numbers

We recall that in the paper [9] on which this thesis is based on, the semantics of the
type of natural numbers was given somewhat synthetically, by reading the semantic
axiomatisation directly off the corresponding typing rules. Similar syntax-based ax-

iomatisations appear for natural numbers also elsewhere in the literature, e.g., in [18]].

It is worth noting that while such syntax-based axiomatisation provides the struc-
ture one needs to interpret the type of natural numbers and the corresponding depen-
dently typed elimination form, it is not immediate how it relates to the existing work
on fibrational models of the induction principle for natural numbers in predicate logic,
which corresponds to the dependently typed elimination form via the Curry-Howard
correspondence. Specifically, in fibrational models of predicate logic, the induction
principle for an inductive type is commonly modelled by giving an algebra for the lift-
ing of the endofunctor whose least fixed point defines the inductive type in question,

e.g., as studied by Hermida and Jacobs [42], and Ghani et al. [38]].

In this section we propose a category-theoretically more natural characterisation of
the structure we used in [9]] for modelling the type of natural numbers, inspired by the

above-mentioned fibrational treatment of the induction principle for natural numbers.

Definition 4.1.22. Given a full split comprehension category with unit p : ¢V — B
such that B has a terminal object, we say that p has weak split fibred strong natural
numbers if there exists a distinguished object N in 7/, together with a pair of vertical

morphisms

1 | Zero N succ N
such that for any object X in B and any pair of morphisms

fz s

Ly

in v, with

p(A) ={x(N)} p(fi) ={!x(zero)} p(fs) = {'x(succ)}

there exists a (not necessarily unique) section rec(fz, fs) of mq : {A} — {I}(N)},

4.1. Category theory for modelling eMLTT 125

making the following two squares commute:

{!% (zero)} N {!% (succ)} N
{Ix} — {x(N)} ———— {K[M)}
Ny rec(fz.f5) rec(f..fs)
{1y}) {A} 73 {A}

As a direct consequence of the above definition, we can show that every fibre of
p has a weak natural numbers object (NNO) that also supports a dependently typed

elimination principle in the sense of the axiomatisation used in [9]], as shown next.

Proposition 4.1.23. Let us assume a full split comprehension category with unit
p:V — B such that ‘B has a terminal object and p has weak split fibred strong
natural numbers. Then, each fibre of p has a weak NNO and this structure is preserved

on-the-nose by reindexing.

Proof. Due to its length, we postpone the proof of Propositiond.1.23|to Appendix[B.3]
Here, we only note that given an object X in B, a weak NNO in 7% can be given by

1%

(zero) . !
T ()

1%

(succ)

1x % (N)

O]

At this point, we would also like to report on a small oversight in [9]. Namely, the
semantic “B-equation” that corresponds to the application of the elimination form for

natural numbers to the successor should have of course been given by

{!x (suce)}"(ia(fe, £5)) = (s(ia (£ /)" (f5)
Taking this oversight into account, we show that the axiomatisations are equivalent.

Proposition 4.1.24. Let us assume a full split comprehension category with unit
p: V — B such that ‘B has a terminal object. Then, p having weak split fibred
strong natural numbers is equivalent to p supporting weak natural numbers as in [9],

i.e., for every object X in ‘B, every object A in {I/{!;(N)}, every morphism

fo:1x — (s(!x(zero)))"(A)

in Vx, and every morphism

s 1qay — ma({x (suce) }7(A))

126 Chapter 4. Fibred adjunction models

in ’V{ A} there exists a morphism

ia(fz fs) T Ly anyy — A

in ’V{v* N} Such that

(s('x (zero)))*(ia(f, /i) = f2
{!x (succ) }*(ia(fer f5)) = (s(ia(fz, £5)))* (fs)

Proof. We postpone the straightforward but somewhat lengthy details of this proof to
Appendix where much of the space is taken up by laborious diagram chasing. [

4.1.4 Propositional equality

We recall that for dependently typed languages that support extensional propositional
equality, i.e., languages that include an m-equation for propositional equality, the re-
quired category-theoretical structure is most naturally characterised by requiring all
contraction functors (defined later in this section) to have well-behaved left adjoints,
e.g., as discussed in [S1} Section 10.5]. While we could use this adjunction-based char-
acterisation of models of extensional propositional equality to prove the soundness of
the interpretation of eMLTT, we would not be able to prove the completeness of the
interpretation in Section [5.3|because eMLTT’s propositional equality is intensional.
Therefore, in order to be able to later prove the completeness of the interpretation
of eMLTT, we characterise the structure needed to model its intensional propositional

equality similarly axiomatically as in the paper [9] on which this thesis is based on.

Definition 4.1.25. Given a split comprehension category with unit p : %/ — B and an
object A in ¥/, the unique mediating morphism &4 : {A} — {7} (A)} induced by the

pullback situation below is called a diagonal morphism.

id{A}
q
{A} - - = - > {m(4)} {A}
J
Tt (4) P(mA(A)) T

id{A}

{4} ———— p(A)

4.1. Category theory for modelling eMLTT 127

Definition 4.1.26. Given a split comprehension category with unit p : 7/ — B and an

object A in V, the functor 8} : V(g (a)y — V{4 is called a contraction functor.

Definition 4.1.27. Given a split comprehension category with unit p : VV — B, we
say that p supports split intensional propositional equality if for every A in V/, there
exists an object ld4 in ‘V{n)y and a morphism ry : 143 — 873 (Ida) in ‘V{A} such
that for every object B in Vj4,} and morphism f : 174y — (s(ra))* ({84(1dg)}*(B))
in V43, there exists a morphism is g(f) : 1{jq,} — Bin Vg, satisfying

(s(ra))* ({84 (1da)}*(ia.5(f))) = f

such that for any Cartesian morphism g : A — A’ in ¥/, the following equations hold:

{g'} (1dar) = 1da
{g}*(rar) =ra
{&H1da) Y (a5() = iy ra0a,y-5) ({81 ()

Here, the morphism g’ : @} (A) — m},(A’) in ¥ is induced by the universal property

of the Cartesian morphism T4/(A") : @};,(A’) —> A’, as illustrated in the next diagram.

A
TA(A) g
TA) - - T4~ A
{A} {A}

\/

It is worth noting that the second equation {g}*(ra/) = rs is well-formed because
the morphisms {g'} 08,4 : {A} — {n},(A")} and 84 0 {g} : {A} — {7}, (A")} are

equal. In particular, these morphisms satisfy the same universal property as the un-

128 Chapter 4. Fibred adjunction models

named unique mediating morphism in the following pullback situation:

{g}
/\
() - - =) T)
Tt (A7) P(Ta (A)) 7y
! (A} pla)
Finally, the third equation {{g'}(Ids)}*(ix 5(f)) =i, @rad e {837 () is

well-formed because the following diagram commutes:

{4} te) (A"}

iso. Tlay P({g}(1iay)) Tlan iso.

14{-}

—_— Tl Al}
_ . e} (1)} {
{1y} {{e} (1)} : {1y}
def.
{ra} property of ra {{g}*(ry/)} def. of {g}*(ra') {rar}

{83(Ida)} ——=—— {{g}" (83 (Ida))} e, {8 (Ida)}

{a(ld 1)} property of lds p is a split fibration {57/(Id)}

(I} = ([} (10)} — {ldy)

4.1.5 Homomorphic function type

Analogously to EEC in the simply typed setting, the syntax of eMLTT suggests that
the homomorphic function type C — D ought to be modelled in terms of enrichment.
In particular, we seem to need a fibre-wise enrichment of the fibrations we use for
modelling computation types in the fibrations we use for modelling value types, such
that the enriched structure is preserved by reindexing in some appropriate sense.
While informally such fibre-wise enrichment might seem straightforward, then for-

mally the situation turns out to be much more involved. In particular, even if all the

4.1. Category theory for modelling eMLTT 129

fibres are enriched, the total category of the fibration we use for modelling computa-
tion types also includes non-vertical morphisms, which would need to be compatible
with the vertical morphisms, now modelled using enrichment and hom-objects. Cor-
respondingly, the fibration would need to be given by a functor that is enriched when
restricted to fibres. But for this to be even possible, the base category would also need
to be an enriched category, with its enrichment compatible with that of the fibres.

As a result, the situation where some parts of the fibration are enriched and others
are not seems overly complicated and somewhat ad-hoc, particularly, when compared
to the arguably very natural and elegant models of eMLTT without the homomorphic
function type, as studied in [9]. Ideally, one would like the models of eMLTT with the
homomorphic function type to be only a small variation of the models given in op. cit.

As asking for fibre-wise enrichment does not seem to give a satisfactory semantic
structure for modelling the homomorphic function type, one could wonder why not
use the existing work on enriched fibrations, such as [104] and [113, Section 8.1]?
Unfortunately, while this existing work gives two systematic approaches to combining
enrichment and fibrations, neither fits well into the setting we are working in.

On the one hand, compared to the models of eMLTT without the homomorphic
function type from [9]], trying to adapt [[104]] to our setting would lead us to having to
require the base categories of the fibrations we use to additionally have finite products.
While this would not be a significant problem in itself, the notion of enriched fibration
one gets by applying the Grothendieck construction (see [S1, Definition 1.10.1]) to the
enriched indexed categories developed in [104]] would be significantly more involved
compared to the ordinary (unenriched) fibrations that are used to model eMLTT in [9].

On the other hand, trying to adapt [[113, Section 8.1] to our setting would involve
imposing even more substantial conditions on the base categories of the fibrations we
use. In particular, we would need to require the base categories of the fibrations we
work with to be self-enriched. Again, imposing such condition would be a significant
change from the kinds of fibrations we used to model eMLTT in [9].

Having discussed some approaches that do not work, we now explain one that
does work and that we use for modelling the homomorphic function type in Chapter 5]
While we still follow the intuition that the fibrations we use for modelling computa-
tion types should be fibre-wise enriched in the fibrations we use for modelling value
types, the enrichment-like structure we use is sufficiently relaxed to make the com-
patibility issues between vertical and non-vertical morphisms disappear. In particular,

we continue to use (unenriched) fibrations to model computation types, but addition-

130 Chapter 4. Fibred adjunction models

ally require the existence of fibre-wise “hom-objects”, given by functors of the form

C}?p x Cx — Vx, satisfying certain compatibility conditions, as made precise below.
Before we define the relaxed notion of enrichment suitable for modelling eMLTT’s

homomorphic function type, we first note that given any split fibration g : C — B, we

can construct a new split fibration

re (X OGP x Gx) — B
by applying the Grothendieck construction to the split B-indexed categor given by
X OGP X Cx frr (F)Px f*

Concretely, the objects of the total category f (X — C;p x Cx) are triples (X,C, D),
where X is an object of B, and C and D are objects of Cx. A morphism from (X,C,,D;)
to (Y,C,,D,) is given by a triple (f,h,k), where f : X — Y is a morphism in B, and
h: f*(Cy,)—Cyand k: Dy — f*(D,) are morphisms in Cx. r is then given by

rX,CD) =X r(f.hk)=f
Finally, we note that r is split and the chosen Cartesian morphisms are of the form

It is informative to observe that while the above definition of r is convenient for
us to work with, it can also be characterised in more abstract terms. Namely, the split
‘B-indexed category given by X —> C;;p X Cx 1is the Cartesian product (in the 2-category
of split B-indexed categories) of the split B-indexed categories given by X — C}?p and
X — (Cx, of which the former is the opposite of the latter, e.g., as discussed in [S1,
Definition 1.10.10]. As a result, based on the fact that the Grothendieck construction
forms an equivalence of categories between split B-indexed categories and split fibra-
tions with base category B (see [S1, Proposition 1.10.9]), and that it takes the split
‘B-indexed category given by X — C;p to the opposite ¢°P of the split fibration ¢ (see
[S1, Exercise 1.10.9]), the split fibration r can equivalently be characterised as the
Cartesian product ¢°P x g of the split fibrations ¢°P and ¢, in the 2-category Fibgpit(B).

We now define the relaxed notion of enrichment suitable for modelling eMLTT.

Definition 4.1.28. Given two split fibrations p : %/ — B and g : C — B such that p
has split fibred terminal objects, we say that g admits split fibred pre-enrichment in p

LA split B-indexed category is given by a functor B°? — Cat, see [51}, Definition 1.4.4 (ii)].

4.2. Fibred adjunction models 131

if there exists a split fibred functor — : r — p, as depicted in

J&x = x) — 4

N4

B

together with a family of isomorphisms (where we write C —oyx D for — (X,C,D))
Ex.cp: Vx(1x,C —ox D) — Cx(C,D)

that are natural in both C and D, and preserved on-the-nose by reindexing, as respec-

tively illustrated by the commutativity of the two squares in the following diagram:

§X~,Q1 D1

Vx(1x,C| —ox Dy) Cx(Cy,Dy)

rVX(IX7h _Oidx k) CX (h,k)

G (f(Ga), f7(D2))

Ex SH(C2).f*(Dy)

Vx(1x, [*(C,) —ox f*(D,))

Vx(f*(1y), f*(Cy —ovy D,)) s

f*

Yy (1y,Cy —oy Dy)

CY (227 l_)Z)

§Y7Q2,Q2
for every morphism (f,h,k) : (X,Cy.Dy) — (¥,Cy,D5) in [(X 5 G x G).

To improve the readability of our proofs, we sometimes omit the subscript on the

functor —o when it is clear from the context, i.e., we write C — D for C —ox D.

4.2 Fibred adjunction models

In this short section we combine the category-theoretic structures we discussed in Sec-
tion[d.1]into a class of categorical models suitable for interpreting eMLTT, called fibred
adjunction models. We use the same name for this class of models as we did in [9]] for

a more restricted class of models because the core of the models remains the same.
Definition 4.2.1. A fibred adjunction model is given by

e a split closed comprehension category p: VV — B,

132 Chapter 4. Fibred adjunction models

e a split fibration g : C — B, and
e asplit fibred adjunction F 4 U : g — p
such that

e ¢ has split dependent p-products (as in Definition d.1.10),

q has split dependent p-sums (as in Definition 4.1.11)),

p has split fibred strong colimits of shape 0 and 2 (as in Definition 4.1.18)),

p has weak split fibred strong natural numbers (as in Definition d.1.22)),

p has split intensional propositional equality (as in Definition 4.1.27)), and
e g admits split fibred pre-enrichment in p (as in Definition 4.1.28)),

as depicted in

In the rest of this thesis, we assume that whenever we work with fibred adjunction
models, their structure is given using the notation used in Definition 4.2.T]above, e.g.,

we use p for the split closed comprehension category, F < U for the adjunction, etc.

4.3 Examples of fibred adjunction models

We now discuss some examples of fibred adjunction models.

4.3.1 Identity adjunctions

Given an SCCompC p : ¥V — B with split fibred strong colimits of shape 0 and 2,
weak split fibred strong natural numbers, and split intensional propositional equality,
we can always pick the identity adjunction id,) idy : ¥V — 1 to get an “effect-
free” fibred adjunction model, by letting ¢ = p and observing that idg is trivially split

4.3. Examples of fibred adjunction models 133

fibred. Further, observe that the split dependent p-products and split dependent p-
sums are given in g by the corresponding structure in p. Finally, we can define the split
fibred pre-enrichment of ¢ in p using the fact that p is a split fibred CCC, i.e., we let

A —ox B= A =y B. We summarise this discussion in the next theorem.

Theorem 4.3.1. Given an SCCompC p : V — B with split fibred strong colimits of
shape 0 and 2, weak split fibred strong natural numbers, and split intensional propo-
sitional equality, the identity adjunction idg = idq : V — V gives rise to an “effect-
free” fibred adjunction model.

4.3.2 Simple fibrations and models of EEC+

Our second example of fibred adjunction models is based on the models of EEC+,
where EEC+ stands for an extension of EEC with finite coproducts, see [35, Defi-
nition 6.6]. The resulting fibred adjunction models are a restricted form of models

defined in Definition in that they do not support propositional equality.

Definition 4.3.2. A model of EEC+ with weak natural numbers is given by a V-
enriched adjunction F 4 U : C — v/, where 1/ is a CCC that also has finite coproducts

and a weak NNO, and where C is V-enriched, having all V/-tensors and V/-cotensors.

In this example we use X,Y,A,B,... and f,g,... to range over the objects and
morphisms of ¥, and C,D, ... and h,k, ... to range over the objects and morphisms of
C, respectively. We denote the Cartesian closed structure of 7/ by A x B and A = B,
the A-fold V-tensors of C by A® C, and the A-fold V-cotensors of C by A = C.

We recall from [56] that the universal properties of the A-fold V-tensors and V-

cotensors of C are characterised as the following two ¥-isomorphisms:
CA®CD)=A=C(CD) C(C(CA=D)=A=C(CD)

In order to improve the readability of this example, and to simplify the associated
proofs, we present this fibred adjunction model using the internal language of the mod-
els of EEC+, namely, a Varian of the syntax of EEC+. This syntactic presentation
is justified by the soundness and completeness results proved in [35, Theorem 7.1].
Specifically, we represent morphisms f : X — Y of ¥/ as EEC+’s non-linear terms
x:X F f(x) : Y, and morphisms & : C — D of C as EEC+’s linear terms z:C - h(z) : D.

2Compared to the syntax used to present EEC+ in [35], we use eMLTT’s syntax for its elimination
forms. Furthermore, we write F' for the EEC type former ! and make the type former U explicit.

134 Chapter 4. Fibred adjunction models

We proceed by defining the SCCompC part of this example of fibred adjunction
models, based on the simple fibration construction discussed in Example 2.2.16] In
particular, we let p = sq, which gives us an SCCompC because s, can be easily seen
to be split, and because we have the following result regarding closed comprehension

categories (this closed comprehension category structure is also easily seen to be split).

Proposition 4.3.3 ([51, Theorem 10.5.5 (i)]). The simple fibration sq : s(V) — V is
a closed comprehension category if and only if V is a CCC.

In particular, the corresponding terminal object functor 1: ¥ — s(/) and com-
prehension functor {—} : s(7/) — ¥/ are given by

def def

IX) S (X1 {(X,A)}EXxA
The split dependent products and strong split dependent sums are given by
x4 (X XA,B)= (X,A=B) I (XxAB)=(X,AxB)

with the strength of the latter witnessed by isomorphisms (X X A) x B = X x (A X B).
Next, we note that s, also has other structure we require from p in Definition[d.2.1]

except for split intensional propositional equality, as mentioned earlier.

Proposition 4.3.4. s, has split fibred strong colimits of shape 0 and 2, and weak split

fibred strong natural numbers.

Proof. The split fibred strong colimits of shape 0 and 2 are given in terms of the initial

object and binary coproducts in v/, i.e.,

def

0x =(X,0) (X,A)+x (X,B) = (X,A+B)
and the weak split fibred strong natural numbers in terms of the weak NNO in 7/, i.e.,
N=(1,N)
zero = (idy, (x: 1 x 1 -z(x):N)) succ = (idy, (x:1 x N s(sndx) : N))
where z: 1 — N and s : N — N are the zero and successor morphisms associated
with the weak NNO N assumed to exist in V.

The proofs that these definitions give rise to the required structure consist of straight-

forward reasoning in the equational theory of EEC+. We thus omit these proofs. [

4.3. Examples of fibred adjunction models 135

We proceed by observing that it is possible to extend the simple fibration con-
struction to an enriched (effectful) setting. In particular, we can construct a category
s(V, C) whose objects are given by pairs (X,C) of an object X of 4/ and an object C
of C, and whose morphisms (X,C) — (¥, D) are given by pairs (f, /) of a morphism
f:X — Y in ¥ and a morphism 2 : X ® C — D in C. Analogously to the simple

fibration construction, we can define a split fibration whose total category is s(¥, C).

Proposition 4.3.5. The functor sy o :s(V,C) — V, given by

sy c(X.Q) =X sy c(f.h)=f
is a split fibration, called the simple ‘V-enriched fibration.

Proof. 1t 1s straightforward to show that s, ~ preserves identities and composition—
these properties follow from routine reasoning in the equational theory of EEC+.
Given a morphism f : X — Y and an object (Y, D) ins(V, C), the chosen Cartesian

morphism over f can be shown to be given by

- def

f¥.D)=(f,(z:X®DbFzto(x,Z)in7 : D)) : (X,D) — (¥,D)

As was the case for the simple fibration s, it is also easy to verify thatsg, ~is split. [J

Next, we show that the -enriched adjunction F - U : C — ¥/ can be lifted to a

split fibred adjunction between the two simple fibration constructions.

Proposition 4.3.6. The V-enriched adjunction F 4 U : C — ‘V lifts to a split fibred
adjunction F 4 U : Sy — Sy
Proof. The functors F and U are given on objects by

e def _— def

F(X,A)=(X,F(A)) UX,0)=(X,U(C))

and on morphisms by

def

ﬁ(f,g) = (f7 (z:X® F(A)Fzto (x,7) in Fap(Ay:A.g(x,y))(Z) F(B)))

def

U(fh) = (f,(x:X xU(C) F Ucp(hz:C.h{fstx,z))(sndx) : U(D)))
where the two morphisms
x:A=BF FA7B(X) CF(A) —OF(B) x:C—oDF UQQ(X) : U(Q) = U(Q)

are given by the V-enrichment of F and U, respectively.

136 Chapter 4. Fibred adjunction models

It is straightforward to show that Fand U preserve identities and composition—
these properties follow from routine reasoning in the equational theory of EEC+, using
the preservation of identities and composition by F' and U, respectively. We omit these
proofs but show how to prove that both FandU preserve Cartesian morphisms on-the-
nose, so as to illustrate the kinds of equational reasoning the proofs in this example are

based on. Specifically, given a morphism f : X — Y in 1/, we have
F(f(v,B))
= F(f,(x:X xBl-snd x: B))
f,(z:X® F(B)Fzto (x,2) in Fgp(Ay:B.snd (x,y)) (<) : F(B)))

= (£.()
= (f, (z:X® F(B) Fz to (x,2)) in Fgg(Ay:B.y)(Z) : F(B)))
(f, (z X® F(B)Fzto (x,7)in (W :F(B).7")(d) F(B)))
(f,(z X®F(B)Fzto (x,7)in7 : F(B)))

= f(Y,F(B))
— F(E(,B)

and

U(f(v,D))

:ﬁ(f (z:X®DFzto (x,7)inZ : D))
= (f, (x:X xU(D) - Upp(Az:D.(fstx,z) to (x,Z) in Z')(sndx) : U(D)))

)

(
(x:X xU(D) - Upp(Az:D.z)(sndx) : U(D))
(x:XxU(JE(Ay:U(D).y)(sndx) :U(D)))
((D)

= (f,(x:X xU(D) - sndx:U(D)))

The unit and counit of the adjunction F AU are given by components
Nx.a) = = (|dX, (x X XAk nF_'U(sndx) : U(F(A))))
€x,0) = (idx, (z:X® F(U(C))Fzto (x,7) in Sg_'U(z): Q))
where the two morphisms

AR, Y (X)U(FA) zFUQ) et Y(z):C

are given by the components of the unit and counit of the assumed adjunction F 4 U.

4.3. Examples of fibred adjunction models 137

The naturality of m and €, and the two unit-counit laws are proved by straight-
forward equational reasoning in the equational theory of EEC+, using the naturality of

N7 and ef U and the commutativity of the corresponding unit-counit triangles. [
We proceed by showing that s, - has split dependent s, -products and s -sums.
Proposition 4.3.7. s, -~ has split dependent s, -products.

Proof. The functor
ix) :5(V, C)xxa — s(V,C)x

is given on objects by
My 4)(X X 4,C) = (X, A= C)

and on morphisms by

def

iy 4)(idxxa,h) =
(idx, (z:X® (A= C) Fzto (x,Z) in Ay:A.h{(x,y),Z) : A= D))

where h: (X xA)® C — D.

The unit and counit of the adjunction 77

(X.A) —1I(x 4) are given by components

Nx.0) “ (idx, (z:X® Ckzto (x,2) inAy:A.Z :A=C))
Exxac) = (idyxa, (2:(X xA)® (A= C) Fzto (x,7) in 7/ (sndx) : C))
The well-definedness of Iy 4), the naturality of 1| and €, and the corresponding
unit-counit laws are proved by straightforward equational reasoning in the equational
theory of EEC+. We omit the details of these proofs but show how to prove that the

split Beck-Chevalley condition holds. Specifically, given a Cartesian morphism

- def

f(Y,B) = (f,(x:X xBt-sndx:B)) : (X,B) — (Y,B)

in s, we show that the canonical natural transformation given in Definition .1.10]is
an identity.

In particular, for the fibred adjunction model we are constructing in this example,
the components of the canonical natural transformation given in Definition can

be shown to be given by the composition of morphisms of the following form:

(idy, (z:X®(B=C)Fzto (x,Z) inAy:B.Z : B= (B=()))
:(X,B=C)— (X,B= (B=0))

138 Chapter 4. Fibred adjunction models

and

(idy, (":X®(B= (B=C))Fz" to (¥,Z")in Ay :B.(""y)y : B=C))
:(X,B=(B=C)) — (X,B=C)

which we can then show to be equal to the identity morphism id(x z—.c) by

(idx, (":X®@(B=(B=C))FZ" to (X,Z")in Ay:B.("y) Y :B=C)) o
(idx, (z:X® (B=C)Fzto (x,Z) inAy:B.Z : B= (B=()))
= (idx, (z:X®(B=C)Fzto (x",Z") in
(", (", 2" to (x,2) in Ay:B.Z)) to (+,2") in Ay :B.(Z"Y) y') : B=C))
= (idx, (z:X®(B=C)Fzto (x",Z") in
((/! 7\4}7 B. Z////> tO(/ ///) in 7\,le (Z///y/) y/) B:>g))

(Idx, (Z X®B=C)Fzto(x",7")in Ay :B.((Ay:B.Z"")y)y : B :>Q))
(idy, (z:X® (B=C)Fzto (x",Z") in Ay :B.Z"y : B=())
= (idx, (z:X® (B=C)Fzto (x",Z") in " : B=())

= id(x =0)

from which it then follows that the corresponding canonical natural transformation is

an identity, as required. [
Proposition 4.3.8. sy, - has split dependent s, -sums.

Proof. The functor
Z(X,A) : S(r[/, C)XXA — S(r[/7 C)X

is given on objects by

def

Z()(XXA C) (X,A@Q)

and on morphisms by

def

Zix) (idxxa,h) =
(ldX, (Z.X® (A C)Fzto (x,7) in (7 to (y,7") in <y,h((x,y>,z”>>) AR Q))

where h: (X xA)® C — D.

The unit and counit of the adjunction X(x 4) nfx 4) are given by components

def

Nixxac) = (idxxa, (z2: (X xA)® CFzto (x,7) in (sndx,7) : A® C))

def

exc) = (idx, (22X ®(A® C) F zto (x,7) in (Z to (3,2") in ") : C))

4.3. Examples of fibred adjunction models 139

The well-definedness of Xy 4), the naturality of 1 and €, and the corresponding
unit-counit laws are proved by straightforward equational reasoning in the equational
theory of EEC+. The proof that the split Beck-Chevalley condition holds is analogous

to the corresponding proof we gave for the split dependent s, -products earlier. [

Finally, we show that s, ~ admits split fibred pre-enrichment in s.
Proposition 4.3.9. s, ~ admits split fibred pre-enrichment in s.

Proof. The functor
—o:/(XHC)?pXCx)—WV

is given on objects by

and on morphisms by

—o (f, (idx,), (idx, k) =
(f, (x:X X (C; —o D) FAz:Cy.k (fstx, (sndx)(h(fstx,z))) : C; —o D,))

where h: X ® Cy — C; and k: X ® D1 — D,.

The isomorphisms éx,(x,g),(x, p) between hom-sets are witnessed by functions

Ex x.0).x.p)(idx,) = (idy, (z:X ® CFzto (x,2) in (f (x,%)) 2 : D))

ﬁg’l(xvg)’(x’g)(idx,h) = (idx, (x:X x 1 FAz:C.h(fstx,z) : C — D))

where f: X X1 —C-—oDandh:X® C — D.
The well-definedness of the functor —o, the naturality of & and £&~! in (X,C) and
(X,D), and their preservation under reindexing are proved by straightforward equa-

tional reasoning in the equational theory of EEC+. We thus omit these proofs. [

We conclude this example by summarising the above results in the next theorem.

Theorem 4.3.10. Given a model F 4 U : C — V of EEC+ with weak natural num-
bers, we get a fibred adjunction model (without split intensional propositional equality)

by letting p < sy and q g Sy ¢» and by using the lifted adjunction FAU: Sy.c— Sy

140 Chapter 4. Fibred adjunction models

4.3.3 Families of sets fibration and liftings of adjunctions

Our third example of fibred adjunction models is based on the families of sets fibration
famge : Fam(Set) — Set, a prototypical model of dependent types. This split fibra-
tion is a Set-valued instance of the families fibrations we discussed in Example

First, we define the SCCompC part of the fibred adjunction model by letting

p “fa mget. This gives us an SCCompC because of the following well-known result.

Proposition 4.3.11 ([51} Section 10.5]). famge is an SCCompC.

In particular, the corresponding terminal object functor 1 : Set — Fam(Set) and

comprehension functor {—} : Fam(Set) — Set are given by

1(X)= (X,x— 1) {x.A)}=| A

xeX

where 1 is the terminal object in Set, i.e., a one-element set.

The split dependent products and strong split dependent sums are given by

My a)(| |A®),B) = (X,x—~ [] B(x,a))

xeX acA(x)
Zxa (|| A®).B) = (X, x| | Blx.a))
xeX acA(x)

where []..y A(x) and | |,cx A(x) denote X-indexed products and coproducts, respec-
tively; and where (x,a) denotes the x’th injection into | |,cyx A(x).

Next, we note that famse also has all other structure we require in Definition[4.2.1]

Proposition 4.3.12. famse; has split fibred strong colimits of shape 0 and 2, weak split

fibred strong natural numbers, and split intensional propositional equality.

Proof. All the structure mentioned in this proposition is given pointwise in terms of
the corresponding set-theoretic structure.

First, the split fibred strong colimits of shape 0 and 2 can be shown to be given by

def

Ox = (X,x+—0) (X,A)+x (X,B) = (X,x > A(x) +B(x))

where 0 is the initial object in Set, i.e., the empty set; and A(x) + B(x) is the coproduct
of the sets A(x) and B(x), i.e., the disjoint union of A(x) and B(x).

Second, the weak split fibred strong natural numbers can be shown to be given by

N = (1,4~ N) zero = (idy, {z}ve1) suce = (idy, {s}ie1)

4.3. Examples of fibred adjunction models 141

where z: 1 — N and s : N — N are the zero and successor functions associated with
the set N of natural numbers.

Finally, split intensional propositional equality can be shown to be given by
dany = ([AW ((xa),d) = {xla=d})
(xa)€llex Ax)
Showing that these definitions indeed determine the required structure in famget

amounts to straightforward set-theoretic reasoning, using the universal properties of

the set-theoretic structure used in these definitions. 0
Next, we recall a well-known result about lifting adjunctions to families fibrations.

Proposition 4.3.13 ([51, Example 1.8.7 (i)]). Every adjunction F 4 U : C — V lifts
pointwise to a split fibred adjunction F U :fam c — famy, as follows:

F(XA) (X, x— F(A(x))) U(XC) L (X,x— U(C(x)))

Given an adjunction F' -+ U : C — Set, we next give sufficient conditions for fam

to have split dependent famget-products and split dependent famgei-sums.

Proposition 4.3.14. Given an adjunction F + U : C — Set, then if C has set-indexed
products, the split fibration fam has split dependent famge-products.

Proof. The split dependent famge;-products are defined analogously to how the split

dependent products are defined in famg, i.e., they are given on objects by
My (| | A®),.O) = (Xx— [] C
xeX acA(x)
Defining I x 4) on morphisms and showing the existence of the corresponding adjunc-

tion n(x A) —1I(x 4) amounts to straightforward set-theoretic reasoning. [

Proposition 4.3.15. Given an adjunction F 4 U : C — Set, then if C has set-indexed

coproducts, the split fibration fam ~ has split dependent famgeg;-sums.

Proof. The split dependent famge;-sums are defined analogously to how strong split

dependent sums are defined in famsg, i.€., they are given on objects by

T (| | A®) O)= (X,x— | | Cx,a))
xeX acA(x)

Defining ¥y 4) on morphisms and showing the existence of the corresponding adjunc-

tion Xx 4) TEEFX’ 4) amounts to straightforward set-theoretic reasoning. [

142 Chapter 4. Fibred adjunction models

Finally, we show that fam - admits split fibred pre-enrichment in famge;.

Proposition 4.3.16. Given an adjunction F 4 U : C — Set, the split fibration fam

admits split fibred pre-enrichment in famge.

Proof. We define the functor
—o: /(X — Famy (C)°P x Famy (C)) — Fam(Set)

pointwise by using the Set-enrichment of (, i.e., we define it as
def

— (X, (X,C),(X,D)) = (X,x = C(C(x),D(x)))

def

—o (f, (idx, h), (idx,k)) = (f,{li — kyo Ly o hy }xex)

where Ay : Cy (f(x)) — C;(x), kx : Dy (x) — Dy (f(x)), and I, : C;(x) — D, (x). We
omit the straightforward proofs showing that — preserves identities and composition

but show how to prove that it preserves Cartesian morphisms on-the-nose:

—o (f, (idx, {idc(y) Frex)s (idx, {idp(y) Frex))
= (f,{lx = idp() o Ly 0idc(y) brex)
= (f{l = L}xex)
= (f:{idc(c).p() Frex)

The isomorphisms éx,(x,g),(x, p) between hom-sets are witnessed by functions

Ex,(x.0),0x.0) (idx, £) = (idx, { fe(*) baex)
Ex.x.c).0x.p) (1, 1) = (idx, = hedrex)
where f, : 1 — C(C(x).D(x)) and hy : C(x) — D(x).
The naturality of & and §~! in (X,C) and (X,D), and their preservation under

reindexing are proved using straightforward set-theoretic reasoning. [
We summarise these results in the next theorem.

Theorem 4.3.17. Given an adjunction F 4 U : C — Set such that C has set-indexed
products and set-indexed coproducts, then the families fibrations famse and famg,

together with the lifting FAHU of F - U, give rise to a fibred adjunction model.

We conclude this section by highlighting some concrete examples of fibred adjunc-
tion models built from the families of sets fibration famge;. These examples follow as

corollaries to Theorem |4.3.17|by instantiating the adjunction F 4 U appropriately.

4.3. Examples of fibred adjunction models 143

The first two instances of Theorem 4.3.17|are based on the decompositions of two
of Moggi’s monads—the global state monad and the continuations monad—into reso-

lutions other than their Eilenberg-Moore resolutions.

Corollary 4.3.18. Given a set S, the adjunction (—) x S 48 = (—) : Set — Set gives

rise to a fibred adjunction model.

Corollary 4.3.19. Given a set R, the adjunction (—) = R 4 (—) = R : Set” — Set

gives rise to a fibred adjunction model.

For Corollary 4.3.19| to be an instance of Theorem it suffices to recall that
Set®P trivially has set-indexed products and coproducts—these are given by the set-
indexed coproducts and set-indexed products in Set, respectively.

The next instance of Theorem arises from the algebraic treatment of com-

putational effects, namely, from countable Lawvere theories (see Section [2.1.3).

Corollary 4.3.20. Given a countable Lawvere theory I : NIOP — L, the free model
adjunction Fr 4 Uy : Mod(L,Set) — Set gives rise to a fibred adjunction model.

For Corollary 4.3.20| to be an instance of Theorem it suffices to recall that
Mod(L,Set) is both complete and cocomplete (see Proposition , meaning that
Mod(L, Set) has all set-indexed products and set-indexed coproducts, as required.

The final instance of Theorem[4.3.17|we present is based on one of the two standard

ways of decomposing monads into adjunctions—the Eilenberg-Moore resolution.

Corollary 4.3.21. Given a monad T = (T,n,u) on Set, its Eilenberg-Moore resolution
FT A UT : Set™ — Set gives rise to a fibred adjunction model.

For Corollary to be an instance of Theorem 4.3.17, it suffices to recall that
SetT is both complete and cocomplete for any monad T on Set (see Proposition|2.1.32),

meaning that SetT has all set-indexed products and set-indexed coproducts.

4.3.4 Eilenberg-Moore fibrations of fibred monads

We continue our overview of examples of fibred adjunction models by investigating
the conditions under which the Eilenberg-Moore fibration pT of a split fibred monad
T = (T,m,u) supports split dependent p-products and split dependent p-sums. To this
end, we generalise some well-known results about the existence of limits and colimits
in the EM-category of a monad (see Section [2.1] for an overview) from products and

coproducts to split dependent p-products and split dependent p-sums, respectively.

144 Chapter 4. Fibred adjunction models

We begin by recalling a useful fact about the EM-algebras of a split fibred monad.
This result later enables us to define split dependent p-products and p-sums in pT using

the functoriality of the corresponding structure in p.

Proposition 4.3.22 ([51, Exercise 1.7.9 (i1)]). The structure map of every EM-algebra
(A,) of a split fibred monad T = (T,M,u) on a split fibration p : V — B is vertical.

Proof. The proof of this proposition is straightforward. All one needs to do is to

consider the diagram relating 1 and o, and apply the functor p to it, i.e., we have

p(a) = p(a)oid, 4y = p(a) o p(Ma) = p(atoma) = p(ida) = ida)

where p(A) = p(T(A)) holds because T is assumed to be a fibred functor. O

Another observation we make about split fibred monads is that every split fibred
monad on a split comprehension category with unit and strong split dependent sums
comes equipped with a dependent notion of strength. We use this dependent strength

to impose one of the conditions under which pT has split dependent p-sums.

Proposition 4.3.23. Given a split comprehension category with unit p : V — B with
strong split dependent sums and a split fibred monad T = (T,m,u) on it, then there
exists a family of natural transformations

Cp:2p0T — ToXy (AGrV)

collectively called the dependent strength of T, satisfying the following diagrams:

le p(A)(TCTp(A) (A)>)

4.3. Examples of fibred adjunction models 145

Oz, (B).T(C)

Ly, 3)(T(C)) T(Zs,5)(C))
A B.T(C)
Za(Zp(x; (T(C)))) 2) T (0 5c)
Za(Zp(T (13 5(C)))) T (Xa(Xp(x} 5(C))))
ZA(O % 4(0) OA2p(; 5(©))
Za(T (Zp(x4 5(C))))
£A(B) = £A(T(B))
(3)
GA B
Nz, (B)
T(Za(B))
OA,T(B) T(caB)

Ta(us) (4) Hzy (B)

ZA(T(B))

where

0BTy, B) — LaoLpoKy g (A€ V.B€ Viay)

146 Chapter 4. Fibred adjunction models

is a family of natural associativity isomorphisms, given by the following composites:

Xy (B) Zy, (50 (Kip) oK p

1

— T4 o0Xp-nh
EEA(B)O(KAﬁB)*On A°=B B

oTC* K
A OKA,B

—1
Y5, (B)© (KA,B)* oMpoTy0X 0Xp OKZB

k * k
ZAOZBOKAJB ZZA(B)OEZA(B)OZAOZBOKAﬁ

x4 (8) ", ()

€ 0X 0XpokK), p

We note that the second equality morphism used in the definition of o4 g follows

from the commutativity of the following diagram:

—1
Ka.B

Ka,p 1S an iso.

KA,B

def. of Ka.B

B) — o M) gy a(B)

Py ™)

i za8) P(ma(Za(B))) Tz (B)

{4} _ plA)

Proof. Due to its length, we postpone the proof of Proposition[4.3.23|to Appendix [B.5]

and only note here that each of the natural transformations G4 is given by the composite

* *
YpoTo Ta My = A MAoT oY,
YpoT Zacten” A YpoTomyoXy ——= XpomyoT oXy ™ To¥y

]

We now proceed by investigating the conditions under which split dependent p-
products and split dependent p-sums exist in pT.

On the one hand, it can be easily seen that the EM-fibration of a split fibred monad
on a split comprehension category with unit p : 7/ — B with split dependent products

always has split dependent p-products.

4.3. Examples of fibred adjunction models 147

Theorem 4.3.24. Given a split comprehension category with unit p : V — B with
split dependent products and a split fibred monad T = (T,M,u) on it, then the corre-
sponding EM-fibration pY : VT — B has split dependent p-products.

Proof. Due to its length, we postpone the proof of Theorem (4.3.24| to Appendix
and only note here that the split dependent p-products are given in the EM-fibration
T T. q)T T . T
p* by functors ITj : ‘V{A} — {Vp(A) that are defined on an object (B, 3) of ’V{A} by
T (B.B) £ (T14(B), Bryr)

where the structure map BH} : T(T14(B)) — II4(B) is given by the morphism

T(IL(B) N7, (8) T, (5 (T (T4 (B)))) — -
e
TTA(B) ILL() IL(T(B)) = mure ™)

using the split dependent products in p, i.e., the adjunction 7wy 11, : ‘V{ A} — ’Vp(A).
We use Proposition in the definition of Bn} to ensure that f3 is vertical. O

As split dependent products can be viewed as a natural generalisation of set-indexed
products to products indexed by an arbitrary object in the total category ¥/, then it is
not surprising that Theorem[.3.24]and its proof are similar to the set-indexed products
instance of Proposition [2.1.29]

For constructing a fibred adjunction model based on the EM-fibration of a split

fibred monad, we have the following corollary to Theorem 4.3.24]

Corollary 4.3.25. Given an SCCompC p : V — B and a split fibred monad on it,
then the corresponding EM-fibration has split dependent p-products.

On the other hand, the situation with the split dependent p-sums in the EM-fibration
pT of a split fibred monad T is analogous to the existence of coproducts in the EM-
category of a monad. In particular, generally they can not be defined directly in terms
of the split dependent sums in p. However, analogously to the existence of coproducts
in the EM-category of a monad, under certain conditions the split dependent p-sums
in pT do exist and can be defined in terms of the split dependent sums in p.

In this thesis, we investigate two such conditions for p: i) when T preserves the
split dependent sums in p via its dependent strength (see Theorem {.3.26| below); and
ii) when pT has split fibred reflexive coequalizers (see Theorem below).

148 Chapter 4. Fibred adjunction models

Theorem 4.3.26. Given a split comprehension category with unit p : ‘V — B with
strong split dependent sums and a split fibred monad T = (T,n,u) on it, then the cor-
responding EM-fibration pY : VT — B has split dependent p-sums if the dependent
strength of T is given by a family of natural isomorphisms, i.e., if for every A in V,
Gy :XpoT — T oXy is a natural isomorphism. Furthermore, these split dependent
p-sums are preserved on-the-nose by U, i.e., we have UT (2} (B,B)) = Za(UT (B, B)).

Proof. Due to its length, we postpone the proof of Theorem 4.3.26| to Appendix

and only note here that the split dependent p-sums are given in the EM-fibration pT by
T. T T . T

functors X, : ‘V{ Ay ‘Vp(4) that are defined on an object (B,B) of ’V{ Ay by

TA(B,B) = (Z4(B), Byr)
where the structure map BZ} :T(X4(B)) — X4(B) is given by the morphism

Sip Za(B)

T(Xa(B)) XA(T(B))

ZA(B)
using the split dependent sums in p, i.e., the adjunction X4 47} : ‘Vp(A) ‘V{ Ay U

We note that Theorem is similar to Proposition [2.1.30f where the existence
of colimits in the EM-category of a monad followed from the preservation of colimits
by that monad. However, in contrast to Proposition [2.1.30} our preservation condition
is formulated using a specific isomorphism, based on the dependent strength of T. We
note that this particular choice of the preservation isomorphism is crucial for our proof
of this theorem to go through—see Appendix for details.

For constructing a fibred adjunction model based on the EM-fibration of a split

fibred monad, we have the following corollary to Theorem 4.3.26]

Corollary 4.3.27. Given an SCCompC p : V — B and a split fibred monad on it, then
the corresponding EM-fibration has split dependent p-sums if the dependent strength

of this split fibred monad is given by a family of natural isomorphisms.

Theorem 4.3.28. Given a split comprehension category with unit p : V — B with
strong split dependent sums and a split fibred monad T = (T,M,u) on it, then the
corresponding EM-fibration p* : V¥ — B has split dependent p-sums if p¥ has split

fibred reflexive coequalizers.

Proof. Due to its length, we postpone the proof of Theorem §.3.28|to Appendix [B.§]

and only note here that the split dependent p-sums are given in the EM-fibration p*

4.3. Examples of fibred adjunction models 149

by functors X} : ’V{a} o ’VPT(4) that are defined on an object (B,B) of ’V{Tf;} as the

reflexive coequalizer

€A,(B.B)
(T(EA(B)) 15, (1) —— ZX(B.p)
of the following pair of morphisms in ‘VplE A
T(Zs(B))
(T(Za(T(B))) ks, (7 (B))) & (T(Za(B)),uz,(8))
and
L

(T(Za(T(B))) 11z, (1(8)))

(T (Za(my (T (24(B)))))s My (s (T (5a(B)))))

ZA 41‘(5&

T(er (s, (3)))

(T'(Za(B)),tz,(8)) (T(T(2a(B))):Hr(s4(B)))

Hzy(B)
using the split dependent sums in p, i.e., the adjunction X4 47 : ‘Vp(A) — ‘V{ Ay U

We note that Theorem is similar to Proposition 2.1.31| where the existence
of coproducts in the EM-category of a monad followed from the existence of reflexive
coequalizers. In particular, as split dependent sums can be viewed as a natural gener-
alisation of set-indexed coproducts to coproducts indexed by an arbitrary object in the
total category 7/, it is not surprising that Theorem and its proof are similar to
Proposition|2.1.31

For constructing a fibred adjunction model based on the EM-fibration of a split

fibred monad, we have the following corollary to Theorem [4.3.28]

Corollary 4.3.29. Given an SCCompC p : V — B and a split fibred monad on it,
then the corresponding EM-fibration has split dependent p-sums if the EM-fibration of
this split fibred monad has split fibred reflexive coequalizers.

4.3.5 Continuous families fibration and general recursion

We conclude our overview of examples of fibred adjunction models by presenting a

domain-theoretic generalisation of the families of sets fibration based models from

150 Chapter 4. Fibred adjunction models

Section Furthermore, we show how to use this domain-theoretic model to give a
denotational semantics to an extension of eMLTT with general recursion.

To improve the readability of this section, we have split it into three parts: 1) in
Section 4.3.5.1] we recall some preliminaries of domain theory; ii) in Section[4.3.5.2]
we construct a domain-theoretic fibred adjunction model based on continuous families;
and iii) in Section 4.3.5.3] we present an extension of eMLTT with general recursion,
and show how to interpret it in our domain-theoretic fibred adjunction model.

4.3.5.1 Domain-theoretic preliminaries

In this section we give a brief overview of basic domain-theoretic concepts and results
that we later use to construct a domain-theoretic fibred adjunction model. We refer the

reader to [39, 187, 16] for a more detailed overview of the relevant domain theory.

Definition 4.3.30. An w-complete partial order (cpo) is a partial order X = (|X|, <x)

which has least upper bounds \/, x,, of all increasing ®-chains (x;,) =xi <xx<x...

Definition 4.3.31. A function f : X — Y between cpos is continuous if it is monotone

and preserves the least upper bounds of increasing ®-chains, i.e., when we have

x<xxa = f(x) <y fx2) f(Vyxn) =V, fxn)
Proposition 4.3.32. Cpos and continuous functions form the category CPO.
Definition 4.3.33. A cpo X is discrete if its partial order is given by equality.
In particular, observe that every set A trivially determines a discrete cpo (A, =).
Proposition 4.3.34 ([87, Section 2]). CPO is Cartesian closed.

In particular, the terminal object 1 is given by the unique cpo on a singleton set; the

Cartesian product X x Y is given by the set |X| x |Y| and the component-wise order

(x1,01) <xxy (x2,y2) iff x1 <xx2 A y1 <y ¥y

and the exponential X = Y is given by the set of continuous functions from X to Y

with the pointwise order
[<x=y g iff Vx € |X|. f(x) <y g(x)

Proposition 4.3.35 ([87, Section 3]). CPO has finite coproducts.

4.3. Examples of fibred adjunction models 151

In particular, the initial object O is given by the unique cpo on the empty set; and

the binary coproduct X +Y is given by the set |X |+ |Y| with the disjoint order
inlx; <xyyinlxy iff x; <x x» inr y1 <xty inr y2 iff y; <y y»

An important variation of the category CPO we use is the category CPOEF of
embedding-projection pairs. For us, the embedding-projection pairs are essential to

accommodate the contravariance arising in the definition of split dependent products.

Definition 4.3.36. An embedding-projection pair (f¢, fP): X — Y between cpos X
and Y is given by continuous functions f¢: X — Y and f? : Y — X, satisfying

fPoff=idx foff<yidy
Proposition 4.3.37. Cpos and embedding-projection pairs form the category CPOE?,

An important property of the category CPOFEF that we use pervasively in our proofs
is the following instance of the well-known limit-colimit coincidence property for

embedding-projection pairs—see [105, Theorem 2] for more details.

Proposition 4.3.38. Given a cpo X, a functor A : X —s CPOE?| and an increasing

o-chain (x,), then the cocone o.: J — A(A(V, x»)), given by components

def

O(fxn - (A<xn SX Vn xn)e;A<xn SX Vn xn)p) :A<xn) —>A(Vn xn)

is a colimit of the diagram J : (x,) —s CPOEP, given by J(x,) £ A(xy,), if and only if

4.3.5.2 A domain-theoretic fibred adjunction model

The domain-theoretic fibred adjunction model we construct below is based on lifting
the EM-resolution of a suitable CPO-enriched monad T = (7T,n,u) on CPO to a split
fibred adjunction. It is well-known that the corresponding EM-category CPO? and the
adjunction FT 4 UT : CPOT — CPO are both CPO-enriched. In particular, the hom-
cpo CPOT((A,a), (B,B)) is given by the cpo of continuous functions from A to B that
additionally satisfy the condition of being an EM-algebra homomorphism.

In order to be able to model general recursion, we assume that the monad T sup-
ports a least zero-ary operation, in the sense of [88, Section 6]. In more detail, this

means that for every EM-algebra (A,), there must exist an element Q 4 o) in |A] such

152 Chapter 4. Fibred adjunction models

that Q4 o) <4 a, for all elements a in |A[; and the continuous EM-algebra homomor-
phisms must strictly preserve these least elements.

Further, in order to be able to define split dependent sums, we assume that CPOT
has reflexive coequalizers—see Proposition 4.3.50] for how they are used.

We note that a monad T, satisfying these requirements is induced by any discrete
CPO-enriched countable Lawvere theory L (see [S0] for details) that includes a least
zero-ary operation. In particular, the monad is given by the functor 7, = U o F,, and
the category CPO™“ is complete and cocomplete, and thus has reflexive coequalizers.

We begin by defining a split fibration that is suitable for modelling eMLTT’s value
types, the fibration cfamcpg : CFam(CPO) — CPO of continuous families. This fi-
bration is based on the analogous fibration of continuous families of directed-complete
partial orders (dcpos) studied in [S1, Section 10.6]. We discuss the reasons why we

use continuous families of cpos instead of dcpos in Proposition |4.3.54

Definition 4.3.39. The objects of the category CFam(CPO) are given by pairs (X,A)
of a cpo X and a continuous functor A : X — CPOEP, i.e., a functor that preserves
colimits of m-chains when we treat the cpo X as a category. A morphism from (X,A)
to (Y, B) is given by a pair (f,{gx}e|x|) of a continuous function f: X — Y and a
family of continuous functions {g, : A(x) — B(f(x))}e|x|, satisfying

x1 <x xp = B(f(x1) <y f(x2))08x; <cPO(A(x).B(f(x2))) 8x2 CA(X1 <x x2)°

<xn> is incr. w-chain = EVyxn = Vo (B(f(xn) <y f(\/nxn»e O &xy OA(xn <x ann)p)

These conditions express that g is a continuously indexed natural transformation.

For better readability, we often define the continuous functors A : X — CPOFP
using the — notation, leaving the action of A on <y implicit when it is clear from the
context. To keep this example concise, we also omit details of some other definitions
when they are analogous to those for the families of sets fibration famgg; at the level
of the underlying sets, and when the additional order-theoretic proof obligations are
straightforward (e.g., we only give the object parts of II(x 4) and X(x »)). Further, we

also omit the laborious but straightforward proofs of the propositions given below.

Proposition 4.3.40. The functor cfamcpg : CFam(CPO) — CPO of continuous fam-

ilies of cpos, given by

def def

cfamcpo(X,A) =X cfamcpo (f, {gx}xe\x|) = f

is a split fibration. In fact, it is a full split comprehension category with unit.

4.3. Examples of fibred adjunction models 153

We refer the reader to the detailed proof of the dcpo-version of this proposition
given in [S1, Lemma 10.6.2].
In particular, given a continuous function f : X — Y, the chosen Cartesian mor-

phism over f in cfamcpg is given as in famge, i.e., by

FY,A) = (f, {ida((o) brex) 1 (X A0 f) — (Y,A)

Further, the corresponding terminal object functor 1 : CPO — CFam(CPO) and
comprehension functor {—} : CFam(CPO) — CPO are given by

IX) = Xam (1L,=) {(XA)}=]]A

where the latter is defined using a cpo-indexed coproduct, given by

LJA= (L A) <ua)

x€|X|

and where the partial order <| | 4 is given by

(xr,a1) <pjpa (x2,a2) iff x1 <xxo A A(x1 <x x2)%(a1) <yw,) @2

These cpo-indexed coproducts | |y A come equipped with natural continuous injec-
tion and copairing morphisms, given by the injection and copairing morphisms of the
underlying set-indexed coproducts of sets. Analogously to the set-indexed coproducts
of sets, we write (x,a) for the x’th injection into the X-indexed coproduct | |y A

Next, we show that cfamcpgp has the structure one needs to model a version of
eMLTT in which propositional equality is restricted to be over terms whose types de-
note families of discrete cpos—see the discussion later in this section.

As mentioned earlier, our proofs in this section rely on the limit-colimit coinci-
dence for embedding-projection pairs (see Proposition 4.3.38). In particular, we use
Proposition [4.3.38] pervasively to show that the second components of the objects of
CFam(CPO) we define below are continuous functors. An analogous property for dc-

pos had an important role in the corresponding proofs given in [S1, Section 10.6].

Proposition 4.3.41. cfamcpg has split dependent products and strong split dependent

sums.

In particular, the corresponding functors are given on objects by

H(X,A)(UAvB) = (va = |_| B<x7_>)
X A(x)

154 Chapter 4. Fibred adjunction models

z"(X,A)(|_|A7B) = (va = |_| B<X, _>)
X A(x)

where the former is defined using a cpo-indexed product, given by
[]BG,—) = ({f:Ax) — | | B{x,—)|fstof = ida(o b <M, B6-)
A(x) A(x)

and where the partial order <y, o Blx,—) is given pointwise by

Al S8l 2 1 Va € JAR)|- fi(a) <1, 8oy f2(a)

It is worth noting that the action of x — [, B (x,—) on the partial order <x
crucially relies on A being CPOFP-valued rather than CPO-valued. In particular, the
projections enable us to account for the contravariance arising from [| A(x) B (x,—).

Dcpo-versions of these definitions and the corresponding proofs can be found
in [51, Section 10.6].

Next, by combining Propositions 4.3.40[and 4.3.41] we get the following corollary.

Corollary 4.3.42. cfamcpg is a SCCompC.

Next, we note that cfamcpg also has all other structure we require from p in Defi-
nition 4.2.1] except for split intensional propositional equality, which we here restrict

to be over continuous families of discrete cpos, as explained below.

Proposition 4.3.43. cfamcpo has split fibred strong colimits of shape 0 and 2, and

weak split fibred strong natural numbers.

In particular, these split fibred strong colimits can be shown to be given by

def def

Ox £ (X,x50) (X,A)+x (X,B) 2 (X,x > A(x) + B(x))
and the weak split fibred strong natural numbers can be shown to be given by
N = (1,%+— N_) zero = (idy, {z}c1) succ = (idy, {s}ee1)

where z: 1 — N_= and s : N — N_ are the continuous zero and successor functions
associated with the discrete cpo N— on the set N of natural numbers.

As mentioned earlier, for split intensional propositional equality, we only consider
continuous families A : X —s CPOEP where each A(x) is a discrete cpo, so as to guar-

antee that the second component of Id(x 4) we define below is a continuous functor.

Proposition 4.3.44. cfamcpg has split intensional propositional equality over contin-

uous families of discrete cpos.

4.3. Examples of fibred adjunction models 155

In particular, the discreteness assumption allows us to define the split intensional

propositional equality analogously to famsget, i.e., by

ldoe.a) = ({mx 4) (X,A)}, ((x,0),d) = ({x]a = d'},=))

Next, we define a fibration suitable for modelling computation types, the fibration
cfampor: CFam(CPOT) — CPO of continuous families of continuous EM-algebras,
for the monad T = (7,m, u) we assumed earlier in this section. This is a natural domain-

theoretic generalisation of the families of EM-algebras fibration used in Section4.3.3

Definition 4.3.45. The objects of the category CFam(CPOT) are given by pairs (X,C)
of a cpo X and a continuous functor C : X — (CPOT)EP, 1.e., a functor that preserves
colimits of ®-chains when we treat X as a category. A morphism from (X,C) to (Y,D)
is given by a pair (f, {hx}c|x|) of a continuous function f : X — ¥ and a family of

continuous EM-algebra homomorphisms {/, : C(x) — D(f(x))} e |x|» satisfying

x1 <x x2 = D(f(x1) <y f(x2))¢0hy, <CPOT(Clx)).D(f(x2))) Mx2 oC(x1 <x x2)°
(xn) is incr. @-chain = hy, , =V, (D(f(xn) <y f(VXn))¢ 0 hy, 0 C(xn <x \V,yXn)?)
These conditions express that /4 is a continuously indexed natural transformation.
Proposition 4.3.46. The functor cfam pqr : CFam(CPOT) — CPO of continuous

families of continuous EM-algebras, given by

def def

is a split fibration.

We note that the category (CPOT)EP is given by embedding-projection pairs of
continuous homomorphisms between continuous EM-algebras for the monad T.
It is worth noting that an analogue of Proposition also holds for (CPOT)EP,

Proposition 4.3.47. Given a cpo X, a functor C : X — (CPO)EP, and an increasing

®-chain (x,), then the cocone o.: J — A(C(\, x,)), given by components

def

Oy, = (Cxn <x Vi %), C(xn <x Vpy Xn)?) 1 C(xn) —> C(V), Xn)

is a colimit of J : (x,) — (CPON)EP, given by J(x,) £ C(x,), if and only if

\/n (g(xn <x vn xn)e OQ(Xn <x Vn x">p) = IdQ(Vn Xn)

156 Chapter 4. Fibred adjunction models

Analogously to Proposition Proposition also follows from the well-
known limit-colimit coincidence property for embedding-projection pairs—see [105,
Theorem 2] for details. We use it pervasively to show that the second components of
the objects of CFam(CPOT) we define below are continuous functors.

Next, analogously to lifting adjunctions to the families fibrations (see Proposi-
tion , we can lift the CPO-enriched EM-adjunction FT 4 U™ : CPOT —; CPO

to a corresponding split fibred adjunction FT 4 UT : cfamp o1 — cfamcpo.

Proposition 4.3.48. The two split fibred functors ﬁ : cfamcpo — cfampyr and

—~

UT: cfa mcpor — cfamcpo, given by a pointwise construction, i.e., by
FI(X,A) 2 (X0 FTAR) UT(X,0) % (X2 UT(C()))
constitute a split fibred adjunction ﬁ o ﬁ : cfampyr — cfamcpo.
Next, we show that cfam 41 has split dependent cfamcpo-products and -sums.
Proposition 4.3.49. cfam ot has split dependent cfamcpo-products.

The corresponding functor IT(x 4) : CFam{(XA)}(CPOT) — CFamy (CPOT) is de-

fined on objects as

My (|40 = X,x—= [|Clx,—))
X A(x)

using a cpo-indexed product of continuous EM-algebras, given by

et (Mo cle-)).a
A(x)

A(x)

where the continuous structure map

o:T([(U e Clx, =) — [U o Cix,—))

A(x) A(x)

is given by
def

0 = (Ot (ra) © T(Proja))ac|ax)|

using the continuous pairing and projection morphisms associated with the cpo-indexed
products in CPO, and where 0, (,) denotes the structure map of C(x).

Observe that the use of cpo-indexed products in CPO to define cpo-indexed prod-
ucts in CPOT is analogous to how set-indexed products in % are used to define set-
indexed products in %/T—see Proposition for more details.

4.3. Examples of fibred adjunction models 157

Proposition 4.3.50. cfam ot has split dependent cfamcpg-sums.

The corresponding functor X x 4) : CFam{(X’A)}(CPOT) — CFamy (CPOT) is de-

fined on objects as
T (A0 =X x| | Clx,-))
X A(x)
using a cpo-indexed coproduct of continuous EM-algebras, given by the reflexive co-

equalizer e : FT(|_|A(X)(UT o C(x,—))) — Ua()C (x,—) of the pair of morphisms

T T F([inj, © t¢ (v) laciag)) T T
FH(Ua@(ToU o Clx,—))) - FH(Ua@ (U o Clx,—)))
IJ|_|A(X) (UTOQ@,))OF ([T(m.]a)}ae\A(x)\)

whose common section is given by

FT([inja © nUT(Q<X7u>)}a€ [A(x) |)

FY(Ua (UT 0 Clx,—-))) FY(Ua(ToUT 0 Clx,—)))

On morphisms, we define X x 4) using the universal property of reflexive coequalizers.
Observe that the use of reflexive coequalizers to define cpo-indexed coproducts in
CPOT is analogous to the use of reflexive coequalizers to define set-indexed coproducts
in 7/T—see Proposition for more details. Similar use of (split fibred) reflexive
coequalizers also appears in our definition of split dependent sums in the EM-fibrations
of split fibred monads—see the proof of Theorem for details, e.g., for the defi-
nition of ¥x 4) on morphisms using the universal property of reflexive coequalizers.
The final ingredient for constructing a fibred adjunction model based on cfamcpg

and cfampr is the split fibred pre-enrichment of cfamp 1 in cfamcpo.
Proposition 4.3.51. cfamqr admits split fibred pre-enrichment in cfamcpo.
The corresponding functor
o /(x — CFamy (CPOT)% x CFamy(CPOT)) — CFam(CPO)
is given on objects by
— (X,(X,C),(X,D)) = (X,x = CPOY(C(x), D(x)))

using the CPO-enrichment of CPOT discussed earlier in this section.

We summarise these results in the next theorem.

158 Chapter 4. Fibred adjunction models

Theorem 4.3.52. Given a CPO-enriched monad T = (T,n,u) on CPO that supports a
least zero-ary operation, in the sense of [88, Section 6], such that CPOY has reflexive
coequalizers, then the fibrations cfamcpo and cfampqor give rise to a split fibred

adjunction model where propositional equality is restricted to families of discrete cpos.

It is worth noting that the existence of the least zero-ary operation is only required
in order to use this domain-theoretic fibred adjunction model to give a denotational
semantics to an extension of eMLTT with general recursion. This requirement can be
dropped when giving a denotational semantics to eMLTT as defined in Chapter 3]

A good source of such fibred adjunction models is the algebraic treatment of com-

putational effects, as made precise in the following corollary to Theorem 4.3.52

Corollary 4.3.53. Given a discrete CPO-enriched countable Lawvere theory L
(see [50]) that includes a least zero-ary operation, the corresponding CPO-enriched
monad on T £ Uy oF, gives us a fibred adjunction model where propositional equality
is restricted to families of discrete cpos. Here, Fr 4 U, : Mod(L,CPO) — CPO.

In particular, in future work we plan to extend fibred algebraic effects and their han-
dlers with inequations based on cfamcpgo and discrete CPO-enriched countable Law-
vere theories, analogously to how famge; and countable Lawvere theories are used to
model equationally presented fibred algebraic effects and their handlers in Chapters [0]
and [/l We recall from [S0] that a key prerequisite for this to work, i.e., for the corre-
sponding left adjoint F, to exist, is that CPO is locally countably presentable (see [7,
Example 1.18 (2)]). Unfortunately, this is not the case for the category of dcpos.

Proposition 4.3.54 ([7, Example 1.18 (5)]). The category of dcpos and continuous

functions between them is not locally (countably) presentable.

The failure of the category of dcpos to be locally countably presentable is the main
reason why we use cpos instead of dcpos in this section, compared to the domain-
theoretic fibrational model of dependent types given in [51), Section 10.6].

We conclude this section by explaining why we use cfamcpg instead of the other
natural candidate, the codomain fibration codcpg : CPO™ — CPO.

On the one hand, codcpg is not split, but this can be overcome because every
fibration is equivalent to a split one, see [S1, Corollary 5.2.5]. On the other hand,
for codcpo to be a even a non-split CCompC, CPO must be locally Cartesian closed,

see [51, Theorem 10.5.5 (ii)]. However, as the next result shows, this is not the case.

Theorem 4.3.55. CPO is not locally Cartesian closed.

4.3. Examples of fibred adjunction models 159

Proof. Recall that for CPO to be locally Cartesian closed, every base change functor
f*:CPO/Y — CPO/X must have a right adjoint, meaning that f* itself has to be
a left adjoint and thus it has to preserve colimits. In particular, f* has to preserve
epimorphisms because they can be characterised as certain colimits. Specifically, it is
well-known that g : A — B is an epimorphism when idg o g and idp o g form a pushout.

Below we show that this is not the case in CPO by giving an example of a particular
base change functor and an epimorphism it does not preserve. The proof is essentially
based on the fact that not all epimorphisms in CPO are given by surjective functions.

Here, CPO/X is the slice category of CPO over X. Its objects are given by con-
tinuous functions with codomain X. A morphism in CPO/X from f:Y — X to
g :Z — X is given by a continuous function 4 : Y — Z such that goh = f.

We write N_ for the discrete cpo on the set of natural numbers and N, for the cpo

on the set of natural numbers extended with a top element ®, where <y, is given by
n <n, m iff n,m are natural numbers A n<m n<n, ® foralln

Next, recall that given a continuous function f : X — Y, the base change functor
f*:CPO/Y — CPO/X is given by sending a continuous function g : Z — Y to the

continuous function f*(g) : f*(Z) — X in the following pullback square:

() Z

|

(8

X

f

On morphisms of CPO/Y, f* is defined using the universal property of pullbacks.
The particular epimorphism of interest to us in CPO is e : No — N, given by
mapping n to n. It is easy to see that e is an epimorphism: given two continuous
functions #; : Ny — Y and iy : N, — Y, for some Y, such that ij oe = hy o e, then it
suffices to show that /i (n) = hy(n), for all natural numbers 7, and that 71 (®) = 1y (®),

for the top element ®. The proofs for these equations are straightforward:

hy(n) = hi(e(n)) = ha(e(n)) = ha(n)
h(®) = h1(V, n) =V, hi(e(n)) =V, ha(e(n)) = ha(V, n) = ha (o)

def

using the fact that o is the least upper bound of the ®-chain (n) =0<1< ...

160 Chapter 4. Fibred adjunction models

Importantly for us, e also gives us an epimorphism in the slice category CPO /N:

N_ £ No

No

Now, assuming a non-empty cpo X, let us consider the base change functor
fa : CPO/Ngy — CPO/X for a constant function f, : X — N, that is given by map-
ping every x to ®. If CPO were locally Cartesian closed, this base change functor must
preserve colimits, in particular, the epimorphism in CPO /N, given by e.

When we apply f;; to this epimorphism, we get the following morphism in CPO/X:

f5(N2) d £ (No)
fale) %@
X

where g : f5(N=) — f5(Ng) is the result of the action of f; on the morphism e in

No. By spelling out the definition of (the chosen) pullbacks in CPO, we see that

Jo(N=) = ({(x,n) | fo(x) = e(n)}, <) = ({(x,n) [@ = n}, <) = (0,=)
foNo) = ({(x,n) | folx) = n}, <) = ({{x,0) [x € [X]}, <)

from which it follows that g : f5(N=) — f(Ng) is not an epimorphism in CPO/X.
For example, take X to be the discrete cpo on the set {a,b} and Y to be the dis-

crete cpo on the set {a,b,c}. Then, if we consider functions &; : f(Ng) — Y and

def def def

hy : f5(Ng) — Y, given by hy(a) = hy(a) = a, hy(b) = b, and hy(b) = ¢, we have

hy

fi(N2) d f5(No) _ Y

f(f)(ide)

a—a,b—b,c—b

fole) e

where hj o g = hy o g holds vacuously. However, we do not have that h; = h;. L]

4.3.5.3 Extension of eMLTT with general recursion

We now show how the domain-theoretic fibred adjunction model we constructed in the

previous section can be used to model an extension of eMLTT with general recursion.

4.3. Examples of fibred adjunction models 161

We note that the following discussion ought to be preceded by the definition of the
interpretation of eMLTT in fibred adjunction models given in Section[5.1} Therefore,
we advise the reader to first read Section [5.1]and then the rest of this section.

The version of eMLTT we consider in this section includes two changes compared
to the definition given in Chapter [3] First, we restrict the types appearing in propo-
sitional equality to those that denote continuous families of discrete cpos. More pre-

cisely, we only allow V =4 . W where Agisc is given by the following grammar:
Adisc,Bdise = Nat|1|Zx:Agisc- Bdisc | [1x:A. Byisc | 0] Adisc + Bdisc |V =agee W

Second, we extend the grammar of eMLTT’s computation terms with a fixed point
operation ux:UC. M, with the corresponding typing rule given by

I'-C I'x:UCFM:C
I'Cux:UC.M:C

Further, we extend eMLTT’s equational theory with a congruence equation

'~C=D TI,x:UCFM=N:C
TFux:UC.M=pux:UD.N:D

and an equation that describes the unfolding of fixed points:

'-c rx:uCc-m:cC
I'Fux:UC.M = M[thunk (ux:UC.M)/x] : C

We note that the meta-theory we established for eMLTT in Section [3.3] straightfor-
wardly extends to this version of eMLTT. In particular, the fixed point operation and
the corresponding definitional equations are treated analogously to other computation
terms and definitional equations that involve variable bindings and type annotations.

We can interpret this version of eMLTT in the fibred adjunction model defined in

Theorem by extending the interpretation of eMLTT given in Section |5.1| with

[T;C]: = [I] € CPO [T:CJ2(y) € (CPOT)EP
[C,x:UCM]1 =idir o) (I0x:UCM]2) iy - 1 — UN([Cla(y))

[[F;,ux:UQM]]l e id[[r]]

def

([Ciux:UC.M2)y(x) = pl(c ([0,x:UCM]2)y.0(%))

where c is an element of the set |[UT ([T';C]2(y))]|.

For better readability, we use subscripts to denote the first and second components
of the objects and morphisms in CFam(CPO) and CFam(CPOT). This notation is
analogous to the conventions we adopt in Sections|[6.5] and [7.9] for Fam(Set).

162 Chapter 4. Fibred adjunction models

It is then straightforward to show that the soundness results presented in Section[5.2]

remain true for this extension of eMLTT, as discussed in detail below.

First, the least fixed points u(c — ([[,x:UC;M]2)(y,) (*)) are guaranteed to exist

because our assumptions about T ensure that every UT ([I;C]»(7)) is a pointed cpo.

Next, showing that [[';ux:UC.M] is indeed a morphism from ([I'],y+> 1) to
([T],y— U ([T:C]2(y))) in CFam(ry(CPO) amounts to showing that [[;ux:UC. M|

is a continuously indexed natural transformation in the sense of Definition 4.3.39

For the naturality of [I";ux:UC.M],, we have to prove that y; <[rj Y2 implies

(UTo[T:Cla) (v <pry v2)¢ (u (et = ([0,x:UC:M]2) iy, ey (%))

SUT([rClh(m)
p(cz = ([C,x:UCM]2) ¢y 00y (%))

We prove this inequation by first recalling a standard result in domain theory that
the least fixed point operation is itself continuous, e.g., see [87, Section 2]. Then, using
the fact that [I',x: UC;M] is assumed to be a morphism in CFamr ,.;;c)(CPO), i.e.,
[T',x:UC;M]> is natural in the sense of Definition we get the inequation

p (e (UTo[5Clo) (n <pry v2)° ([0 x:UC ML) iy, wrofrcl)m<ppm)?(en)) ()
SUT(Ircl ()
p(c2 = ([Tx:UCM]2) yy.c,) (%))

meaning that we are left with proving that the following inequation holds:

(UTo[I5Cl2) (vt <pry 12)¢ (u (e = ([T,x:UC:M]2) iy) ()
SUT([rC) (1))
p(e2 = U o [T:Cla)(n <pry v2)¢ ((IT,x:UC: ML) iy, wrericly) on <grym)?(en)) 9)))

We prove this last inequation below, using a natural deduction style presentation. In

order to improve the readability of this proof, we use the following auxiliary notation:

E= (UTo[I:Clh)(n < 2)°
P def

= (UTo[I5Cl2) (v <[y 12)?
fte) = ([0,x:UCM]2)) (%)

4.3. Examples of fibred adjunction models 163

and omit the subscripts on <. The above inequation is then proved as follows:

£, £, P(u(cz— E(f (y1,P(c2)))))))

Fn f{n,P(u(ea = E(f (11,P(c2)))))))

(e)
F s f(nsP(uea = E(f (n,P(c2)))
<
FnPE(f (vi,P(u(c2 = E(f (v1,P(c2))))))))) ()
F s f(nsP(uea = E(f (0, P(c2))))
<
S, Pu(ca = E(f (11, P(c2)))))) ©
pler = f(yer) < f(n,Plu(ea = E(f (11,P(c2)))))) ()
E(u(cr— f{yi,c1))) <E(f(vi,Pu(ca = E(f (11,P(c2))))))) (@

E(u(cr= fn,c1)) Sulea E(f(11,P(c2))))

where (a), (¢), and (d) follow from properties of least fixed points; (») holds because
E is monotone; and (e) holds because E and P form an embedding-projection pair.

For showing that [I";ux:UC. M|, is continuously indexed, we have to prove

ple = ([0x:UCM) (.00 (%))

Vo (UT o [T:Cl2) (1 <qrp Vi Ya)® (1 (en = ([T,x:UCM]2) 4y, 0, (%))
We prove this equation by again using the fact that the least fixed point operation
is itself continuous and the fact that [I",x:UC;M] is assumed to be a morphism in

CFam(r ..yc](CPO). These observations give us the following equations:

ule = (I0x:UCM) (.00 (%))

u(c—
Vo (U 0 [T:Cl2) (0 <qry Vo ¥n)* ([T, x:UC:M]2) y, wofrl) < gy Vit () (F)))

Vo (u(c—
(U o[T:Cl2) (¥ <qry VoY) ([T, x:UC:M]2) y, wTefrclo) <Vt (@) ()

meaning that we are left with showing that the following equation holds for all n:

(e
(UT o [T:Cl2) (v <qry VoY) ((IT,x:UC: M) iy, (o el (< g Vw0 (9))

(U o [:Cl2) (Y <pry Va¥a)* (1t (en = ([T, x:UC:M]2) y, 0, (%))

164 Chapter 4. Fibred adjunction models

We prove this last equation by showing that we have inequations in both directions.

Similarly to the naturality proof, we use auxiliary notation in this proof, given by

def

E= (U [T:C1) (Ya <1y V)
PE(UTo[T:Clo) (Y <qry Va¥n)?
Fe) E([Dox:UCM]2) iy (%)

In the left-to-right direction, we have

S Ctst(en = [(Bnsen))) = f nstt(Cn = f (Yasca))) @)
f<YnnU(Cn '—>f<7nacn>)> <p(en = f(Ynscn)) ()
E(f (Ynsut(cn = f (nscn)))) < E(u(cn = f(Yascn)))
E(f (Y, P(E(u(cn = f (Yascn)))))) < E(ulcn = f (Yascn)))
(e E(f (Y, P(c)))) < E(u(cn = f (Y cn)))

()

a

where (a) and (d) follow from the properties of least fixed points; (») holds because E
and P form an embedding-projection pair; and (c) holds because E is monotone.

In the right-to-left direction, we have to prove that the following inequation holds:

E(,U(Cn '_>f<Ynacn>)) SM(CHE(f<’Yn7P(C)>))

As the proof of this inequation has the same structure as the proof of the corresponding
inequation in the earlier naturality proof for [I'; ux:UC. M],, we omit its proof here.
Finally, it is easy to see that the interpretation validates the fixed point unfolding

equation, namely, because we have interpreted ux:UC. M using a least fixed point.

Chapter 5
Denotational semantics of eMLTT

In this chapter we show how to interpret eMLTT in the fibred adjunction models we

defined in Chapter 4} and we prove that this interpretation is sound and complete.

5.1 Interpreting eMLTT in fibred adjunction models

Following the standard approach in the literature on dependently typed languages, e.g.,
as advocated by Streicher [107] and Hoffmann [44], we define the interpretation func-
tion as an a priori partial mapping [—] from the raw (i.e., not necessarily well-formed)
expressions of eMLTT into a given fibred adjunction model. It is only afterwards that
we prove in the soundness theorem that [—] is defined on well-formed expressions
and, furthermore, that it validates the equational theory of eMLTT. In order to be able
to define the interpretation function as a partial mapping, we have decorated the syntax
of eMLTT with a range of additional type annotations, as discussed in Section
Analogously to the work of Streicher and Hoffmann, the main reason for defining
[—] as a partial mapping is to avoid the coherence issues that arise when trying to
define [—] directly on the derivations of well-formed expressions. In particular, as the
typing derivations of eMLTT are not unique, due to the context and type conversion
rules (see Section [3.2)), defining the interpretation on the derivations of well-formed
types and terms would require us to also simultaneously prove the coherence of the
interpretation. Furthermore, as the context and type conversion rules contain defini-
tional equations, defining the interpretation on derivations would also require us to
simultaneously prove that the interpretation validates the equational theory of eMLTT.
Throughout this section, we assume given a fibred adjunction model using the no-
tation of Deﬁnition ie,givenbyp: VYV —B,q:C— B,andF U :q— p.

165

166 Chapter 5. Denotational semantics of eMLTT

We begin by defining a notion of size for eMLTT’s expressions and value contexts.

Definition 5.1.1. The size of an expression E, written size(E), is defined by recursion

on the structure of £ as follows:

size(Nat) = 1

size(x) =1

size(return V) = size(V) +1

size(M toy:A inc N) = size(M) +size(A) + size(C) + size(N) + 1
size(K(V)(y:4).c) = size(K) +size(V) +size(A) + size(C) + 1
size(V(K)c,p) £ size(V) +size(K) + size(C) +size(D) + 1

Definition 5.1.2. Given a value context T, its size, written size(I), is defined as
size(0) = 0 size(T,x:A) = size(T) +size(A)
Using this notion of size, we now define the partial interpretation function [—].

Definition 5.1.3. The a priori partial interpretation function [—] is defined by induc-

tion on the sum of the sizes of its arguments (see below) such that, if defined, it maps
e a value context I to an object [I'] in B,
e a pair of a value context I" and a value type A to an object [[;A] in V|,
e apair of a value context I and a computation type C to an object [I';C] in (.

e a pair of a value context I' and a value term V to an object A in ’V[[r]] and a

morphism [[3V] : 1jrp — A in Yy,

e a pair of a value context I" and a computation term M to an object C in (jry and

a morphism [M] : 1y — U(C) in Yy, and

e a quadruple of a value context I, a computation variable z, a computation type
C, and a homomorphism term K to an object D in (jrj and a morphism
[[52:C;K] : [[;C] — D in (.

5.1. Interpreting eMLTT in fibred adjunction models 167

Compared to how we defined [—] in [9], we give its definition here in natural
deduction style instead of using the Kleene equality ~. This makes it easier for the
reader to follow the details of the definition, such as the domains and codomains of
the interpretation of the subterms of a given term. Specifically, we define [—] using
rules whose premises describe the conditions we require to hold for the corresponding
conclusions to be defined. For example, in the premise of the case for function appli-
cation V(W) ,.4). g, We require the application of [—] on the given function term V to
be defined and its codomain to be an application of the ITjr4)-functor. Observe that it
is precisely these kinds of conditions that make the definition of [—] partial.

In terms of notation, we write [[;A] € 4y to mean that [I;A] is defined and
given by an object in {V[[T}] , and similarly for computation types. Analogously, we write
[T5V] : 1rp — A to mean that [I'; V] is defined and given by a morphism 1jrj — A
in ‘V[[F]] , for some object A, and similarly for computation and homomorphism terms.

To improve the readability of the definition of [—], we leave some premises implicit
if they can be inferred from others. For example, when we write [I'; V] : 1) — [[3A]
in the premise of a rule, we implicitly assume that [['] € B and [I';A] € V.

We now give the rules that define [—].

Value contexts

[T;A] € Vg x & Vars(T)
[o] =1 [T,x:A] = {[TA]}

Value types

[T] B [I] € B

[T;Nat] défxm(N) [C:1] = 1y

[T:A] € Vg [T,x:A;B] € Virapy

def

[T:Xx:A.B] = Eproap ([T, x:A; B])

[T;A] € "V[m] [T,x:A;B] € {V{[F;A]]}

def

[T T1x:A. B] = 4 ([T, x:A; B])

[[]eB [T;A] € Vg [T B] € Yy
[0;0] =0y [T3A+B] = [A] +qrp [T]

168 Chapter 5. Denotational semantics of eMLTT

[CV]: 1 — [GA] W] L — [T34]
[V =4 W] = h*(Id[r.ap)

where /4 is the unique mediating morphism in the following pullback situation:

s([CW])

T

[r] = {7 (ITAD} Fa Al {[T:A]}

[ra)) PEpa(CAD) |mra

{[T:AD} [T

Ly

[[:C] € Oy
[C;uc] = U([I:C))

[[:Cl € Gry [I:D] €

def

[I5C —o D] = [[,C] —oqry [T5D]

Computation types

[[3A] € Yy
[T; FA] = F([T3A])

[GAl € Yy [T,x:A5C] € Cprap

def

[0:2x:A.C] £ Sy (I x:A:C))

[[;A] € Yy [T,x:A5C] € Cyprap
[[;Tx:A.C] e Myrap ([T, x:A;C])

5.1. Interpreting eMLTT in fibred adjunction models 169

Value variables (case 1)

[T5A] € Yy x & Vars(DD)

[T,x:A;x]

def

Liruany

Z[rA] _{RJ[EF;A]]
YTl
e Egrap (1ragy)

r.ap (Eira) (Trap (Lrp))

EEF: A] (fst)

T (ITAD)
Value variables (case 2)

y & Vars(T1,x:A1,17)
[[Fl,XIAl,FQ;Az]] c {V[[FthAl,rz]] [[Fl,XZA],Fz;X]] . IHFI,X3A17FZH — B

Hrl,xiAl,Fz,y:Az;x]]

def

1 [C1x:A1,2,y:A7]

1 {IIFI 7X:A1 7F2 sAZ]]}

*
Tc[[l"l XAL ,Fz;Azﬂ (1 [[y,x:A1,T2])

EEFI XA TpiAs] ([[rl &AL ;x]])

n?fl"l XA, 0A0] (B)

170 Chapter 5. Denotational semantics of eMLTT

Zero
[I]eB
!EF]] (zero)
. et 1* (N
[[;zero] = 1 ——— '[[Fﬂ()
Successor

[[F; V]] : 1[m] _HFEF]] (N)

o [T:V] . !EF]] (succ) .
[[isuccV] =1 ———— !m(N) — Iy (N)

Primitive recursion

[r;v] - iy —>!EFH(N) [r;v,] - L — (s(!x (zero)))*([I",x: Nat;A])

[T, y1:Nat,y2 :Aly1/x[s Vsl 1r eNatapy — nﬁ‘r’x:Nat;A]]({!}(succ)}*([[f‘,x:Nat;A]]))

[[;nat-elimy 4(Vz,y1.v2.Vs, V)]

Iy

(s(IVD)* (L, o)

(s(ITV])* (irenatsag (IT Vel [Toyi:Nat,y2:Alys /] Vi)

(s(IT5VD))*([T,x: Nat; A])

Unit

[T € B

id;
def lIFH
[T+ = g ——— 1y

5.1. Interpreting eMLTT in fibred adjunction models 171
Pairing

[CV]: 1 — [GA] [GW] e e — (s(I5V]))* ([T, x:A; B])

[[F; <V7W>(x:A).B]]

def

Iy
[m:w]
(s[5 VD)) ([T, x:A; B])

Al IR
(SITVD) Mgy)

(I VD)* (Wi (Sqrap (T x: A3 B)))

Z[[F;A]] ([[F,x ZA;B]])

Pattern-matching

[T5V] 1y — Zqroa, ([T x1:A2;A2])

[T,x1:A1,x2: A W] : 1{[[1“7)61;141;142]]} — KEF;Al]],[[F,xlAl;Az]]([[F’y: (Xx1:A1.A2);B])

[C;pmV as (x1:A1,x2:A) iny p W]

iy

(VD) (™) (e apsan)y)

(s(ITVI))* (e 1)* ([Tx1A1 x2A2:W]))

(s(IT:VD))* (=) (" ([T, y: (Zx1: A1 A2); B]))

(s([5VI))* (I, y: (Zx1:A1. A2); B])

—1
[T:A]L[Tx1:A1342]

where we omit the subscripts in K[r.a,[,[r,x4,:4,] and K in the conclu-

sion for better readability.

172 Chapter 5. Denotational semantics of eMLTT

Lambda abstraction

[TA] € Vg [Cox: A V] Lyrapy — B

[T Ax:A.V]

def

iy

nnEF;AH AH[[F;A]]
'y

Moy (R (grp))

ey (1 pruagy)

HHF;AH ([[F,XSA ;Vﬂ)

Mrap(B)

Function application

[0V 1y — Mg ([C,x:A3B]) - [W] : 1 — [A]

[TV (W) (a).8]

def

I

(s([I Wﬂ))*(nﬁr;Aﬂ (1 [[F}]))

(S(ITWD)* (R (ITV]))

(s(IT:W1))* (i (g (I 243 B])))

nk aq T T:A
(s([[F;W]]))*(eﬂlll,;ﬁ]];B]][[)

(s([W1))* ([, x: A; B])

5.1. Interpreting eMLTT in fibred adjunction models 173

Empty case analysis

[[F7XIO;A]] € r[/{o[m]} [[F;V]] : l[m] — OHF]]

[T;case V ofy 4 ()]

iy

(s(IT:V)* (1 oy })

(s([[F;V]]))* (?ﬂl".x:O;A]])

(s(IT5 VD))" ([T, x: 0;A])

Binary case analysis

[r;Vv] - 1[11] — [T3Aq] +1r7 [T';A2]
[C,y1:AuWi] s Lo,y — {inl}* ([T, x: A1 +A2; B])
[[F,yz:Az;Wz]] : 1{[[F;A2]]} — {inr}*([[F,x:A1 —f—Az;B]])

[[;case V ofy p (inl(y;:A;) — Wi, inr(y2:Az) — Wa)]

Iy

(s(I5 VD))" (L ria g+ g [raaly)

(s(IT:VD)* ([ITy1:A W L [Ty2:A2:Wa)

(s(I VD)™ ([T, x: A1 +A2: B])

Left injection

[C:V]: g — [GA] [T5B] € Yy

def vl inl
[T3inlaip V] = 1y ——— [GA] —— [A] 4y [T B]

174 Chapter 5. Denotational semantics of eMLTT

Right injection

[T:A] € Vg [GV] = Lgp — [T 8]

def

vl inr
[[F; inrA+B V]] = 1[[F]] e [[F;B]] —_— [[F;A]] —}—[[1"]] [[F;B]]

Reflexivity of propositional equality

[[F;V]] : l[m] —A

def = (s([5V]))*(ra)
[Ciretl V]2 1y —> (VD) (1)) » (s(IT: VD)) (85 (1))

Elimination of propositional equality

[[F;Vl]] : 1[[F]] — [[F;A]] [[F;VZ]] : l[[F]] — [[F;A]] [[F;Vp]] : l[m] — h*(|d[[F;A]])
[[F,yIA;W]] . 1{|d[[1";A]]} —
(s(rprap))* ({8prag (proap) ([T, x1 : A, 220 A, x5 (x1 =4 x2); B]))

[[;eq-elimy (x1.x2.x3.B,y. W, Vi, V2, V,))]

def

I

(ST V) (R0} (L)

(s([T:Vp])* ({r(drap) b ((ITy:A:W])))

(s([Ts V1)) ({A(1dproap) } ([T, 21 : A 020 A 632 (31 =p x2)3B]))

where we omit the subscripts in ifra] [T x4, x4 p] in the conclusion; and

X1=4X2);

5.1. Interpreting eMLTT in fibred adjunction models 175

where £ is the unique mediating morphism in the following pullback situation:

s([la])

T

[r] - (i ([TADY R

{Trag ([T:A]

P(mrap([TA])) Tra]

[T

Tr:a]

Thunking a computation

[TsM] : 1y — U(C)

M
[I; thunk M] = 1ypy —H—H—> U(C)

Homomorphic lambda abstraction

[C]l € Yy [G:z:CGK]:[I:C] — D

def E"H}l]] IrCl.p ([T:z:C;K])
[Fhz:C K] = gy [T:C] —opry D

Returning a value

[[F;V]] : 1[[F]] — A

def [[F’VH nAIA:#U
[[;return V] = Iy > A > U(F(A))

176 Chapter 5. Denotational semantics of eMLTT

Sequential composition

[CsM] = 1y — [A] [Tx:AsNT 2 Lggrapy — U(nﬁ‘F;A]]([[F;Q]]))

[[sM to x:A in¢ NJ

def

Iy
[:M]
U(F([T5A]))

U(F((id[raf,"))

U(F(Zrap (Tgr.p (1))

U(F(Zqra)(Lrap))

U(F (Eqra(ITxAN])))

U(F (Sqrap(U (i (IC)))

U(F (S (T (U(ITCI)))

Irra Hrk
UF (EUEHF;&]))

U(FU([1:C])))

Ulefréy)

U([r.cj)

5.1. Interpreting eMLTT in fibred adjunction models 177

Computational pairing

V] gy — (AL [0M] g — U(((IT VD) ([0 x:A:CD)

[T (v, M) (x:A).Q]]

def

Iy
[mM]
U((s([05v])) ([T, x:A;CT))

T AT AT
U(SITVD) Mgy ©)

U(((IT: VD) (R (Egroag (I x: A1)

U(Zprap ([x:4:€1))

Computational pattern-matching

[TsM] = 1y — U(Zqru) ([T x:A:C]))
[T,x:A;7:C;K] : [T,x:A;C] —>REF;A]]([[F;Q]])

[I'sM to (x:A,z:C) inp K]
I

[T:M]

U(Zqrap ([T, x:A;C]))

U (Zqrap ([Tx:A52:C:K]))

U (Z[[F;A]] (TCEF;A]] ([T501)))

hy 4k
[:A] A
Ule [T:D] fral)

U([rD])

178 Chapter 5. Denotational semantics of eMLTT

Computational lambda abstraction

[[F;A]] S r[/[[r]] [[F,X:A;M]] : 1{[[F;A]]} — U(Q)

[T Ax:A.M]

def

iy

nnEF;A]] —|H[[1—,A]]
1y

Mjroap (w4 (1rp)

proap (Lggragy)

HHF;A]] ([[F,x:A ;Mﬂ)

yrap(U(C))

Crrape

U(Ir,4(C))

[

where CH,[[F; a] U ollrayp — Iy oU is the natural isomorphism defined in Propo-

sition 4.1.14]

5.1. Interpreting eMLTT in fibred adjunction models 179

Computational function application

[[F;M]] : 1[[Fﬂ — U(HHF;AH([[F,X:A;Q]])) HF;V]] : 1[[F]] — [[F;A]]

[[F;M(V)(XZA).Q]]

def

iy

|

(VD) (g (1)
(s(ITVD)* (Rjpy (ITMD)

(ST VD) (g (U (Mg (IT,x:A:C1)))

U((s(IT: VD)™ (R4 MMpraap ([T, x: A:CT))))

I § ey
U((s([r:v]))* (Sugﬂgﬂ ral,

U((s([T5V]) ([, x:A:C]))
Forcing a thunked computation

[r;v] - I — U([T;C])

def [[F’V]]
[I;forcec V] = 1jrp ——— U([[:C])

Homomorphic function application
[CV]: 1y — [5C] —oqry [5:0] [TM] 2 1 — U([15C])

det [T:M] U (&, rep.irop (I0:V]))
[TV (M)c pl = 1) —— U([15C]) , U([T:D])

Computation variables

[T:C] €

def Idﬂl—’g]]
[T;z:Csz] = [IC] ——— [I:C]

180 Chapter 5. Denotational semantics of eMLTT

Sequential composition

[[:Cl € Gy [Dz:GK] = [C] — F([T3A])
HF,XZA;M]] . 1{[[F§Aﬂ} — U(ﬁﬁ{F;A]](HF;I_)]]))

[[;z:C;K tox:A inp M]

def

Ix¥el
[[:2:C:K]
F([T;A])

F((idrap.!)

F(Zray(Try (1ry))

F(Zqroap(1grapy))

F(Zgrap (ITx:A:M])

F (S (U (i (IT:D1)))

F (S (Wi (U(IT:D1)))

E[[F;A]] AE?[(F;A]]
u([r:D])

F(e
FU([rD]))

FAU
D]

[T:D]

5.1. Interpreting eMLTT in fibred adjunction models 181

Computational pairing

[G:C] € Gy [TV] = g — [T:A]
[T5z:CK] - [I5C] — (s([T5V])* ([T, x:A; D)
[[F;Z:Q; <V= K> (x:A).Q]]

et

[T;C]

[[z:C:K]
(s([T5vD))* ([, x:A; D)

Zrra .
ITVD) gy =)

(s(I VD))" () (Bqriag ([T x:4: D))
|
Ziray ([T x:4; D))

Computational pattern-matching

[:C] € Gry [iz:GK] = [T5C] — Eqrap ([, x:A;D4])

[T,x:A;z2:Dy; L] : [T',x:A;D,] —>REF;A]]([[F;QZ]])

[:z1:C;K to (x:A,22:Dy) inp, L]

def

(]
[T:z1:C:K]
irap ([T, x:A;D4])

Eprap([Tx:Asz2:Dy5L])

Zira] (T ([0 D2])

Z[[F;A]] %REF;A]]
[:Dy]

[I';D,]

182 Chapter 5. Denotational semantics of eMLTT

Computational lambda abstraction

[T:C] € Gy [T,x:A52: G K] :nﬁ‘F;A]]([[F;Q]]) — D

[[;2:C;Ax:A.K]

def

[T:C]

"[*[F;A}] AMrg]
Nrey

Moy (4 (I6C1))

Mroap ([Fx:A52:CK])

jrap (D)

Computational function application

[0:Cl € Grp [TV] = gy — [TA]
[T52:CK] : [I5C] — Hyrap ([T, x:A; D])

[[F;Z:Q;K(V)(X:A).Q]]

d_ef
[Tl

([T VD) (g (IT:CD))

(s(IGVD)* (g ([T52:CKT))

(ST VD))" (i (Mg ([0, x:As D))

T T T:A
(v ey)

(s[5 V1)) ([, x:A; D])

5.2. Soundness 183
Homomorphic function application

[TV] = 1rp — [15D4] —opry [13D,] [Ti2:CK] - [IC] — [I3D4]

wt [Ciz:CiK] &qry.ro; 1. [r:,] (IT:V])
[T52:C;V(K)p, p,] = [[;C] ——— [[;D4] [T:D,]

5.2 Soundness

In this section we show that the interpretation of eMLTT we defined in Section [5.1]is
sound. In particular, we prove that [—] is defined on well-formed expressions, and that
it validates the equational theory of eMLTT. We state and prove this result in Theo-
rem [5.2.15] However, before we do so, we first define semantic notions of weakening
and substitution, and relate them to their syntactic counterparts, analogously to the
soundness proofs for the denotational semantics of MLTT given in [107, 44]].

First, we observe that if we assume that [I'1,I2] € B, then I';,I", must be a valid
value context to begin with, and thus I'y and I'; must be disjoint according to the
definition of value contexts, namely, because the variables in I'{,I; are distinct. As
a consequence, we do not need to include explicit disjointness requirements on value
contexts in the propositions and theorems we prove in the rest of this section.

Next, we define the semantic notions of weakening and substitution.

Definition 5.2.1. Given value contexts I'; and I';, a value type A, and a value variable
x such that [T}, T3] € B and [['1,x:A,I;] € B, we define the semantic projection

morphisms as the a priori partially defined family of morphisms
Projr, e, - [L'1,X:A, 2] — [, T3]
that are defined by induction on the size of I, as follows:
. def Al
Projr Ao — LT 1A] —— [IN]

: [{projr, .caxr, ([T1.12:B])}
ProJr A, y:B = {prOJrl;x:A;rz([[Fl,rz;B]])} {[T1,T2;B]}

where the base case is always defined because the assumption [I'},x:A] € B allows us

to deduce [I'};A] € {V[[Fl]] from it; and the step case is only defined when we have

[[Flax:AaFZ;B]] = projFl;x:A;Fg(HF17r2;Bﬂ)

184 Chapter 5. Denotational semantics of eMLTT

Definition 5.2.2. Given value contexts I'y and I, a value type A, a value variable x,
and a value term V such that [I'j,x:A,I'2] € B and [I';,I'2[V /x]] € B, and such that
[T1;V] = 1y — [T1;A], we define the semantic substitution morphisms as the a

priori partially defined family of morphisms
substryieairyy [T, DoV /x]] — [[1,x:A,T3]

that are defined by induction on the size of I';, as follows:

def

[:v]
substr, Aoy = [[1] —— {[T1:A]}

def
su bStF1 AT, BV =

. {substrl ;X:A;rz;v([[F17XZA7F2;BH)}
{SUbStFI;x:A;FZ;V([[Fl ,x:AT2;B])} {[T1,x:A,T'2;B]}

where the base case is always defined due to the assumption [I'1; V] : Ijr,j — [['1;A];

and where the step case is only defined when we have
[[Fl) FQ[V/X];B[V/XH] = SUbSti‘:l ;x:A;Fz;V([[Fl 7X:A7F2;B]])

Intuitively, the family of morphisms projr .;.4.r, corresponds to projecting out the
value context I'j, I, from I'j,x:A,I"2; and the family of morphisms substr,...a.r,:v
corresponds to substituting the value term V for the value variable x in I'j,x:A, ;. We
make this intuition formal in the semantic weakening and substitution lemmas below.
Simultaneously with these lemmas, we also prove that the a priori partially defined

families of morphisms projr ..4.r, and substr,;v.a;1,;v are in fact defined for all T.

Proposition 5.2.3. Given value contexts I'y and I'5, a value type A, and a value vari-
able x such that [I'1,I2] € B and [I'1,x:A,I'2] € B, then the a priori partially defined

semantic projection morphism projr ..ar, : [['1,x:A,I2] — [['1,T2] is defined.

Proof. We prove this proposition simultaneously with Proposition The proof is
straightforward—it proceeds induction on the size of I';. As mentioned in the defini-
tion of projr, ...4.r,» the base case is always defined because in this case we assume that
[T'1,x:A] € B, from which it follows that [I';;A] € 4r,] by inspecting the definition
of [—] for I';,x:A. For showing that the step case is defined, we use (a) of Proposi-
tion which gives us [['1,x:A,T2; B] = projt ..ar, (IT1,72:B]) € Yr, xary)r O

Proposition 5.2.4 (Semantic weakening). Given value contexts I'y and ">, a value
type A, and a value variable x such that [I'y,I] € B and ['1,x:A, 1] € B, then we

have:

5.2. Soundness 185
(a) Given avalue type B such that [I'1,I'2;B] € ’V[[Fl] then
[T1,x:A,T2;B] = projr, ., ([T1,T2:B]) € Yy xear]
(b) Given a computation type C such that [I'1,I'2;C] € r,], then
[T1,%:A,T2;C] = projr, .ar, ([T1,12:C]) € O x4y
(c) Given avalue termV such that [U1,I2;V] : 1, r,] — B, then
[T1,x:A,T2;V] = projr,ea.r, ([T, T2: VD) : 1ry xea,r,] — Proir ceasr, (B)
(d) Given a computation term M such that [['1,To;M] : 1, r,) — U(C), then
[T1,x:A,T2;M] = projr, ea.r, ([C1,T2:M]) = Ury 4 m) — U (Projryear, ()

(e) Given a computation variable z, a computation type C, and a homomorphism term
K such that [['y,12;2:C;K] : [['1,12;C] — D in (r, 1, then

[T1,x:A,T2;2:C; K] = projp, ea.r, ([T1,T2:2: G K])

: projl*"l;x:A;Fg (Hrl ’ FZ;Q]]) — prOjiil XA, (Q)
where we use the notation
[[Fl XA, Fz;B]] = projlﬂ:l;x:A;l"z([[Fl) Fz;B]]) S rV[[l"l,x:A,l"g}]

to mean that [I'y,x:A,T2; B] is defined and that it is equal to projr-, .,.a.r, ([T1,12; B])

as an object of 'V[[Fl xA,]- We also use analogous notation for terms and morphisms.

Proof. We prove this proposition simultaneously with Proposition [5.2.3] We prove
(a)—(e) simultaneously, by induction on the sum of the sizes of the arguments to [—].
We postpone the straightforward but laborious details of this proof to Appendix
In the setting of contextual categories, a detailed proof of this proposition can be
found for MLTT in [107, Chapter III]. O

Proposition 5.2.5. Given value contexts I'y and 17, a value type A, a value vari-
able x, and a value term V such that [I'y,x:A,I'2] € B and [I'1,I2[V /x]] € B, and
such that [T'1;V] @ 1yp,p — [['1;A], then the a priori partially defined semantic sub-
stitution morphism substr,.ca.r,.v : [I'1,12[V /x]] — [[1,x:A,T2] is defined.

186 Chapter 5. Denotational semantics of eMLTT

Proof. We prove this proposition simultaneously with Proposition The proof
is straightforward and very similar to the proof of Proposition [5.2.3}—it proceeds by
induction on the size of I';. As remarked in the definition of substr,.,.4.1,.v, the base
case is always defined because we assume that [I';,I2; V] : 1Ir, — [I'1;A]. For show-
ing that the step case is always defined, we use (a) of Proposition which gives
us that [I', T2V /x]; B[V /x]] = substy .ar,.w ([T1,%:AT2:B]) € Y, ryv). O

Proposition 5.2.6 (Semantic value term substitution). Given value contexts I'y and 1",
a value type A, a value variable x, and a value term V such that [['1,x:A,T>] € B and
[Ty, T2V /x]] € B, and such that [T1; V] : 1jr,) — [C1;A], then we have:

(a) Given avalue type B such that [I'},x:A,T2;B] € {VE[th:AIz]]’ then
[T1, 02V /x]; B[V /x]] = substr, .v.a.r,:v ([T1,%:4,T2:B]) € Y, v /x)
(b) Given a computation type C such that [I'1,x:A,T»;C] € Ar, xA,]> then
[T1, [V /x]sCV /x]] = substr . aryv ([T1,5: 4,12, C]) € Cry ryv /)
(c) Given avalue term W such that [U'y,x:A,To; W] : 1jr, ar,] — B, then
[T, T2V /x]; W[V /x]] = substp, .a.r,.v ([T1,2:4, T2, W])
Sy v /a)] — substr ar,v (B)

(d) Given a computation term M such that [U'y,x:A,To;M] : 1[r, var,] — U(C),
then
[Ty, T2V /x];M[V /x]] = substFl;x:A;rz;V([[Fl,x:A,Fz;M]])

ey n v) — U(substr car,v (€))

(e) Given a computation variable z, a computation type C, and a homomorphism term

K such that [I',x:A,T2;2:C;K] : [T'1,x: A,T2;C] — D in Ary xA) then

[T1, 02V /x]52:C[V /x|; K[V /x]] = substy, .a.r,. ([T1,%:A,T2;2: G K])
: SUbStl*"l;x:A;Fz;V([[Flax:AaFZ;Q]]) — SUbStl*“l;x:A;Fz;V (Q)

Proof. We prove this proposition simultaneously with Proposition [5.2.5] We prove
(a)—(e) simultaneously, by induction on the sum of the sizes of the arguments to [—].
We omit the lengthy proof of this proposition because it is analogous to the proof
of Proposition due to the similar use of the comprehension functor {—} and

Cartesian morphisms in the definitions of substr, y:a:1,;v and projr,..a.r,-

5.2. Soundness 187

Analogously to Proposition in the setting of contextual categories, a detailed
proof of this proposition can be found for MLTT in [107, Chapter III]. [

Next, we show that the semantic projection and substitution morphisms commute

with each other.

Proposition 5.2.7. Given value contexts I'1 and 1'», value variables x and y, value
types A and B, and a value term V such that [I',T2[V /y]] € B, [I'1,y:B,I'2] € B,
[[Fl,x:A,Fz[V/y]]] € B, [[Fl,x:A,y:B,Fz]] € B, and [[Fl;V]] : 1[[F1ﬂ — [[Fl;B]], then

su bStrl;le;Fz;V © projfl;x:A;Fl vV/y] — projrl;x:A;y:B,Fz © SUbStrl XAy:BiIV

Proof. We prove this proposition by induction on the length of I';. Both the base case
and the step case of induction are proved by straightforward diagram chasing. We

postpone the details of this proof to Appendix[C.2] O

Next, we recall from Section that the motivation for requiring the split depen-
dent sums to be strong is to be able to model the type-dependency in the elimination

form for Xx:A. B. We make this informal motivation precise in the next proposition.

Proposition 5.2.8. Given a value context T', value variables x|, x;, and y, and
value types Ay, Ay, and B such that x; ¢ Vars(T') U{y}, [I] € B, [[3A] € Y,
[T,x1:A15A2] € Y yya,) and [T, y: (Ex1:A1.A2);B] € Vry:(5x1:4,.4,)] then we have

[T, x1:A1,x2:A2,B[{x1,x2) /Y]] = KEF;Al]]j[[Fm:Aqu]]([[F’y: (Xx1:A1.A2);B])

Proof. We begin by noting that both sides of this equation can be rewritten.

On the one hand, the left-hand side of this equation can be rewritten as

(s([[F,xl :A1 , X2 :Az; <X1 ,)Cz>]]))*(
(A A, (I x1 A Zx i AL Ao) 1Y(
T ([T Zx1: A A2]) ([T y: (Ex1:A1. A2); B])))

based on Propositions[5.2.4 and [5.2.6] and the definition of morphisms projr.,.4.r-,-

On the other hand, the right-hand side of this equation can be rewritten as

Zieag])

My Ay (A ([0S A A (I (B30 Av. Aa): B]))

based on the definitions of Kjr.,), [rx,:4,:4,] and [I5Xx1:A1.Az].

188 Chapter 5. Denotational semantics of eMLTT

Now, as a result of p : I/ — B being a split fibration, it suffices to show

{n[[F,xlsAl;Az]](ﬂraxl :Al;le 1A .Az]])} os([[r,xl 1A , X2 :Az; <X1,X2>]])

Ziray])
M)}
for the required equation to be true. We show that these two morphisms are equal by

straightforward diagram chasing. We postpone these details to Appendix |C.3 0

In addition to relating the substitution of value terms for value variables to its se-
mantic counterpart, we also need to do the same for the substitution of computation
and homomorphism terms for computation variables. To this end, we show in the next

two propositions that these two kinds of substitution correspond to composition.

Proposition 5.2.9 (Semantic computation term substitution). Given a value context I,
a computation variable z, a computation type C, a computation term M, and a homo-
morphism term K such that [[;M] : 1r) — U([I;C]) and [T;z:C;K] : [I;C] — D,
then we have

[T:M] U([;z:C:K])
[T:K[M/Z]] = 1 ——— U([[5C]) »U(D)

Proof. We prove this proposition by induction on the sum of the sizes of I', C and K.

First, by inspecting the definitions of substitution and [—] for homomorphism
terms, we see that in most cases, the part of K[M/z] that contains M (i.e., the part
of K that contains z) is interpreted as first in a sequence of morphisms. As a result, the
proofs for these cases consist of using the induction hypothesis on the part of K[M /7]
that contains M, the functoriality of U, and the definition of [—] under U.

The only exception to this general pattern is the case for computational lambda
abstraction, where the part of K[M/z] that contains M is not interpreted first in a
sequence of morphisms and, moreover, this part of K[M/z] is interpreted under the
IIjr.ap-functor. Therefore, we present a detailed proof of this case below.

We also present detailed proofs of the cases for computation variables and sequen-

tial composition as representative examples of the other more straightforward cases.

Computation variables: In this case, we need to show that

v/l = I — s ure) — L g

5.2. Soundness 189

First, by inspecting the definition of substitution for z, we get that

ZM/z] =M

Secondly, by inspecting the definition of [—] for z, we get that

[[52: Ciz] =idpry : [I5C] — [I:C]

Therefore, we are left with having to show that

[C:M] U(idgrcy)
[OM] = 1 —— U([5;C]) » U([I5C])

which follows from the functoriality of U and the properties of composition.
Sequential composition: In this case, we need to show that

[T (K tox:Ainp N)[M/z]]| =

[T:M] U([Iz:CK to x:A inp NJ)
I — U([:40) » U([T;D])

First, by inspecting the definition of [—] for K to x:A inp N, we get that

[[:2:C:K] - [I5C] — F([I:A])

L AN - g — Ui (IT:DD))
Next, by inspecting the definition of substitution for K to x:A inp N, we get that
(Ktox:Ainp N)[M/z] =K[M/z] tox:Ainp N

Finally, we show that the required equation holds by proving that the following diagram

commutes:

190 Chapter 5. Denotational semantics of eMLTT

[T:M]
Im [T:K([M /2] UF(I:AD) U([[;z:C:K]) u([r:cl)

U(F((idr.ap,)))

U(F(Zray (T, (1rg))))

def. of [K to x:A inp NJ
U(F(Zrap(L{rap))

def. of [I;K[M /7] to x:A inp N] U(F (Zrap([Tx:AN])))

U(F(Zray (U (mr ([T 2])))))

= functoriality of U
U (F (EHF;A]] (nﬁr;A]] (U ([[F; Q]])))))

Zrpoan T

UFE gy)
U(F(U([I;D]))) 4
[[:K[M/z] to x:A inp N] U([K to x:A inp N])

v (Sfrjgﬂ)

u([rnl)

Computational lambda abstraction: In this case, we need to show that

[T (Ax:A.K)[M/zZ]] =

[T:M] U([Iz:C;Ax:A.K])
I —— U([I:C]) » U(Ir.ap(D))

First, by inspecting the definition of [—] for Ax:A.K, we get that
[[,x:A;72:C;K] : EEF;A]]([[F;Q]]) — D
Next, by inspecting the definition of substitution for Ax:A. K, we get that
(Ax:A.K)M/z] =Ax:A.(K[M/z])

Finally, we show that the required equation holds by proving that the following diagram

5.2. Soundness 191

commutes:
[r:M]
' U(Ir:c])
[TAx:A.K[M/Z]] Tk ey * U([T:z:CAx:A.K])
ﬂU[EF[T,A:]]Q]]) U(n?[[llzﬁ]] 4H[[l“;A]])
U (I r,ap (
Al ([rs€D)))

(S [ria])REF; 4p(IrCD) ‘

My (U(
~ [T:A]
Pr iti *

oposition FiT-T Ty (I0:CD)))
"rap Al

n
'y :‘ € is nat. iso.

nat. of nnﬁfﬂ M *
: T (R4 (
T (7,0 (I6M1)) U([T;C])))

e (R4 (1))

Proposition[5.2.4] (d) =| Proposition[5.2.4](a)
) ([T x:A;M])

oy (Lyrap) jrap (U ([T, x:A5C]))

use of the i.h. on K
prap ([Fx:AsK[M/2]])

A (U (D))

(gﬁ}[[r; A]) [TxAC]

Mr.4) (U([Tx:A;z:C;K]))

nat. of C;I}[[F;A]]

(Cnlrap)e U (rap ([T x: A;C]))

UMy ([Fx:A;z:CKT))

U(Ir4p (D))

U(Mr.a)(D)) 0

idU(H[[r;Aﬂ (D))

Proposition 5.2.10 (Semantic homomorphism term substitution). Given a value
context I', computation variables z; and zo, computation types C, and C,, and
homomorphism terms K and L such that [U;z;:C;K] : [IC] — [I:C,] and
[T;z2:Cy; L] : [I';C,]| — D, then we have

[Tiz1:C1:K] [T;z2:CysL])
[Cizi:CiLK /)] = [6:6] RN | 0N D

Proof. We omit the proof of this proposition because it proceeds analogously to the
proof of Proposition [5.2.9 discussed above—by using the induction hypothesis on the
part of L[K /z] that contains K and the definition of [—] for homomorphism terms. [J

192 Chapter 5. Denotational semantics of eMLTT

We also note that Propositions and also extend to several value variables
and value terms, as respectively shown in Propositions [5.2.11]and [5.2.12] below.

Proposition 5.2.11. Given value contexts I'y and 'y and Tz (for simplicity, we assume
that Ty = x1:Aq,...,x,:A,) such that [T, T3] € Band [T'1,x1:Ay,...,x;:A;, T3] € B,
forall 1 <i < n, then, using the following abbreviation:

. def . .
proj = PrOJl“l X1:A1:3 ©...0 PrOJn XA e X1 Ap—13Xn: A3
we have:

(a) Given avalue type A such that [I',T'3;A] € ‘V[[Fl,rﬂ]’ then

[T1,02,T3;A] = proj*([T'1,13;A]) € Yr, 1,13

(b) Given a computation type C such that [I'1,I'3;C] € r, ry], then

[T1,12,T3;C] = proj*([I'1,T3;C]) € Ar 0,13

(c) Given avalue termV such that [I'y,I'3;V] : I[r, r;) — B, then

[Ty, T, T'5;V] = proj*([T1,T3;V]) : U, mrs] — proj*(B)

(d) Given a computation term M such that [I'1,I'3;M] : lir s — U (C), then

[T1,02,T3;M] = proj* ([T1,T3;M]) : 1[r, ry,ry] — U(proj*(C))

(e) Given a computation variable z, a computation type C, and a homomorphism term
K such that [I'1,I'3;2:C;K] : [I'1,I'3;C] — D in qr,] then

[[1,I2,I3;2:C;K] = proj*([I'1,I'3;2: C;K]) = proj*([I'1,I'3;C]) — proj*(D)

Proof. We prove (a)—(e) independently, by induction on the length of ;. As all the

cases are similar, we only consider (b) in detail as a representative example.

Base case (with I = ¢): This case is trivial because we need to show
[T1,13;C) = [I1,13:C] € (r, 1y

which follows directly from our assumptions.

5.2. Soundness 193

Step case (with I'; = x1:A,I): First, we note that according to our assumptions, we

know that [I'1,I'3] € B and [I'1,x;:A1,I3] € B, which means that we can use (b) of
Propositon[5.2.4]to get

[[FI,XI :A15F3;Q]] = pro.jltl;xl:Al;l—é([[FI’F3;Q]]) € CHF1,X1:A1,F3]]

Next, we use the induction hypothesis on [I'},x;:A1,T3;C], with the three contexts

chosen to be I'1,x1:A; and I" and I'3, to get
[[Fl,xl :Al,l",l“3;g]] = proj/*([[rl,xl IA1,F3;Q]]) € C[[FlaxltAhF:Fﬂ]

where

i ﬁ . .
proj = prOJF17xl:A1;xz2A2;r3 ©...0 PrOJthl:A1,...,x,,,I:An,l;xn:An;B

Next, by combining the previous two equations with I'; = x1:A, I, we get

[[F17F27F3;Q]] = proj/*(projltl;xl:Al;l"g(HF1’F3;Q]])) € C[[Tl T3]

Finally, by observing that projr,.,,.a,.r; © proj’ = proj, in combination with the fact

that p is a split fibration, we get the required equation
[T1,12,I3:C) = proj*([I'1,I'3:C]) € (r, 1.1y
O]

Proposition 5.2.12. Given value contexts I'y and 'y and '3 (where, for simplicity, we
assume that I'y = x1 :Ay,...,x,:A,) and value terms V; (for all 1 <i < n) such that
[[FI,FZ,F3]] € B and

[T, TaVi/xa] - Vit /i Ta Vi fxa - Vie /xica] € B
[CusVil s ey — [T AV /xa] - [Vier /xica]]
where 15 = x;:Aj, ..., Xn: Ay, then, using the following abbreviation:

def
subst = substr;:x;:4; 45, 004,33V

©...0 SUbStrl;xn:An[Vl/xl}--~[Vn71/xnfl];r3[vl/xl}-~-[vnfl/xnfl];vn

we have:

(a) Given a value type B such that [T'y,12,T3;B] € Vr, 1, ry], then

[[Fl,r3[V1/X1] . [Vn/xn];B[Vl/xl] . [Vn/xn]]]
= subst™([T'1,12,T3;B]) € Ve, 03v; /1] [V /0]

194 Chapter 5. Denotational semantics of eMLTT

(b) Given a computation type C such that [I'1,I'2,I'3;C] € (r, ,,r5]> then

[C1,T5[Vi /] Vi e l: CIVA 1] . [V /]
= subst™([I'1,12,I3;C]) € Gy 05wy /] Vi /)]

(c) Given avalue term W such that [U'y,T2,T3;W] : 1[p, 1, ry] — B, then

[[1“1,1“3 [Vl/xl] . [Vn/xn];W[Vl/xl] ce [Vn/xn]]]
= SubSt*([[rl,rz,F3;W]]) : 1[[1"1,1"3[V1/x1]...[Vn/an] — subst*(B)

(d) Given a computation term M such that ['1,T2,T3;M] : 1jr, r, r;) — U(C), then

[[Fl,l“g, [Vl/xl] ... [Vn/xn];M[Vl/xl] ... [Vn/xn]]]
= subst”™ ([, T2, T3 M]) = 1, nyv /i) [V /xa)] — U (subst™(C))

(e) Given a computation variable z, a computation type C, and a homomorphism term

K such that [[l“l,Fz,Fg;z:Q;K]] : [[l“l,l“z,l“g;g]] — Din C[[F17F27F3ﬂ’ then

[[Fl,Fg[Vl/xl] e [Vn/xn];Z:Q[Vl/xl] e [Vn/xn];K[Vl/xl] ce [Vn/xn]]]
= subst™([I'1,12,13;2: C;K])) : subst™([I'y,I'2,I'3;C]]) — subst™ (D)

Proof. We prove (a)—(e) independently, by induction on the length of I';. As all the

cases are similar, we only consider (b) in detail as a representative example below.

Base case (with I'; = ¢): This case is trivial because we need to show
[T1,T3:C) = [I1,13:C] € (r, 1y

which follows directly from our assumptions.

Step case (with I'; = x1:A1,I'): To begin with, we note that according to our as-
sumptions, we know that [I'j,x;:A,T, T3] € B, [['1,[[Vi/x1],[3[Vi/x1]] € B, and
[T1:Vi] = Igr,p — [T13A1], which means that we can use Proposition to get

[T1,TVi /1], T3V /xa s €[V /x]]
= substr .y, (01002 AL T T5:CL) € Gy oy] s /]
Next, we use the induction hypothesis on [I'1, [V} /x1],I'3[V1/x1];C[V1/x1]], with

the three contexts chosen to be I'; and I'[V} /x;] and ['3[V; /x1], to get

[[FI,F3[V1/x1] e [Vn/xn];g[vl/xl] e [Vn/xn]]]
= subst™ ([T, T[Vi /x1], T3[V1 /x1]; C V1 /x1]]) € ey rspi). Vi /]

5.2. Soundness 195

where

/&t
SUbSt - SUbStFI;xz:Az[V|/X]];X3ZA3[V]/xl},...,xniAn[V]/X1}7F3[V1/)C1];V2
O O SUBSEE gy, (V1 /1), Vit [0 T3 VA fct] Vit o1 Ve

Next, combining these two equations (where I, = x;:A1,I), we get

[T, T3V /3] Ve /]: VA 1] Vi]
= subst (SUbStl*"l;x]:Al;DlB;V] ([[Fl I, F3’QH>) € C[[F1,1"3[V1/x1]...[Vn/xn]ﬂ

Finally, by observing that substr,.x,.4,:r,r5;v, o su bst’ = subst, in combination with

the fact that p is a split fibration, we get the required equation

[Ty, T3[Vi/xt] ... [Va/xn];C[Vi /x1] - - [Va/X4]]
= subst™([['1,T2,T3:C]) € Gr, 0s5(vi /1] [V /]

]

Further, for the soundness results proved in Sections [6.5] and it is also useful
to note that some special cases of Proposition[5.2.1T]admit more concise characterisa-
tions. In particular, we consider two such cases, where the type or term to be weakened

is given in i) the empty value context or ii) a context containing only one variable.
Proposition 5.2.13. Given a value context I such that [U'] € B, then we have:

(a) Given a value type A such that [o;A] € V), then

[C:A] = Yy ([:A]) € Yy
(b) Given a computation type C such that [¢;C] € Cy, then

[T5C1 = ' ([:€]) €
(c) Given a value termV such that [o;V] : 1| — B, then

OV =Yg (Lo VD) = g — Yy (B)
(d) Given a computation term M such that [o;M] : 11 — U(C), then
[T;M] = g ([osM]) = 1ry — U (1 (©)

(e) Given a computation variable z, a computation type C, and a homomorphism term

K such that [¢;7:C;K] : [¢;C] — D in (), then

[[i2:CK] = 1y ([:2:C:KD) = g ([0:CT) — 1y (D)

196 Chapter 5. Denotational semantics of eMLTT

Proof. We prove (a)—(e) independently, with all cases following the same pattern. As
all the cases are similar, we only consider () in detail as a representative example
below. For simplicity, we assume that I' = x1:Aq,...,x,:A,.

First, we note that from the assumption [I'] € ‘B, it follows that [I"]] € B for every
prefix IV of T".

As a result, we can use Proposition [5.2.11] with the three contexts chosen to be ¢

and I" and o, to show that [I';C] is equal to

(projo;xl Apo ©...0 projxle],...,x,,_le,,_];xn:An;<>>*([[<>;(_j]])

Next, according to the definition of semantic projection morphisms, the domain of
the morphism projy .4, ¢ 4, o 15 [I]. Similarly, the codomain of the mor-
phism proj,., .4, is [¢], which is equal to the terminal object 1 by definition.

As a result, we have

prOJO;xliAl;O ©...0 proJxl:Al,.‘.,xnfliAn,I;xniAn;O : [[F]] 1

Finally, using the universal property of the terminal object 1, this composite must

be equal to the unique such morphism, namely, to !jry : [T'T — 1, meaning that

[5C] =ty ([0:€D) € .

Proposition 5.2.14. Given a value context I', a value variable x, and a value type A
such that x ¢ Vars(I') and [I'] € B, then we have:

(a) Given a value type B such that [x:A; B] € Vi[oayy, then
[T, x:4:B] = {ry([o:AD} (Tx:AsB]) € Ve (o))
(b) Given a computation type C such that [x:A;C] € Cifoa]y. then
[T,x: 45 € = {Mry([es AN} ([x:A:C]) € Cpu oy
(c) Given avalue termV such that [x:A;V] : 1{[o.a]y — B, then
[0,x:A:V] = {1y ([AD Y (B AsVD) = Ly osanyy — {m ([AD 3 (B)
(d) Given a computation term M such that [x:A;M] : 1.4y — U(C), then

[0,x:A:M] = {1y ([o: AN} (B A MT) < 1 poanyy — U {Mry ([543 (©))

5.2. Soundness 197

(e) Given a computation variable z, a computation type C, and a homomorphism term

K such that [x:A;z:C;K] : [x:A;C] — D in C{[o.a]}> then

[T, x:A;2:C K] = {"ry ([0:A]) }([x: Asz: C:K])

([AD (A5 C]) — {1y ([: 4]} (2)

Proof. We prove (a)—(e) independently, with all cases following the same pattern. As
all the cases are similar, we only consider () in detail as a representative example. For
simplicity, we assume that I' = x1:Aq,...,x,:A,.

First, we note that from the assumption [I'] € B, it follows that [I"] € B for every
prefix IV of T".

As a result, we can use Proposition @], with the three contexts chosen to be ¢

and I" and x: A, to show that [I",x:A;C] is equal to

(projo;xle] XA ©...0 pI’O_]xl Ay ,...,xn_l:A,,_l;xn:An;x:A)*([[x:A;g]])
Next, according to the definition of semantic projection morphisms and the func-

toriality of {—}, the above reindexing functor is equal to reindexing along

{projo;xl :Al;o([[O;A]]) 0...0 pl’ijl :Al,...,xn_l:An_l;xn:An;o([[xl PAY X :Anfl;A]])}

which is equal to reindexing along the morphism that results from applying {—} to

PrOjosy,:A;:0([03A]) 0 0Projy a, v 1A, o ([X1 AT, - X011 AR 15A])

Next, by observing that this last morphism is the composition of Cartesian mor-
phisms, we can make the following three observations: 1) the domain of this composite
morphism is proji .4, v 4. uea,o (X1 1AL o X0—1 1 Ap—13A]), which, according
to Proposition is the same as [[';A], and which, according to Proposition
is the same as !jy ([«;A]); ii) the codomain of this composite morphism is [¢;A]; and
iii) this composite morphism is itself Cartesian, according to Proposition [2.2.6]

As a result, according to the choice of Cartesian morphisms in p, this composite
Cartesian morphism must be equal to jry ([0;A]) : 'y ([o;A]) — [o;A].

Finally, after applying {—} to this last morphism, we get that reindexing along

{projo;xl :Al;o([[O;A]]) 0...0 pl’ijl :Al,...,xn_l:An_l;xn:An;o([[xl PAY X :Anfl;A]])}

is equal to reindexing along {!jry([¢;A])}, meaning that

[T,x:4:C] = {'ry ([AD Y ([A:C]) € Coy (posanyy
[

We now state and prove the soundness theorenﬂ for the interpretation of eMLTT in

I'Using the terminology of [107], Theorem|[5.2.15|could also be called the correctness theorem.

198 Chapter 5. Denotational semantics of eMLTT

fibred adjunction models. In particular, we show that for well-formed types and well-
typed terms, the a priori partially defined interpretation function [—] is in fact always
defined, and that it maps definitionally equal contexts, types, and terms to equal objects
and morphisms. As noted in the beginning of this section, the proof of this theorem

crucially relies on the semantic weakening and substitution lemmas we proved above.
Theorem 5.2.15 (Soundness).

(a) Given T, then [I'] € B.

(b) GivenT'+ A, then [;A] € ‘Vm.

(c) GivenT = C, then [[';C] € (ry-

(d) GivenT'FV : A, then [I5V] : 1y — [A]

(e) GivenT =M :C, then [I;M] : 1y — U([IC]).

(f) GivenT'|z:C+ K : D, then [I';z:C;K] : [I';C] — [I'; D].

(g) Givent-T'| =T, then [['1] = [I'2] € B.

(h) GivenT A = B, then [I';A] = [I';B] € Yy

(i) GivenT +C =D, then [I':C] = [T;D] € (-

(j) GivenT' =V =W : A, then [[;V] = [[;W] 2 1y — [A]

(k) GivenI'=M =N : C, then [I;M] = [[;N] = 1jrp — U([I5C]).

() GivenT'|z:CHK=L:D, then [I';z:C;K] = [I';z:C;L] : [T';C] — [I'; DJ.

Proof. We prove (a)—(l) simultaneously, by induction on the given derivations, using
Propositions [5.2.4] [5.2.6, [5.2.9] and [5.2.10| to relate syntactic weakening and substitu-
tion to reindexing along semantic projection and projection morphisms.

Similarly to the proofs of Propositions [5.2.4/and [5.2.6] in the setting of contextual

categories, detailed proofs of the cases that involve the MLTT fragment of eMLTT can
be found in [[107, Chapter III]. We thus omit the proofs of these cases.

We illustrate the eMLTT-specific cases of (b) and (c¢) by giving a detailed proof for
the formation rule for the computational X-type.

We omit most of the cases of (e) and (f) (i.e., the cases concerning the computa-

tional X- and I1-types) because their proofs are analogous to the detailed proofs given

5.2. Soundness 199

for the corresponding terms in the MLTT fragment of eMLTT in [107, Chapter III]. For
(e) and (f), we only present the proof for the typing rule for sequential composition.
Regarding (k) and (/), we again omit most of the cases and only present detailed
proofs for the B- and n-equations for homomorphic lambda abstraction and function
application, and for sequential composition. It is worth noting that the proofs for the
cases of (k) and (/) that involve the computational - and IT-types follow directly from

the properties of the corresponding adjunctions X4 7 and 7 4 Il4, respectively.

Computational X-type: In this case, the given derivation ends with

'-A Ix:AFC
I'=Xx:A.C

and we need to show that
[T2x:A.C] € (y

First, by using (b) and the induction hypothesis on the two assumed derivations, we
get that
[[F;A]] < ‘V[[l"]] [[F,XZA;Q]] € C[[F,x:A]]

Next, by inspecting the definition of [—] for I',x: A, we get that
[T,x:A] ={[I;A]}
which means that we can use the existence of split dependent p-sums to get that
rap([T,x:A5C]) €
Finally, the required object in (jry exists because by the definition of [—] we have that
[T:2x:A.C] = Eprap ([T, x: A3 C)

Typing rule for sequential composition for computation terms: In this case, the

given derivation ends with

I'-M:FA THC T,x:AFN:C
I'EMtox:Ainc N:C

and we need to show that
[TsM to x:A ing N] : 1y — U([I5C])
First, by using the induction hypothesis on the two assumed derivations, we get that

[TsM] = 1) — U([T; FA]) [T, x:A;N] 2 1 ea) — U([T,x:A5C])

200 Chapter 5. Denotational semantics of eMLTT

Next, by inspecting the definition of [—] for I',x: A and FA, we get that
[TsM] = 1y — U(F([TA])) [T, x:A;NT = 1gqrapy — U([F,x:A5C])
Further, by using (b) of Proposition and the definition of projr.,.4.., we get that
[C,x: AN = Tggragy — U, ([1:C1))

Finally, by inspecting the definition of [—] for M to x:A in¢ N, we see that [I'; M]
and [I",x:A;N] satisfy the corresponding pre-conditions. Therefore, we get that

[TsM to x:A inc N] : 1y — U([I5C])

-equation for homomorphic function application for computation terms: In this

case, the given derivation ends with

I'tM:C T|z:CHK:D

't (Az:C.K)(M)cp=K[M/z]: D

and we need to show that
[(Az: €. K)(M)c,p] = [K[M /2] = 1yry — U([T3D])
By using (e) and (f) on the two assumed derivations, we get that
[CsM] = 1y — U([T5C]) [T;z:C;K] : [I';C] — [T D]
The required equation then follows from the commutativity of the following diagram:

I

Proposition [5.2.9]

U([T;z:C:K])

/—\

[T;(Az:C.K)(M)c p] U([[F;Q]]) &y, [ricy,[r:pj is an iso. U([[F;QH)

— T~

U Ery.irep i) Gpy r prop ((C2CKDD))
def. of [I;Az:C.K]

U (&qry,[rct fr:pp ([T:Az:C.KT))

U([rD])

5.2. Soundness 201

The case for the B-equation for homomorphic lambda abstraction for homomorphism

terms is proved analogously.

n-equation for homomorphic function application: In this case, the given derivation

ends with
I'-v:C—D
I'-V=»Az:C.V(z)cp:C—D

and we need to show that
[V = [TiAz:C.V(2)ep] - Lrp — [1:C] —opry [1:D]
First, by using (d) on the assumed derivation, we get that
[T:V] = 1y — [I:C — D]

Further, by inspecting the definition of [—] for C — D, we get that

[T:V] = 1y — [15C] —oqry [T:D]
Next, by inspecting the definition of [—] for z, we know that

[T52:Csz] = idryy : [T5C] — [15C]

Finally, the required equation follows from the commutativity of the following dia-

gram:

V]

//\
[I;C] — [T D]

[T:Az:C.V(2)cpl

5[[}1]] Ir:C,[T:D] Eprp.ircp.irop ([GVD)

def. of [I;z:C;7] comp. with id.

def.
é[[_r]]] Ria N (E.,[[I‘]] [TClL 0] ([T3v]) o [Tiz:Csa])

def. of [I;z2:C;V(z)cpl

g[[}l]] JIC:C], D] ([T:z=G;V (2)c.pl) id [I:C]—[I:D]

[I:C] — ;D] [I:C] — ;D]

idr.c]—[r:n]

202 Chapter 5. Denotational semantics of eMLTT

B-equation for sequential composition for computation terms: In this case, the

given derivation ends with

I'cv:A I'C T, x:AFM:C
I'FreturnV tox:A inc M =M[V /x]: C

and we need to show that

[[ireturnV to x:A ing M| = [[M[V /x]] : 1yrp — U([T5C])

First, by using (d) and (e) on the assumed derivations, we get that

[T;V]: g — [T3A4] [T, x:A;M] - Ur c.a) — U([T,x:A5C])

Next, by inspecting the definition of [—] for I',x: A, we get that

[Tox:AsM] : 1ragy — U([T,x:A;C)

Further, by using () of Proposition and the definition of projr.,.».., we get that

[C,x:AsM] = Lyragy — U, (I6:C1))

Finally, the required equation follows from the commutativity of the following dia-

gram:

5.2. Soundness

MV /2]

203

U([r:cj)

[[ireturn V to x:A ing M]

liry
\ PrOPOSitiOH

(VD) (g
(S(HF;V]]))*([[T,XIA;M]])‘
(I VD) (U (i (ITC1))

nF -U B
(S(ITVD)* (U (ITC))

nat. of nf

U(F(1qry))

[[;return V]

U(F([T:AD)

U(F((idprap.!))) =
U(F((s([5V])*(
Liran)))

U(F((s(IVD) ([Tx:A:M])))

U(F () (1qrapy)))

U(F (Zrap ([Cx:A:M])))

U(F((s(I5 VD)™ (

U(F (Zqrap (U(
Uy, (I5:CD))))

R (IT:CI)
‘ = Corollary 4.1.9] = ‘

U (F (Sgra (T UF((s([T: VD) (
u(Ir:c)))) T (UTCD)))

Trroam A
U(F(U(- FAU

idy([ricy)

U([rsC])

idy ([ricy)

204 Chapter 5. Denotational semantics of eMLTT

n-equation for sequential composition for computation terms: In this case, the

given derivation ends with

I'FM:FA T'HC T|z:FARFK:C
' M tox:A inc K[returnx/z] = K[M/z] : C

and we need to show that

[TsM tox:A inc K[return x/z]]| = [[K[M/Z]] : 1jrp — U ([T C])

First, by using (e) and (f) on the assumed derivations, we get that

[TsM] = 1y — U([T; FA]) [T;z:FA;K] : [I'; FA] — [I;C]

Further, by using the definition of [—] for FA, we get that

[TsM] = 1y — U(F([TA])) [T;z: FA;K] : F([I3A]) — [I5C]

Next, by using (e) of Proposition and the definition of projr-.,.4.,, we get that

[T,x:A;z:FA;K] = JT:F[‘F;A]]([[F,z:FA;K]]) : TEEF;A]] (F([T;A])) — nﬁ};Aﬂ([[F;Q]])

Finally, the required equation follows from the commutativity of the following dia-

gram:

5.2. Soundness 205

[C:K[M /]

1y U([r:C])
Proposition [5.2.9]
[C:M] U([T;z:FA:K])
def: U(F([I:A]))

[[:M to x:A inc K[return x/z]]
U(F((id[rap,!)))

U(F (Zprap(U(F (Zrap (T (
g (1)) Zra)(Lrap)))))

E[[rlA]] AET[F;AH)

UEEra Mgy

def.) U (F (Zrap (T (Fs1)))

U(F (Sgra(
T (IT:AD)))

U(F (Z[[F;A]] (niﬁ_l;]] ([[F;A]}))))

U(F (Zrap (U(
U (F (S (ITox:A3])) F(mry([T:A]))))))

def. of [[',x:A;return x]

U(F (Zqrap (1gragy))) U(F(Eqrap ([T x:Aireturn x]))) | =

U(F():[[F;A]] ([Tx:A;K [return x/7]])))
Proposition [5.2.9]

U(F (Zprap(U(U(F (Zrap(U(

(IT5€D))))) VEEmayUmpyg (B=FAKDD) - . 0 (F([TC]))))))

JtEEF;A]]

U(F(Zprap(
T (U (IHCD))))

idy ([rcy)

Irra Hmk
U(F(eyqrgy)

U([r;C]) idy (Irey) U([I;C])

206

Chapter 5. Denotational semantics of eMLTT

where we show that the subdiagram marked with (x) commutes as follows:

U(F([T;A]))
U(F (Zprap(idy (#([r:ap)
TCEF;A]] (1[F]))))
=| functoriality of U o F on (*x) U(F(nfr_‘;ﬁ]))
_|
U (F (Zgea)(Lgrap) e U(F([T:A]))
U E[rA] *Mra]
(F(Z[rag (Th{ [CAT}) U([;z:FA;K])
nat. of ef' 7V
VFEra Tl yrwr(ra)) u(Ir:cl)
Ziray(Lgrap)))))
Trra7 AT -
UF (Sqra (T (551)) U(F (Eytprap) ™)) | et of X4 i Ulefrd)
U(F (U([I;z:FAK])))
S U Eramieg (. ur@(n)
Tieap ([5:41)))) U(F([T3A]))))))
U (e[t T
U(F (S (R g (VT FAKD)))
U(F (Zprap(
T (U([:CD)))))
U is split fibred =
U(F (Zqrap (U(U(F (Zrap(U(

UFCrAU G IFAKD) i (IT:C)))))

5.3. Completeness 207

and where the diagram we refer to as (x*) commutes because we have

<id[[F;A]]7!>

2] (Mra (1) [:A]

= fst o (idﬂr;A]], ') = idﬂl";A]]

idy

Al A4
Zrag(1raapy) LA

)
e (1graapy)

Lqra) 1 Tray Lra] e

Trroam A
S i gy,) Sraran) | fst nfil
nat. of €-Ir41 " ra]
Zqrea) (Wrap Eqrap (1rag)) [r:A]
Yrran (The 4o (fst
tratl HF’A]]() Z[[F;AHAREF;A]] g 47
Erap nat. of &] "*[ra]
Zra) (e ([6ADD) U(F([TA]))

z TA] (EEF;A]] (ﬂfﬂ,ﬁ]))

FHU Zrram AT
Fral (e trap) SU[E;?[[]]I";A]][[)I;’AH
N is a split fib. nat. transformation
Zira) (U (F (g (IT3AD))) = Ziraa) (np (U (F([T3A]D)))

O

5.3 Completeness

We now demonstrate that eMLTT is complete for fibred adjunction models. We do
so by proving that the well-formed syntax of eMLTT itself forms a fibred adjunction
model, the classifying fibred adjunction model. We construct this model by building on
and extending the classifying SCCompC construction for MLTT, as sketched in [31,

Sections 10.3-10.5]. More specifically, we show in this section how to use well-formed

208 Chapter 5. Denotational semantics of eMLTT

contexts, types, and terms to construct the categorical structure depicted in

together with the structure we use to model eMLTT’s value and computation types.

In order to make our discussion about the computational fragment of this classi-
fying model easier to follow, we begin by recalling the core details of the classifying
SCCompC construction from op. cit., comprising the adjunctions p 41 and 1 4 {—}.

To this end, we first show how to extend the unary substitutions we defined in Defi-
nition[3.1.4] (and the corresponding results thereafter) to simultaneous substitutions. Of

course, unary substitutions are just a special case of these simultaneous substitutions.

Definition 5.3.1. The n-ary simultaneous substitution of value terms Vi,...,V, for
distinct value variables xj,...,x, in an expression E, written E[V;/x1,...,V,/x,] (or

E [7, / 7,}] for short), is defined by recursion on the structure of E as follows:

Nat[V, /%] S Nat

ok sy,

y{Vi /%] 2y (fy & {x1, o))
(returnW)[vi/Y,?] £ return (W[vl/?])

(Mtoy:Ainc N)Vi/X] £ MV;/%]toy:A[Vi /%] ing = NIVi/5]

KW OVi/E] 2 KV RD a2

i/ Xi

W(K)ep)[V, /=] =WV EDKY R it 2107 5

where, according to our adopted variable conventions, the bound value variables are

assumed to be different from the variables x, .. .,x, we are substituting Vy,...,V, for.

Below, we list some useful properties of simultaneous substitutions that we use
for constructing the classifying fibred adjunction model for eMLTT; many of them are

natural generalisations of the properties we proved for unary substitutions in Chapter[3]

5.3. Completeness 209

Proposition 5.3.2. Given an expression E, then
FVV(E[V. %)) C (FVV(E) — {x1,....x.}) UEVV(V)) U ... U FVV(V,)

Proof. By induction on the structure of E. [
Proposition 5.3.3. Given an expression E such that x; € FVV (E), then

EVi/x1,...,\Vi/xiy...,Va/xa] = E[V1/x1,. .., Vic1 /xi—1, Vi1 [Xit1, -, Vi /X0
Proof. By induction on the structure of E. [
Proposition 5.3.4. Given an expression E, then

EVi/x1,..yXi/Xis. ., Va/Xn] = E[Vi /X1, ..., Vie1 [Xi1, Vig1 [Xis 1y - - Vi /%)
Proof. By induction on the structure of E. [

Proposition 5.3.5. Given an expression E such that {xi,...,x,} 0 {y1,...,ym} =0 and
{xX1,. ., x0 JO(FVV (W)U ..UFVV(W,)) =0, then

IERRIRE
E[V, /511W; /3] = EWV, /3 1ViIW;/ 57/ 3
Proof. By induction on the structure of E. 0

Proposition 5.3.6. Given an expression E such that {xi,...,x,} 0 {y1,...,ym} =0 and
1, Y} N(FVV (V) U...UFVV(V,)) =0, then

EWV,/RNW,/}) = EVi /%, W, /3]

Proof. By induction on the structure of E. [

Proposition 5.3.7. Given an expression E such that FVV (E) C {x1,...,x,}, then
E[V; /31 /5] = EViW;/3))/31)
Proof. By induction on the structure of E. [

Proposition 5.3.8. Given an expression E such that {x},...,x,} N\FVV(E) =0, then
E[V, /%) = EL /77, /)

Proof. By induction on the structure of E. [

210 Chapter 5. Denotational semantics of eMLTT

Proposition 5.3.9. Given a homomorphism term K with FCV (K) = z, then
KM/2)[V, /5] = K[V /% M(V /%)
Proof. By induction on the structure of K. 0
Proposition 5.3.10. Given homomorphism terms K and L with FCV (L) = z, then
LIK/2[Vi /%) = LIV, /RIK[V /%1)/7)
Proof. By induction on the structure of K. [

Finally, we show that in addition to unary substitutions (Theorem|3.3.10), eMLTT’s

judgements are are also closed under simultaneous substitutions of Definition [5.3.1]

Theorem 5.3.11 (Simultaneous value term substitution). Given I'y = x1:Aq,...,x,:A,
and value terms T1 =V, 2 Ay, .., T1 EV, 1 Ay [Vi/x1, ..o, Va1 /Xu—1], then we have:

(a) GivenI'y - B, then T’ I—B[W/Yf]

(b) GivenT>F Bi = By, then Ty - Bi[V. /%] = B[V, /%],

(c) GivenI', -C, then T F (_?[Vf/?f]

(d) GivenTa2+C =D, then Ty - C[V. /%] = D[V, /%)

(¢) GivenT» W : B, then Ty - W[V, /x0]: B[V, /%]].

(f) GivenTs - Wy = Wi : B, then Ty F WiV, /%}] = Wa[V, /0] : B[V, /%],
(¢) GivenT> M :C, then Ty F M[V, /%] : C[V,/%].

(h) GivenT2M =N :C, then Ty - M[V. /%] = N[V, /%] : C[V, /=]].

Proof. We prove (a)—(j) using the combination of Theorems [3.3.9 and [3.3.10, and

other results we established earlier. For example, for (c) the proof proceeds as follows.

To begin with, we use Proposition with I'; - C to get that - I, whose
derivation also gives us that x{:Aq,...,x;—1:A;—1 FA;, for all 1 <i <n. In addition,
we use Proposition[3.3.7)to get the inclusion FVV (C) C Vars(I'2) = {x1,...,x,}.

5.3. Completeness 211

Next, we choose distinct value variables x|, ...,x], such that they are disjoint from
the variables of I'] and I'>. We write f; for the “fresh” version of I';, given by
X AL Xy AN X Jxa], X AR Jx] Xy /xn—]
with Theorems [3.3.9]and [3.3.10|allowing us to show that for all 1 < i < n, we have
XA XA X fx]) X Jxia]) A /xa] x X

and as {xi,...,x,} N{x],...,x,} = 0, we can use Proposition to show that

xll Ay, 7x§—1 A [xll/xh' . 7x;—2/xi—2] '_Ai[xll/xlv' . 7x;—1/xi—1]

Furthermore, by using Proposition [3.3.7, we get that FVV (A;) C {xj,...,x;—1 }, for
all 1 <i<n, and thus we have for all 1 <i<n that {x|,...,x,} NFVV(A;) =0. Asa

consequence, we can use Proposition @ with A; (for all 1 <i < n) to get that
AilVi/x1,. . Vier Jxic] = Al Jxa, - X Jxia Vi /X Ve /]
and then Proposition (as FVV(V;) C Vars(I';) by Proposition [3.3.7) to get that
Ailxy fxns o xi g fxia]Vi/x L Vie i]

Al [xr, X fxica] [Vi /X) Vied /X

from which it follows that the assumed derivations of V; are also derivations of
Uy E Vi Al Jxs e Xy Jxica] Vi /X)) Vier /2]

Next, we repeatedly use Theorem to get a derivation of 1/“;, I, F C from that

of T, + C, and then Theorem [3.3.10| to get a derivation of T - Clxy/x1]...[x,/x4].
However, as {xi,...,x,} N{x},...,x,} = 0, we can use Proposition to get that

Cly/xi]. . [/xa] = Clxy /x1, x /]

Finally, we repeatedly use Theorem to get 'y, T + C[) /x1,... X}, /x,] from
the derivation of Ty F C[/x1,. .., X, /x,], and then Theorem 3.3.10|to get that

Ty FClX /x1,. . x /xa)[Vi /X [V /X

However, as we know that FVV(C) C {xi,...,x,} and FVV(V;) C Vars(T'1), for all

1 <i < n, then we can use Propositions[5.3.7/and [3.1.7] to respectively get that
? _>]

CIXy /1,y) Vi /3] [Va /i) = CIEV] V) /] = CIVi

giving us the required derivation of
[y ECVi/x1,y- -, Vi /xn]

212 Chapter 5. Denotational semantics of eMLTT

Base category B of value contexts

The objects of B are given by equivalence classes [I'| of well-formed value contexts

I', where the equivalence relation is given by
FI' =15
FT = HIy

In order to improve the readability of the material presented in this section, we
follow the standard convention of referring to the various equivalence classes we use
by their representatives, i.e., we write - I" for [I']. To see that this simplification
is valid, we observe that by definition the well-formed types, terms, and definitional
equations are closed under context and type conversions. Furthermore, according to

Theorems [3.3.9] [3.3.10] 3.3.11}, and [5.3.11] well-formed contexts, types, terms, and

definitional equations are also closed under weakening and substitution.

To further improve the readability of this section, we also omit the turnstile symbol
when referring to well-formed contexts, and simply write I instead of - I" (and [F T']).
Given well-formed value contexts I'y and I, such that I, = x1:Aq,...,x,:4,, a
morphism I'jy — I'; in B is given by an equivalence class of tuples (Vy,...,V,) of
well-typed value terms, where I'1 FV; : A;[V) /x1,...,Vi_1 /xi—1], for all 1 <i<n; and
where the equivalence relation on such tuples of value terms is given component-wise:
I EVi=W; AilVi/x1, ..., Vie1 /xi—1] (1<i<n)
Vi,...,Va)=(W,...,W,): T} — I,

Throughout this section, we often abbreviate tuples (Vi,...,V,) of value terms as ?,

Next, the composition of any two morphisms of the form
Vi,..., Vo) : T — I (Wi,...,Wy,) Ty — T3
is given by simultaneous substitution of value terms for value variables, namely, by
(Wi s W) (Vi Vi) Z WAV, Wi Vi /5

assuming that I’y = x1:Ay,...,x,:A,.
Further, given any well-formed value context I" such that ' =x1:Aq,...,x,:A,, the

identity morphism idr is given by the variables of I', namely, by
idr = (x1,...,%,): T —T

The associativity and identity laws for composition follow from the properties we
established about simultaneous substitutions in the beginning of this section.
Finally, this category also has a terminal object, given by the empty context ¢, with

the corresponding unique morphisms I' — ¢ given by the empty tuple of value terms.

5.3. Completeness 213

Category 7V of value types

The objects of ¥/ are given by equivalence classes of well-formed value types I' - A.
Given two value types I'y A and I'; - B such that ['; = x1:Ay,...,x,:A,, a morphism
't A — T, F B is given by an equivalence class of tuples (Vi,...,V,,x.V), where
Iy F Vi AilVi/x1,...,Vie1/xiq], for all 1 < i < n, as above, and where
I, x:AFV: B[V,,}/Y?] In (Vi,...,V,,x.V), the value variable x is bound in the value

term V. The equivalence relation is again given component-wise, namely, by

CiEVi=Wii AV /xr,. . Vi /xic] (1<i<n)
Fl,xZAFV:W:B[Vl/xl,...,Vn/xn]
(Vl,...,Vn,x.V) = (Wl,...,Wn,x.W):Fl FA—TI)+FB

Analogously to B, the composition of morphisms is given by simultaneous substi-
tution of value terms for value variables. Further, given any value type I' - A such that

['=x1:Ay,...,x,:A,, the identity morphism idr- 4 is given by a tuple of variables:

idrea = (x1,...,%,x.X):TFA—TFA

Finally, the associativity and identity laws for composition follow from the proper-

ties we established about simultaneous substitutions in the beginning of this section.

Split fibration p: 7V — B
We define the functor p by mapping a well-formed value type to its context, given by

def

pTHFAZET p(Vi,..., Vi, x.V)E (V1,..., V)

We omit the proofs showing that p preserves identity morphisms and composition of

morphisms. We also omit analogous proofs for all other functors defined in this section.

Given a morphism 7, :I'y — I'» and a value type I'; - A, the morphism

(Vi xx) : Ty FA[V; /] — T2 - A

214 Chapter 5. Denotational semantics of eMLTT

is Cartesian over Vf :T'1 — p(I'; F A), with the unique mediating morphism in

(Wix.W)
3FB - - - - Ty FA[V /X)) S kA in Y
p
I Y Iy v I, in B
_/
(Wi W)

given by
(Vl,...V! x.W):T3FB Ty FA[V,/%]]
This morphism is well-formed because the commutativity of the lower diagram in

B means that we must have

—

Is5EW, = V,[V]//y_])] :A,-[Wl/xl,...,Wi,l/xi,l]

forall 1 <i<n.
In addition, the two value types that are assigned to W in the two morphisms con-
taining it are definitionally equal because of the properties we established about simul-

taneous substitutions in the beginning of this section. Concretely, we have

Ty F AV /RIV/50 = AV s VY52)

The uniqueness of (V;,x.W) :I3FB—TF A[v,/f,}] is also easy to prove.
%
Specifically, given any other morphism (W/,x.W') : I3 =B — T’ - A[vl /%] that

makes the previous two diagrams commute, this commutativity means that we have
T, x:BFW =W :A[V, /%]
and that for all 1 < j < m, we also have
L3 =W = Vi AilVi/yi, Vi /1]
As a result, we get the required equation
W{,.... W x. W) =(V{,...,Vl x. W)

The definition of the chosen Cartesian morphisms also tells us how the induced
reindexing functors (Vi,...,V,)* : ¥, — U4, are defined. They are given on objects
by

5.3. Completeness 215

(V)" (Ta - A) £ Ty - A[V, /7]

and on morphisms (x},x.V): T2 +A — I’ - B by
(Vi) (& x.V) 2 (5], x. VIV, /5]) : T - ALV /6] — T - BV, /¥1)

Finally, we show that p is a split fibration. On the one hand, we observe that for

any well-formed value context I such that ' = x1:Ay,...,x,:A, we have
idi(THA)= (X)) (THFA) =T+FA[xX/x]]=TFA

On the other hand, given any two morphisms 7, :I'y — I and Wj Iy —I3inB
such that I, = x:By,...,x,:By and '3 = y; :B},...,y,:B),, we have

(W0 V) (s - A)

= (Wi [Vi/T],c Wl Vi R)) (T3 - A)
=F1|—A[W1[vz/ xi]/y1,.. v/ 1/ym]
=Ty - A[W;/3)] V?/x,-
= (V)" (T2 FA[W;/5]))
= (V)" (W))" (T3 - A))

Split fibred terminal object functor 1 : B — 17/

We define the terminal object functor 1 in terms of the unit type, by

def def

IO ETHL 1V, V) E (VL. Vixx)

We proceed by showing that 1 is split fibred. On the one hand, we trivially have
that po 1 = idg. On the other hand, we also see that 1 preserves Cartesian morphisms
on-the-nose—in idg : B — B, every morphism in the total category is Cartesian.

The unit and counit of the adjunction p - 1 are given by components
Mrea S (x5 ,x.%):THFA—TF1 e =% :T—T

assuming that I' = x;: Ay, ..., x,: Ay

We omit the proofs of the naturality of 1 and €. We also omit the naturality proofs
for all other natural transformations we define in the rest of this section. Finally, we
note that the two unit-counit laws hold because both 1 and € are defined as identities

on contexts; and every well-formed value term of type 1 is definitionally equal to *.

216 Chapter 5. Denotational semantics of eMLTT

Comprehension functor {—}: 7V — B

We define {—} in terms of context extension. To facilitate this, we fix a choice of a

fresh value variable fresh(X) for every finite set X of value variables, and then define
TEAYETwA (ViV} E (Vi) :Tiyd — ToyncB

where (Vi,y.v) :T1 FA — T+ B and x = fresh(Vars(I')), with y; and y, chosen
similarly. In the rest of this chapter, we often leave the uses of fresh(X) implicit.

The unit and counit of the adjunction 1 - {—} are given by components
s (xf,%):T—Tx:l erpa = (3, 0.x) :Tx:AF1 —TFA

assuming that I' = x1:Aq,...,x,: Ay
We conclude by showing that the two unit-counit laws hold for these 1 and &.

On the one hand, we observe that the first unit-counit triangle

-y 2 yete()

: {—}oe
iy

{=}

can be rewritten for each well formed value type ' = A (with ' =x:Ay,...,x,:A,) as

follows:
(?l 7‘x7*)

I'x:A

I'x:A,y:1

I'x:A
It is now easy to verify that this triangle commutes, simply by using the simultaneous
substitution based definition of the composition of morphisms in B.

On the other hand, we observe that the second unit-counit triangle

L lo{-}ol

id, €ol

5.3. Completeness 217

can be rewritten for each well-formed value context I' = x;:Aq,...,x,:A, as follows:

=
rep Y p e

I'=1

Similarly to the other unit-counit triangle, it is now easy to verify that this triangle
commutes, simply by using the definition of the composition of morphisms in B, and

the fact that every well-typed term of type 1 is definitionally equal to «.

The induced split full comprehension category 7 : V — B~

We begin by recalling that we showed how the comprehension category P : V — B~
is derived from the adjunction 1 4 {—} in Proposition [2.2.30] In this classifying fibred
adjunction model, the functor P : // — B~ can be shown to be given on objects by

PCHA) = (x,...,x%,) : Tox:A—T

assuming that I' = x1 : A1, ..., %, : A, with x = fresh(Vars(I")); and on morphisms by

(V},Vyi/x))
Iy,y1:A d [2,y2:B
P(Vxv) E % Y
I I
1 ‘7; 2

where (?j,x. V):T1 +A — I'; - B. Further, for better readability, we assume in the
previous diagram that I'y = x1:Ay,...,x,:A, and I'y = x| :By,...,x},: B.

In order to show that this comprehension category is full, we need to prove that the

functor P is fully-faithful. We do so by first constructing a mapping

Prlars: B (P(T1FA),P(TyFB)) — V(I - AT, FB)

218 Chapter 5. Denotational semantics of eMLTT

for any two well-formed value types I'; = A and I'; - B. In particular, given a morphism

. (W} W) _
Flayl-A FZ:)’Z-B
. 7
r r

1 7 2

in B7(P(I'y - A),P(I'; - B)), we first observe that the commutativity of the above
square entails ' - W; =V, : B; [Wk /)7,{] for all 1 < j < m. Therefore, we can define

Fll—AFI—B va 771 . 7yl W)

Now, verifying that P is fully-faithful is straightforward: on the one hand, we have

(%, Fl}—AFI—B ijV),W‘))
(7 yi-W)
=((7J7Wy1/y1). V)
= (V,,W),V})
= (W, W), V)

and on the other hand, we have

rwArsz ?MV
_fPFIIFAl“zFB W?Vyl/x] 7J
= (V;.y1.V[1/4])
= (V;,x.V)

Category (C of computation types

The category C of computation types is defined similarly to the category 4 of value
types. First, the objects of C are given by well-formed computation types I" - C.
Secondly, given two well-formed computation types I'y = C and I', = D such that
Iy =x1:A1,...,x,:A,, a morphism I'y H C — I'» = D is given by an equivalence
class of tuples (Vi,...,V,,z.K) of well-typed value and homomorphism terms,
where I'y FV; : Aj[Vi/x1,...,Vio1/xi—1], for all 1 < i < n, as before; and where
I'|z:CFHK: l_)[V,/Y?] In (V1,...,Vy,z.K), the computation variable z is bound in

5.3. Completeness 219

the homomorphism term K. The equivalence relation on such tuples of well-typed

value and homomorphism terms is again given component-wise, namely, by

Oy Vi=Wi Ay /x, . Vier /xicd] (1<i<n)
Fl‘ZZQ"K:L:Q[V]/Xl,...,vn/xn]
(V],...,VH,Z.K) = (W],...,Wn,Z.L):Fl |—(_7—>F2|—l_)

Analogously to ¥/, the composition of morphisms is again defined using simul-
taneous substitutions, but this time by also using the substitution of homomorphism

terms for computation variables. In detail, the composition of any two morphisms
Vi,..',V,21.K): T HC) — T G, (Wi,...,Wy,20.L) :To FCy — T3 Cy
is given by

Wiy, Wins22. L) (Vi . Vi 21 K) & (Wi [V, /), . WiV, /520 LIV, R (K [22])

where we assume that Iy = x1:Aq,...,x,:A,.
For any well-formed computation type I' - C, the identity morphism idr}- ¢ is again

given by a tuple of variables, namely, by

def

idrrc = (x1,...,44,2.2) : THFC—THFC

assuming that I' = x1:Aq,...,x,:Ap.

Finally, analogously to V/, the associativity and identity laws for composition fol-
low from the properties we established about simultaneous substitutions of value terms
for value variables in the beginning of this section, and the results we established in

Section [3.T] about substituting homomorphism terms for computation variables.

Split fibrationg: C — B

We define the functor ¢ by mapping a well-formed computation type to its context:
q(l"l_A)d:efl" q(vla"'vvnvz'K)dze[(‘/l?"'avn)

where (Vi,...,V,,z.K): T FC — T2+ D.
Given a morphism 7, :I'{ — I'; in B and a well-formed computation type ['; - C,

we note that the morphism given by

(Vi,2.2) : Ty F CVi Jx1, e Vi xn] — T2 - C

220 Chapter 5. Denotational semantics of eMLTT

is Cartesian over Vf :T'1 — ¢g(I'2 - C), with the unique mediating morphism in

(W.2.K)
M3kD - ———- - T FCIV. 7] Tk C in %
(7i7z~z)
14
ﬁ
V! 4
g(Wr2.K)

given by
(V. 2.K):Ts-D — Ty - C[V, /%]

Analogously to the chosen Cartesian morphisms in p, this mediating morphism is
well-defined because of the commutativity of the lower diagram in B; and because of
the properties we established about simultaneous substitutions of value terms for value
variables in the beginning of this section, and the results we established in Section 3.1
about substituting homomorphism terms for computation variables. The uniqueness
of this mediating morphism is then proved analogously to the uniqueness of the corre-
sponding mediating morphisms in p, as discussed in detail earlier in this section.

The induced reindexing functors (Vi,...,V,)" : G, — Cr, are given analogously

to the corresponding functors for p: on objects, they are given by
(Vi) (D2 ©) T IV /%]
and on morphisms (xy,...,x,,2.K) : I, = C — I'; I D, they are given by
(W)*(xl,...,xn,z.K) = (y1,. ..,ym,z.K[vi/Z?])

Finally, we note that analogously to the fibration p defined earlier, ¢ is also split.

p has split dependent products and strong split dependent sums

We omit a detailed discussion about these properties of p because we discuss analo-
gous properties for g in detail later in this section. We only note that the split dependent
products are defined in terms of the value II-type I1x:A. B; and the strong split depen-
dent sums in terms of the value X-type Xx:A.B. The strength of the latter is witnessed
by isomorphisms K4, (rxar-p) : I x:A,y:B =, I,y :Xx:A.B, given by

def _ def

e e
K(r+A),(TxAFB) = (X,’) <X,y>) K(rl}—A)7(r,x;A}—B) - (xi) fsty/, Sndyl)

assuming that I' = x; : Ay, ..., x,: A

5.3. Completeness 221

p has strong fibred colimits of shape 0

Given any diagram of the form J : 0 — U4, we define the vertex colim(J) as
colim(J) =T+ 0

and note that the cocone in’ : J — A(colim(J)) is given vacuously as a natural trans-
formation between functors with empty domains. It is easy to verify that both colim(J)
and in’ are preserved by reindexing, i.e., substituting value terms for value variables.

Next, we observe that for any diagram of the form J : 0 — U4, we have
lim(J) =1

where the diagram J: 0% — Cat is derived from J trivially.

As a consequence of the above observation about lim(J), the unique mediating
functor ({in},}5 o) : Vicolim(z)y — lim (J) turns out to be the trivially constant functor
with codomain 1. Therefore, showing that ({in},}},_,) is fully-faithful simplifies to
showing that there is exactly one morphism between every pair of objects in U v,

which is straightforward. In particular, assuming I' = x; : Ay, ...,x,:A,, any morphism
(Yf,x,y.V) :I',x:0FA—T,x:0FB
in Ut .o can be shown to be equal to
(X7 ,x,y.case x of ())

using the n-equation for empty case analysis.

p has strong fibred colimits of shape 2

Given any diagram of the form J : 2 — ‘Uf, we define the vertex colim(J) as

def

colim(/) £ T+ J(0) +J(1)

and the cocone in’ : J — A(colim(J)) by

o

ef

in} < (%} ,x.inl x) : T+ J(0) — T+ J(0) +J(1)
in/ = (x/,x.inr x) : THJ(1) — T+ J(0) +J(1)

assuming that ' =x:Ay,...,x,:A,. Similarly to the strong fibred colimits of shape 0,

it is again easy to verify that both colim(J) and in are preserved by reindexing.

222 Chapter 5. Denotational semantics of eMLTT

Next, we observe that for any diagram of the form J : 2 — U{, we have

lim(J) = VI y0:0(0) X Vo yy0(1)

where the diagram J:2°° — Cat is derived from J as in Definition 4.1.17
As a consequence of this observation about Iim(JA), the unique mediating functor

{inh}pea) Vicolim(z)} — lim(J) sends any morphism
(X0, x,9.V):Tx:J(0)+J(1) FA — T x:J(0)+J(1) - B
in U . J(0)+J(1) to a pair of morphisms

(Y?,yo,y.V[inl vo/x]) : T,yo:J(0) F A[inl yo/x| — [',y0:J(0) F B[inl yo/x]
(E),yl,y.V[inr vi/x]) :T,y1:J(1) FAlinr y1 /x| — [,y :J(1) F Blinr y; /x]
in ULy, J(0) and My J(1)> Tespectively. We note that for better readability, we use dif-
ferent names (yg and y;) for the variable x £ fresh (Vars(T')) in the last two morphisms.

In order to show that <{i_n{)}2‘)€2> is fully-faithful, we first define the mapping of

morphisms in the reverse direction: we send any pair of morphisms
(X7,50,5-Wo) : T,y0:J(0) F A[inl yo/x] — T, y0:J(0) - B[inl yo/x]
(%, y1,9-W1) : T,y :J (1) = Alinr yi /x] — T,y1:J(1) = B[inr y; /]
in U y.7(0) and 1 y,.5(1), respectively, to a morphism

(Y?,x,y.(case x of (inl(yo:J(0)) — Ay :A[inl yo/x]. Wo[y'/y],
inr(y;:J(1)) — Ay :A[inT y; /x]. W[y /)’])))

in U y.5(0)+4(1)» With y chosen fresh.
Now, to show that the round-trip (on morphisms) from 74 ,. 7(0)+J(1) to the product

. Y0:J(0) X 2 y;.J(1) and back is an identity, it suffices to observe that any morphism
(%0, x,9.V):Tox:J(0)+J(1) FA — T x:J(0)+J(1) - B
in U . J(0)+J(1) can be shown to be equal to

(?,-,x,y.(case x of (inl(yo:J(0)) — Ay':A[inl yo/x].V[Y'/y][inl yo/x],
inr(y;:J(1)) = Ay :A[inr y; /x]. VY /y][inr yi/x])) ¥)
using the M-equation for binary case analysis.
Showing that the other round-trip (on morphisms) from U1 ,.5(0) X U y,(1) tO
U, x.0(0)+J(1) and back is an identity is similarly straightforward, by using the respec-

tive B-equations for binary case analysis and function application.

5.3. Completeness 223

p has weak split fibred strong natural numbers

We define the weak split fibred strong natural numbers in p by

N=Zok Nat
zero = (x.zero) : o+ 1 — o Nat

succ = (x.succ x) : o - Nat — o - Nat

Next, if we assume that I' = x1:A1,...,x,:A,, then given any pair of morphisms

f- = (x},zero,y.V.):T,x: 11— T, x:Nat+ A
fs = (Z)?succ x,y.Vs):T,x:NatFA — T',x:Nat- A

in v/, the mediating morphism rec(f, f;) : I',x:Nat — I',x: Nat, y: A is defined as

def

rec(fz, f5) = (Yz}ﬁca nat-elim(V,[x/x][x/y],y1.y2. Vs[y1 /] [YZ/y]vx))

with y; and y, chosen fresh.

As rec(fs, f;) is clearly a section of (X}, x) : I',x:Nat,y:A —s I, x: Nat, we are left
with showing that the diagram of “B-equations” given in Definition commutes.
To this end, we show that the two squares in the above-mentioned diagram commute,

by first observing that these squares can be rewritten in this classifying model as

Ix:1 (3 zer0) I',x:Nat
(X %) rec(fz.fs)
Iix:1,y:1 T R— I',x:Nat,y:A
and
I',x:Nat (5 suce I',x:Nat
rec(fz.fs) rec(fz.f;)
I',x:Nat,y:A I',x:Nat,y:A

(%} ,succ x,Vy)

224 Chapter 5. Denotational semantics of eMLTT

It is now straightforward to show that these squares commute, by

{,xnat-eLim(V,[x/x][x/y], y1-y2. Vslyi /4][v2/3],%)) o (37 , zero)
,zero, nat-elim(V;[x/x][x/y],y1.y2. Vs[y1 /x][y2/], zero))

X}, x,nat-elim(V;[x/x][x/y],y1.y2. Vis[y1 /%] [y2/y],%)) o (X}, succ x)

w/x] /Y], y1-¥2- Vs y1 /] [y2/y], succ x))

4l
ysuce x, Vs[yi/x][y2/y][x/y1]
[nat-elim(V.[x/x][*/y],y1.y2. Vs[y1 /x][v2/3],%) /¥2])

[, succ x, Vs [nat-elim(V;[x/x][x/y], y1-y2- Vs[y1 /€] [v2/3],%) /¥])
= (ﬁ,succx V)o(xi,x,nat-elim(V;[x/x][x/y],y1.y2. Vs[y1/x][v2/],))

—

[
n)

<

(
(

i,succ x,nat-elim(V.

=

el

p has split intensional propositional equality

We define the object Idr 4 in 9 .4 y:4 as

def

ldrra =T, x:A,y:AFx=4y
and the morphismry : I'x:AF1 — T, x:AFx=4 xas
ry = (Yl?,x,y. refl x)
Next, given a well-formed value type I', x1 :A,x2:A,x3:x1 =4 x> - B and a morphism
FE(x,xy.V):T,x:AF1 — T, x:A b Blx/x1][x/x2][ref] x/x3]
we define the morphism

il"%A7F7x1:A,x2:A,x3:x1:Ax2 %B(f)
: F,xl :A,XQZA,)C3 X1 =A X2 F1— F,X] ZA,)CQ :A,X3 X1 =A X2 +B

as

- .
(.Xi ,Xl,Xz,X:;,y.eq-ellmA(Xl.XQ.X3.B,X. V,X],XQ,X?,))

We note that for better readability, we write x; and x, for the freshly chosen value
variables x = fresh(Vars(I')) and y = fresh(Vars(I") U {x}) in the above definition.

5.3. Completeness 225

Next, we note that in this classifying model, the equation relating the morphisms
ra and i A T x4 x4 o =ax, - B(f)» @s given in Definition |4.1.27, amounts to showing

(E?,x,y. eg-elimy (x1.x2.x3.B,x.V,x,x,refl x)) = (ﬁ,x,y.V)

which follows straightforwardly from the B-equation for propositional equality.
Finally, we note that all the structure we defined above is also preserved on-the-
nose by reindexing, as required in Definition 4.1.27, because the type- and term-

formers used in these definitions are all preserved on-the-nose by substitution.

Split fibred adjunction F H U

We define the functor F : 7V — C on objects using the type of free computations:
FTHFA)ETHFA
and on morphisms using sequential composition:
F(7,-,x.V) = (Vi,z.z tox:A in returnV)

where (V,,x.V): T\ FA — T F B.
We proceed by showing that F is split fibred. On the one hand, we observe that F
does not alter the context I of the given well-formed value type I' = A (or a morphism

between them). On the other hand, F preserves Cartesian morphisms on-the-nose:
vl,xx 7,,z Ztox: A7/x, in returnx) = (V;,z.2)

where (V,,x.x) : Tt F AV /x1, ..., Va/xa] — T2 - A,
We define the functor U on objects using the type of thunked computations:

def

UTFC)LT+UC

and on morphisms using thunking and forcing:
U(v,,z K)= ?,,x thunk (K[forcec x/z]))

with x chosen fresh; and where (V,;},z. K):TT'HFC—T,FD.
Showing that U is split fibred is also straightforward. On the one hand, U does not
alter the context I' of the given well-formed computation type I' - C (or a morphism

between them). On the other hand, U preserves Cartesian morphisms on-the-nose:

U(V,,z.z) = (V:,x. thunk (z[forcec x/z])) = (V. ,x. thunk (forcec x)) = (V,,x.x)

226 Chapter 5. Denotational semantics of eMLTT

where (V;,z.z) : T FC[Vi/x1,...,Va/xy] — T2 F C.

Next, the unit and counit of the adjunction F - U are given by components

Nrea = (X7, x.thunk (returnx)):THFA — - UFA

€rk-c = (Yf,z.z toy:UC in forcecy):I'FFUC —T'FC

assuming that I'=x;:Aq,...,x,:A,, and where x,y, and z are chosen fresh.

Finally, we show that the two unit-counit laws hold.

On the one hand, assuming that ' = x;:Ay,...,x,:A,, we observe that the triangle
U nev UoFoU
idy Uoeg
U

can be rewritten for each well-formed computation type I' - C as follows:

r'+uc /

I'FUFUC

8

r-uvc
where the morphisms f and g are given by

f = (X, x.thunk (return x))

g = (x/,x'.thunk ((forceryc x') to y:UC in forcec y))

It is now straightforward to show that this triangle commutes, by

x7,x'.thunk ((forcepyc x') to y:UC in forcecy))o (x{,x. thunk (return x))

X ,x.thunk ((forcepyc (thunk (returnx))) toy:UC in forcec y))

(i
= (% (
(X{,x.thunk ((returnx) to y:UC in forcec y))
(X7,x. thunk (forcec x))

(

w5 =]

?x)

5.3. Completeness 227

On the other hand, assuming that I'=x1:Ay,...,x;,:A,, we observe that the triangle
Fo
F N FoUoF
coF
idp
F

can be rewritten for each well-formed value type I' - A as follows

T+ FA h '+ FUFA
k
(3 22)
T+ FA

where the morphisms % and k are given by

def

h= (Z),z.z tox:A in return (thunk (returnx)))
kE (Yz,z’.z' toy:UFA in forcepy y)

It is now straightforward to show that this triangle commutes, by

(x},7.7 toy:UFA in forcepy y) o
(ﬁ,z.z tox:A in return (thunk (returnx)))

X7,z.(ztox:A in return (thunk (returnx))) toy: UFA in forcep y)

X;,z.ztox:A in (return thunk (returnx)) toy:UFA in forcepy y))

((
= (¥/,z.ztox: A in forcep (thunk (returnx)))
(x{,z.ztox:A in return x)

(

q has split dependent p-products
We define the functor Il 4 : Grx.a — Cr on objects by
O a(T,x:AFC) ST HIIx:A.C

and on morphisms by

Mra (% ,x,2.K) = (3,2 Ax:A.K[7 x/2))

228 Chapter 5. Denotational semantics of eMLTT

with 7’ chosen fresh.
Next, we note that in this classifying model, the projection morphisms are given by

thAd:“ﬁ:F,x:A—>F

assuming that ' = x: Ay, ..., x,:A,, with x = fresh(Vars(I')).
As a result, the weakening functors 7y, , can be shown to be given by syntactic

weakening, both on objects and morphisms:
T CHFO) SN x:AFC w4 (X,2.K) Z (% ,x,2.K)
Next, the unit and counit of the adjunction 7y, , = Ilpy 4 are given by components
Nrec = (3,2 Ax:A4.2) : THC — THIIx:A.C

Erx:AFC S (X}, x,z.2%) :[,x:AFTy:A.Cly/x] — T,x:AFC
with z chosen fresh in both definitions.
Next, we show that the split Beck-Chevalley condition holds. First, we observe that
the components of the corresponding natural transformation are given by morphisms
(37,2 A AV, /2. (\y:A[V; /%] 2) %) x)

Ty LAV, /%).CVi /%) — Ty - ALV, /5].CIV /]
for any Cartesian morphism (V,?,x.x) T A[V;/Y?] —IhFAand I'),x:AFC.
Then, it is easy to verify that the above components are equal to identity, i.e., (YJ), 2.2);
namely, by using the B- and n-equations for computational function application.

Finally, we show that the two unit-counit laws hold.
On the one hand, assuming that I' = x;:Ay,...,x,:A,, we observe that the triangle

nollpy

I a Hrpaomp, 4 ollrpa

. HFFA [eX S}
idnpy

I

can be rewritten for each computation type I',x: A - C as follows

(X} 2 Ax:A2)

'FIIx:A.C 'F1Ix:A.Ily:A.Cly/x]

v d .
22 (xf,Z Ac:A(Z x)x)

TFIIx:A.C

5.3. Completeness 229

which commutes because we have

X, 2 Ax:A (Zx)x) o (X, 2. Ax:A.2)
X,z Ax:A (Ay:A.2)x)x)
Xz A (2lx/y])x)

X,z XAz x)

(
(
(
(
(

= (¥,2.2)
On the other hand, assuming that ' =x1:Ay,...,x,:A,, we observe that the triangle
" T p0M . 0l *
Trea Trpa @ HrEAC oy
i €14
A
*
Trra

can be rewritten for each computation type I' - C as follows:

X xz A,
CoxiAbC A b A TyALC

(X %22 x)

I'x:A-C
which commutes because we have

(X7, x,2.7 %) o (X}, x,2.Ay:A.2) = (X} ,x,2. (Ay:A.2) x) = (%], x, 2. 2[5 /y]) = (%] ,%,2.2)

q has split dependent p-sums

We define the functor X4 : (rx.a — (T on objects by
Yria(C,x:AFC) ETHEIx:A.C
and on morphisms by
Srea(¥,x,2.K) = (%,2.7 to (x:A,2":C) in (x,K[{"/2]))

with 7/ and 7 chosen fresh.

230 Chapter 5. Denotational semantics of eMLTT

Next, the unit and counit of the adjunction X4 - ©p, , are given by components

def

Nraarc = (¥,%,2.(6,2) : T,x:AFC — T,x:AF Zy:A.Cly/A]

Errc = (X],z.zt0 (x:A,7:C) in7): TFIx:A.C—TH+C

with z and 7 chosen fresh.

Next, we show that the split Beck-Chevalley condition holds. First, we observe that

the components of the corresponding natural transformation are given by morphisms

(3,220 (x,2) in ((x,(x,7)) to (1Z") in "))
Ty FEx:A[V,/R).CIV, /3] — Ty FEx: AV, R).C[V, /7]

for any Cartesian morphism (W,x.x) T F A[?/Y?] —IhFAand I,x:AFC.
Then, it is easy to verify that the above components are equal to identity, i.e., (Yj), 2.2);

namely, by using the - and n-equations for computational pattern-matching.
Finally, we show that the two unit-counit laws hold.

On the one hand, assuming that I' = x;:Ay,...,x,:A,, we observe that the triangle

"
NOTrra

* * *
A T A OZTHA O Ty 4

*
i Tr-4 08
1d g%
T+A

*
Trea

can be rewritten for each computation type I' - C as follows:

~
CoxiAbC S0 oAb yiA.C
(X x,2.2) "
Ix:AFC

where the morphism £ is given by

h (Y?,x,z/.zl to (y:A,7":C) in z”)

5.3. Completeness 231

It is now straightforward to show that this triangle commutes, by

(Yl?axazl'zl to (y A C) in Z”) © (71')7X>Z'<xvz>)

— (YZ,x,z.(x,z) to (y:A,7":C)in ")

= (%7, x,2.2"[2/7"])

= (X}, x,2.2)

On the other hand, assuming that I'=x1:Ay,...,x,:A,, we observe that the triangle
Irpaom "
Iria LA O 4 OXrrA
idrpy cotrea
Xrea

can be rewritten for every computation type I',x: A = C as follows:

TFYx:A.C k

I'-Xy:A.Xx:A.C

(% ,2.2)

I'-xXx:A.C

where the morphisms k and / are given by

def

k= (Y?,z.z to (x:A,7:C) in (x, <X71/>>)

1% (3,77 to (y:A,7":Zx:A.C) in 7")

It is now straightforward to show that this triangle commutes, by

(%F,7".7" to (y:A,7":Ex:A.C) in ") o (¥,z.2t0 (x:4,7:C) in (x,(x,7)))
(YI?;Z (Z to (x:A7Z/:Q) in <X, <X,Z/>>> to (y:A,Z”/IZXZA.Q) in Z///)
— (Y;aZ.Z to (-x:Ayzl:g) ln ((x, <x,Z/>> to (y:A’Z///:Zx,AQ> ln Z///))
(Z?,Z.Z to (x:A4,7:C) in Z///[<X,Z/>/z/”])
(

{,z.zto (x:A,7:C) in (x,7))

232 Chapter 5. Denotational semantics of eMLTT

q admits split fibred pre-enrichment in p

We define the functor —o : f (T — G x Gr) — V on objects by

— (LTHFC,TFD)ETHC —-D

and on morphisms by
—o (Vi,2.K,2.L) 2 (Vi ,x 2" G, Vi J=). LIxK [/2) /7))

where V; :T) — I, and T} |z:(_?2[V,;>/7,->] FK:Cy,and Ty |Z:D;FL: QZ[V,?/Q],
where x and 7’ are chosen fresh; and where we assume that I'> = x1:Aq,...,x,:A,.

It is easy to verify that the functor —o is split fibred. On the one hand, — does
not alter the context part of the given objects and morphisms. On the other hand, —o

preserves Cartesian morphisms on-the-nose because we have

— (Vi,z.2,7.7)

(W,x.kz ; 71/7? .7 [xz[Z"/2)/7])
(V,;),x.kz”:Qz[vi/fl?].xz[z"/z])
(
(

W,x.kz":gz[@/fl}].xz”)
vi,x.x)

Finally, the isomorphisms &F,FF c,r+p between hom-sets are witnessed by the fol-

lowing functions:

Errrcrn(X,x. V)= (3 ,z.(Vx/x])2)

é’;rr}—cn—D(xz ,2.K) = = (xi:y-)“Z/:Q-K[ZI/Z])

where z is chosen fresh in the former; and y and 7’ are chosen fresh in the latter.

The completeness theorem

To begin with, we first summarise the above definitions and results in the next theorem.

Theorem 5.3.12. The above definitions, based on the well-formed syntax of eMLTT,

constitute a fibred adjunction model, called the classifying fibred adjunction model.

Next, we show that the interpretation function [—] maps eMLTT’s types and terms

to their respective equivalence classes in this classifying fibred adjunction model.

5.3. Completeness 233

Proposition 5.3.13. Assuming that 1" = x:A1,...,x,:A,, we have:
(a) If [T] =T" € B, thenT" = x| :A},...,x,: A}, and for all 1 <i < n, we have

XA X AL A= A Jx X X

(b) If [T;A] = [C] - A" € Yy, then [T] - A" = Alx) /x1,..., X5, /%]
(c) If[T:C) = [T] FC' € Gy, then [T] = C' = C[¥, /x1,...,x),/xn].
(d) If [T3V] = (x,...,x,, . V) [T]F 1 — [T] - A, then

LIV =V /x1,....x, /x,] - A

(e) If [T;M] = (x],....x,,y.Vu) : [I|F 1 — [T FUC), then

[T] - forcec Vg = MIx| /x1,...,x,/x5] : C'

(f) If [T:z:C; K] = (x},...,x,,z.K') :THC — T+ D, then
[[F]] |Z2Q[XII/X1,...,X;1/)C"] K = K[xll/xlw'-ax:q/xn] :Ql
Proof. We prove (a)—(f) simultaneously, by induction on sum of the sizes of the ar-

guments to [[—]] As two representative examples, we present the cases corresponding

to the computational X-type and the sequential composition of computation terms.

The computational X-type: In this case, we have that C =Xx:A.D.
First, by inspecting the definition of [—] for the computational X-type, we get that

[[:Xx:A.D] = [[]+Ex":A".D € Oy

with [[F,A]] = [[F]] l_A/ € q/[[r‘]] and [[F,XA,Q]] = [[F]],XN :A/ H l_)/ € C[[F]],x”:A’-

As aresult, we can use (b) and the induction hypothesis to get that
[C]FA"=Alx] /x1,...,x, /%] [C],x" : A"+ D' = D[} /x1,...,x), /xp,x" /x|
Finally, by using the congruence equation for the computational X-type, we get that
[C]FZx":A". D' = X" A[x) /x1,. .., X, /xn). DIX] /x1, - .., X, /%0, X" /X]
which, according to our chosen variable conventions, is in fact the proof of

[C]FZx":A". D' =Ex:A[X| /x1, ..., %), /xn]. DX} /x1, ., X0,/ Xn]

234 Chapter 5. Denotational semantics of eMLTT

and which, according to the definition of simultaneous substitutions, is the proof of
[C]FEZx":A".D' = (£x:A.D)[x| /x1,...,x, /x,]

Sequential composition: In this case, we have that M = N; to x:A inc M.

First, by unfolding the definition of [—] for sequential composition, we get that

[[F;Nl tox:A inc Nz]]

(x?,yll.thunk ((force yi1) to y12:UC in (force ylg)))
@)
(z,y7.thunk ((force y7) to yg:A’ x UC' in
return (pmyg as (y9:A',y10:UC') in yi0)))
O
(2,y4.thunk ((force ys) toys:A'x 1 in
return (pmys as (x":A’,ys:1) in (x",Vy,))))

o

(Z,yg.thunk ((force yp) to y3:A’ in return (y3,%)))
o
(?i?yl-VNl)

(%591 Vv, tox:d ine V)
as a morphism [['] -1 — [I'] - UC" in Yy, with
[A)=[T]FA"e Yy [3C] =[] FC € (py
TN] = (X, Xy Vi)t [T F 1 — [T F A
[C,x:A;No] = (X, x, 2 y6. Vi) < [T], X" A 1T — [T, 4" :A" = UC
As a result, we can use (b), (¢), and the induction hypothesis to get that
[MI-A' =AL /R [-C = Cl /)
[T] - forcepy Va, = N[/3] : FA'
[T],x":A"+ forcecs Vi, :Nz[x?/fl?,x”/x] :C!
Finally, we note that the required equation
[T F forceq Vin, coxut 1a.ny = (N1 £0 x:4 ing No) [/] : C'

follows by straightforward equational reasoning, based on the definitional equations

we just derived, in combination with the unfolding of [I'; N| to x:A in¢ Ny]. O

5.3. Completeness 235

Finally, we prove the completeness of fibred adjunction models for eMLTT.

Theorem 5.3.14 (Completeness). If we assume given contexts I'y =y :B1,...,y,:By

andTy =y|:Bj,...,y,, B, then we have:

(a) If [I'1;A]] = [T2; B] in all fibred adjunction models, then n = m and

CEAR1/y1,- %0/ yn) = BX1/Y), - X /Y0

for some " =x1:Ay,...,x,: A, such that for all 1 <i <n, we have
X1 ZAl,.. <y Xi—1 ZAI;I I—A,’ = B,-[xl/yl,.. . ,xi,l/yi,l] = B;[xl/yll,. .. ,xi,l/ygfl]
(b) If [T';C] = [I'2; D] in all fibred adjunction models, then n = m and

F"Q[xl/}’h---axn/)’n] :Q[xl/y/luvxn/y:q]

for some ' =x1:Ay,...,x,: A, such that for all 1 <i <n, we have
X1 ZAl,.. s Xi—1 IAI;I I—Ai = B,-[xl/yl,.. . ,xi,l/yi,l] = B;[xl/yll,. .. ,xi,l/ygfl]
(c) If [T'1;V] = [T2; W] in all fibred adjunction models, then n = m and

CEVxy/yi- X /yal = Wit /Y, xa /)] 1 A

for some A and " = x1:Ay,...,x,: Ay, such that for all 1 <i < n, we have
X1 IAl,.. s Xi—1 IAl;l I—Ai = B,-[xl/yl,.. . ,xi,l/yi,l] = B;[xl/yll,. .. ,xi,l/ygfl]
(d) If [T'1;M] = [I'2;N] in all fibred adjunction models, then n = m and

CEMxi/y1,. ... %0 /yn] = N[xi /¥y, ... xn /0] : C

for some C and " = x1:Ay,...,x,:A, such that for all 1 <i <n, we have
X1 IAl,.. s Xi—1 IAl;l I—Ai = B,-[xl/yl,.. . ,x,-,l/y,-,l] = B;[xl/yll,. ..,x,-,l/ygfl]
(e) If [T'1;21:Cy;K] = [T2;22:Cy; L] in all fibred adjunction models, then n = m and

F|Z1:Q1[xl/yl7"'7xn/yn] I_K[xl/y17"'7xn/yn] :L[x1/y/1,...,Xn/y;l][ZI/ZZ] :Q

for some D and 1" = x1:Ay,...,x,:A, such that for all 1 <i <n, we have

XA ximt Ao A = Bilxy [y, - xio1 /yie1] = B;[xl/yll,. ..,x,-,l/ygfl]

236 Chapter 5. Denotational semantics of eMLTT

Proof. We prove (a)—(e) simultaneously, following the same general pattern of us-
ing the interpretation in the classifying fibred adjunction model, in combination with
Proposition As a representative example, we present the proof of (d) below.
First, we observe that if [I';;M] = [I2;N] in all fibred adjunction models, then
[T'y;M] = [I"2; N] in the classifying fibred adjunction model. As a result, we have

[[Fl;M]] = (xl,...,xn,x.VM) : [[1“1]] F1— [[F]]] F UQ
[[FQ;N]] = (xl,...,xn,x. VN) : [[Fz]] F1— [[1“2]] F UQ/

such that (as contexts, types, and terms are identified in the classifying fibred adjunc-

tion model when they are definitionally equal—see the definitions of B, ¥/, and ()
F 1] = [I2] [Ty]FUD=UD [C1],x:1+Vyy =Vy:UD
from which it follows that n = m. As a result, we can consider [I"}; M] and [I'};N] as
[T M) = (x1,. .y x0,x.Vag) s [T F 1 — [T FUD
[T2;N] = (x1,...,%,x. Vy) : [I1] 1 — [I1] FUD

and choose C < D.
Next, we choose I' = [I';] and then use (a) of Proposition to get that
X1:AL XA F A = Bix /Y xis1 /Y]
for all 1 <i < n, which, when combined with Proposition[5.3.4] gives us that
X1:AL X1 AL A = Bilxy /v, xio/yie1] = Bixa [y - xic1 /Y]
forall 1 <i<n.
Next, by using (e) of Proposition we get that
[T'1] F forcep Vie = M[x1/y1,- .- Xn/Yn) :
[Ti] F forcep Vy =N[xi /¥, ..., xa/yy] : D

Next, we use Propositions|3.3.7/and|3.3.20|to get that x & FVV (Vyy), x € FVV (W),
and x € FVV (D). As a result, we get a proof of the following definitional equation:

IS

[[Fl]]l—VM:VNZQ

by substituting * for x in [[';],x: 1 =V = Viy : D, and by using Proposition [3.1.7}
Finally, the required equation now follows by using the rules of symmetry and

transitivity, and the congruence rule for forcing thunked computations, giving us

[Ci] = Mpxi/yise. 2 /ya) = Nlxt /Y1, X /y,] : D

Chapter 6

eMLTT 7 : an extension of eMLTT

with fibred algebraic effects

While eMLTT makes it clear how to account for type-dependency in composite effect-
ful dependently typed programs (using the combination of sequential composition and
computational X-types), it provides programmers with no way to use specific compu-
tational effects in their code, such as exceptions, nondeterminism, state, I/O, etc. In
this chapter, we address this limitation by extending eMLTT with corresponding lan-
guage primitives and definitional equations. This extension of eMLTT is based on the
algebraic treatment of computational effects—see Section for an overview. Thus
it allows us to uniformly capture a wide range of computational effects in eMLTT.

In Section we define a notion of fibred effect theory so as to specify compu-
tational effects using operations and equations. Unlike the existing work on algebraic
effects, our operation symbols are dependently typed, enabling us to capture precise
notions of computation, such as state with location-dependent store types and depen-
dently typed update monads. In Section we show how to extend eMLTT with
computational effects specified by a given fibred effect theory Zes. In particular, we
extend its computation terms with algebraic operations, and its equational theory with
the corresponding definitional equations. We call the resulting language eMLT T ..

In Section @, we show how to extend the meta-theory of eMLTT to eMLTT.
In Section @ we present some useful definitional equations derivable in eMLTTo ..
In Section @, we equip eMLTTg . with a denotational semantics, showing how to
define a sound interpretation of it in a fibred adjunction model based on the families of
sets fibration and models of a countable Lawvere theory we derive from Zeg. Finally, in

Section 6.6 we briefly discuss an equivalent extension of eMLTT with generic effects.

237

238 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

6.1 Fibred algebraic effects

In this section we develop a means to uniformly specify a wide range of computational
effects, ranging from well-known examples such as exceptions, nondeterminism, state,
IO, etc. to a less well-known example of (dependently typed) update monads.
Following the work of Plotkin and Pretnar in the simply typed setting [95], we
develop a notion of fibred effect theory so as to specify computational effects in terms
of operation symbols and equations. The former denote the sources of computational
effects, with the latter describing their computational properties. Following Plotkin
and Pretnar, we begin by defining a notion of fibred effect signature (given by a finite
set of dependently typed operation symbols) and then extend it to a notion of fibred
effect theory (given by extending a fibred effect signature with a finite set of equations).
To emphasise the dependently typed nature of our operation symbols, we refer to the

computational effects specified by these theories as fibred algebraic effects.

6.1.1 Fibred effect signatures

As mentioned earlier, our fibred effect signatures consist of operation symbols that are
dependently typed. We specify these dependent types internally in a certain fragment

of eMLTT, consisting of pure value types and pure value terms, as defined below.

Definition 6.1.1. An eMLTT value type is said to be pure if it is constructed only from
Nat, 1, Xx:A.B, I1x:A.B,0, A+ B, and V =4 W, with A pure in propositional equality.

In other words, a value type is pure exactly when it contains neither U nor —o. It is
also worth noting that pure value types are very similar to the discrete value types we
used in Section §.3.5.3}—the only difference being in the argument type of the value
II-type. For pure types, the argument type has to be pure, whereas for discrete types

the argument type could be arbitrary, as discreteness is determined by the result type.

Definition 6.1.2. An eMLTT value term is said to be pure if it does not contain thunk

terms and homomorphic lambda abstractions, and all its type annotations are pure.
Based on this fragment of eMLTT, we now define a notion of fibred effect signature.
Definition 6.1.3. A fibred effect signature St is a finite set of typed operation symbols
op:(x:I)— O

where ¢ I and x: 1 - O are well-formed pure value types, called the input and output

type of op, respectively.

6.1. Fibred algebraic effects 239

Analogously to types and terms that involve variable bindings, the variable x is
bound in O in the type of op : (x:I) — O; and we do not distinguish between o-
equivalent types of operation symbols. We also assume that in any mathematical con-
text, the bound variable x in the type of op is always chosen to be different from the
free variables of that context. As a further simplification, if the variable x is not free in
0, we omit the variable binding and simply write the type of op simply as I — O.

Intuitively, in models where dependent value types denote families of sets (see the
model of eMLTTy, given in Section[6.5)), one thinks of op : (x:1) — O as describing
an /-indexed family of algebraic operations op;, each of whose arity is the cardinality
of the set denoted by Oli/x]. From a computational perspective, the input type of an
operation should be understood as specifying the values used to parameterise the cor-
responding effect, e.g., the memory locations to be accessed; and the output type of
an operation as specifying the values that are produced by performing the correspond-
ing effect, e.g., for the get operation, the value stored in the memory. Based on these
intuitions, / could also be called a parameter type and O an arity type, e.g., as in [93].

We now give some examples of fibred effect signatures for important computational

effects, starting with ones based on simply typed effect signatures from [935]].

Example 6.1.4 (Exceptions). Assuming given a well-formed pure value type < F Exc

of exception names, the signature Sgxc of exceptions is given by one operation symbol
raise : Exc — 0

The idea is that raise denotes the effect of raising an exception corresponding to
a given value of type Exc. The output type of raise is the empty type O because after

raising an exception in a program, there is no further continuation to be evaluated.

Example 6.1.5 (Binary nondeterminism). The signature Syp of binary nondetermin-

ism is given by one operation symbol
choose: 1 — 1+1

The idea is that choose denotes the effect of nondeterministically making a binary

choice, with the outcome witnessed by returning either the value inl x or inr .

Example 6.1.6 (Global state). Assuming given a well-formed pure value type o+ St of

store values, the signature Sgs of global state is given by two operation symbols

get:1 — St put: St — 1

240 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

The idea is that get denotes the effect of reading and returning the current value of

the store; and put denotes the effect of setting the store to a given value of type St.

Observe that in the previous example, get and put operate on the whole state. Be-
low, we consider a common variation of the signature of global state that incorporates
multiple memory locations. However, in contrast to the simply typed effect signature
for global state with locations, where all locations have to store values of the same
type, e.g., see [93], the presence of dependent types allows us to make the type of store

values dependent on locations, giving a more realistic presentation of global state.
Example 6.1.7 (Global state with locations). Assuming well-formed pure value types

o Loc x:LocF Val

of memory locations and values stored at them, respectively, the signature Sgsi of

global state with locations is given by two operation symbols
get : (x:Loc) — Val put: Xx:Loc.Val — 1

Observe that compared to the operation symbols given in Example [6.1.6] this get

and put take the memory location to be accessed as an additional value argument.

In the simply typed setting, where Val would not be allowed to depend on Loc, this
signature would need to be given either 1) by restricting all locations to store values of

the same type (as already suggested earlier), or ii) by families of operation symbols
gety : 1 — Valy puty : Valy — 1

where get, put, and Val are all indexed by closed normal forms V of type Loc.
However, if we were to extend a simply typed programming language with prim-
itives corresponding to the second approach, we must bear in mind that in state-
manipulating programs it is often desirable to use get and put with non-normal and
open arguments of type Loc. While this could be achieved to some extent using case
analysis on the given value argument of type Loc, the lack of dependent types means

that the corresponding derived operation would have the following imprecise type:
get:Loc — Valy, + ... + Valy,

where we use V1,...,V, to range over the closed normal forms of type Loc.
As a final example of well-known and important computational effects, we present
the fibred effect signature of interactive character input/output. This signature does not

use any type-dependency and is therefore exactly the same as the one given in [93].

6.1. Fibred algebraic effects 241

Example 6.1.8 (Input/output). Assuming a well-formed pure value type ¢+ Chr of

characters, the signature Sy of input/output is given by two operation symbols
read : 1 — Chr write : Chr — 1

The idea is that read denotes the effect of reading a character from the terminal;
and write denotes the effect of writing the given character to the terminal. Note that

the same signature can also be used to describe input/output over, say, a network.

Observe that the signature of input/output given in Example [6.1.8]is essentially the
same as the signature of global state given in Example [6.1.6] modulo the names of
the operation symbols and their types; these two computational effects differ in the

equations one imposes on them—see Examples[6.1.22]and [6.1.24] for details.

Further, observe that analogously to the signature Sgs;, of global state with loca-
tions, one can also extend 5o with type-dependency by considering multiple terminals
(or network channels) and making the values read from and written to terminals (resp.
network channels) dependent on terminal names (resp. channel names).

In addition to these well-known effect theories from the algebraic effects literature,
we also want to draw the reader’s attention to a less well-known example of global
state, in which the store is changed not by overwriting but by applying (potentially
small) updates to it. This notion of global state is modelled by update monads that were

introduced and thoroughly studied by the author in a joint paper with Uustalu [13].

Example 6.1.9 (Update monads). Assuming given two well-formed pure value types
oSt o Upd
of store values and store updates, together with well-typed closed pure value terms
1:St— Upd — St o:Upd @ : Upd — Upd — Upd
satisfying the following five closed equations (in the equational theory of eMLTT):
Vio=V V](WoeW)=(V.|W)|W

WoHo=W opW =W (WlEBWz)EBW3:W1@(WQEBW3)

the signature Sypp of a (simply typed) update monad is given by two operation symbols

lookup : 1 — St update : Upd — 1

242 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

For better readability, we omit the empty contexts and - in the typing of |, o, and
@, and in the equations. Further, we omit the types of the equations and assume that
all value terms are well-typed according to the typing of |, o, ®. To improve the read-
ability further, we also use infix notation when applying | and & to their arguments.

The idea is that (Upd,o,®) forms a monoid of updates which can be applied to
the store values via its action |, on St; lookup denotes the effect of reading the current
value of the store; and update denotes the effect of applying the update given by a
value argument of type Upd to the current store. Regarding the monoid, the intuition is

that o denotes the “do nothing” update and @ is used to combine successive updates.

While (simply typed) update monads are useful for modelling state changes by
(small) incremental updates, their simply typed nature means that one must be able to
meaningfully describe the action of all possible updates on all possible store values—
see the type of | given in Example To address this limitation, we introduced a
dependently typed generalisation of update monads in the above-mentioned joint paper
with Uustalu. These monads are parameterised not by a monoid and its action on the
store values, but instead by a dependently typed generalisation of monoids and their
actions, in which the type of updates is allowed to depend on the type of store values,
enabling us to precisely specify which updates are applicable to particular store values.

This dependently typed generalisation of monoids and their actions is known in
the literature under the name of directed containers—see the author’s joint paper with
Chapman and Uustalu [[8] for more details and their original use for modelling tree-like

datastructures with a well-behaved notion of sub-datastructure.

Example 6.1.10 (Dependently typed update monads). Assuming given two well-formed

pure value types
ok St x:St+ Upd

of store values and store updates, together with well-typed closed pure value terms

J:Ix:St.Upd — St o:ITx:St.Upd
@ : Ix:St. Iy: Upd. Upd[x | y/x] — Upd
satisfying the following five closed equations (in the equational theory of eMLTT):
VipV)=V V]WaevW)=(V.IW)]lW
Way (o (VIW)=W (oV)pyW =W

(W1 &y Wa) @y W3 = Wi @y (Wa @y w, W3)

6.1. Fibred algebraic effects 243

the signature Spypp of a dependently typed update monad is given by two operation
symbols

lookup : 1 — St update : ITx:St.Upd — 1

In addition to the presentational conventions used in Example we further

improve readability by writing the first argument to & as a subscript in the equations.

In [13, Examples 10 and 11], it is demonstrated that dependently typed update
monads can be used for natural state-based modelling of non-overflowing buffers and
non-underflowing stacks, by ensuring that the size of the data written to a buffer does
not exceed the remaining free space, and by not allowing an empty stack to be popped.

It is worth noting that differently from [[13]], where algebras of dependently typed

update monads are studied using a single operation symbol, typed as
act: ITx:St.Upd — St

we present dependently typed update monads here using two operation symbols, anal-
ogously to how we have presented the global state and simply typed update monads in
the previous examples. We omit the details of the equivalence of these presentations
and instead refer the reader to [13, Section 2.3] where the relationship between the
corresponding one and two operation presentations is discussed for the simply typed
case—the equivalence for the dependently typed case is proved analogously.

We note that in [[13] the two operation presentation was considered only for simply
typed update monads because it followed naturally from the analysis of simply typed
update monads as compatible compositions of reader and writer monads. For the de-
pendently typed generalisation of update monads, it is currently not known whether
it is possible to build them naturally as a composition of two or more ordinary mon-
ads. In particular, we only know how to build dependently typed update monads from

reader and writer monad like relative monads [14]], as discussed in |13} Section 3].

6.1.2 Fibred effect theories

Next, again following [93]], we describe the computational behaviour of the effects
specified by a fibred effect signature using equations between effect terms.
Specifically, assuming a countably infinite set of effect variables that is disjoint
from the sets of value and computation variables, and ranged over by w, ..., the effect
terms 7 are built from these effect variables, algebraic operations corresponding to the

operation symbols in the given fibred effect signature, and elimination forms for pure

244 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

value types, as defined in Definition [6.1.11] Intuitively, these effect terms denote the

computation trees one can build from the operation symbols in the given signature.

Definition 6.1.11. The effect terms derivable from a fibred effect signature S.¢ are

given by the following grammar:

T == w(V)
| opy(».T) (op: (x:I) — O € Segr)
| pmVas(x;:A1,x:A2)inT
| caseV of (inl(x1:A1) — Ty,inr(x2:A2) — Tn)

where all value types and terms are assumed to be pure; and where

e in opy (y.T), the value variable y is bound in T’;

e inpmV as (x;:Aj,x2:Ap) in T, the value variable x; is bound in A, and T, and

the value variable x, is bound in 7; and

e in case V of (inl(x;:A;) +— T1,inr(xp:Az) — T3), the value variable x; is bound

in 77 and the value variable x5 is bound in 75.

We write FEV (T) for the set of free effect variables of the effect term 7.

It is worth noting that effect variables can appear only in applied form. This is so
because in this CPS-style calculus of effect terms, effect variables denote continuations
that have to be applied to values before they can be used in computation. See the rules
given in Definition for details about how these value terms have to be typed.

Furthermore, observe that the definition of effect terms does not include elimina-
tion forms for neither propositional equality nor the type of natural numbers. On the
one hand, as the former is only useful in terms that get assigned dependent types, we do
not need it for effect terms which will not be assigned types at all. On the other hand,
while the latter would allow us to build compound computation trees using primitive
recursion, we are unaware of interesting computational effects whose specification in
terms of operations and equations would require the use of primitive recursion, even in
the simply typed setting. However, observe that one is still free to use either of these
elimination forms in the pure value terms that appear in effect terms.

We proceed by defining well-formed effect terms using the judgement I'|A - T,

where I is a pure value context and A is an effect context.

Definition 6.1.12. An eMLTT value context I' is said to be pure if A; is a pure value
type for every x;:A; in T

6.1. Fibred algebraic effects 245
Definition 6.1.13. An effect context A is a finite list wy:Ay,...,w,:A, of pairs of effect
variables w; and pure value types A;, such that all the effect variables w; are distinct.

Definition 6.1.14. An effect context A is said to be well-formed in a pure value context
[, written I' = A, if - T" and if we have I' - A;, for every w;:A; in A.

Definition 6.1.15. Well-formed effect terms are given by the following rules:

I'EA,w:AJ/Ay TEV:A
CIAL,w:A A FwW(V)

TFA THV:I T,y:0V/+|AFT
['|AFopy(y.T)

(op: (x:I) — O € Setr)

I'EA Fl—V:leiA].Az F,xliAl,X2:A2|A|—T
['|AFpmV as (x1:A1,x2:42)in T

I'EFA THV:A +A; F,X1:A1|A|—Tl F,xZ:A2|A|—T2
['|AtF case V of (inl(x:Ay) — Ty,inr(x:A2) — Tr)

Next, we prove two meta-theoretical results about effect terms that are analogous
to Propositions [3.3.7]and [3.3.20] which we established for eMLTT in Chapter 3]

Proposition 6.1.16. Given a well-formed effect term T|A T, then
FVV(T) C Vars(T') FEV(T) CVars(A)

Proof. We prove this proposition by induction on the derivation of I'| A+ 7. We use
Proposition to derive inclusions FVV (A) C Vars(I') and FVV (V) C Vars(T') for
well-formed pure value types I' = A and well-typed pure value terms ' =V : A. [

Proposition 6.1.17. Given a well-formed effect term T'|A T, then T A.
Proof. By induction on the derivation of I'| A+ T'. U

Further, when we combine Proposition with Definition [6.1.14] we get the

following corollary.
Corollary 6.1.18. Given a well-formed effect term T'|A+ T, then t-T.

We are now ready to define the notion of fibred effect theory so as to specify both

the side-effect causing dependently typed effects and their computational behaviour.

246 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Definition 6.1.19. A fibred effect theory ‘I is given by a fibred effect signature Segr
and a finite set g of equations I'|A+ 71 = T, where I'|AF Ty and T'| A+ T; are two

well-formed effect terms derived from Segf.

We conclude this section by revisiting the examples of computational effects we
discussed earlier and equip the corresponding signatures with equations, where appro-
priate. We follow [95]] for the fibred effect signatures given in Examples 6.1.8]
and the joint paper with Uustalu [13] for the equational presentation of (dependently
typed) update monads.

To improve the readability of our examples, we omit the value argument V' in the
effect term opy, (y. T) when the input type of op is 1. For the same reason, we also omit

the variable binding in the effect term opy, (. T') when the output type of op is 1.

Example 6.1.20 (Exceptions). The fibred effect theory Tgxc of exceptions is given by

the signature Sgxc and no equations.

Example 6.1.21 (Binary nondeterminism). The fibred effect theory Inp of binary non-

determinism is given by the signature Syp and the following three equations:

o|w: 1k choose(x.w (%)) =w (%)

olwy:1,wy:1 F choose(x.case x of (inl(xj:1) — wy (x),inr(x2:1) — wy (%)))

= choose(x. case x of (inl(xy: 1)+ wa (x),inr(xz2:1) — wy (%))

olwrilwa:liwy:1H
choose x. case x of (inl(x;:1) — choose(x’.case x’ of (inl(x3:1) — wy (x),
inr(xg:1) = wa (%)),
inr(xz:1) = w3 (%))
= choose (x. case x of (inl(x1:1) — wy (%),
inr(xp:1) — choose(x’. case X’ of (inl(x3:1) — wy (%),
inr(xg:1) — w3 (x)))))

The idea is that nondeterministic choices are not observable if the continuation
does not depend on the choice (1st equation); the choices are fair (2nd equation), and

different nondeterministic choices are independent of each other (3rd equation).

6.1. Fibred algebraic effects 247

Example 6.1.22 (Global state). The fibred effect theory “Igs of global state is given by

the signature Sgs and the following three equations:
olw:lt get(x.put,(w(*))) =w(*)
x:St|w:Stt put,(get(y.w(y))) = put,(w(x))

x:St,y:St{w: 1 F put,(put,(w(x))) = put,(w(x))

These equations describe the expected behaviour get and put: trivial store changes
are not observable (1st equation); get returns the most recent value the store has been

set to (2nd equation); and put overwrites the contents of the store (3rd equation).

Example 6.1.23 (Global state with locations). The fibred effect theory Igsy, of global

state with locations is given by the signature Sgsy, and the following five equations:
x:Loc|w: 1 get,(y.put(yy (w(x))) =w(x)
x:Loc,y:Val|w:Val F put(, y (get, (y'. w(y'))) = puty s (w(y))
x:Loc,yr:Val,ya:Val[w: 1k put(,yy (Putyyy,) (W (%)) = puty) (w (%))

x1:Loc,xy: Loc|w: Vallx; /x| x Vallxp /x| -

get,, (v1-gety, 2. w ({(y1,32)))) = gety, (2-get,, 1w ((y1,32)))) (1 #x2)

x1:Loc,xy:Loc,y; : Val[x /x],y2: Val[xa /x| [w: 1+
pUt<x17y1)(pUt<x2,y2)<W (*))) - pUt<x2,y2)(pUt<x1 7yl>(w (*))) (xl 7éx2)

Observe that the first three equations are Loc-indexed variants of the equations
from Example The last two equations describe that get and put effects for
different locations commute with each other. To this end, the last two equations both

come with a side-condition requiring the locations denoted by x| and x; to be different.

Similarly to [95], this notation for side-conditions is an informal short-hand for a
formal presentation based on using case analysis. Specifically, we assume a decidable
(for simplicity, boolean-valued) equality on locations, given by a closed well-typed
pure value term eq : Loc X Loc — 1+ 1, and then write the right-hand sides of these

equations using case analysis. For example, the last equation is formally written as
x1:Loc,xy:Loc,y; : Val[xy /x],y2: Vallxp /x| jlw: 1
PUT(y; yp) <pUt<X27Y2> (w(x)))

= case (eq (x1,x2)) of (inl(x

inr(x

: 1) = pUt<x1 ,yl)(pUt<x27y2)(W (*)))7

/
1
/2: l) '_> pUt<X2,y2>(pUt<xl 7yl>(W (*))))

248 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Example 6.1.24 (Input/output). The fibred effect theory I of input/output is given

by the signature Sy and no equations.

Example 6.1.25 (Update monads). The fibred effect theory Iypp of an update monad

is given by the signature Sypp and the following three equations:

o|w:1F lookup(x.update,(w(x))) = w(x)

x:Upd|w:St x St + lookup(y. update, (lookup(y'.w ({y,y'))))
= lookup(y. update,(w ({y,y] x)))))

x:Upd,y:Upd|w: 1 update,(update,(w(x))) = update, 4 (w(x))

These equations are similar to those given for global state in Example [6.1.22) but
instead of describing only overwriting-based store manipulations, they describe store
manipulations using the action | of the monoid (Upd,o,®) on store values. Further,

observe how & is used to combine consecutive updates in the third equation.

In [13], we also consider other, equivalent sets of equations for the algebras of
simply typed update monads, based on the different ways they can constructed from

other monads, e.g., as a compatible composition of reader and writer monads.

Example 6.1.26 (Dependently typed update monads). The fibred effect theory Ipypp
of a dependently typed update monad is given by the signature Spypp and the following

three equations:

o[w: 1 lookup(x.updatey .s; o, (W(x))) =w(x)

x: (T St. Upd[i!/x]) | w: St x St - lookup(y. update(lookup(y'.w (3, "))
= lookup(y. update, (w ((y,y 4 (x¥))))))

x: (ITx':St. Upd[x'/x]),y: (ITy": St.Upd]y' /x]) [w: 1 F
update, (update, (w (x))) = updatey . (x xr)a (y (| (x27))) (W (%))

These three equations are analogous to the equations given for simply typed update
monads in Example[6.1.25] except for the 1st and 3rd equation now having to account
for the input type of update being Il1x:St.Upd instead of simply Upd.

6.2. Extending eMLTT with fibred algebraic effects 249

6.2 Extending eMLTT with fibred algebraic effects

In this section we show how to extend eMLTT with fibred algebraic effects given by a

fibred effect theory Zefr = (Sefr, Zetr). We call the resulting language eMLT Ty, .

Definition 6.2.1. The syntax of eMLTTq is given by extending eMLTT’s computa-

tion terms with algebraic operations:
.. C
M == ... | opy(y.M)
for all operation symbols op : (x:1) — O in Segr and all computation types C.

In op%(y. M), the value variable y is bound in M. Similarly to effect terms, we omit
the variable binding in op%(y. M) for better readability when the output type of op is 1.
Analogously, we also omit the value argument V when the input type of op is 1.

The different kinds of substitution we defined for eMLTT extend straightforwardly
to eMLTT: we extend the (simultaneous) substitution of value terms with

CW /]

Py T (MW /7))

(opS (. M))[W /%] £ o

and keep the substitution of computation and homomorphism terms for computation
variables unchanged. The properties of substitution we established for eMLTT in Sec-
tions [3.1] and [5.3] also extend straightforwardly to eMLTTq, —the proof principles
remain unchanged, and the cases for the algebraic operations are treated analogously
to other computation terms that involve variable bindings and type annotations.

Unless stated otherwise, the types and terms we use in the rest of this chapter are
those of eMLTT,. This also includes the definitions of pure value types and pure
value terms appearing in effect terms because every pure eMLTT value type (resp.
term) can be trivially considered as a pure eMLTTq . value type (resp. term).

Next, we extend the typing rules and equational theory of eMLTT with fibred alge-
braic effects. However, before doing so, we first need to define a translation of effect
terms into eMLTTg, .. While it might be more natural to translate effect terms into
computation terms, we have decided to translate them into value terms instead. We do
so to avoid having to define another similar translation in Chapter 7] We note that this
choice does not restrict the definitional equations between computation terms that one
can derive from the equations given in ¢, as illustrated later in this section.

In order to simplify the presentation of eMLT T, we assume that

. . Y Y
I'=x1:A1,...,%,: A, A=wi:Al,...,wy:A,

250 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

throughout this section. In order to further improve the readability, we use vector
notation for sets of value terms, i.e., we write Vf for a set of value terms {Vj,...,V,}.

We also note that we only translate well-formed effect terms I'| A - T because it
makes it easier to account for the substitution of value terms for effect variables in
the definition of the translation. In particular, the later results refer to value terms

substituted for all effect variables in A, not just for the free variables appearing in 7.

Definition 6.2.2. Given a well-formed effect term ['| A+ T derived from Seg, a value
type A, value terms V; (for all x;:A; in I'), value terms Vj’ (for all w; :A; in A), and value
terms Wop, (for all op : (x:1) — O in Sefr), the translation of the effect term 7 into a

value term (T — — is defined by recursion on the structure of 7" as follows:
AViV! Wop y
s Vs] 9

(W (V) £ Vv (V[Vi/R))
(opy(T)) £ Wop (V[Vi /%], My: OV [V, /R]/x).(T))

(pmV as (y1:B1,y2:B2) in T)
Y pm V[V, /%] as (vi:Bi[V./%],y2:Ba[V./F]) inya (T)

(case V of (inl(y1:B1) — Ti,inr(y2:B2) — T2))
“ case V[V, /%] ofya (inl(y1:B1[V./]) — (Ti),
int(y2:Ba[V; /%)) = (T3))
where in the last two cases the value variable y is chosen fresh. While in the above we
omit the subscripts on the translation for better readability, it is important to note that
in the cases where the given effect term 7T involves variable bindings, the set of value
terms V,,) is extended with the corresponding value variables in the right-hand side. For

example, the right-hand side of the algebraic operations case is formally written as
%
Wop (VIVi /%] Ay: OV Vi /R4 TD p)

Later, in Proposition we show that under appropriate well-formedness as-
sumptions about the value type A and the value terms V;, Vj/ , and Wy, the translation

of the effect term T results in a well-typed value term (7T DAV-V e of type A.
> VisVisWop

Using this translation, we can now extend the typing rules and definitional equa-

tions of eMLTT with fibred algebraic effects.

Definition 6.2.3. The well-formed syntax of eMLTT is given by extending the typ-

ing rules for eMLTT’s well-typed computation terms with

T'-V:l THC T,y:0[V/x]FM:C
T+ opyy(y. M) : C

(op: (x:1) — O € Sef)

6.2. Extending eMLTT with fibred algebraic effects 251

and the equational theory of eMLTT with rules for

e congruence equations:

'kv=w:1 T-C=D T,y:OV/x|FM=N:C
C D (op: (x:1) — O € Sefr)
I'topy(y.M) = opy (y.N) : C

e general algebraicityﬂ equation:

r'-v:r Iy:OV/x]-M:C T|z:CHK:D
'+ K[op%(y.M)/z] = opg(y.K[M/z]) :D

(op: (x:1) — O € Sef)

e cquations of the given fibred effect theory:

I'FC
I'EVi AV /x, . Ve /xic] (1<i<n)
I'HV] AV /3] = UC (1<j<m)

(C|AFTI =T, € Eexr)

: — :
= (7 DUQ;V?;‘?:WHw B GTZDUQV??W?”TO; e

with the well-typed value terms I = W, : (Ex:1.0 — UC) — UC given by
Wop = A1 (2x:1.0 — UC).
pnx’ as (x:1,y:0 — UC) inw y¢ thunk (ops (. forcec (y)')))

for each operation symbol op : (x:1) — O in Sef, with x” chosen fresh.

Finally, is worth noting that we include the equations of the given fibred effect the-
ory in eMLTTq . as definitional equations between value terms, rather than as equa-
tions between computation terms. This is analogous to how we have defined the trans-
lation of effect terms, namely, into value terms rather than computation terms. Nev-
ertheless, the expected equations between computation terms are still derivable, using

thunking and forcing. For example, we can derive the following definitional equation:
I+ getS(x.puté(M)) =M : C

from the equation

olw:lF get(x.put,(w(x))) =w(%)

given in the global state theory Zgg as follows:

'We are using the terminology of [99, Section 5.3].

252 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

I F get&(x.put&(M))
— forcec (thunk (getS(x. forcec (thunk (put&(forcec (thunk M)))))))
= forcec ((A':1x (St — UC).
pm x as (x]:1,x5:St — UC) in thunk (getS(x. forcec (x) x))))
(x,Ax:St. thunk (put&(forcec (thunk M)
= forcec ((A':1x (St— UC).
pm x" as (x]:1,x5:St — UC) in thunk (get<(x. forcec (x) x))))
(x,Ax:St. (M"'St x (1 = UC).
pmx” as (x]:St,x5:1 — UC) in
thunk (put;,l,(forceg (x5 %)))) (x,Ax"": 1. thunk M)))
= forcec ((M':1x (St — UC).
pm x" as (x]:1,x5:St — UC) in thunk (get<(x. forcec (x} x))))
(%, Ax:St. (A" : St x (1 —UC).
pmx” as (x]:St,x5:1 = UC) in
thunk (put*,l,(forceg (x5 %)) (x,Ax"": 1. (Ay: 1. thunk M) *)))

= forcec (get(x. put w(x)))Dyg;m;xyzl.thunk M;vﬁp)

= forcec N ucomyt s MWOP)
= forcec ((Ay: 1.thunk M))

= forcec (thunk M)

=M:C

where the well-typed value terms Wger and Wt are respectively given by

def

pm X’ as ()cl : 1,x2:St — UC) in thunk (getS(x.forcec (¥} x)))

Wout = Ax: St x (1 — UC).
pmx” as (x]:St,x):1 — UC) in thunk (put%,(forcec (x5 %))
; c

6.3 Meta-theory

In this section we show how to extend the meta-theory we established for eMLTT in
Section [3.3] (and in the beginning of Section [5.3) to eMLTTq,. While some of these
results extend straightforwardly from eMLTT to eMLTTq . (either the proof remains

the same or it can be easily adapted), others require little more work. In particular,

6.3. Meta-theory 253

as the definitional equations now involve the translation of effect terms, some of the
results below need to be now proved in conjunction with corresponding results about
the translation. We omit the propositions and theorems whose proofs extend straight-

forwardly to eMLTT and only comment on those whose proofs are more involved.

Extending Proposition [3.3.7/to eMLT T,

We begin by recalling that in Proposition we showed that the free value variables
of well-formed eMLTT expressions and definitional equations are included in their

respective value contexts. For example, given I' =M = N : C, we showed that
FVV (M) CVars(T) FVV(N) CVars(I') FVV(C) CVars(I')

When extending Proposition to eMLTT, ., we keep the basic proof principle
the same: we prove (a)—(j) for the different kinds of types, terms, and definitional
equations simultaneously, by induction on the given derivations.

The new cases for algebraic operations, and the corresponding congruence and
general algebraicity equations are proved analogously to other computation terms and
definitional equations that involve variable bindings and type annotations. However,
in order to account for the case that corresponds to the third group of definitional
equations given in Definition @ we need to prove the eMLTT. . version of Propo-
sition simultaneously with Proposition [6.3.1] below.

Proposition 6.3.1. Given a well-formed effect term I'| A& T derived from S.p, a value
type A, value terms V; (for all x;:A; in T'), value terms Vj' (for all wj :A;. in A), and value

terms Wop (for all op : (x:I) — O in Sep), then we have

FYV(T), 35)
-

Fvv(A)ulJ Fyvv(vyull Fvv(v)ul FVV(Wep)
‘/[67[lee‘7>j/ WOPG‘V-}OP

Proof. We prove this proposition by induction on the derivation of I'| A+ T, using the
simultaneously proved eMLTT . version of Proposition to show inclusions for
the sets of free value variables of the pure value types and pure value terms appearing
in 7. The proof also uses the eMLTT . version of Proposition @ that shows how

the sets of free value variables are computed for expressions involving substitution.

254 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

As a representative example, we consider the case of algebraic operations, for

which we need to show that the following inclusion holds:

FVV (Wop <V[?l/fl>] ,Ay:O[V [71/7?]/)6] (T DA;V;,y;W;pr»
C

FVVA) Ul J Fvv(v)ull FVvv (V) u | FVV(Wep)

— —
V,Ev,- Vj’EV}’ WopEWop

First, according to how the set of free value variables of a value term is computed,
we know that the following sequence of equations holds:
FVY (Wop (V[V /%] Ay: OV[Vi /R /x]AT), o o5 o)

A; uy;Vj QWop

FVV(Wop) U FVV(VIV, /X)) U FVY (y:OVIV: /51X AT) 5)

FVV (Wep) U FVV (V[V/5]) U
FYV(OIV[V,/%)/x) U (FVVIT) 5 o) = D)

j+Wop

Next, by using Proposition with v[?, /%], we get that

FVV(VIV./R]) C (FVV(V)—) U U Fvv(v)
VeV,

However, as we know that 'V : I, we can use (e) of the simultaneously proved
eMLTT., version of Proposition on this derivation to get FVV (V) C Vars(I).
Further, according to the definition of the translation of effect terms into value

terms, we also know that X} = Vars(T'). As a result, we can conclude that

FVV(V[W/YZ]) C (FVV(V)=Vars(T)) U | FVV(V)) = |J FVV(V)
vieV, vieV,

Using these same arguments with O[V[v,- /x7]/x], we also get that

FVV(OV[Vi/®]/x) € | FVv(v)
VeV,

6.3. Meta-theory 255

Next, by using the induction hypothesis on I',y: O[V /x| |AF T, we get
FYVT), 5)
-
FVV(A)U | FVV(V;) U U FVV(V{)U U FVV (Wop)
VieViyy V/GVJ-I WopEWop

Finally, by observing that y is fresh according to our chosen variable convention,

we can combine the inclusions we proved above to get the required inclusion

FVV (Weop (V[V, /5], Ay: OV [V, /%] /). (Dt i)
C
FVV(A) Ul FVv(v)u U FVV (Vi) U U FVV (Wop)

V,'E?i V/EVj/ Wop e‘/Vop
. [

We now return to the eMLTT . version of Proposition and the case of its
proof that corresponds to the third group of definitional equations given in Defini-
tion [6.2.3!

Specifically, in this case the given derivation ends with

e
I'E Vit AiVi/x1,. . Vier /xio] (1<i<n)
/ VAR T AV v .
I'H V] ANV /3] = UC (1<j<m)

/ - : (C|AFTi=Ts € Ee)
e i = e i - UC

with the well-typed value terms I - Wy, : (£x:1.0 — UC) — UC defined as

Wop = A1 (2x:1.0 — UC).
pnx’ as (x:1,y:0 — UC) inyw y¢ thunk (opxg(y'.forceg (yy")))

for each the operation symbols op : (x:1) — O in Seg, and we need to show that
FVV(UC) C Vars(I")

FVV((Ty) C Vars(I")

UCVV’WTO;)

FVV((Tz) —) C Vars(I")

UV Wop

First, we use (¢) on I'" = C to get the inclusion FVV(C) C Vars(I'"), from which
then FVV (UC) C Vars(I") follows trivially because we have FVV (UC) = FVV (C).

256 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Next, by using (e) on the other derivations in the premise of the given rule, we get
FVV(V;) C Vars(I"), FVV(V/) C Vars(I'"), and FVV (Wop) C Vars(I") for all value
terms V;, Vj’ , and Wy, mentioned in the subscripts of the translations of 71 and 75.

Finally, combining the above inclusions with the inclusion given by the simultane-

ously proved Proposition the required three inclusions follow straightforwardly.

Extending Theorem [3.3.10|(Value term substitution) to eMLTT,

We begin by recalling that in Theorem [3.3.10| we showed that the substitution rule is
admissible in eMLTT for substituting value terms for value variables. When extending
Theorem @ to eMLTTg ., we keep the basic proof principle the same: we prove
(a)—(1) for different kinds of types, terms, and definitional equations simultaneously,
with (a)—(b) proved by induction on the length of the given value context I';, and
(¢)—(1) by induction on the given derivations; and this theorem as a whole is proved

simultaneously with the eMLTT,,; version of the weakening theorem (Theorem|3.3.9).

The new cases for algebraic operations, and the corresponding congruence and gen-
eral algebraicity equations are analogous to other computation terms and definitional
equations that involve variable bindings and type annotations. However, in order to
account for the case that corresponds to the third group of equations given in Defini-
tion[6.2.3] we additionally need to prove Proposition[6.3.2]below. It is worth noting that
this proposition does not need to be proved simultaneously with the eMLTT . version
of Theorem [3.3.10] the latter simply uses it in its proof. It is also worth highlight-
ing that as a consequence of extending Theorem @ to eMLTTq,, the analogous
theorem about simultaneous substitutions (Theorem @ also holds for eMLTTg ..

Proposition 6.3.2. Given an effect term I'| A= T derived from S, a value type A,
value terms V; (for all x;:A; in '), value terms Vj’ (for all w; :A} in A), value terms Wqp

(forallop: (x:I) — O in Ser)r a value variable y, and a value term W, then

17D 5057, W IT =T v i s

Proof. We prove this proposition by induction on the derivation of I'| A+ T.

As a representative example, we consider the case of algebraic operations, for

6.3. Meta-theory 257
which we need to show that the following equation holds:
Wop (VIVi/TLAY OV [V [RAAT)7 o)W

WoplW /3]) (VIViIW /y]/],

Ay OV [ViIW /51 /3] /40T, A T o T a7

i

y

First, by using the definition of substitution, we get that

VIVi/ R OV IV RAAT), e DIW)

(Wop W /5] (V [V /31 5] 0 - OW Vi /R W IYLAT) 7 oW 1)

Next, by using the eMLTTq . version of Proposition on the assumed deriva-
tion of 'V : I, we get FVV (V) C Vars(I') = {xi,...,x,}. Based on this inclusion,
we can use the eMLTT . version of Propositionto prove the following equation:

VIV /%W /Y] = VIViIW 3]/ %]

Further, using the eMLTT., versions of Propositions [3.3.7|and [5.3.7, we also get that

X

OWV(V:/ 5/ W /¥ = OV Vi /Z)W /3] /2] = OV [ViW 5]/ %] /]

Next, by using the induction hypothesis on I,y : O[V /x| | At T, we get that

0Ty W= D sy G 3w 11700 1 g 5

However, as y # y' due to our adopted variable conventions, the above is equivalent to

1D, Vi V! VW, [W/ N=(T DA[W/y};v,-[W/y],y/;v;[W/y];wop[W/y]

Finally, when we combine the above equations, we get the required equation

(Wop (V[Vi /3], A 20OV V/xl VAT o iV 1

(Wop[W /¥]) (VW/)’/

Ay 0l [W/ e R R T M e

)

)

258 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

We now return to the eMLTT . version of Theorem(3.3.10/and the case of its proof
that corresponds to the third group of definitional equations given in Definition [6.2.3]
Specifically, in this case we are given I') - W : A and

I,y:A L EC
L),y AT E Vi AV /xr, . Vier /xie] (1<i<n)
I,y AT, FV ANV 3] = UC (1< j<m)
I,y:A T, - quDUQ;@;?/;VTOF,) = :UC

D) (CIAFT1 =T, € Eetr)
UCVViWey

with the value terms I"}, y: A, T, - Wop : (Xx:1.0 — UC) — UC defined as

Wop =AY : (Zx:1.0 — UC).
pnx’ as (x:1,y':0 — UC) inw ¢ thunk (opS (" .forcec (y/y")))

for each op : (x:I) — O in S, and we need to prove the following equation:
LW ATy g W 5 = (T2 op i WV /91 UCW]

First, we use (e) on the assumed derivation of F’l ,y :A,F’2 - C to get a derivation
of I, TH[W /3] = C[W /).

Next, by using (g) on the other assumptions of the given rule, in combination with
the properties of (simultaneous) substitution we established in Sections [3.1] and [5.3]
and the eMLTTz . version of Proposition|3.3.7| proved earlier, we get derivations of

Ty T3IW /3] - VAW /3] AVAIW /3], . Vit W /5] i)
e

_>
L W/ = ViIW /3] - AjVilW /3] /%0 — UCIW /]
forall 1 <i<mand1 < j<m,respectively.
Next, we use the rule for the third group of definitional equations given in Defini-

tion [0.2.3] together with the derivations we have constructed above, to prove

/ /
1—‘171—‘ [W/y] (] DUc[W/y] V[W/yj V W /yl; Wop[W/Yj

(]T2DUQ[W/y];Vi[W/yj;Vj’[W/y};Wop[W/ﬂ HUCW]

Finally, we use Proposition [6.3.2]to turn the this proof into the required proof of

0L LW Ty e gt W 5 = (B2 y o i W /91 - UCW]

2Vjo

6.3. Meta-theory 259

Extending Proposition to eMLTT,,

We begin by recalling that in Proposition [3.3.20] we showed that the judgements of
well-formed expressions and definitional equations only involve well-formed contexts

and types, and well-typed terms. For example, given I' =M = N : C, we showed that
I'=M:C I'=N:C

When extending Proposition to eMLTTq, ., we keep the basic proof prin-
ciple the same: we prove (a)—(j) for different kinds of types, terms, and definitional
equations simultaneously, by induction on the given derivations, using the eMLTT .
versions of the weakening and substitution theorems, where required.

The new cases for algebraic operations, and the corresponding congruence and gen-
eral algebraicity equations are analogous to other computation terms and definitional
equations that involve variable bindings and type annotations. However, in order to
account for the case that corresponds to the third group of equations given in Defini-
tion we additionally need to prove Proposition below. It is worth noting
that this proposition does not need to be proved simultaneously with the eMLTT

version of Proposition [3.3.20] the latter simply uses it in its proof.

Proposition 6.3.3. Given a well-formed effect term I'| A& T derived from S.p, a value
type A, value terms V; (for all x;:A; in '), value terms Vj’ (for all w; :A;. in A), value

terms Wop (for all op : (x:1) — O in S.p), and a value context I such that

o I,

e I'HA,

o I'FVi: AiVi/xi,..., Vi1 /xi—1],

o 'V AlVi/x1,....Va/xa] = A, and

o I'FWop: (Ex:1.0 —A) — A,
then the result of the translation of T is well-typed as T' + (T e A

A; i;vj ;Wop

Proof. We prove this proposition by induction on the derivation of I'| A+ T, using the
eMLTTq, versions of the weakening and substitution theorems, where necessary.

As a representative example, we consider the case of algebraic operations, for

which we need to construct a derivation of

I b Wop (V[Vi /%] Ay: OV [V /5)/a].(T)):A

=5 =
A;Vi,y;Vj’;Wop

260 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

First, by using the eMLTT . version of Theorem (simultaneous value term
substitution) with the derivation of I' =V : I, we get a derivation of
' =V /%) 1V /3]
However, as o I I, we can use the eMLTT version of Proposition to get that
FVV(I) = 0, and thus we can use the eMLTT version of Propopsition to get
r'V[V,/®):1

As a consequence, we can use the eMLTT version of Theorem (simultaneous

value term substitution) with the derivation of x:/ - O, to also get a derivation of
'+ OV [V /)

Next, as y is fresh by our adopted variable conventions, we have a derivation of

) 5 O[V[v,- /%/]/x] and thus we can use the induction hypothesis to get

Fy: OV IV /3/A F (T), g s A

Next, by using the typing rule for lambda abstraction, we get a derivation of

'k Ay: OV [V, %1/, (T 3,7, OV[V,/=)/x] = A

Finally, by using the typing rules for function application and pairing, together with

the derivations constructed above, we get the required derivation of

I Wop (VIV, /5], 0y: 0V [Vi/)/5)(T),):A

= —
ViV Wop
]

We now return to the eMLTT . version of Proposition 3.3.20 and the case of its
proof that corresponds to the third group of definitional equations given in Defini-
tion

Specifically, in this case the given derivation ends with

I'-C
I'E Vit AilVi/x1,. . Vie /xio1] (1<i<n)
I'H VAV /3] - UC (1<j<m)

<
/ — - (F|A|—T1:T2€feff)
rr (]Tl DUQ;V,';‘?;“TO),) o quDUQ;V;;_; - UC

6.4. Derivable equations 261

and we need to construct derivations for

/
Fl_(]TIDUCvWW—O; uc Fl_(]TZDUCv‘?’V[To; ucC

both of which follow immediately from Proposition [6.3.3 proved above.

6.4 Derivable equations

In this short section we present some useful equations that are derivable in eMLTT 7,
in addition to the equations that we showed to be derivable in eMLTT in Section [3.5]
Namely, by using the general algebraicity equation from Definition [6.2.3] we can de-
rive more specialised algebraicity equations that describe the commutativity of alge-
braic operations with specific computation terms. Many of these equations appear in

languages with algebraic effects based on CBPV without stacks, e.g., see [54,199].

Proposition 6.4.1. The following definitional equations between computation terms

are derivable in eMLTTq, » for every operation symbol op : (x:I) — O in Sep:

C'EV:I T,y:OV/x]bkM:FA THC T,y:AEN:C
I+ opfA(y.M) toy:Ainc N = op%(y.M toy:Ainc N):C

CFV:I TEW:A T,y:AEC T,y:0V/x|F-M:C[W/y]

T (W,opy "1 (0M)) ray.c = oy E (0 W, M) ().) : £y :A.C

LEvV:l Ty:0OV/x]lbM:Xy:A.C THD T,y:A|z:CHK:D
'+ opzy AL “(y.M) to (y/:A,z:C) inp K = opg(y.M to (y:A,z:C) inp K) : D

=v:l TI,y:A-C T,y:0lV/x],y:A-M:C

'+ Ky’:A.op%(y.M) = opgy A C(y LAY :AM):TIy:A.C

'-v:l TEW:A T[,W:A-C T,y:0[V/x|F-M:11y:A.C
Tk (opy” ™ C (3. M) (W) (ra).c = 005" Y (0. MOW) (0.) - CIW /]

'ckv:l TEFW:C—-D T,y:OlV/x]F-M:C
T+ W (ops(y.M))c.p = op2(y.W(M)cp) : D

262 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Proof. All six equations are proved similarly, by using the general algebraicity equa-
tion from Definition [6.2.3]in combination with the definition of substituting computa-

tion terms for computation variables, e.g., the first equation is proved as follows:

I Fopl?(y.M) toy':A inc N
= (ztoy':A inc N)[oph(y. M) /2]
- op%(y,(z toy:A inc N)[M/z])
= op%(y.Z[M/Z] toy':Ain¢ N)
= op%(y.M toy:Ainc N):C

6.5 Interpreting eMLTT. in a fibred adjunction model

In this section we equip eMLTT - with a denotational semantics by showing how to
interpret it in a fibred adjunction model based on the prototypical model of dependent
types, the families of sets fibration. More precisely, the fibred adjunction model we use
is based on the lifting of the adjunction Fz, Uy, Mod (L, Set) — Set to fam-
ilies fibrations (see Theorem and Corollary [@, where Ly is a countable
Lawvere theory that we derive from the given fibred effect theory Tegr = (Sefr, Fefr)-

It is worth noting that compared to the level of generality with which we investi-
gated the denotational semantics of eMLTT in Chapter[5] we only study the interpreta-
tion of eMLTT in one specific fibred adjunction model. We leave an investigation of
a more general class of models for future work. In particular, we expect that our future
study of fibred notions of universal algebra and Lawvere theories (see Section [8.1.T))
will also provide us with a good general notion of a model for eMLTT .. Further,
defining the interpretation of eMLTTq . in a model based on families of sets should
make it more accessible to the less categorically inclined audience of this thesis.

In order to reuse the established theory concerning countable Lawvere theories (see
Section 2.1.3), we restrict our attention to fibred effect theories which we call count-
able, by imposing conditions on how certain contexts and types must be interpreted in
the families of sets fibration famge; : Fam(Set) — Set, using the interpretation func-
tion [—] that we defined for eMLTT in Section Note that as the input and output
types of operation symbols are given by well-formed pure eMLTT value types, the
soundness results we established in Section [5.2|ensure that [—] is defined on them.

6.5. Interpreting eMLT I, in a fibred adjunction model 263

For better readability, we use the convention that if [I';A] = (X,B) in Fam(Set),
then we write [I';A]; for the set X and [I';A], for the functor B : X — Set, and
similarly for the interpretation [I';C] of computation types in Fam(Mod (L, ,Set)).
Analogously, if [I;V] = (f,g) in Fam(Set), then we write [I;V]; for f and [I;V],

for g, and similarly for the interpretation of computation and homomorphism terms.

Definition 6.5.1. A fibred effect theory Togr = (Setf, Fetf) i countable if [x:I;0]; is
a family of countable sets, for all op : (x:7) — O in Sy, and if [I3A7]2 is a family

of countable sets, for all equations I'| A+ T} = T in Feg and variables w;j :A} in A.

In the rest of this section, we assume that the given fibred effect theory Zeg is
countable.

Next, we show how to derive the countable Lawvere theory Lq. . from the given
fibred effect theory Zeg. In particular, we first show that Zg gives rise to a countable
equational theory T, = (Sg,,Ez,), from which we can then derive the countable
Lawvere theory Lq,, following Definition 2.1.50|and Proposition [2.1.52]

The construction of T is based on the intuitive reading of operation symbols
discussed in Section i.e., every operation symbol op : (x:1) — O can be viewed as
an [o;1]2(*)-indexed family of operation symbols in the ordinary universal-algebraic
sense.

We recall that an analogous expansion of effect theories to countable equational
theories was also used by Plotkin and Pretnar in their work on handlers in the simply
typed setting, see [95, Section 4]. In this thesis, we want to emphasise that countable
fibred effect theories, despite their additional type-dependency, can be also naturally

expanded into countable equational theories.

Definition 6.5.2. The countable signature St is given by operation symbols op;, each
with arity |[x:7; O] (,i})|, for all operation symbols op : (x:I) —> O in S and all i

in [o;1]2(*), where, as standard, we use |X| to denote the cardinality of the set X.

As we have assumed Z¢ to be countable, the previous definition is well-formed

because the arities |[x:1; O] (x,i)| of operations op; are guaranteed to be countable.

Proposition 6.5.3. Every well-formed effect term I'| A\=T derived from S, determines
a set of well-formed terms AY = TV derivable from S, o Jor all yin [T'], where AY is a

context of variables x;, for all w;:Aj} in A and a in [T;Aj]2(Y).

Proof. First, we note that as we have assumed Zegr to be countable, every [[F;A}]]z isa

family of countable sets. As a result, every context AY is a countable list of variables.

264 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Next, the terms 77 are computed by recursion on the structure of 7', as follows:

(Wj (V))'y def x([[.F;VHZ)Y(*)

Wj
(opy (3 T))Y = op(TYN)) < o< |[er0f (2] (where i = ([T V]2)y(%))
(pmV as (y1:By,y2:B2) in T)Y & 7nb)b) (when ([T';V]2)y(x) = (b1,b2))

(case V of (inl(y1:By) — Ti,inr(y2:By) — 1))V = T]<Y’b>
(when ([T3V]2)y(*) = inlb)

(case V of (inl(y;:By) — Ti,inr(yz:By) — T))Y = T2<Y,b>
(when ([I';V]2)y(x) = inrb)
Observe that for better readability, we use o to denote both a natural number be-
tween 1 and |[x : I; O] (%,i)|, and the corresponding element of [x : I; O] (*,i).
Finally, we can construct the required derivations of well-formed terms AY - T7

by straightforward induction on the given derivation of the effect term I'| AFT. [

Definition 6.5.4. The countable equational theory Tq . is given by the countable sig-

nature S, and a set [z, which is the least set containing equations AY - le = TZY , for

ff >

all T|AF T1 = Ts in Eegr and all yin [I], that is closed under the rules of reflexivity,
symmetry, transitivity, replacement, and substitution (see Definition [2.1.49).

Now, we know from Definition 2.1.50] and Proposition [2.1.52] that there exists a
- both
o Set) — Set.
Using Corollary we can lift this adjunction to a split fibred one between the

families fibrations famset and famyoq .., L Set)> giving us a fibred adjunction model

category L. and a corresponding countable Lawvere theory I : X fp — Lg.

built from Toz . There also exists an adjunction Fr,, . Uy, o Mod (L,

—

FL’Teff

//_\

Fam(Set) L Fam(Mod(Set))
- -~

eff ?

J—

U,
Teft

famsee | 4 |1 4 |[{-}

fammodc,, £5et
(S

Set

suitable for modelling eMLTT. In the rest of this section, we show that this fibred

adjunction model is also suitable for defining a sound interpretation for eMLT T ..

6.5. Interpreting eMLT I, in a fibred adjunction model 265

Definition 6.5.5. We extend the interpretation of eMLTT to eMLTTq . by defining it

on algebraic operations op%(y. M), for each op : (x:I) — O in S, as follows:

[0V =idpry : [T] — [I]
([C5V]2)y 1 1 — [1]2(%)
[T;0[V /x]]1 = [T € Set
[0V /x][2(v) = [T',x: 1, 0]2 (v, ([T5V]2)y(%)) € Set
[C,y: 0V /x]:M]y =idy i (ro L) * [F;y: OV /x]] — [T,y:O[V /x]]

(IT,y: OV /x]:M]2) ¢y.0y : 1 — U, (132 (7))

[T opggy. M)]; ([Ts 0y (v-M)]2)y
[1

(id1)oe [0V /x]12(v)

[Noctrow /agpm 1

id[ry [Moctriow /x1, o (ITy:01V /x:M]2) ¢y,0))

[ocqrow /s (Uee, ([T:C12(1)))

[TCTa (v)
OP([v])y(x)

Ir] Uy, (IT:Cla(¥))

where the function (algebraic operation) OPE[[[Ferﬂﬁgi(N is defined using the countable-

266 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

product preservation property of [I';C]2(y) as the following composite function:

[ocirow /) (Ueq, ([T C12(1)))

[Mocrrzow /1 (T Cl2(9) (1))

Il

([T Cl2(0) (Foersow /mpm 1)

(I Cl() (I 0V /T2 (v)])

(IT5CL2 () (36 - 0P(Irv)y () (o)1 <o< |0V /1T (1))

(IT5Cla())(1)

UL{Teff([[F;Q]]z('Y))

As the interpretation of eMLTT . is defined a priori partially, analogously to the
interpretation of eMLTT, we again have to separately show that [—] is defined on all
well-formed contexts, types, and terms; and that it validates the equational theory of
eMLTTq .. While most of the results proved for eMLTT in Section (the proposi-
tions relating weakening and substitution to reindexing along semantic projection and
substitution morphisms) extend to the interpretation of eMLTT . without any substan-
tial additional work, the soundness theorem (Theorem [5.2.15]) needs more attention.

In particular, in order to prove the soundness theorem for eMLTT ., we first need
to relate two ways of interpreting well-formed effect terms. Specifically, we relate the
interpretations of i) the translation of an effect term I'| A - T and ii) the corresponding
terms AY - T'7 derivable from the countable signature Sq; 4 as discussed next.

We note that in order to conveniently reuse the next proposition in Chapter [/| to
prove the soundness of the interpretation of the user-defined algebra type, we state it

in terms of the given fibred effect signature Segr rather than the fibred effect theory Zegr.

6.5. Interpreting eMLT I, in a fibred adjunction model 267

Proposition 6.5.6. Given a well-formed effect term I'| A+ T derived from S, a com-
putation type C, value terms V; (for all x;:A; in I), value terms Vj’ (for all w; :A} inA),

value terms Wop, (for all op : (x:1) — O in Sep), and a value context I such that
o [['] € Set,
o [I";Vi[y = idjpy : [['] — [I'], and

° (HF/;ViHZ)Y’ 1 —
[ei:Ar, - xic Ao Az (O, (T3 Vi2)y (%)), -, (T3 Viea J2)y (0),

together with a value type A and a family of models My : er%, — Set (for all ¥ in
[T']) of the Lawvere theory I(I%c X — LT%((where T, %C = (Sup,0)) such that

o [["AlL =[I"],

[T AL (y') = My (1),

[TV = idgey : [0 — [C'],

(IT3V/)y : 1 — Maetrame (T34),

[T Wopl1 = idpry : [['] — [I'], and

o (IM:Wapl2)y =gy 08, © o Mgy (e 1) o (i
1= |_|<i7f>€|_|ie[[<>;l]]2(*) |_|o€[[x:1;0]]2(*,i)([[r/;AHZ(YI))([[F/;A]]z(yl))’
then
[[F/;QTDA;W;@;@]M =idppy : [I'] — [I']
and, for ally" in [I"']), the function
(ICAT), g gl 1 — [CiAl(Y)
is defined and equal to the following composite function:

<(HF/;VJ!]]2)Y/>W]-:A;€A , ,
1 |—|WjZA;-€A Hae[[l";Aﬂ]z('y)([[r ’A]]z(y))

14

[T AL (Y) <—=— My(1)

My (AY-T7) My (|AY))

268 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

where |AY| denotes the length of the context AY; and where we use the abbreviation

¥ = (O (T3 Vi2)y (00)s), (IFsVal2)y (%)
Proof. We prove this proposition by induction on the given derivation of I'| A+ T,

using the eMLTT g, versions of Propositions [5.2.4} [5.2.6] [5.2.11} and [5.2.12]to relate

syntactic weakening and substitution to their semantic counterparts. We postpone the
straightforward but lengthy details of this proof to Appendix [

We are now ready to prove the soundness of the interpretation of eMLTT . in the

fibred adjunction model given by the split fibred adjunction I*{L(; o U/L(r\ff .

Extending Theorem (Soundness) to eMLTT,

We begin by recalling that in Theorem [5.2.15| we showed that the a priori partially
defined interpretation function [—] is defined on well-formed types and contexts, and
well-typed terms, and that it maps definitionally equal contexts, types, and terms to

equal objects and morphisms. For example, given ' =M = N : C, we showed that
[T:M] = [TV 1y — O, (I0C)

When extending Theorem to eMLTT , we keep the basic proof principle

the same: (a)—(I) are proved simultaneously, by induction on the given derivations,

using the eMLTT versions of Propositions [5.2.4] [5.2.6] [5.2.9] and [5.2.10] to relate
weakening and substitution to their semantic counterparts. As mentioned earlier, these

propositions extend straightforwardly from eMLTT to eMLTTq .

The case for algebraic operations is analogous to other computation terms that
involve variable bindings and type annotations. Namely, the premises of the typing
rule for algebraic operations and the induction hypotheses are enough to satisfy the
conditions required for [I'; op%(y. M)]: 1 — U/L; ([T;C]) to be defined.

The case for the congruence rule for algebraic operations is also straightforward.
Similarly to the typing rule for algebraic operations, the premises of this rule and the in-
duction hypotheses are enough to ensure that we have [I'; op%(y. M)]=[T; opvQV (y.N)].

Finally, we discuss the cases corresponding to the general algebraicity equation

and the equations involving the translation of effect terms into value terms in detail.
General algebraicity equation: In this case, the given derivation ends with

'-v:1 I'y:OV/x]FM:C T'|z:C-K:D
T+ K[opy (v.M) /2] = op}p(y.K[M/z]) : D

(op: (x:1) — O € Sefr)

6.5. Interpreting eMLT I, in a fibred adjunction model 269

and we need to show that
[T: K [opy (v-M) /2] = [Ts0py (K [M/2])] : 1] — U, ([T3D])
which, for the fibred adjunction model we are working with, is equivalent to showing
[T Kfopy (v-M)/]]1 = [T 0py (vK[M/2])]1 = idyry : [T] — [T
and, for all yin [I'], that
(IT:K[op§ (M) /] J2)y = (IT:0pR (K [M/2)2)y - 1 — Uy, (IF:Da(1)

First, we use (d) on the given derivation of 'V : I, (e¢) on the given derivation of
[,y:O[V/x] M :C, and (f) on the given derivation of I'|z:C F K : D, in combina-
tion with the propositions that relate weakening and substitution to reindexing along

semantic projection and substitution morphisms, to get
[TV =idyry : [T] — [I]
([OVI)y: 1 — [o:1]2(x)
[T,y: OV /x];M]y = idy}, s (er:00 (o [TV y(s))) - YOV /X]] — [, y: OV /x]]
(I0,y: OV /3:M]2) i : 1 — U, (IT:Cla (%)
[T;2:C;K]; = idry [T — 1]
([:z:C:K]2)y - [T:CLa(v) — [T3D]2(7)

Next, we observe that the first required equation
[T:K [opyy(5-M) /2]]1 = [T:0pp(vK[M/2])]1 = idyry = [T] — [T]

follows straightforwardly by unfolding the definition of [—] for both sides of the equa-
tion, and by noting that the first components of all involved morphisms are identities.

Finally, for all yin [I'], the second required equation

(IC:K[opS (M) /2]12)y = (IT:0p2 (K IM/)2)y : 1 — U, (IT:Da(1)

follows from the commutativity of the diagram below, where the two top-to-bottom
composite morphisms, along the perimeter of the diagram, can be shown to be equal to
the two sides of the above equation, using the definition of [—] and Proposition

270 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

(id1)oer:ov /41, ()

(IT:opi (. M)T2)y def. of [-] M,1

[([Ty:K M /2]]2) ¢y.0)

Mo (IC.y:M]2) ¢r.0)) weakening
M, (Usy, (IT:CL2())
Proposilion@
ool
PVt Mo(Us (IPzC:KT2)y)
U, (IT:Cla () - M (Us, (IT: D2 (1)
def. of Uy, J
[T ([T5zC:KD2)7)1)
[, ((IT:Ch2(n)(1)) [, ((IT:DI2(v)) (1))
def. of op (ﬂfrgjl]’g; ®) = preservation of countable products
(I Cla(n) (T 0V /A2 (M) =

(([T:zC:KT2)) rov /51, (0]
def.

ULTE " ([T:z:C:KT2)y)

([T D)5 OV /x1l2(M)1)

(IPCL2 () 0Py 1)y (o) (o)o)

[r:D] 5 (v)

nat. of ([T3z: C;K]a)y P(IEV 2)y(x)

(IT:RD2 (M) (% Fop([rv] yy(+) (Fo)o)

(Il (m)(1) ([T DD ()(1)

(([T5z:C:K]2)y)1

def. of Uy, =

Uz, ([T:D]2 ‘
1 (11 () ", (P2l W)

Equations involving the translation of effect terms: In this case, the given derivation

ends with
r'-C
I'E Vit AiVi/x, . Vie /xi] (1<i<n)
I'H VAV, /3] - UC (1<j<m)

; — : (CIAFTy =T € Eepr)
H(h DUQ;V;;‘?;VV_O; - (]TZDUQ;W;V} v UC

where

def

Wop = A1 (Zx:1.0 - UC).
pmx’ as (x:1,y:0 — UC) inyw yc thunk (op%(y’.forceg (yy)))

6.5. Interpreting eMLT I, in a fibred adjunction model 271

and we need to show

073Dy eyt = By i Uiy — Uy, (IC5CD)

which, for the fibred adjunction model we are working with, is equivalent to showing

4Tyl = 072Dyl = ey <[] —]

j

and, for all Y’ in [I"'], that

(I (7 DUC7V,—>]]2)Y—(HF GTzDUC7 2y 11— Uz ([T CR(Y)

First, we use (c) on the given derivation of I" - C and (d) on the given derivations
Of T Vi: AilVi /%1, . Viet [xi—1] and T' F V! : AY[V. /%] — UC, forall 1 < i< nand
1 < j < m, in combination with the propositions that relate weakening and substitution

to reindexing along semantic projection and substitution morphisms, to get
[l =[]
[I":Cl> : [I"] — Mod(Lq,,,Set)
[T Vil = idpeyp : [U] — 7]

([[F,;Vi]]z)Y/ 1 —
[[x1 2A1,. o, Xi :Ai—l;Ai]]Z <<<*, ([[FI§V1]]2)7’ (*))7 . '>7 ([[F/;Vi—l]]Z)Y/ (*)>

[[F/;Vj/]]l = id[[r/]] : [[F/]] — [[F/]]
(ITV/T2)y 1 — Maeqrarga Ueg, (IT5C()

where
Y= (G ([0 Vil2)y (29, (03 Val2)y ()

In particular, we prove equations involving simultaneous substitutions, e.g.,

[T AiVi/xt, . Vit /xica]la (Y')

[xi:Av, . xim A AT (O (T3 Vi2)y (%)), -0 ([T Vie1 J2)y (%))

by first noting that analogously to the proof of Theorem[5.3.11] we can first show that

AilVi/x,. . Vie /xia] = Al) xS]V Vied fxi]

272 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

for freshly chosen value variables x},...,x; |, and then use the eMLTTq,, versions

of the propositions that relate weakening and (unary) substitution to reindexing along

semantic projection and substitution morphisms (in particular, see Proposition[5.2.12).

Next, by letting Q;?f el (Sefr, @), we get that ET”flf C Eg,,, based on the definitions
of E;¢ and Ez . Using this inclusion, we get a morphism of countable Lawvere

eff

op . OP
theories from I,Z;gf N — L,Z;(f tolg, : X" — L,

by defining the corresponding
functor L‘Te‘éf — L. as identity on objects and by sending every tuple of terms (i.e.,

a morphism in LT;fgf) to its equivalence class (i.e., a morphism in L).

It is well-known that any morphism of countable Lawvere theories induces a func-
tor between the corresponding categories of models, defined by composition of count-
able product preserving functors, and going in the opposite direction. Concretely, for
Set) — Mod(L,Ticlf,Set),

. .\ OP . .\ OP
meaning that every model of I, : X;* — Lz is also a model of quf X — L,Z;%f .

the purposes of this thesis, there exists a functor Mod (L.,

In particular, the above observation means that [I";C[>(Y') : Lz, — Set is also a

model of I : XP— Laq, for all y"in [I'].

Another observation we make is that by unfolding the definition of [—] for lambda

abstractions, pattern-matching, thunking, algebraic operations, and forcing, we get

(I3 Wopl2)y =i s OP, o [Ny (x> f) o (idi) i gy
11— |_|<i,f>€|_|[€[[0;1]]2(*) I_IDE[[X:I;OHZ<*,i>(ULq—eff([[F/;g}]Z(Y/)))(UL%H([[F/;Q]]Z(’Y/)))

As a consequence of these observations, we can now use Proposition[6.5.6|to prove

the required equations. In more detail, the first required equation

HF/;GTIDUQ;W;@;VWﬂl = (]T2[) i, W p]]l =id[rp : '] — [T']

follows immediately from Proposition[6.5.6] To prove the second required equation

(TS Dyl = (0T Ty 1 — Uy (IT:C()

6.6. Generic effects 273

forall ¥’ in [[I”'], we combine Proposition with the following commuting diagram:

1

<([[F’;‘/j’]]z)y/>WJ;A;eA|

[aseal laera o (Vg (IT3Cl2(Y))

~

(T Cla(v') (1AY])

IChe)@eTh | (MR) (Il T)

(I Cla(v) (1)

Uz, (I7:Ch(r")

where the equation AY - TIY = TZY follows from the assumed equation I'| A+ T7 = T,
based on the way the set of equations [, is derived from Sefr in Definition[6.5.4]

6.6 Generic effects

It is worth noting that instead of extending eMLTT with algebraic operations op% (y.M),
for all operation symbols op : (x:1) — O in the given fibred effect signature Seg, we
could have alternatively extended eMLTT with generic effects, analogously to the sim-
ply typed setting [89]. More precisely, we could have extended eMLTT’s computation
terms with function constants geng, [x:1.FO, forallop: (x:I) — O in Sg.

While algebraic operations are more convenient to reason about (equationally),
generic effects are closer to the language primitives that programmers are familiar,
e.g., from ML-style languages. However, analogously to the simply typed setting,
these two ways of extending eMLTT are in fact equivalent, as we show below.

On the one hand, we can define generic effects using algebraic operations as

geng, = Ax:1.opt9(y.return y)

274 Chapter 6. eMLTTy, . an extension of eMLTT with fibred algebraic effects

Clearly, the right-hand side has type I1x:/. FO in the empty context, by simply using
the typing rules for lambda abstraction, algebraic operations, and returning a value.

On the other hand, we can define algebraic operations using generic effects as
op%(y.M) = (geny, V) toy:O[V /x| in M

Clearly, if TV : LT HC,and I',y: O[V /x| = M : C, the right-hand side is well-typed

in I" at computation type C, by simply using the typing rule for sequential composition.

Proposition 6.6.1. These two definitions of generic effects and algebraic operations in

terms of each other constitute an isomorphism.

Proof. The proof is exactly the same as one would have in the simply typed setting,
modulo the possibility of O depending on values of type 1.

In one direction, we have

I'F ((Ax:1.0ptP(y.returny))V) toy: OV /x] in M
= ((hx:l.opfo(y. returny))V) toy :O[V /x] in M[y'/y]
= Op‘ﬁ;O[V/x} (y.returny) toy :0[V /x| in M[y'/y]

op%(y. (returny) toy :O[V /x| in M[y' /y])
v.M):C

op
In the other direction, we have

I'FAx:I. (genopx) toy:0 in returny
= Ax:1.(gen,,x) toy:O in z[return y/7]

=Ax:l.geny,x

= gen,, : IIx:I.FO

Chapter 7

eMLTT/. : an extension of eMLTT .
eff e

with handlers

In this chapter we show how to extend eMLTTq . with handlers of fibred algebraic
effects. Our work builds on the pioneering work of Plotkin and Pretnar who generalised
exception handlers to all algebraic effects in the simply typed setting [95]. They also
showed how handlers can be used to neatly implement relabelling and restriction in
Milner’s CCS, timeouts, rollbacks, stream redirection, etc., paving the way for handlers
to become a practical modular programming language abstraction.

In Section we recall the conventional definition of handlers and their use in
programming languages. Next, in Section [/.2] we make an important observation that
will be key for the rest of this chapter. Namely, we observe that using the conventional
term-level definition of handlers to extend eMLTT . leads to unsound program equiv-
alences becoming derivable. We solve this problem in Section[7.3|by giving handlers a
novel type-based treatment via a new computation type, the user-defined algebra type,
which pairs a value type (the carrier) with a family of value terms (the operations).
This type internalises Plotkin and Pretnar’s insight that handlers denote algebras for a
given equational theory of effects. We call this extended language eMLTTg{eH.

We demonstrate the generality of our type-based treatment of handlers by showing
in Section [/.4{ that their conventional term-level presentation can be routinely derived,
and demonstrating in Section[/.5|that the type-based treatment provides a useful mech-
anism for reasoning about effectful computations. Next, in Section we study the
meta-theory of eMLTTyfﬁ_, and in Section we present some useful derivable equa-
tions. Finally, in Section we equip eMLTT%f with a denotational semantics. In

particular, we show how to define a sound interpretation of it in the same fibred adjunc-

275

276 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

tion model we used in Secton for giving a denotational semantics to eMLTT. .

7.1 Handlers of algebraic effects

Handlers of algebraic effects were introduced by Plotkin and Pretnar [95, 94] as a
natural generalisation of exception handlers to all algebraic effects. Building on the
algebraic treatment of computational effects, Plotkin and Pretnar’s key insight was to
understand exception handlers as defining new algebras for the equational theory of
exceptions. Taking this insight as a starting point, they then generalised handlers to

arbitrary algebraic effects given by (countable) equational theories, where

e a handler defines a new, user-defined algebra for the given equational theory by

providing redefinitions of all its algebraic operations; and

e the handling construct denotes the application of the unique mediating homo-

morphism between the free algebra and the one denoted by the given handler.

Plotkin and Pretnar formalise these ideas by extending Levy’s CBPV with alge-
braic effects and their handlers, as explained below. They also give their language a
denotational semantics using the adjunction determined by the category of models of
the given equational theory of computational effects. In particular, given an effect the-
or Tor = (Sefr, Fefr) they extend CBPV’s computation terms with the following term
former that combines a handler {op, (x") — Nop }opc s, With the handling construct:

FEM:FA {I,x:1,xX':0—UCF Nop : Clop:1—s0e5.4 I,V:AF Niet:C
I'F M handled with {op,(x") = Nop}ope sy tO V1A in Nyt : C

and the equational theory of computation terms with two B-equations, given by
I'F (opfA(y.M)) handled with {op,(¥') = Nop Jope s, tO Vi A in Nyet
= Nop[V /x][Ay : OV /x].thunk H/X'| : C
and
I' F (return V) handled with {op,(x") = Nop}ope sy £O V1A in Neet
=Neet[V/y]: C
where, for better readability, we abbreviate the handling construct as

def

H = M handled with {op,(x) = Nop }ope sy t0 ¥:A in Nyet

'Tn the sense of [93], i.e., a non-dependent version of the fibred effect theories defined in Section

7.1. Handlers of algebraic effects 277

It is worth noting that while these B-equations capture the intuition that the han-
dling construct denotes the application of the mediating homomorphism between the
free algebra denoted by FA and the algebra defined by the family of terms Ny, they
do not capture the idea that the handling construct denotes the unique such homomor-
phism. To capture the uniqueness of the handling construct, one would also need to
extend Plotkin and Pretnar’s version of CBPV with a corresponding m-equation, e.g.,
as considered in [[12, Section 6] for Levy’s fine-grain call-by-value language.

From a programming language perspective, the first B-equation describes that han-
dling consists of traversing the given program and replacing each algebraic operation
with the corresponding user-defined term N,,. The second B-equation describes that
when handling reaches return values (the end of the given program we are handling),
a substitution instance of the specified continuation Nyt is evaluated next.

As mentioned earlier, handlers can be used to neatly implement timeouts, rollbacks,
stream redirection, etc., see [95, Section 3] for details of these and other examples.

For example, let us consider an extension of the theory of input/output from Exam-

ple with multiple terminals, where the operation symbols are typed as follows:
read : Terminal — Chr write : Terminal X Chr — 1

Now, assuming two distinguished terminal names V; and V,/, we can neatly redirect the

output on V; to Vs by handling a given program using the following handler:
read,(¥) — read,(y.force (x'y’))

write,(x') = if (eq(fstx)V;) then (vritey, snay (force (xX'x)))
else (writey(force (X'x)))

More recently, handlers have also gained popularity as a practical and modular pro-
gramming language abstraction, allowing programmers to write their programs gener-
ically in terms of algebraic operations, and then use handlers to modularly provide
different fit-for-purpose implementations of these generic programs. A prototypical
example of this approach involves implementing the global state operations using the
natural representation of stateful programs as state-passing functions St — A x St.

To facilitate this style of programming, Kammar et al. [53]] have extended Haskell,
OCaml, SML, and Racket with algebraic effects and their handlers, implemented us-
ing free monads and (delimited) continuations. Further, Bauer and Pretnar [23] 22]
have built an entire ML-like language, called Eff, around this style of programming.
This style of programming has also been successfully combined with row-based type-

and-effect systems, as demonstrated by Hillerstrom and Lindley [43], and Leijen [60].

278 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Handlers are also central to the ongoing effort to extend OCaml with shared memory
multicore parallelism (see [3] for details of the Multicore OCaml project), providing a
convenient means for programmers to implement their own fit-for-purpose schedulers.

Recently, Lindley et al. [64] have also investigated a generalisation of handlers,
called multihandlers, that allow multiple computations to be handled simultaneously.
A binary instance of this generalisation was discussed by Plotkin in an earlier invited
talk [91]]. In particular, Plotkin showed how to define binary handlers in terms of

(standard) unary handlers, and how to use them to implement interleaving concurrency.

7.2 Problems with the term-level definition of handlers

In this section we make an important observation that will be key to our work regarding
an extension of eMLTTq . with handlers of fibred algebraic effects. In particular, we
observe that naively following the existing work on handlers to extend eMLT T, (or
any other language with a notion of homomorphism, such as CPBV with stack terms
or EEC) would lead to unsound program equivalences becoming derivable.

More concretely, let us assume we were to extend eMLTT, with handlers a la
Plotkin and Pretnar [95] by extending eMLTTq s computation terms and the corre-
sponding equational theory as discussed in Section While this extension suffices
for CBPV without stack terms, as considered by Plotkin and Pretnar [95], and Kammar
et al. [53]], languages that also include a notion of homomorphism (e.g., CBPV with
stack terms, EEC, and eMLTTq) ought to be extended further. Specifically, in addi-
tion to only extending computation terms, one should also extend the corresponding
notion of homomorphism with the handling construct. In particular, for eMLTT_ this

would mean extending homomorphism terms with the following term former:
K handled with {op,(x') — Nop}ope sy t0 Vi A in Neet

We highlight two reasons for needing such terms when extending eMLTT7 with
handlers a la Plotkin and Pretnar. First, as the handling construct naturally denotes the
application of the mediating homomorphism between a free algebra and the algebra
defined by the family of terms Nop, it is natural to also make it into a homomorphism
in the language, thus making the language more complete with respect to its models.
Second, making the handling construct into a homomorphism term is also important to

ensure that effectful programs could be combined modularly, e.g., to be able to write

to (y:A1,z2:FA2) in (zhandled with {op, (X) = Noprope s tOY 1B in Neet
M Ay,z:FA Py (X)) = Nopopesy t0 Y :Bin N,

7.2. Problems with the term-level definition of handlers 279

where the term being handled is given by the computation variable z.
Unfortunately, if we were to follow this approach for extending eMLTT, with
handlers of fibred algebraic effects, it becomes possible to derive unsound program

equivalences in the resulting language, such as the following equation for input/output:
I'Furitel!(return) = writel ! (return %) : F1

This problem arises from the type of the handling construct not containing any
information about the specific handler being used. In particular, recall that a key prop-
erty of homomorphism terms is that their interaction with algebraic operations is de-
termined exclusively by their types—see the general algebraicity equation given in
Definition Unfortunately, this property is not true for the handling construct.

Specifically, the handling construct gives rise to a critical pair in the equational theory:
op}(y.M) handled with {op,(X') — Nop }ope sy 0 Y 1A in Neet

matches both the B-equation for handlers given in the previous section and the general
algebraicity equation given in Definition [6.2.3] It is easy to show that this critical pair
is not convergent. For example, let us consider the following handler for input/output:
read,(x’) +— read(y.force (x'y’))
write,(x¥') — writep(force (x'*))

On the one hand, the B-equation for the handling construct allows us to derive

I' I (vritel!(return)) handled with {op,(x') = Nop Jopesyo t0 Y: 1 in Neet
=vwritel! ((return) handled with {op,(x') — Nop }ope 5o 0 ¥:1 in Nret)
—writel ! (return) : F1

assuming that the handler in question is defined as above, and Nyt < return .

On the other hand, the general algebraicity equation allows us to derive

' F (writel!(return *)) handled with {op (x') > Nop fopesyo 0 V: 1 in Neet
= (zhandled with {op,(x") — Nop }opc sy t0 ¥: 1 in Net) [writel!(return *)/z]
= writel! ((z handled with {op,(x) > Nop tope sy t0 ¥: 1 in Nyet) [return * /z])
—writel! ((return %) handled with {op,(x’) — Nop}topcsyo t0 ¥:1 in Neet)

=vwritel!(return %) : F1

allowing us to conclude that the following unsound definitional equation is derivable:

F1

I'Furitel!(return) = writel ! (return %) : F1

280 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

From a semantic perspective, the above discussion also exposes a conflict between
the term-level definition of handlers, and Plotkin and Pretnar’s semantic insight that
they ought to denote algebras for a given equational theory of computational effects.

The reason why Plotkin and Pretnar were able to define a sound interpretation for
their language is because they were using CBPV without stack terms, i.e., without a
notion of homomorphism. As CBPV’s computation terms are interpreted as elements
of the carriers of the algebras denoted by their types, the interpretation of their lan-
guage and its soundness were not affected by the type of the handling construct not
mentioning the corresponding handler. In particular, the carrier of the algebra denoted
by the type of the handling construct is the same as the carrier of the algebra denoted
by the corresponding handler. The lack of a notion of homomorphism also meant that

their equational theory did not have critical pairs arising from the handling construct.

7.3 Extending eMLTTq . with a type-based treatment of

handlers

As demonstrated in the previous section, we cannot naively follow Plotkin and Pret-
nar’s approach to extend eMLT Ty with handlers of fibred algebraic effects by defin-
ing them at the term level for both computation and homomorphism terms. Instead,
we either have to 1) change the existing equational theory of eMLTTq ’s homomor-
phism terms (e.g., as investigated by Levy for exception handlers in CBPV with stacks;
however, in which case the homomorphism terms would not denote homomorphisms
any more—see [62]]); or i1) find an alternative solution that would allow handlers to be
soundly accommodated in eMLTT . without changing its existing definition.

In this thesis, we follow ii) and accommodate handlers in eMLT T, via a novel
type-level extension that internalises Plotkin and Pretnar’s semantic insight that han-
dlers of algebraic effects denote algebras for the corresponding equational theories.
Specifically, we extend eMLTTq¢ . with a novel computation type that pairs a value
type (the carrier) with a family of appropriately typed value terms (the operations),

denoting a user-defined algebra for the given fibred effect theory Zegr = (Sefr, Fer)-

Definition 7.3.1. The syntax of eMLTTngH is given by extending eMLTT.’s compu-
tation types with the user-defined algebra type:

C = ... | <A7{V0P}0P656ﬁ>

7.3. Extending eMLT Tz . with a type-based treatment of handlers 281

and computation and homomorphism terms with composition operations:
M = ... | Masx:UCinp N
K = ... | Kasx:UCinpM

Inboth M as x:UC inp N and K as x:UC inp N, the value variable x is bound in N.
Similarly to other terms, we often omit the type annotation D for better readability—
these annotations exist in order to be able define the interpretation of eMLTT?T{eff as a
partial mapping from raw expressions to a suitable fibred adjunction model.

As a special case, these composition operations act as elimination forms for the
user-defined algebra type, i.e., when C = (A, {Vop }opes.)- In principle, we could have
restricted them to only the user-defined algebra type, but then we would not have been
able to derive a useful type isomorphism (see Proposition[7.3.3) that allows us to coerce

computations between C and the corresponding user-defined algebra type, namely,

C=(UC{Ly:(Xx:1.0—-UC).
pmyas (x:I,x:0 — UC) in thunk (opxg(y’. forcec (X'y))) }opesy)
We further note that computation terms of type (A, {Vop fopes,;) are introduced by
forcing values of type A, i.e., thunked computations of type U(A, {Vop }opesy) -
Conceptually, these composition operations are a special kind of explicit substitu-
tion of thunked computations for value variables, e.g., the definitional equations ac-

companying these terms allow us to prove the following definitional equation:
I'M as x:UC inp N = N[thunk M /x| : D

As such, the value variable x refers to the whole of (the thunk of) the computation term
M, compared to, e.g., sequential composition M to x:A in N, where x refers only to
the return value computed by M. Therefore, we use as (running M as if it was x)
instead of to (running M fo produce a value for x) for the composition operations.

As already hinted above, there is more to these composition operations than just
substituting thunked computations for value variables. In particular, the typing rules
forM asx:UC inp N and K as x:UC inp N (see Definition below) require that
the value variable x is used as if it was a computation variable, in that x must not be du-
plicated or discarded arbitrarily. However, rather than extending eMLTT . with some
form of linear typing for such x, we impose these requirements via equational proof
obligations by requiring that N commutes with algebraic operations (when substituted
for x using thunks). This ensures that N behaves as if it was a homomorphism term,

meaning that the effects in M and K are guaranteed to happen before those in N.

282 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

The different kinds of substitution defined for eMLTT . extend straightforwardly

to eMLTTff{ff: we extend the (simultaneous) substitution of value terms with

A Voplopesd W/ T] = (AW /R, {Vop[W /7 Jopes)
(M as y:UC inp N)[W /%] & MW /%] as y:UC[W /] 00 2 NIW /7]
(K as y:UC inp M)W /X] £ K[W/¥]asy:UC[W /¥] inypp MW /T

the substitution of computation terms for computation variables with

def

(Kasx:UCinp N)[M/z] = K[M/z]asx:UC inp N

and the substitution of homomorphism terms for computation variables with

(Lasx:UC inp N)[K/z] £ L[K/7z]asx:UCinp N

The properties of substitution we established for eMLTT in Sections [3.1] and [5.3]
also extend straightforwardly from eMLTT and eMLTT, to eMLTT%ﬁ. Specifically,
the proof principles remain unchanged: the user-defined algebra type and the value
terms appearing in it are treated analogously to propositional equality and the terms
appearing in it; and the composition operations are treated analogously to other com-
putation and homomorphism terms that involve variable bindings and type annotations.

Unless stated otherwise, the types and terms we use in the rest of this chapter are
those of eMLTT%_f. This also includes the definitions of pure value types and pure
value terms appearing in effect terms because every pure eMLTT value type (resp.
term) can be trivially considered as a pure eMLTT%ff value type (resp. term).

Next, we extend the typing rules and definitional equations of eMLTTq . with the
user-defined algebra type and the composition operations. Similarly to eMLTT., the
new rules involve the translation of well-formed effect terms I'| A= T into value terms

(Vs DA.7.7.VT>. The definition of this translation remains unchanged because it only
> ViV sWop

_>

. . —
depends on the structure of 7" and does not inspect the subscripts A, 7,-, Vj’ , and Wop.

Similarly to Chapter[6] we assume
I'=x1:Aq,...,x,:A, A:wle'l,...,wm:Afn

throughout this chapter, so as to simplify the presentation of typing rules, definitional
equations, and the meta-theory of eMLTT;{ff. As in Chapter@, we use vector notation
€

for sets of value terms, e.g., we use ?, to denote a set of value terms {V},...,V,}.

7.3. Extending eMLT Tz . with a type-based treatment of handlers 283

Definition 7.3.2. The well-formed syntax of eMLTTf[{ff is given by extending the typ-

ing rules and definitional equations of eMLTTz with

e a formation rule for the user-defined algebra type:

I'FA T'EVep: (Ex:1.O—A)—A
— =
I+ ka:Ai.waj:A’j —A. (T DA,Q

— S
i;xW]‘;VOp
% o~ ’ —~
= Ax:ApAx, Al — AL (T: T AL A 5 A— A
’ ’xl‘vaj’VOp

(forallop: (x:1) — O € Serand I'|AFT1 =15 € Eepy)
'k <A7 {VOp}opESfo>

where A; £ Ajlx) /x1,...,x}_,/xi—1] and AA’] = A%} /x15. .., /xa]; and where
N —

o~ ~ L ~
we write Axj:A;., Ax,, :A} — A, TIx/:A;, and A} — A for sequences of lambda

abstractions and sequences of (dependent) function types, respectively.
e typing rules for the two composition operations:
I'-mM:C THED T,y:UCHEN:D
['HAx:I.AxX :0 — UC.N|[thunk (opxg(y'.forceg (X'Y)))/yl
= Ax:I.AX:0 — UC.op2(y.NIX'y /y]) : TIx:1.(0 — UC) — D

(op: (x:1) —> O € Sefr)
I'FMasy:UCinp N:D

F|Z:Q|—K:Ql rl_Qz F,y:UQll_M:QZ

['FAx:I.AxX':0 — UD,.M[thunk (opXQ1 (Y. forcep, (x'y")))/y]
zkx:l.kx’:0—>UQl.op%(y’.M[x’y’/y]) :Mx:1.(0 - UD,) — D,
(op: (x:I) — O € Ser)
I'|z:CFKasy:UD inp, M : D,

e congruence rules for the user-defined algebra type and the composition opera-

tions:
/ R N
" FAx;: A Ay, (Al — A (T DA;Q;W;@

SN i U

= A} A vy, AL = AT [e ALAL A A
LRI Wj’ O]

(forallop: (x:1) — O € Serand I'|AFT1 =15 € Eepy)
I+ (A, {Vop }opeser) = (B, {Wop Fopesinr)

284 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

I'EDy =D, T'y:UC\FNi=N>:D;
['FAx:I.AX :0 — UC,.N;[thunk (op%' (. forcec, (x'y')))/y]
=Ax:L.AX:0 = UC,.op2 (. Ni[¥'y'/y]) : TIx:1.(0 — UC,) — D,
(op: (x:1) —> O € Sexr)
I'=Myasy:UC, inp, Ny =M as y:UC, inp, N> : D,

TFD, =Dy, D|z:CHK=L:Dy
I'Dyy =Dy, I',y:UDy =M =N:Dy
['+Ax:I.AX:0 — UDy;.M[thunk (op%“(y’.forceg11 (xX'Y)))/yl
=Ax:L.Ax:0 = UDyy.op2 (y. M[x'y' /y]) : TIx:1.(O = UD,,) — Ds,
(op: (x:1) — O € Ser)
I'|z:CHKasy:UDyy inp,, M =L as y:UD,, inp,, N : Dy;

e a [-equation for the user-defined algebra type:

I'F <A7 {V0p}0p€5eff>
'k U<A’ {VOP}OPGSeff> =A

e [3- and n-equations for the composition operation for computation terms:
r-v.uc =D TI',y:UCFM:D

[HAx:I.AX :0 — UC.M[thunk (op%(y’.forceg XY /y
= Ax:I.AX:0 = UC.op2(y.M[x'y' /y]) : TIx:1.(0 — UC) — D
(op: (x:1) — O € Serr)
't (forcec V) asy:UCinp M =M|[V/y|:D

I'M:C T|z:CFK:D
I'M as y:UC inp K[forcec y/z] =K[M/z] : D

e an Mn-equation for the composition operation for homomorphism terms:

I'|z1:CHK:D, Tl|z:D,FL:D,
['|zi:CFK asy:UD, inp, L[forcep, y/z2] =L|K/z]: D,

e an m-equation for algebraic operations at the user-defined algebra type:

F'FV:I THA{Voptopesy) Ly:OV/xIFM: (A {Vop}opesy)

r l_ Op‘<;47{V0p}0p€56ff> (y.M)
= force<A7{Vop}opeseH> (Vop (V,Ay: O[V /x]. thunk M)) : (A, {Vop opesus)

7.3. Extending eMLT Tz . with a type-based treatment of handlers 285

Observe that the B-equation for the user-defined algebra type captures the intuition
that the value type A denotes the carrier of the algebra denoted by (A, {Vop }opes.)-
Analogously, the n-equation for algebraic operations captures the intuition that the
value terms Vo, denote the operations of the algebra denoted by (A, {Vop fopesu) -

It is also worthwhile to note that the equational theory of eMLTTZ}!ff does not in-

clude an n-equation for the user-defined algebra type, namely,

r'-cC

I'-C=(UC,{hy:(Xx:1.0 - UC).
pmyasx:[,xX':0— UC in opxg(y’.forceg (X' ¥)) Yopes)

We omit this equation because it does not hold in the natural fibred adjunction
model we use for giving a denotational semantics to eMLTT?I‘e(ff in Section based
on models of countable Lawvere theories. However, it is also important to note that this
equation would hold in a variant of that fibred adjunction model, based on models of
countable equational theories. This illustrates that while the two categories of models
might be equivalent as categories, they differ in the strict equations that they support.

Instead, as promised earlier, we can derive a type isomorphism that allows us to

coerce computations between C and the corresponding user-defined algebra type.
Proposition 7.3.3. Given I' - C, we can derive a computation type isomorphism
I'EC= (UC, {Vop topes,y)
where, for all op : (x:1) — O in S5, the value terms Vo, are given by
Ay:(Zx:1.0 — UC).pmyas (x:1,x':0 — UC) in thunk (opS(y. forcec (¥'y)))
Proof. This type isomorphism is witnessed by the well-typed homomorphism terms

I'z:Ckzasy:UC in £OTCe(UC, (Vop bapes) V (UC,{Vop }opesur)
[z:(UC,{Vop}opesy) -z as y:U{UC, {Vop}opes,;) in forcec y: C

The proofs that both composites of these terms are definitionally equal to z (i.e., to
identity) are straightforward, using the - and n-equations for composition operations.
O

We conclude this section by making a simple yet useful observation about our

equational proof obligations that allows many of them to be proved at little extra cost.

286 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Proposition 7.3.4. Given a homomorphism term T |z:C+ K : D, then we have

I'HAx:I.Ax:0 — UC.K|forcec y/z][thunk (opS(y. forcec (x'y)))/y]
= Ax:I.Ax':0 — UC.op2(y. K[forcec y/z][x'y' /y]) : TIx:1.(O — UC) — D

for all operation symbols op : (x:I) — O in Sey.

Proof. By straightforward equational reasoning, using the definitions of different kinds

of substitution, and the general algebraicity equation given in Definition [6.2.3] O

7.4 Deriving the conventional presentation of handlers

In this section we show how to derive the conventional term-level presentation of han-

dlers (as discussed in Section i in eMLTTHff, so as to provide programmers with a
€

familiar syntax for programming with handlers within computation terms.

In detail, we define the handling construct
M handled with {op,(x") — Nop fope s,y £O ¥:A in Nyet
using sequential composition as the following composite computation term:
forcec (thunk (M toy:A in £Orce(yc (Voplope siy) (thunk Nyet)))

where, for all op : (x:/) — O in Ser, the value terms Vo, are given by

Vop =AY 1 (Zx:1.0 = UC).pmy as (x:1,x':0 — UC) in thunk Ny
Next, we show that the corresponding typing rule is derivable. Compared to the
typing rule considered by Plotkin and Pretnar, ours includes explicit equational proof

obligations so as to ensure that the computation type (UC, {Vop }opec ;) is Well-formed.
Proposition 7.4.1. The following typing rule is derivable:
I'EM:FA T'FC T,yi:AFNet:C T x:I,x':0—UCE Ny : C

— =
I+ kxé:A,—.?»ij :A'j — A (T

A;x; w; ;Vop
N N | Y
_ A AL CTT - AL AL
= M A Ay = AT, s TG AL A 5 A = A

(forallop: (x:I) — O € Sppand I'| AF Ty =T, € Eop)
I = M handled with {op,(x') = Nop}opes,; t0 VA in Neet : C

7.4. Deriving the conventional presentation of handlers 287

where, for all op : (x:1) — O in S5, the value terms Vy, are given by

Vop Z 0y :1(2x:1.0 = UC).pmy as (x:1,x':0 — UC) in thunk Nop

and where the value types fT, and AA; are defined as in Definition|7.3.2

Proof. The derivation of this typing rule is constructed straightforwardly. The deriva-
tion consists of using the respective typing rules for forcing of thunked computations,

thunking of computations, and sequential composition of computation terms. [

Further, we can also show that the corresponding -equations are derivable.

Proposition 7.4.2. The following two definitional B-equations are derivable:

'Vl [Y:0V/x]F-M:FA T'FC
I yiAF Net : C TV x:1,x':0 - UCF Ngp : C
-

I = Axj: A Ay A — AT DA;xi e,
ﬁﬁ T) -~
= Ax;:Aj Axy AL = AT DA;Z;X—W;;@ A A; 2 A A

(forallop: (x:I) — O € Spand T'|AF+Ty =T» € Eop)

I+ (opiA(y.M)) handled with {op, (¥') Nop }ope s,y t0 VA in Nret
= Nop[V /x][Ay : OV /x].thunk H/x'| : C

I'FV:A T'EC T',y:AbNet:C TV x:1,xX':0 -5 UCHE Nyp: C
—

I b At Aj Ay AL — ATy D7
S~ A — o — =
= Kxﬁ:Ai.kij :A’j —A. (T DA,;’,;»,W : Hx§:Ai-A/]' — A=A
! i Xw;3sVop

(forallop: (x:I) — O € Sppand I'| ATy =T> € Ep)

I - (return V) handled with {op, (x") = Nop }ope s,y 0 V1A in Nyt
=Neet[V/y]: C

where we abbreviate the handling construct in the first equation as

def

H = M handled with {op,(x') = Nop}ope s, t0 ¥:A in Nt

288 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Proof. These two definitional B-equations are proved as follows:
I' F (opi(y.M)) handled with {op, (') = Noptope 5.y £O ¥:A in Nyt
= forcec (thunk (
(opgA(y’.M)) toy:Ain £OrCe(uC, (Voplopes,;) thunk (Nret)))
= forcec (thunk (opéUg{Vop}ope%ﬁ;) .

M to y:A in force(ye (vo,}opes,) (thunk Niet))))
= forcec (thunk (
£OrCe(yC (Vo lope sy (Vop (V.1 : O[V /x]. thunk (
M 0 y:A in £0rce(c (v)opes,) (PhUDK Niet))))))
= forcec (Vop (V.1 : O[V /x]. thunk (
M toy:A in force(yc (Vo lope 5. (thunk Niet))))

= forcec (thunk (Nop[V /x][Ay': OV /x].
thunk (M toy:A in £OrCe(yc (Vo lope sy (thunk Nret))/x']))

= Nop[V /x][My': O[V /x].

thunk (M toy:A in £OrCe(UC (Vopope s

) (thunk Nret)) /x']

= Nop[V /x][Ly': O[V /x]. thunk (forcec (thunk (
M toy:A in force(ye (Vo lope s.q) (thunk Nret))))/«']

= Nop|V /x][Ay': O[V /x]. thunk (
M handled with {op,(x') = Nop tope sy t0 VA in Neet) /x] 1 C

and

I+ (return V) handled with {op,(x') = Nop }ope sy t0 ¥:A in Nyet
= forcec (thunk (
(return V) toy:A in force<UQ7{Vop}op€56ff> (thunk Nret)))
= forcec (thunk (forcewg{vop}opejeff> (thunk Nret[V/y])))
= forcec (thunk Net[V/y])

=Nret[V/y]: C
O
By being able to derive the conventional term-level presentation of handlers, we can
also straightforwardly accommodate all the typical example uses of handlers proposed
by Plotkin and Pretnar [93]], e.g., implementing timeouts, rollbacks, stream redirection,

etc. We refer the reader to op. cit. for a detailed overview of these examples.

7.5. Using handlers to reason about algebraic effects 289

It is worth noting that the problems discussed in Section do not arise in this

extension of eMLTTq . because we can not define the handling construct
K handled with {op,(x') = Nop}ope sy t0 ¥:A ing Nret

satisfying analogous equations to those given in Definition Intuitively, we can
not derive such terms because the nature of homomorphism terms does not allow us to
temporarily forget about the (algebra) structure of C and instead work with UC, e.g., as
used in the definition of the computation term variant of the handling construct above.

Finally, we recall that Plotkin and Pretnar do not enforce the correctness of their
handlers during typechecking because it is in general an undecidable problem, see [95,
§6] for details. In other words, they do not require the user-defined computation terms
Nop, to satisfy the equations given in . In comparison, we include the corresponding
proof obligations in eMLTT?l{gff’s typing rules and definitional equations because in this
thesis we only study a declarative presentation of eMLTT and its extensions.

We plan to address the issue of algorithmic typechecking in future extensions of
this work. For example, we could develop a normaliser for eMLTTg}e(ff that is optimised
for important fibred effect theories (e.g., for global state, as studied in [12, §5.2]), and
require programmers to manually prove equations that cannot be established automati-
cally. To facilitate the latter, we could change eMLTT?Z{Z:ff to use propositional equalities

in proof obligations instead of definitional equations—see Section[3.1.5]

7.5 Using handlers to reason about algebraic effects

In this section we demonstrate that our type-based treatment of handlers provides a
useful mechanism for reasoning about effectful computations, giving us an alternative
to defining predicates on effectful computations using propositional equality on thunks.

To facilitate such reasoning, we first extend eMLTTZ[:ff with universes. To keep
to the declarative presentation we are using for eMLTT and its extensions, we extend
eMLTTijff with universes a la Tarsk by making the decoding function explicit.

In detail, we extend eMLTT,”}e(ff with 1) universes of codes of types and ii) decoding
functions that provide a meaning to these codes by “interpreting” them as correspond-
ing types. As eMLTTg,Tfff includes both value and computation types, it is natural to

include two kinds of universes, albeit we only use the former in our examples.

2This terminology was originally proposed by Martin-Lo6f in [70], due to the similarity between the
explicit decoding function and Tarski’s definition of truth [109].

290 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Specifically, we extend eMLTTf[{ff’s types with

A =
| VU universe of codes of value types
| CU universe of codes of computation types
| ElV decoding function for the codes of value types
C ==
| ElV decoding function for the codes of computation types

Observe that we consider only one universe level for both value and computation
types—this can be straightforwardly extended to a hierarchy of universes using stan-
dard techiques, e.g., as discussed in [81].

The concrete codes of eMLTT?Tfff’s value and computation types are given by terms

of type VU and CU, respectively. Specifically, we extend eMLTTjT{ff’s value terms with

V o=
nat-code
unit-code
v-sigma-code(V,x. W)
v-pi-code(V,x. W)

sum-code(V,W)
eq-code(V,W;,W;)

|
|
|
|
| empty-code codes of value types
|
|
|
|

u-code V
hom-code(V,W) 7
| f-codeV
| c-sigma-code(V,x.W) codes of
| c-pi-code(V,x.W) computation types
|

u-alg-code(V, {Wop }opes.y)
We also extend the well-formed syntax of eMLTTgI[ff with rules of the form:

FI I'v:Vvu I'v:CuU
I'~Vvu I'ElV 'FEV

r-v:cu r=w:cCu
' hom-code(V,W) : VU

7.5. Using handlers to reason about algebraic effects 291

I'-v:CuU I'v:VU
I'u-codeV:VU I'tf-codeV:CU

r-v:vu I',x:EIVFW:CU r-v:vu TI',x:EIVEW:CU
[t c-sigma-code(V,x.W): CU [c-pi-code(V,x.W): CU

The behaviour of the two decoding functions, both written El V, is described using

definitional equations between value and computation types, e.g., as given by

'cv:Cu Irew:Cu
I't El (hom-code(V,W)) = (EI V) — (EI W)

r-v:cCcu r-v:vu
'+ El (u-code V) =U(EI V) '+ El (f-code V) = F(EIV)

r-v:vu I',x:EIlVEW:CU
'+ El (c-sigma-code(V,x.W)) =Xx: (EIV).EIW

r-v:vu I'x:EIlVEW:CU
'+ El (c-pi-code(V,x.W)) =IIx:(EIV).EIW

Using these universes (in particular, the value universe VU), we can now define
predicates on (thunks of) effectful computations of type FA as value terms of the form
'V :UFA — VU, with the aim of using them to refine (thunks of) effectful compu-
tations using the value X-type, as Xx:UFA.El (Vx). In more detail, we define these
predicates by 1) equipping the universe VU (or a value type we define using it) with an
appropriate algebra for the given fibred effect theory, and by ii) using a combination of
thunking-forcing and sequential composition to handle the given computation of type
FA with the above-mentioned algebra on VU (or on a value type we define using it).

Below we consider two kinds of examples of defining predicates on computations
using our type-based treatment of handlers: i) lifting predicates from return values to

predicates on computations; and ii) specifying patterns of allowed (I/O-)effects.

7.5.1 Lifting predicates from return values to computations

Lifting predicates from return values to computations is easiest when the fibred ef-
fect theory in question does not contain equations, because then we do not have to

prove equational proof obligations for the user-defined algebra type. Therefore, let us

first consider the theory Ty of input/output from Examples [6.1.8| and [6.1.24—other

equation-free fibred algebraic effects can be reasoned about similarly, e.g., exceptions.

292 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

In particular, we lift a given predicate I' - Vp : A — VU on return values to a predi-

cate ' V5 : UFA — VU on (thunks of) computations by
V5 = Ay:UFA.thunk ((forceps y) toy':A in £0TCeVU (Vo }opesyo) (V"))
where the value terms V,eaq and Viyyite are given by
Viead = Ay:(Zx:1.Chr — VU).v-sigma-code(chr-code,y’. (sndy)y’)
Virite = Ay: (Zx:Chr.1 — VU). (sndy) %
and where chr-code is the code of the assumed value type Chr of characters, i.e.,

I'F El chr-code = Chr

On closer inspection, we can see that the predicate V; agrees with the possibility
modality from Evaluation Logic [84], in that a computation satisfies V5 if there exists
a return value that satisfies Vp. For example, to prove that V5 holds of a computation
term read’ (y.writel(return W)), we need to construct an inhabitant for the right-

hand side of the following derivable definitional equation between value types:
'+ El (V5 (thunk (read’(y.writel” (return W))))) =Zy:Chr.El (Vp W)

If we replace v-sigma-code with v-pi-code in the definition of V¢4, we get a predi-
cate that holds if all the return values of the given computation satisfy Vp.

As a second example, we consider a fibred effect theory that does include equa-

tions, namely, the theory Igs of global state from Examples|6.1.6{and [6.1.22]

In particular, given a predicate I' - Vp : A — St — VU on return values and final
store values, we define a predicate I" - VQ : UFA — St — VU on (thunks of) computa-
tions and initial store values by

def

VQ =Ay:UFA.Axs:St. fst ((thunk ((forceFA y)toy':Ain
£OTCe (St (VUXSH), (VopJopesgs) (M¥s 1St (Vo ' X5, x5)))) xs)
where the value terms Vger and V¢ are defined using the natural representation of

stateful programs as state-passing functions St — (VU x St), e.g., Vp¢ is defined as

Vour = Ay:(Zx:St.1 — (St — (VU x St))). Axs: St.
pmyas (x:St,x':1— (St — (VU X St))) in X' % x
In other words, Vget and Vp¢ are defined as if they were operations of the free algebra
on VU for the equational theory corresponding to the fibred effect theory Zgs.
On closer inspection, we can see that V; corresponds to Dijkstra’s weakest precon-

0
dition semantics of stateful programs [33]], as made precise in the next proposition.

7.5. Using handlers to reason about algebraic effects 293

Proposition 7.5.1. The following definitional equations are derivable in eMLTTfIé S

'Vp:A—=5t—=VU I'tV:A T'FVs:St
eV (thunk (returnV)) Vs =Vo V Vs : VU

'EVp:A—=5St—=VU TI,y:StEM:FA TI'kVs:St
I'EV; (thunk (get™(y.M))) Vs = V5 (thunk M[Vs/y]) Vs : VU

F'FVp:A—=St—VU TFM:FA T'FVs:St T'FVg:St

I'EVs (thunk (put‘]Zf‘ (M))) Vs = Vs (thunk M) V{: VU

Proof. All three equations are proved by straightforward equational reasoning, e.g.,
[+Vj (thunk (putéf (M))) Vs

= fst ((thunk ((forces (thunk (putgf(M)))) toy:A in
£OTCE(S 3 VUXS {VopJopesyg) (AYs 1St (Vo ' X5,x5)))) Vs)
= fst ((thunk (putg‘z (M) toy':A in
£OTCE(S 3 VUXS {VopJopesys) (MYs 1St (Vo ¥ X5,x5)))) Vs)

S VUXS,{Vop e
= fst ((thunk (put<v,_> xS Vep) pe”gGS>(M toy':A in
S

£OTCe(S L VUXS, (Vophopesys) (M5 SE- (Vo ¥ X5.5))))) Vs)

=fst ((thunk (force<5_>VUXS’{VOP}OPESGQ (
Axs:St.pm (Vg,Ay:1.thunk (M to)y :A in
£OTCe(S . VUXS, {Vop bopesgs) (Ax:St. (Vo y' x5, x5)))) as
(x:St,x":1— (St — VU x St)) in x’ % x))) V)

= fst ((Axs:St.pm (Vg,Ay: 1. thunk (M to y':A in
£0TCe(S, VUXS {Vop bapesys) (Ax§:St. (Vo Y x§,x5)))) as
(x:St,x’: 1 — (St — VU x St)) in x’ % x) V)
= fst (pm (Vg,Ay:1.thunk (M toy":A in
£OTCe(S VUK {Vop fopess) (Ax§:St. (Vo Y x§,x5)))) as
(x:St,x":1 — (St = VU x St)) in x’ % x)
=fst ((thunk (M toy:Ain
£OTCO(S ,VUXS, (Vopopessg) (M1 St (Vo Y x5,%5)))) Vs)
= fst ((thunk ((forcepy (thunk M)) toy':A in
£OTCe (S, VUXS {Vopopesys) (Ax§:St. (Vo Y x5, x5)))) Vs)

=V, (thunk M) V¢ : VU

294 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

The proofs of the other two equations follow a similar pattern. [

We leave comparing our handler-based definition of Dijkstra’s weakest precondi-

tion semantics to the CPS-translation based definition used in F* [[10]] for future work.

7.5.2 Specifying patterns of allowed effects

Analogously to lifting predicates from return values to computations, specifying pat-
terns of allowed effects is easiest when the given fibred effect theory does not contain
equations. Therefore, let us again consider the fibred effect theory 7y/o of input/output.

As a first example, we define a very coarse grained predicate V,q.,, on the allowed

I/O-effects, namely, one that disallows all writes. This predicate is defined as follows:

def

Vooow = Ay:UFA. thunk ((forcepA y)toy:Ain £OTCe VU, {Vophopesyo) unit—code)

where the value terms V,eaq and Viyyite are given by

def

Viead = Ay:(Zx:1.Chr — VU).v-pi-code(chr-code,y’ (sndy) y')
Visrite = Ay: (Xx:Chr.1 — VU).empty-code

For example, the computation term read™ (x.writel(M)) does not satisfy Vyo-w

(if I is consistent) because of the following derivable value type isomorphism:
I El(Voow (thunk (read™ (y.writel (M))))) =My: 1+1.020

Next, we show how to specify more complex patterns of allowed I/O-effects in
the style of session types [46]. To this end, for our second example, let us assume an

inductive type ¢ = Protocol, defined using three constructors with the following types:

e : Protocol r : (Chr — Protocol) — Protocol
w: (Chr — VU) x Protocol — Protocol

Intuitively, e stands for the end of communication; r specifies that the next allowed
I/O-effect has to be a read; and w specifies that the next I/O-effect has to be a write.

Note that both r and w take a Protocol-valued argument. This argument specifies
the pattern of I/O-effects that are allowed after performing a read or write effect, re-
spectively. Further, observe that for r, the Protocol-valued argument can depend on
the character being read from the input. It is also worth noting that w takes a second
argument (with type Chr — VU). This argument denotes a predicate on the values of

type Chr that are allowed to be written to the output by the corresponding write effect.

7.6. Meta-theory 295

Then, given some particular protocol I =V, : Protocol, we define a predicate

def

Vi =Ay:UFA. (thunk ((forceps y) to) :A in
force(Protocol—>VU,{Vop}opg_guo> ert)) Vor
where the value terms Viet, Viead, and Viysite are defined as follows (for better readability,

we opt to give their definitions by pattern-matching on their respective arguments):
Vret e < unit-code
Viead (Vi) (r V) < y-pi-code(chr-code,y. (Vi y) (Vor)
Viwrite (V, Vi) (w (Vp,Vpy)) < y-sigma-code(Vp V,y. Vi * Vor)

with all other cases defined to be equal to empty-code; and where

'V, : Chr — Protocol — VU 'V : 1 — Protocol — VU

are the respective continuations of the algebraic operations denoted by V,eaq and Viyrite.
The high-level idea is that Vg computes to empty-code if the given computation
does not conform to the pattern of I/O-effects specified by the given protocol V,,. On
the other hand, if the given computation happens to conform to the given protocol, Vg
will compute to a representation of a sequence of value II- and X-types (ending with
1) for which one can easily construct an inhabitant, and thus prove that Vg holds.
We conclude by noting that one can easily combine Vyo. and Vg with predicates

from Section by replacing unit-code with a predicate Vp on return values.

7.6 Meta-theory

In this section we show how to extend the meta-theory of eMLTT and eMLTTq . to
eMLTT%ff - analogously to how we extended the meta-theory of eMLTT to eMLTTq
in Section Similarly to eMLTTg,, many of the results from Section (and
from the beginning of Section extend straightforwardly to eMLTTge{f o with either
the proof remaining the same or it can be easily adapted for eMLTTg;{f - Analogously
to Section [6.3] we omit the proofs of the propositions and theorems that extend to

eMLTT;[f) straightforwardly and only comment on the more involved proofs.

Extending Theorem [3.3.10| (Value term substitution) to eMLTT%[f f

We begin by recalling that in Theorem [3.3.10| we showed that the substitution rule is

admissible in eMLTT for substituting value terms for value variables. When extending

296 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Theorem (3.3.10| to eMLTTZ[{ff, we keep the basic proof principle the same: we prove

(a)—(1) for different kinds of types, terms, and definitional equations simultaneously,
with (a)—(b) proved by induction on the length of the given value context I';, and

(¢)—(1) by induction on the given derivations; and this theorem as a whole is proved

simultaneously with the eMLTTf[[ff version of the weakening theorem (Theorem|(3.3.9).

The cases for the terms and definitional equations introduced by eMLTT are
proved analogously to Section this also includes additionally proving an eMLTTg{eﬁ_
version of Proposition [6.3.2] so as to account for substituting value terms for value
variables in the translation of effect terms. The new cases for the types, terms, and
definitional equations introduced by eMLTT%f are proved analogously to other types,
terms, and definitional equations that involve variable bindings and type annotations.

For example, in the case corresponding to the formation rule for the user-defined

algebra type, the given derivation ends with

I',y:BIbFA T,y:BIoEVop: (Zx:1.0 - A) - A

rox N
[,y:B, T2 - Axi:Aj Axy, (Al — A (T DA;Z;@Z‘Z;
oA N Y
:kxl.:Ai.kij:Aj %A'GTZDA;Q;M;;\TP (I AL AL 5 A— A

(forallop: (x:1) — O € Serr and T'|AF Ty = T5 € Eegr)
I',y:B,In - <A7 {Vop}opeﬁeff>

and we need to construct a derivation of

[, oW/ = (AW /y], {VOp (W /y] }OpESeff>

To construct this derivation, we first use (¢), (g), and (&) on the derivations given

by the premises of this rule, in order to get derivations of
I, [W/y] =AW/

U, Do [W/y] = VoW /y] 0 (Zx:1[W/y].0W /y] — AW /y]) — A[W /Y]

— ’

T1 oW /3] A ALW 3] Ao s AL W 5] = AW ST, e W)
A N >4 AwjsVop

~

= Mxit AW /3] Aoy, t AL W /3] = AW YT, 5 s o [W /]

5 iQXWj;Vop

— =
IL;: AW /y]. AL W /] — AW [y] — AW /]

Next, we use the eMLTT”T{ff version of Proposition [3.3.7/on the given derivations
of T FW:B,oF1,x:IF0O,and ' A’, to get the following inclusions:

FVV (W) CVars(T'y) FVV(I)=0 FVV(0) C {x} FVV(A") C Vars(T)

7.6. Meta-theory 297

According to our adopted variable conventions, we also know that

XX sy Xy Xy s ey X, & Vars(Ty,y: B, 1)

rvn

As aresult, by recalling that the properties of substitution we established for eMLTT
in Section [3.1{extend straightforwardly to eMLTTg{H, we get the following equations:

IW/yl=1 OW/y]=0 AjW/y]=

Further, by using the eMLTTé{ff version of Proposition |6.3.2, we also get that

7D 03wy W= U g vt i) — 0D aw i s el

(T2) g W= 2D gy g vt v 0 = V2D i Ve 5

! J
where the right-hand equations follow from the properties of substitution.
Finally, by combining all these observations, we get that the derivations we con-

structed in the beginning of this proof turn out to be in fact derivations of

[y, To[W/y] =AW /Y]

L, W/ B VoW /y] 1 (Ex:1.0 — AW /y]) — A[W /]

e —
Ty, Do [W /3] B Axg: A Ay, : A — AW /3] (Th), AW ol L SN
ﬁ —
= Axj:Ap hxy 1AL — AW /Y] (T D[W/y])?%‘m
%WA—>
[x:Ai. AT — AW /3] — AW /y]

Therefore, we can use the formation rule for the user-defined algebra type with these

derivations to construct the required derivation of I't,I'2 [W /y] = (A[W /], {Vop }opesos) -

Extending Proposition 3.3.20/to eMLTT{gf

We begin by recalling that in Proposition [3.3.20| we showed that the judgements of
well-formed expressions and definitional equations only involve well-formed contexts

and types, and well-typed terms. For example, given I' = M = N : C, we showed that

I'=M:C I'=N:C

When extending Proposition [3.3.20| to eMLTTZ[{ff, we keep the basic proof prin-

ciple the same: we prove (a)—(j) for different kinds of types, terms, and definitional

298 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

equations simultaneously, by induction on the given derivations, using the eMLTTZE:ff
versions of the weakening and substitution theorems, where necessary.

The cases for the terms and definitional equations introduced by eMLTT . are
proved as in Section [6.2} this also includes proving Proposition [6.3.3] to show that
well-formed effect terms translate into well-typed value terms. Most of the new cases
introduced by eMLTT%f are proved similarly to other types and terms that involve
variable bindings and type annotations. However, in order to be able to account for
the congruence rule for the user-defined algebra type, we need to prove the eMLTT;{ ’

ef

version of Proposition [3.3.20] simultaneously with Propositions[7.6.1]and [7.6.2] below.

Proposition 7.6.1. Given a well-typed value term I'1,12,1'3 =V : A and definitional
equations T'1 =V; =W; : Ai[Vi /x1,...,Vi_1/xi—1), for all x;:A; in Ty, then

TV /5] FVIV/®] = VIW/E] AV /3]
Proof. We prove this proposition by induction on the length of I, as discussed below.

Base case (with I', = ©): In this case, we simply use the reflexivity rule for value terms
toprove '}, I3 -V =V : A.
Step case (with I'; = F/z,xn :Ap): In this case, we first use the induction hypothesis on

Iy, F’z,xn :A,, I's FV : A (with the contexts chosen as I'; and F’2 and x,,:A,,13) to prove

Flvxn:An[Vl/xla"'7Vn*1/-xn71]7r3[vl/x17"'aVn*l/xnfl] -
V[Vl/xl,...,Vn,l/xn,l] = V[Wl/xl,...,anl/anl] IA[Vl/xl,...,anl/Xn,I]

Next, by using the simultaneously proved eMLTT%[ff version of Proposition |3.3.20)

on this definitional equation, we get a derivation of

CixnAnVi/xa, o Vet /xn— [, T3 Vi /xn, o Vo fxn 1]
V[Wl/xl,. --aWn—l/xn—l] :A[Vl/xl,. .. ,Vn_l/xn_l]

Further, by using the eMLTTqurff version of the substitution theorem on the defini-
tional equation above, we get a proof of
LTV /xes o Vet /1) [V /xa] B

VIVi/x1,. . Va1 /Xn—1][Va/xn]
=VIWi/x1,... . Wa_1/Xn—1][Va/xn] : AV1 /X1, o, Vet [xn—1] [V %]

and for which we can use the eMLTT;[ff version of Proposition |5.3.6/to show that

T3V xn e Vet fxn—1]) [V /%] =T, T3 Vi /X1y o, Va1 /xn—1, Vi /X

A[V]/xl, ... ,anl/xnfl][vn/xn] :A[Vl/xl, ... ,Vn,l/xn,l,Vn/xn]

7.6. Meta-theory 299

Finally, we can prove the required equation as follows:

where the first and last equation are proved using the eMLTTj,T{ff version of Proposi-
€]
tion the second equation is proved using the definitional equation derived above;

and the third equation is proved using the replacement rule for value terms. [

Proposition 7.6.2. Given a well-formed effect term I'| A= T derived from Sy, value
types A and B, value terms V; and W; (for all x;:A; in '), value terms VJ(and WJ{ (for
all wj :A’j in A), value terms Vop and Wep, (for all op : (x:1) — O in S.p), and a value

context I such that
o FT7,
e I'HFA=B,
o 'V, =W Ai[Vi/x1,...,Vic1/xi-1),
o I'EVI=W AlVi/x1,....Va/xa] = A,
o I'FVop=Wop: (Ex:1.0 — A) — A,

then
. .
| (]TDA;L';V]{;VOP (]T[)B; i;W;;WOP A

Proof. We prove this proposition by induction on the derivation of I'| A+ T.
As arepresentative example, we consider the case of algebraic operations opy, (y.T),

for which we need to prove the following definitional equation:
b Vo (VIV /T Ay OV Vi /R /A AT, 5 o3)
SVinYs jrop
_ e . 57 :
= Wop (V W/ 5] 0y OV W/ B T Dy) < A

First, we note that we can repeatedly use the replacement rules for value types and

value terms with the derivations of 'V : [and x:/ F O, in combination with the

eMLTTf[{ff version Theorem [5.3.11|(simultaneous value term substitution), to prove

U EVV/R =VIW/R):0V,/%] T FOoV[V,/T)/A =0V [Wiy/=]/x

300 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

However, as ¢ - I, we can use the eMLTT?ff version of Proposition |3.3.7|to get that
FVV(I) = 0, and thus we can use the eMLTT version of Propopsition to get

r VIV = VW

Next, as y is fresh by our adopted variable conventions, we have a derivation of

I,y:0[V 7 /%7]/x] and thus we can use the induction hypothesis to get

) —
F’,y.O[V[Vi/x,-]/x] - GTDA;VI-)J;V,(;@ - (]TDB;W?,y;W’ Wop A
Next, by using the congruence rule for lambda abstraction, we get a proof of

I Ay OV [V /BT, e
= hy: O [V/®)/AT) iy o OVIVi/ R /6] —

,yW’Wp

Finally, using the congruence rules for function application and pairing, in combi-

nation with the proofs of definitional equations given above, we can prove

I+ Vop <V[vi/7i>]77¥y1 O[V[V,/Y?]/X] (]TDA;Vi7y;‘7};@>

= Wop (V[Wi/ 3], Ay: OV Wi/ 5] /a]. (T A

DB;W;J;W;;W?J

O

We now return to the eMLTT;[_version of Proposition [3.3.20, We consider one

eff

example case of its proof in detail, so as to demonstrate how Proposition and

equational reasoning are used to prove the new cases introduced by eMLTTyT{ff.
€

In particular, we consider the case of the congruence rule for the user-defined alge-

bra type. In this case, the given derivation ends with

I'FA=B T'FVop=Wop: (Ex:1.03A) = A
_—

I Axi: A Axy, AL — A (]Tl[)Ayx 7
% W op %
:Kxi:A,-.Xij:A;.—>A.QT2[)A7W‘TP ILY:A; A’ —A—A

(forallop: (x:1) — O € Serrand I'|AF Ty = T5 € Eegy)
" (4, {Vop Yopesur) = (B, {Wop topesr)

and we are required to construct derivations of

"+ <A> {VOP}OPGSeff> I+ <B7 {WOP}OPGSeff>

7.7. Derivable equations 301

We begin by using (b) and (f) on the given derivations of I" = A = B and
I Vop = Wop : (Zx:1.0 — A) — A, in order to get derivations of

I"'FA I'+B
I'FVop: (Zx:1.0 - A) - A I'EWep: (Ex:1.O—A)— A
forall op: (x:1) — O in Sy
On the one hand, based on these derivations, we can immediately construct the
required derivation of I = (A, {Vop }opes,;) DY using the corresponding formation rule.
On the other hand, more work is needed to construct the required derivation of
It (B, {Wop }opes,y)- To this end, we first use the context and type conversion rule

with-I"=T"and I - (Zx:1.0 -+ A) = A = (Xx:1.0 — B) — B (which we get from
I - A = B) on the derivations of I" = Wgp : (Xx:1.0 — A) — A to get derivations of

'+ Wep: (Ex:1.0 — B) = B

Next, we prove for all '| A+ Ty = T in Eg the following definitional equations:

L = EE~—
"y Al
I FAxi: A Ax, i AL — BT DB;Z;JC_W;;WTP
—)A ﬁ
p— kxl.Al.}\,ij 'A] A (]Tl DA;xﬁi;x_w;;Vop
—_— = ’
/ /
7\,)61 i }\aij j (] 2DA;xi;wa]‘;VOp

o~ E o~ A~
:kxé:Ai.kij:A;-%B.qul) - :ng:Ai,A’j—>B_>B

B;Xi ;ij';

ol

using the assumed definitional equations corresponding to equations I'| A+ 77 = 75 in
Fefr (for the middle equation), in combination with (the repeated use of) the congru-
ence rule for lambda abstraction and Proposition (for the first and last equation).

As a result, we can now use the formation rule for the user-defined algebra type to

also construct the required derivation of I = (B, {Wop }ope 5. -

7.7 Derivable equations

In this section we present some useful definitional equations that are derivable in
eMLTTijff. These equations complement those we showed to be derivable in eMLTT
and eMLTTq in Sections E] and@ respectively. These derivable equations include
unit and associativity equations for the composition operations, and the interaction of

the composition operations with other computation and homomorphism terms.

302 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

For better readability, given I',x: UC + M : D, we abbreviate premises of the form
T Ax:I.Ax':0 — UC.M[thunk (ops(y. forcec (X'y')))/y]
= Ax:I.AX :0 — UC.op2(y.M[x'y' /y]) : 1x:1.(0 — UC) — D
for all op : (x:1) — O in S, by writing

M is a homomorphism in y

Proposition 7.7.1. The following unit and associativity equations are derivable for the

composition operations:

I'em:C
I'-Masy:UC in forcecy=M:C

I'z:CHK:D
I'|z:CHKasy:UD in forcepy=K:D

I'=M:C,;
I'=C, T,y1:UC{FN;:C, Njisahomomorphisminy
I'D I',y2:UCy = Na:D Ny is a homomorphism in y,

I'Masy;:UCy in (N; as y:UC, in N,)
= (M asy;:UC, in Ny) as y:UC, in N, : D

I''z:CHK:D,
I'=D, T',y1:UD{FM:D, M isahomomorphism in y;
I'ED; T,y,:UD,=N:D;5 N isahomomorphism in y,

I'z:CFKasy;:UD| in (M as y,:UD, in N)
=(Kasy :UD|;in M) as y;:UD, in N : Dy

Proof. The two unit equations are proved by using the n-equation for the composition

operations, i.e., as

I'=M asy:UC in forcecy
=M as y:UC in z[forcec y/Z]
=z[M/7]
=M:C

and similarly for the unit equation for homomorphism terms.

7.7. Derivable equations 303

The two associativity equations are proved by using the - and n-equations for the

composition operations, i.e., as

I'-Masy; :UC; in (N; as y:UC, in N,)
=M asy;:UC, in (((forcec, y1) as y| :UC; in Ni [y} /y1]) as y2:UC, in N)
=M as y;:UC) in ((zas y]:UC; in Ni[y|/y1]) as y2:UC, in N,) [forcec, y1/z]
— (M as y,:UC, 1n iy, /1)) as y2:UC, in Na
=(Masy;:UC, in Ny) as y:UC, in N, : D

and similarly for the associativity equation for homomorphism terms. [

Proposition 7.7.2. Sequential composition commutes with the composition operations
from the left:

I'-M:FA THC T,yi:AFN;:C
I'ED T,y,:UCHF Ny :D N, is a homomorphism in y,

I'EMtoy;:Ain (Nyasy:UC in N;)
=(Mtoy;:Ain Nj)asy,:UCin N, : D

I'z:CHFK:FA TFD, T,y;:A-M:D,
I'=D, I',y,:UD;+=N:D, N isahomomorphisminy,

['|z:CHKtoy :Ain (M asy,:UD; in N)
=(Ktoy:AinM)asy,:UD; in N:D,

Proof. Both equations are proved by using the B- and n-equations for sequential com-
position, following the same pattern that we used in Proposition[3.5.3|where we showed
that sequential composition commutes with other computation term formers from the
left. [

Proposition 7.7.3. Computational pattern-matching commutes with the composition

operations from the left:

I'-M:Xy1:A.C;, THC, T,y1:A|z:C;FK:C,
I'ED TI',y2:UC,+=N:D N isahomomorphism in y,

I'EMto (y1:A,z:Cy) in (K as y;:UC, in N)
= (M to (y1:A,z:C)) inK) as y:UC, in N: D

304 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

[|z1:CHK:Xy;:A.Dy TkD, T,y1:A|z:DyFL:D,
I'=D; TI',y,:UDy,+=M:Dy M is a homomorphism in y,

['|z1:CHKto (y1:A,z2:D;) in (L as y,:UD, in M)
= (K to (y1:A,z2:Dy) in L) as y2:UD, in M : Dy

Proof. Both equations are proved by using the 8- and m-equations for computational
pattern-matching, following the same common pattern that we used in Proposition|3.5.4
where we showed that computational pattern-matching commutes with other compu-

tation term formers from the left. O]

Proposition 7.7.4. The composition operations commute with sequential composition,
computational pairing, pattern-matching, lambda abstraction, function application,

and homomorphic function application from the left:

I'M:C T,y;:UCHF N;:FA N isahomomorphism in y;
F"Q F7y22A|—N2:l_)

I'EMasy;:UCin (Nj to y;:A in N;)
= (M asy;:UCin Nj) toy,:Ain N, : D

T-M:C THV:A
[y:AED T,y;:UCFN:D[V/y;] N is a homomorphism in y
I'-Masy :UCin (V,N)=(V,M asy :UCin N):Xy::A.D

I'EM:C; T,y1:UC;=N:Xy::A.C, N is a homomorphism in y;
I'D TI',y::A|z:C,-K:D

I'Masy :UC in (N to (y2:4,z:C,) in K)
= (M asy;:UC,in N) to (y2:A4,z:C,) inK: D

I'eM:C T',y,:AFD
[y :UC,y,:AEN:D N is a homomorphism in y;

I'EMasy :UC in (Ay;:A.N)
=Ay2:A.(M asy;:UC in N) : TIy,:A.D

'-mM:C THFV:A T',y,:AFD
[,y1:UCEN:I1y;:A.D N is a homomorphism in yi
I'EMasy :UCin NV = (M asy;:UC in N)V : D[V /y,]

7.7. Derivable equations 305

I'M:C T'FV:D;—D,
I'y1:UCFN:D; N is a homomorphism in y;
I'FMasy:UCinVN=V (Masy;:UCinN):D,

Analogous equations also hold for the composition operation for homomorphism terms.

Proof. These equations are proved by using the 3- and n-equations for the composition

operations, e.g., the commutativity with computational pairing is proved as follows:

I'Masy,:UCin (V,N)
=M as y;:UC in (V,(forcec y1) as y] :UC in N[y} /y1])
=M asy;:UC in (V,(z as y] :UC in N[y /y1]))[forcec y1/7]
= (V.M as y1:UC in N[y} /y1])
=(V,M asy;:UCin N) :Lyy:A.D

Observe that for this proof to be well-formed, we need to lift the homomorphism
assumption about N to the pair (V,N). We do so by using the congruence rules for
computational lambda abstraction and pairing, in combination with the corresponding

specialised algebraicity equation we derived in Proposition as shown below.

[FAx:I.Ax':0 — UC.(V,N)[thunk (opxg(y’.forceg X'y /]
= Ax:I.Ax :0 — UC.(V,N[thunk (op&(y'. forcec (x'y)))/y1])
=Ax:I.AX':0 — UC.(V, opr[V/yZ](y'.N[x'y'/y1])>
= Ax:[.Ax':0 = UC.op™?A2(y (V,N[X'y /y1]))
=Ax:I.AX:0 = UC. opzyz:A'Q(yl. (V,N)[x'y /y1])
:Mx:1.(0 - UC) = Xy:A.D
[

We conclude by noting that analogously to other computation term formers, we can

also derive specialised algebraicity equations for the composition operation.

Proposition 7.7.5. The following specialised algebraicity equation is derivable, for

every operation symbol op : (x:1) — O in Sp:

r'cv:1 THC T,y:OV/x|FM:C
I'D T,y:UCFN:D N isa homomorphism in y

Fl—op%(y.M) asy:UC in N =opo(y.M as y:UC in N): D

306 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Proof. This equation is proved by using the general algebraicity equation given in
Definition[6.2.3] following the same common pattern that we used in Proposition [6.4.1]

where we proved specialised algebraicity equations for other computation terms. [

7.8 Alternative presentations of eMLTT, eMLTT., and
H
eMLTT.

In this section we outline two ways in which we could have defined eMLTT?ﬂ_ (and

also eMLTT and eMLTT) differently from the presentation we used in this thesis.

7.8.1 Different equational proof obligations

First, we note that instead of using equational proof obligations of the form

-l AX:0— UQ.N[thunk(opxg(x”.forceg (xX'x"))) /]
= A I 0 — UC.op2(X'.N[X' x"/y]) : TIx:1.(0— UC) — D

we could have instead used Munch-Maccagnoni’s notion of linearity [76], i.e.,

' Ax:UFAA' :A — UC.N[thunk ((forceps x) to x”:A in¢ forcec (X'x”))/y]

=A:UFAM':A — UC.(forceps x) tox”:A inp N[X'x" /y]
LUFA — (A UC) = D

On the one hand, the proof obligations we used in this thesis follow from Munch-
Maccagnoni’s notion of linearity by straightforward equational reasoning. On the other
hand, in a language supporting only algebraic effects (e.g., eMLT T . and eMLTTijff),
Munch-Maccagnoni’s notion of linearity follows from the proof obligations we used in
this thesis by appealing to Plotkin and Pretnar’s principle of computational induction
for algebraic effects, which states that every computation term of type FA is either a
returned value or built from computation terms using algebraic operations—see [93]].

While the latter form of proof obligations is also applicable in languages with com-
putational effects other than algebraic (e.g., as used by Levy in [63] to characterise
general isomorphisms between computation types), we chose the former kind of proof

obligations due to their more intuitive reading in the setting of algebraic effects.

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 307

7.8.2 Omitting homomorphism terms

Second, we note that we could have omitted computation variables z and homomor-
phism terms K from eMLTT?T‘;f (and also eMLTT and eMLTT) altogether. Instead,
we could have used value variables x and an appropriate notion of equational proof
obligations to define and type the elimination form for Xx:A.C, analogously to the
typing rules of composition operations given in Definition In more detail, this

alternative presentation would involve the following elimination form for Xx:A.C:

I'-M:%x:AC THD T, x:A,y:UCFN:D
N is a homomorphism in y
I'-M to (x:A,y:UC) inp N: D

where M would now be eliminated into a pair of values, but with the equational proof
obligations (denoted by ‘N is a homomorphism in y’, using the notation of Section|/.7)
ensuring that the computation term N behaves in y as if it was a homomorphism.
While this alternative presentation would have been semantically more precise (be-
cause homomorphism terms are only an under-approximation of all computation terms
that behave as if they were homomorphisms), we chose to include both computation
and homomorphism terms because the latter enabled us to define a structurally cleaner

elimination form for the computational X-type in eMLTT, eMLTT ., and eMLTT?T{ff .

7.9 Interpreting eMLTT(Zf _in a fibred adjunction model

In this section we equip eMLTTg{ﬁ_ with a denotational semantics by showing that it can
be soundly interpreted in the fibred adjunction model we used for giving a denotational
semantics to eMLTT,. in Section @ We recall that this fibred adjunction model is

¢ oet) — Set to a split fibred

built by lifting the adjunction beff o UL(rff : Mod (L,

adjunction between famser and fampoqr,, .Set)> @S depicted in the next diagram.
€

Fam(Set) i Fam(Mod(Set))

eff?

famSet = 1 {_}

fam
Set Mod(L,Teff,Set)

308 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

We also recall that the countable Lawvere theory I : Nf P L, is derived
from the countable equational theory Ty = (S, Ez,), which itself is derived from
the given fibred effect theory Zegr = (Sefr, Tetr). See Proposition and Defini-
tion[6.5.4] respectively, for the detailed definitions of these constructions. Analogously
to Section we assume that the given fibred effect theory Zq¢r is countable.

In order to be able to define the interpretation of the user-defined algebra type and
the composition operations in this fibred adjunction model, we first establish that every
model of I pr — L, and every morphism between such models are determined
by how they behave on operations, i.e., terms of the form X op;(Xo)1 <0< ;002 (%,0)]

When proving the above-mentioned property of the models of I, : pr — L,
we use an auxiliary countable Lawvere theory Ia;?f : Nlo P L,Z;?f , which we derive
from the countable fibred effect theory Q;?f = (Sefr, @), as also used in Section

Proposition 7.9.1. Given a set A and a family of functions

fop,- : I_loe[[x:I;O]]2<*,i>A —A

forallop: (x:1) — O in S5, then there exists a model

MA7{fopi}0Pi€5eﬂ> : L{T%" 7 Set

€

of the countable Lawvere theory I,T%T : NIO (G Lffjlf .

Proof. We define fM< A fop; Yopresg) O1 objects using countable products, i.e., aﬂ

}Opi

def

MA7{f0pi}Opi€Seff> (n) = |_|1 <j<n A
and on morphisms (A) <g<m :n —> mas

(M'(AFg)) 1 <k<m

|—|1§j§nA |_|1§k§mA

where M'(A+ 1;) is defined by recursion on the derivation of A - 7, as follows:
M'(x] - x)) = proj;
M (AFopi(to)1 <o<|[er:0] (wi)]) = JSop @AM (A 16))1 < o< |[w:1:0] (5,0

Next, to show that 9\/[<A7{ For: top, preserves identity morphisms, we recall that the

E.Seff>
identity morphisms are given in LT%_ by tuples of variables. As a result, we can show
€

Min {fop, Yapyes,) (10) = (M (%] Fx))1<j<n = (Projjhi<j<n =idm,_ 4

3In the rest of this section, the notation ﬂl <j<n A stands for A when n = 1; for |_|je{1,...,n} A when n
is a natural number different from 1; and for [] jen A when n is the distinguished symbol . In particular,
having [, < j<1 A=A allows us to show that the B-equation for the user-defined algebra type is sound.

7.9. Interpreting eMLTT%’ﬁ in a fibred adjunction model 309

Next, we show that given any two morphisms (A b #)j<x<n, : n1 —> np and

(x? Fup)1<i<ny 2 —n3, My preserves their composition, i.e.,

7{f0p[}0pi656ff>

N
MAa{fbpi}opiejeﬁ> ((A = Ml[fk /x_/€>])1§l§n3)

MA’{fOPi}OPiESeff>((x—>k - Ml)l§l§n3) © W[(A-,{fopi}opieseff>((A = lk)lgkgnz)

This proof proceeds in two steps. First, we show that for all 1 </ < n3, we have
_>
M (Al w5 /X)) = M (5 ur) o (M (AF 1)1 <k <ny

by straightforward induction on the derivation of X¢ F u;; we omit the details. Sec-
ond, the required equation follows by combining these equations with the definition of

9\/[< A fop; Yopiesr) and the universal property of countable products, i.e., it follows from

iM‘(A,{fopi}opiE‘Seﬂ) (AFw[R /5D <i<ny)

/\
[Mi<j<m A . — [Ti<i<n A

(M (A7 /)1 <1<y

equations proved above

(M (5] Fup) o (M (AFR))1 <k<ny)i<i<ny

the universal property of countable products

(M (At <k<n, (M (3)1 <1<

T<j<mA

Finally, we note that 9\/[< A{fop; Fop: preserves countable products because it maps

ESeff>
objects of L,thzf (each of which is itself a countable product) to countable products in
€
Set, variables (i.e., projections in LT‘éf) to projections in Set, and tuples of terms (i.e.,
€

pairing of morphisms in L,thzf) to pairing in Set. We omit the details of this proof. [J

Proposition 7.9.2. The model M4 s, .

opics,g) : L,z;% — Set of the countable Lawvere

theory I,szf : Nlop — L,szf extends to a model oflrqu : Nf)p — L, if we have

" = Y
MA7{f°pi Yopics,y) (aTF Iy) = MAv{fOP[}OPiE5gﬂ> (ATF Ty)
for all T|A+Ty =Ty in Eop and vy in [T7].

. the only difference

Proof. Recalling the definitions of the categories Lr[afff and L,
between the two is that in the latter the morphisms given by terms AY + T, IY and

AV - TzY are identified, for all T'|AF T} = T in e and y in [I]. As a result, for

310 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

9\/[<A7{ Fobr Yopcs) - sz;';’f — Set to also be a model of the countable Lawvere theory
Iz, XP — Lq, it suffices to show that MA { fop: opres) identifies such terms,

which follows immediately from the equations we assume in this proposition. [

Proposition 7.9.3. Given models M, : Ly > Setand M : L .+ — Set of the count-
able Lawvere theory I, : X" — L, and a function f : My (1) — Ma(1) such that

[,()
|—|o€|[[le;0]]2 (%,0)] (9\/[1 (1)) |—|o€|[[x11;0]]2 (%,0)] (9\/[2(1))
Mi(|[x:15 012 (%, D)) Ma(|[x: 1502 (%, 0)])
M, (%5 +-0p;(xo)o) Mo(%5 Fop;(x0)o)
a4 (1) . 26(1)

for all operation symbols op; : [[x:1; O] (,i)| in Sz, then f extends to a morphism
hom(f) : M} — M,

of models of the countable Lawvere theory I, v NIO (G Ly -

Proof. We define the components hom(f),, of the natural transformation hom(f) as

o ;6 =~
M (n) ——— ngjgn(%(l)) — ﬂlgjgn(%(l)) —— M(n)
We prove that hom(f) is natural in 7 in two steps.
First, for any morphism n — 1 in Ly given by a term A | ¢, we show that the

next diagram commutes, by induction on the given derivation of A - ¢.

[;(f) -
|_|1<J<n 9\/[1 ! |_|1<J<n % > MZ
f

We omit the details of the proof and only note that the case for variables follows from
the preservation of countable products by M; and M,; and the case for algebraic oper-

ations follows from the commuting squares we assume in the proposition.

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 311

Second, using such commuting squares, we show that the naturality square for

hom(f) commutes for any morphism n — m given by a tuple of terms (AF)1 < <m:

hom(f)y,

;)
def. T
Mi(n) — [Ty < j<n(Mi(1)) i< jen(M6(1) —= M(n)

above diagram and the univ. prop. of c. prod.

My ((AF1)) (M (AF 1) (M(AF 1)) Mo ((AF1)i)

(foproji)x
RN
M, (m) —= [Ti<ikcm(M1(1)) Tdefe [} <p<p(Ma(1)) = Mo (m)

~—_ 7 4t
[(f)

pres. of c. prod. pres. of c. prod.

hom(f)m

Using these observations about the models of Iz : NIO P Lz, and the mor-
phisms between them, we next show how to interpret eMLTT?I{ff in the fibred adjunc-
€

tion model given by the split fibred adjunction I*{L,; Uz, .

eff

Definition 7.9.4. We extend the interpretation of eMLTT _ in this fibred adjunction
model to eMLTTfIfH by defining [—] on the user-defined algebra type as

[[F/;A]]l = [[F/]] € Set [[F/;A]]z : [[F/]] — Set [[F/;Vop]]l = id[[rv]] : [[F/]] — [[F/]]
([[F/;Vop]]z)'yl S |—|<i7f>€|_|i6[[<>;l]]2(*) |_|()6[[x:l;0]]2<*,i)([[rl;A]]2(’Y/))([[F/;A]]2<’Y/))

(AT =M

, AV TY
([[F';Aﬂz(Y/):{fgpi}opiESeﬁ‘> (2)

M)
<[F/;A]]2('Y,)a{fgpi }Opl‘E.Seff>
forall '|AF T} = T5 in Eegr and 7y in [I'], where
fon = f = projg; gy ([T': Vopl2)y (%))

[T (A Voplopesalll = [T
[0 (A, (VopJepesa oY)

ﬂ/[<[[r/’AII2 (Y/)v{ngl)i }OpiGSeff>

312 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

on the composition operation for computation terms as

[CsM]y = idyry < [I] — [T]
(ICM]2)y: 1 — Up, ([T5CT2(Y))
[L.y: UGN =idyy, @, _(rcpm) Dy UC] — [F,y:UC]
(I, y:UCN]2) ey - 1 — Ur, (I3 D]2(v))

|—|oe [x:1;0] 5 (x,0) (fY)

M, (M(1)) [,(8(1))
MY (|[x:1; 0] (%,i)]) M (|[xe: 15012 (%, 1))
f7\/[11((2 Fop;(x0)o) WLZY()TU) opi(x0)o)
(1) ; (1)

forall op: (x:1) — O in Sef, Yin [I], and i in [o;1]2(x), where
MIZNCLy) M E0DRY) 1= e ([D.y:UCNT) g (*)

[[F;Masy:difg inp N; (I0:M as y:UC inp N]o)y
0] 1
(IC:M]2)y
id g U, (I Ca(y))
it

[T Ur, ([T:D]2(V))

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 313

and on the composition operation for homomorphism terms as

[T32:C; K]y = idyry « [T] — [I7]
(IT32:CK2)y = [Cla(v) — [T5D4]2(y)
[T.y:UD My = idy o, (rpid)) [5y: U] — [Ty UD)]

(IT,y:UDy:M]a) (yay - 1 — Ur, ([T Da]2(7))

|_|0€ x:1; *,1 (fY)
M, (947(1)) ol M,(34(1))
M ([x:1; 0] (%)) M) (|[x:1; 0] (%,1)])
W[ly()?o) Fop;(xo)o) Wﬁg(ﬂ Fop;(x0)o)
MI(1) 7 M(1)

forall op: (x:1) — O in Segr, Yin [I']), and i in Jo; 1] (%), where
M= [DDa(v) M ELDL() fY=de ([Dy:UDM]2) g ()

[[:2:C;K as yd:CfUQI inp, M]; ([T;2:C;K as y;cffl_)l inp, M]2)y
N T Cla(v)
([C:z:C:Ko)y
id[ry [T:D4]2(v)
hom(f7)

[r] [T Do]2(v)

314 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Similarly to eMLTT<, the results from Section [5.2]that relate weakening and sub-
stitution to reindexing along semantic projection and substitution morphisms extend
to eMLTTf};f straightforwardly. However, analogously to eMLTT, the soundness

theorem (Theorem [5.2.15]) again needs more attention, as discussed in detail below.

Extending Theorem |5.2.15/(Soundness) to eMLTT,Zf

We begin by recalling that in Theorem [5.2.15] we showed that the a priori partially
defined interpretation function [—] is defined on well-formed contexts and types, and
well-typed terms, and that it maps definitionally equal contexts, types, and terms to

equal objects and morphisms. For example, given ' =M = N : C, we showed that

[T:M] = [T:N] : 1y — U, ([0:C])

When extending Theorem [5.2.15| to eMLTT?T{ff, we keep the basic proof principle

the same: (a)—(I) are proved simultaneously, by induction on the given derivations,
using the eMLTT,gf{ff versions of Propositions [5.2.4} [5.2.6 [5.2.9, and [5.2.10| to relate

syntactic weakening and substitution to their semantic counterparts. We discuss some

new cases corresponding to the rules given in Definition [/.3.2|in detail below.

Formation rule for the user-defined algebra type: In this case, the given derivation

ends with
I'tA T'FVep: (Zx:[.O—A)— A
— T =~
' Ax:Ap Ax, AL — AT DA?ﬁW
_ / % Vo .
= Axj:Ap hxy, 1AL — ATy [)A;;)C_)V—; (T AL AL 5 A— A
3 X w5 Vol

(forallop: (x:1) — O € Serrand T'|AF Ty = 15 € Eeyr)
'+ (A, {VOP}OPE.Seff>

and we need to show that

[T: (A, {Vop topesr)] € Fampr(Mod (L, Set))
which, for the fibred adjunction model we are working with, is equivalent to showing

[[F/; <A» {Vop}opGSeff>]]l = [[F/]] € Set

[[F/; <A7 {VOP}OPESeff)]]Z : [[F/]] — Mod (L'ngpset)

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 315

First, we use (d) on the assumed derivations of I -V, : (Zx:1.0 - A) — A, in
combination with the propositions that relate weakening and substitution to reindexing

along semantic projection and substitution morphisms, so as to get
[T Vopl1 = idppry : [T'] — 7]
/.
([[r 7V0p:|]2) = |—| >f GI_ILEIIQ]]]Z(* |_|o€[[x1 O] (*z)([[r A]]2 ([[F AHZ())

Next, we use (j) on the assumed derivations of definitional equations, again in
combination with the propositions that relate weakening and substitution to reindexing

along semantic projection and substitution morphisms, to get

1o A Al
[T Axi:Ai Ay AL — AT DA;z;)@;\fpﬂl
1oy A N
[[F;kXiZAi-kijiAj%A-quDA;xﬁi;@;@]h
idgr
and
1o A N
([T Ax;:Ai Axy, A = AT, DA;Z;)TW?;@M)Y/
— =
([[F’;?uxg:Ai.kij:A;.—>A.(]T2D 7_>V_>]]2)
i XwjsVop

as [I"] — [l and T — e qroa g [eer, Maetru gy (T4l) ([T5AL2(Y),
respectively, for all |A+ T} = T, in Eegr and ¥’ in [I7].

Based on the definition of [—] for lambda abstraction, the above equations give us

~

r. ;)
(HF X;tAj,x j — A (T DA'ﬁ-_)-‘T)]]Z)((Y’,%%J?v;)

s X swa-’ op

1A Al .
([[F 1 X ’Al7-ij AJ — A’(]TZ DA;Q;W;‘Z;]:IZ)<<Y,;Y?>7EV—;>

! J
as morphisms 1 — [[";A]2(y'), forall T|AF Ty = T in Eefy, yin [T, ¥’ in [I'], and
; in HaeﬂFA/ﬂz ([T";A]2(y")), for all w; :A} in A.
Next, we show that [I”; (A, {Vop }opes,)] is defined, for which we need to show

>(AY -T)) = (AT T))

M /)
([":AL2(v"), {fgpi }OpiESCff ([":A]2(v"), {f;{pi }OpiESeff>

forall T|AF 77 = T5 in Eeg and yin [I'], for which we use Proposition [6.5.6]

316 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

To be able to use Proposition [6.5.6/to prove the above equations, we first define a

family .‘M —, of models of the countable Lawvere theory I,Td : Nlo P L,Tlfzf by

M — Yqr)
(' ,fw,> (AL (v') A fdp: Yopiesugs)

', >fw>

where f,, is an element of [],cqr. AL ([T";A]2(Y")), and fg;l. is given as in Defini-
tion [7.9.4] Observe that by definition we have IM T >() = [T;A]2(Y"), as dis-

cussed in more detail in the footnote in the beginning of thls section.

Further, in order to be able to use Proposition [0.5.6] we also need to show that the

next diagram commutes, where we abbreviate 91/[< W, jﬁ> as M.

(id1)i.p)

1) oy Mo gersop, o (1) 1

the universal property of count. prod. |_|<l;,f> (x=1)

I_l(i7f) I_loeﬂx:I;O]]z (*,0) (M(l)>

(IT Vol)y

{proj i,) ((IT":Vopll2)y () 1.1y

IR

()

M)
def. of op’

[ii.py (M (|- 1,012 (%, D))

My (00?0

def. of M

iy (M (X +-0p;(x0)o0))

[y (M(1))

Based on the above, we can now use Proposition [6.5.6] with (7)) ATV and

" Vop
(T2) .~

Az to show that for all Y/, v, and fw , the following diagram commutes:
i Aw;sVop

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 317

NN 1
([[F ,)CA,,XW A —A; QTID 7‘>_>}]2) 4 Y>fw)

<ij >wj :A;EA

ij:A;eA HaEHF;A}]]z(Y)

1%

M (|AY))

_>—)

[A2 (v")

where, for better readability, we again write M for .‘M T)

As the above diagram commutes for all f,,,;, namely, for all elements of the product

|_|w, AleA [Neerr AL y([T";A]2(y")), we can derive the required equations

>(AY T =M : >(AV - T))

M /
< HFI’A]]Z (Y/)) {f;{P,‘ }OP,‘ESCff <[[F/ *A]] 2 (Y/) 3 {fgpi }opiESeff

from it, for all | A+ T; = T» in Eegr and v in [[], by using the well-pointedness of the

category of sets and functions, and the fact that every isomorphism is an epimorphism.

Finally, as we have shown that [I”; (A, {Vop }opes,;)] is defined, and as we know

. op
from Proposition [7.9.2] that iM([[F’;A]]z o), {fg;i omes) is amodel of Iz : X" — L

for all Y in [I"], then, as required, we have

eff’

[[F/; <A7 {Vop}OPESeff>]]1 = [[F/]] € Set

HF/3 (A, {VOP}OPESeff>]]2 : [[F/]] — MOd(L‘Tefﬁset)

318 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Typing rule for the composition operation for computation terms: In this case, the

given derivation ends with

I'-mM:C T'ED T,y:UCHN:D

T+ Ax:I.Ax':0 — UC.N[thunk (op$(y. forcec (x'y')))/y]
= Ax:I.AX:0 — UC.op2(y.N[x'y'/y]) : TIx:1.(O — UC) — D
(op: (x:I) — O € Ser)
I'EMasy:UCinp N:D

and we need to show that
[[:M as y:UC inp N] : Ljrp — U/LT;([[F;Q]])

which, for the fibred adjunction model we are working with, is equivalent to showing
[[sM as y:UC inp N]y = idpry : [I7] — [I]

and, for all yin [I'], that

(IT;M as y:UC inp N]2)y: 1 — UL%H([[F;Q]]z('y))
First, we use the induction hypothesison I'M :Cand I',y:UCH N : D to get
[C:M]y = idpry : [T] — [T (IGM]2)y: 1 — Up, (I1:C)a(Y)
[T,y:UC;N], = idl_lYe[[l-]](ULqéff([[F;Q]]z(y))) [T,y:UC] — [T,y:UC]

(IT,y:UC:N]2)tye) : 1 — U, (13 D]2(v))

Next, we use (k) on the assumed derivations of definitional equations to get

[T;Ax:1.Ax: O — UC.N[thunk (op%(y’.forceg Y /yh

[C;Ax:1.Ax :0 — UC.op2(y.N[Xy /Y]]

and
([T;Ax:1.Ax": O — UC.N[thunk (opxg(y’.forceg <YM /Y12)y

(ITsAx:1.Ax:0 — UC. opr(y’.N[x’y’/y])]]z)y
forall op: (x:1) — O in Segr and yin [I7].

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 319

Based on the definition of [—] for lambda abstraction, the above equations give us

(IT,x:1,x':0 — UC;N[thunk (opxg(y’.forceg (x'y')))/y]]]z)<<%,~>7f>

S

(IC,x:1,0":0 = UC;0px (Y. N[x'y' /YD) [2)y,i).)
as morphisms 1 — U%ff([[F;Q]]z(y)), for all op : (x:1) — O in Seg, Y in [I], i in
[o: (). and f in [yeugion, e (U, (ITCL2)):
Next, we show that [I'; M as y:UC inp N] is defined, by proving that the following

diagram commutes:
|_|oe [x:1:0] 5 (%,i) (fY)

def. of f¥

[o(c= ([Cy:UCN]2)) (+))

[<([[F7y:A;N]]2)<Y,projo(f)) (*)>0

(94 (1)) [,(94(1)

eMLTT%:Y version of Proposition

Fr ([0 s0pS O NI Y 3)12) (i (%)

1%
1

def. of []

MY (|[x:1; 0]z (x,i)]) My (|[x:1: O] (%, 1))

W[ly(x_)o Fop;(x0)o)
def. of [—]

%’Y()Tg }_Opi(xu)o)
eMLTT;! version of Proposition|5.2.6

£ ([T sN[thunk (opS(y. forcec (¥'y))/M12) (i p (*)

(1)

Y
1
> (ITyUCNLL)) (%) My (1)
def. of f7

I

320 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

forall op: (x:1) — O in Seff, yin [I']), and i in [o,1]2(*), and where
MIZ[0Ch(y) M =[0DLY) ff=cm ([Ly:UCN)ge ()

Finally, as we have shown that [[';M as y:UC inp N] is defined, then, as required,

we have

[I;M as y:UC inp N|; = Id[[r]] [T — [I7]

and, for all yin [I'], that

([IsM as y:UC inp N]o)y: 1 — Ur, ([13D]2(v))

-equation for the user-defined algebra type: In this case, the given derivation ends
with
'k (A, {Vop}0p65eff>
U, {VOP}OPGSeff> =A

and we need to show

[T3U(A; {Vop topesn)] = [T3A] € Famyry(Set)
which, for the fibred adjunction model we are working with, is equivalent to showing
[T U (A, {Vop opesas) 11 = [I:A]1 = [I7] € Set
[T:U(A, {Vop}opesur) |2 = [3A]2 ¢ [T] — Set
First, we use (c) on the derivation of I'F (A, {Vop }opes,;) to get
[T (A, {Vop fopesar)]1 = [T] € Set
[T (A,{Vop fopesr)]2 [T] — Mod (L, Set)

Next, recalling the definition of [—] for the type of thunked computations, we get
[T;U(A, {VOP}OPESeff>]] = Uereff([[r; (A, {VOP}OPGSeff>]]> S Fam[[F]] (Set)
which, for the fibred adjunction model we are working with, is equivalent to

[LUA, {VOP}OPGSeff>]]1 = [I'] € Set

[T U(A, {Vop}0p€5eff>]]2(7) = ULfZ’eff o [I¢A, {Vop}or)eseff>]]2 L [T] — Set

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 321

Finally, by unfolding the definition of [—] for the user-defined algebra type, and

recalling the definitions of fM([[F;A}]z(y), o and Uere o we have

}opie.Seff>

Usy,, (IT: (A, {Vop opes)]2 (¥)

Ut Meala 0,2, Jomres,))

W[([[F;Aﬂz (1) op; Yopiesie) (1)

[T A]2(v)

which means that, as required, we have

[T U (A, {Vop Yopesur) |1 = [T3A]1 = [I] € Set

[T:U (A, {Vop Yopesur) |2 = [T3A]2 : [I] — Set

B-equation for the composition operation for computation terms: In this case, the

given derivation ends with

r-v.uc r+bD TI',y:UCFM:D

T+ Ax:I.Ax:0 — UC.M[thunk (ops (Y. forcec (X'y)))/y
= Ax:I.AX:0 = UC.op2(y.M[x'y' /y]) : TIx:1.(0 — UC)

]
(op: (x:1)
't (forcec V) asy:UCinp M =MV /y|:D

—D
— O € Sefr)

and we need to show
[T;(forcec V) as y:UC inp M]| = [IsM[V /y]] : 1y — ITL;([[F,Q]])
which, for the fibred adjunction model we are working with, is equivalent to showing
[T;(forcec V) as y:UC inp M]; = [I5M[V /y]1 = idpry : [T] — [I]
and, for all yin [I'], that
(IT; (forcec V) as y:UC inp M]a)y = ([T:M[V /y]]2)y : 1 — UL, ([T D]a(Y))
First, using the premises of the given -equation, we can construct a derivation of

't (forcecV)asy:UCinp M : D

322 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

which means that [—] is defined on the left-hand side of the required equation, by

using (e) on this derivation. By unfolding the definition of [—] for this term, we get
[T (forcec V) as y:UC inp M]; = idry
and, for all yin [I'], that

([T (forcec V) as y:UC inp M)y

Us,, (hom(f7)) o ([T’ forcec VIa)y

as morphisms [['] — [I'] and 1 — ULT“([[F;Q]]Q(\O), respectively, and where
Y= ([C,y:UCM]2) e ()

Next, by unfolding the definition of [—] further (for the forcing of thunked com-
putations) and recalling the definitions of U, and hom(fY), we get

U, (hom(f*)) o ([T forcec V]a)y

Ur,,, (hom(1) o ([T V]L)y

(hom(fY)) 1o ([T3V]2)y

fro ([V]a)y

Now, by combining these last equations, we get

([T (forcec V) as y:UC inp M]2)y(x)

([, y:UCM]2) ¢y, (I (x)) (%)

Next, we use (d) on the derivation of 'V : A to get

[V =idpy [0 — [0 (Vs 1 — U, (IGCL)

Next, we can use the eMLTTéE[f . version of Proposition |5.2.6[to get

[CsM[V /y]]1 = idpry = [T] — [I]

(MY /3]l2)y = (I0,y: UG M]2) oy (Irov 1)) - 1 — Ury ([T D]2(1))

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 323
Finally, by combining these last two equations with the corresponding two equa-
tions we derived by unfolding the definition of [—] earlier, we have, as required, that
[T; (forcec V) as y:UC inp M|, = [I;M[V /y]|1 = idpry] — 1]
and, for all yin [I'], that

(I (forcec V) as y:UC inp Mla)y = (IT:MIV yll)y : 1 — Ug, (IT:Dlh(3)

1n-equation for the composition operation for computation terms: In this case, the
given derivation ends with

I'tM:C T|z:CFK:D
['FM asy:UC inp K[forcec y/z] =K[M/z] : D

and we need to show
[T:M as y:UC inp K[forcec y/7]] = [[;K[M /2] : 1jrp — U/LT\eff([[F;Q]])
which, for the fibred adjunction model we are working with, is equivalent to showing
[[sM as y:UC inp K[forcec y/z|[1 = [[;K[M/z]]1 = idry : [[] — [I]
and, for all yin [I'], that
(T3 as y:UC inp Kltorcec y/2lla)y = (IT:KIM/2lla)y: 1 — U, (IT: Dl ()
First, using the premises of the given n-equation, we can construct a derivation of
I'FMasy:UC inp K[forcec y/z] : D

which means that [—] is defined on the left-hand side of the required equation, by

using (e) on this derivation. By unfolding the definition of [—] for this term, we get
[[;M as y:UC inp K[forcec y/z]]1 = id[r
and, for all yin [I'], that

(IT;M as y:UC inp K[forcec y/z]]2)y

Uz, (hom(f7))o ([T:M]2),
as morphisms [['] — [I'] and 1 — ULTH([[F;Q]]Q(\()), respectively, and where

def

f*=c— ([T,y:UC:K[forcec y/z]]2) iy (*)

324 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

Next, by recalling the definitions of Uy, and hom(f7), we get

Ury, (hom(f7)) o ([T M]2)y

eff

(hom(f*))1 0 ([T M]2)y

fro([TsM]2)y

Now, by combining these last equations with the eMLTT;{ff version of Proposi-

ton [5.2.4] that relates weakening to reindexing along semantic projection morphisms,

and with the eMLTT;{f) version of Proposition [5.2.9|that relates substitution of compu-
€

tation terms for computation variables to composition of morphisms, we get

(IT;M as y:UC inp K[forcec y/z]]2)y(*)

ST M]2)4())

(IT,y:UC;K[forcec y/2l]2) oy (rma)y(x) (%)

Uy, ([T C:KTo)y) (I M)y (4))

Next, we use (e) on the assumed derivation of I' = M : C and (f) on the assumed

derivation of I'|z: C+ K : D to get
[C:M]y = idpry : [T] — [T (IGM]2)y: 1 — Up, (I1:C)a(Y)
[[z:CGKNy =idpry - [T — [T] ([T52:CK]a)y - [T5Cl2(y) — [T D]a(v)
from which we get
[0,y UGz K =idy o, (rchw) Dy UC] — [Ly:UC]

([,y:UCz:C:K]2) pye) = [I5Cl2(Y) — [D]2(v)

using the eMLTTé{ﬁ_ version of Propositon [5.2.4| that relates weakening to reindexing

along semantic projection morphisms.

Next, by using the eMLTT;{f . version of Proposition|5.2.9, we get

[T KM /2]l = idpry - [T — [T7]

(IT:K[M/2]]o)y = Uz, (IF:2:C:KT)y) o (I0:MT)y : 1 — Ug, (IT:Cla(v)

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 325

Finally, by combining these last two equations with the corresponding two equa-

tions we derived by unfolding the definition of [—] earlier, we have, as required, that
[TsM as y:UC inp K[forcec y/z|[1 = [[3K[M/z]]1 = idry : [[] — [I]
and, for all yin [I'], that

(ITsM as y:UC inp K[forcec y/2][2)y = ([0:K[M/2]]2)y: 1 — UL, (T3 D]2(v))

n-equation for algebraic operations at the user-defined algebra type: In this case,

the given derivation ends with

=Vl THE(A {Voptopesy) Ly:OV/xIEM: (A {Voptopesu)

F '— opé/Aa{Vop}OPESeff> (y. M)

= £OTCOU (Vo }opes.ys) (Vop (V,Ay: O[V /x]. thunk M)) : (A, {Vop opesus)

and we need to show

<A7 Vo ope
[T:op' {Voptop 5eff><y_M>]] = [[F;force<A7{Vop}opESeﬁv> (Vop (V,Ay:O[V /x|. thunk M))]

11— U, ([(A {Vop}opesn)])
which, for the fibred adjunction model we are working with, is equivalent to showing

[[F, opyv{vop}opejefQ (y M)]] !

[[F;force<A’{Vop}opeseff> (Vop (V,Ay:O[V /x]. thunk M))];

and, for all yin [I'], that

(A {Vop fopes.ir)
([T50py 77 (3. M)]2)y

([T;forceg) (Vop (V;Ay: OV /x]. thunk M))]>)y

Aa{VOP }opeﬁeff

as morphisms [I'] — [I'] and 1 — UL‘Z’H([[F; (A, {Vop topes.i)]2(Y)), respectively.

First, using the eMLTT,;{f . version of Proposition |3.3.20, we get derivations of

<A7{VO }0 € e >
' opy Plepsset (- M) : (A, {Vop fopesu)

'+~ force (vo,lopes.) (Vop (V,Ay: OV /x]. thunk M)) : (A, {Vop opesus)

eff
which means that [—] is defined on both sides of the required equation, by using (e)

on these two derivations.

326 Chapter 7. eMLTTg.:ﬂ : an extension of eMLT I3, with handlers

The equality of the first components of the two sides of the required equation
(to idyrp) follows straigthforwardly by unfolding the definition of [—] on both sides.
We prove the equality of the second components of the two sides of the required

equation, for all yin [I'], by showing that the next diagram commutes.

(IT:Vopl2)y

1

[p ([TAL2(7))

PrOJ ([T 12)y(x).((IT 50l /x):thunk M,)y(x))o)

(id1)ocrow a1, () composition

POJ([T3V])y(), (IT.y:01V /x):M])y (3))o)

[, 1

I'y:0|V /x|;:M 0
ML (00 /x:M12) 1)) (0N M)

u. prop. of c. pr.
M,(Us,, () —— [1,(M(1))

IR

S Proj(rvy)y),) ((IF:Vopl2)y(+))

M (|15 0V /x]]2(v)])
def. of op?[’[[r;v]lz)y(*) def. of M

M (%5 FOP(Irv], y(x) (%o)o)

[TAD(v)

7.9. Interpreting eMLTT%ﬂ in a fibred adjunction model 327

where, for better readability, we write M for both ([I'; (A, {Vop topes.s)]2(Y)) and

SM<[[F; AL) o opcsig) Recall that these two models of L are equal by definition.
Finally, when we unfold the definition of [—], we see that the two composite top-

to-bottom morphisms along the outer perimeter of the above diagram are respectively

equal to

(A, {Vop hopes)
([Tsopy ™" (3. M))y

and

([[F;force<) (Vop (V,Ay: OV /x]. thunk M))]2)y

A7{VOP}0p€56ff
As a result, we have, as required, that

<A7 Vo ope >
I opy {Vop opesige (y.M)] = [[F;fOI‘CG(A’{Vop}OpELgeﬁ;) (Vop (V,Ly:O[V /x].thunk M))]
= UL,Teff([[F; (A, {Vop opesar])

Chapter 8
Conclusion and future work

In this thesis we have developed and studied the foundations for combining depen-
dent types and computational effects, two important areas of modern programming

language research. In the Introduction, we set out to establish the following claim:
Dependent types and computational effects admit a natural combination.

In retrospect, we can confirm that this is indeed the case. Specifically, we have pro-

vided language-based, category-theoretic, and algebraic evidence to support this claim.

Language-based evidence. We have demonstrated that dependent types and com-
putational effects can be naturally combined in a single programming language. We
achieved this by developing a core effectful dependently typed language, called eMLTT,
that extends intensional MLTT with general computational effects, based on a clear
separation between values and computations. Using eMLTT, we demonstrated that—
with minor changes to the typing rules of effectful computations—one can readily use
familiar combinators from simply typed languages to program with computational ef-
fects in the dependently typed setting, e.g., using sequential composition. To overcome
the limitations caused by these changes to the typing rules of effectful computations,
we introduced eMLTT’s distinguishing feature, the computational X-type, which al-

lows us to uniformly “close-off” free variables in computation types.

Category-theoretic evidence. We have also demonstrated that dependent types and
computational effects can be naturally combined category-theoretically. To this end,
we defined and studied a class of category-theoretic models, called fibred adjunction
models, suitable for defining a sound and complete interpretation of eMLTT. Specif-

ically, fibred adjunction models naturally combine standard category-theoretic mod-

329

330 Chapter 8. Conclusion and future work

els of dependent types (split closed comprehension categories) and the corresponding
generalisation of adjunction-based models of computational effects (split fibred ad-
junctions). The naturality of this combination was demonstrated by being able to reuse
and generalise various established results about monads and adjunctions, such as the
existence of the Eilenberg-Moore resolution, and by showing that the computational
Y- and II-types can be modelled analogously to their value counterparts, namely, as
adjoints to weakening functors. We further presented various examples of fibred ad-
junction models, ranging from i) those built from models of EEC, to ii) those based on
the families of sets fibration, to iii) those built around the fibred Eilenberg-Moore reso-
lutions of split fibred monads, to iv) those based on the fibration of continuous families

of w-complete partial orders. The latter enabled us to extend eMLTT with recursion.

Algebraic evidence. We also investigated the algebraic treatment of computational
effects in the presence of dependent types. Specifically, we showed how to extend
eMLTT with fibred algebraic effects and their handlers. To specify such effects, we
introduced a dependently typed generalisation of Plotkin and Pretnar’s effect theories,
whose dependently typed operation symbols enable us to capture precise notions of
computation such as state with location-dependent store types and dependently typed
update monads. For handlers, we observed that their conventional term-level definition
leads to unsound program equivalences becoming derivable in languages that include a
notion of homomorphism, such as eMLTT. To solve this problem, we provided a novel
type-based treatment of handlers via a new computation type, the user-defined algebra
type, which pairs a value type (the carrier) with a family of value terms (the operations).
This type internalises Plotkin and Pretnar’s insight that handlers denote algebras for a
given equational theory of computational effects. We demonstrated the generality of
this type-based treatment by showing that the conventional presentation of handlers
can be routinely derived from it, and that this treatment provides a useful mechanism
for reasoning about effectful computations. We also showed that eMLTT with fibred
algebraic effects and their handlers can be soundly interpreted in a fibred adjunction

model based on the families of sets fibration and models of countable Lawvere theories.

In conclusion, the contributions of this thesis can be summed up as follows:

e one can readily take well-known and established methods for, and results about,
programming with computational effects in simply typed languages and success-

fully adapt them to the dependently typed setting; and

8.1. Future work directions 331

e the presence of dependent types, in combination with basing our work on ad-
junctions rather than monads, provides an opportunity to discover new and in-

teresting language features, and corresponding mathematical structures.

8.1 Future work directions

There are many directions in which one can take this work forward. We discuss some
of them in detail, including work on the foundations, improvements to the expressive

power of eMLTT and its extensions, and developing a (prototype) implementation.

8.1.1 Fibred notions of Lawvere theory

In future, we plan to study the denotational semantics of eMLTTz . and eMLTTg{;ff at
the same level of generality as we did for eMLTT in Chaptersdand[5] In particular, we
plan to extend the denotational semantics of eMLTT¢ and eMLTT fffff from the fam-
ilies of sets fibration to more general fibational models of dependent types. Towards
this end, we plan to develop a fibred notion of (countable) Lawvere theory, together
with a framework for defining corresponding equational presentations. In particular,
we conjecture that our fibred effect theories can be used as a basis for such presenta-
tions, by extending them to proper equational theories, i.e., closing the set of equations
under reflexivity, symmetry, transitivity, substitution and replacement, and developing
the corresponding proof theory. We then plan to study (fibred) local presentability con-
ditions on split closed comprehension categories under which a split fibred free model
adjunction exists. This adjunction can then be used as a basis for constructing a fibred
adjunction model suitable for defining the interpretations of eMLT T and eMLTTnyff.

A related future work direction involves extending eMLTT with local effects, e.g.,
local names and local state. One possible way forward to account for such computa-
tional effects would be to first develop a fibred notion of indexed Lawvere theory [98]]
by working with suitable fibrations of presheaves indexed by names, locations, etc.,
and then extend eMLTT accordingly. Another way forward could involve develop-
ing a fibred version of Staton’s parameterised algebraic theories and their model the-
ory [106].

Finally, we also plan to give a general treatment of inequationally presentable com-
putational effects, such as divergence, so as to provide a more general treatment of

recursion than our use of the fibration cfamcpg : CFam(CPO) — CPO of continuous

332 Chapter 8. Conclusion and future work

families of m-complete partial orders in Section Towards this end, we plan to
develop a fibred notion of discrete countable enriched Lawvere theory [S0], together
with a framework for defining inequational presentations corresponding to enrichment
in w-complete partial orders. An important question here involves the exact notion of
enrichment one would use for defining such fibred enriched Lawvere theories. As dis-
cussed in Section[4.1.5] there are multiple candidates one could consider using, includ-
ing those developed in [104] and [113} Section 8.1], and the notion of pre-enrichment

we use to model eMLTT’s homomorphic function type in Section #.1.5]

8.1.2 Extending eMLTT with more expressive computation types

As it stands, the computation types of eMLTT and its extensions cannot be used to
encode detailed specifications about effectful computations except for very basic de-
scriptions of their general shape, e.g., whether a computation is an effectful function.
To overcome this limitation, we plan to extend eMLTT with dependently typed vari-
ants of type-and-effect systems based on, e.g., Katsumata et al.’s graded monads and
graded adjunctions [55,136]], and Atkey’s parameterised monads and parameterised ad-
junctions [17,[16]]. Specifically, we plan to generalise from grading and parameterising
adjunctions by categories to grading and parameterising fibred adjunctions by suitable
fibrations, e.g., by a fibred monoidal fibration in the case of graded adjunctions. From a
programming language perspective, this means that the gradings and parameters would
become first-class citizens, given by value terms of some specified pure value type of

“worlds” of computation, e.g., describing whether a file is open or closed.

In the case of a type-and-effect system based on parameterised adjunctions, we

plan to generalise from working with W -parameterised adjunctions, given by functors
FWxV—C U:WPxC—YV

to working with split r-parameterised fibred adjunctions, for some given split fibration

r: ‘W — B. We define these to be given by a pair of fibred functors

f(XHWXXrV)d r C

S

B

8.1. Future work directions 333

[(X WP x) v %

S

B

where p and g are split fibrations used to model value and computation types, re-
spectively, and the domains of these functors are derived from p, ¢, and r using the
Grothendieck construction. Specifically, based on the discussion in Section [4.1.5] the
domains of these two functors are the product split fibrations r x p and r°P x ¢, respec-
tively, thus demonstrating that we indeed have defined a natural fibred generalisation
of Atkey’s parameterised adjunctions. Of course, we would also generalise the pa-
rameterised unit 1] and counit € transformations to the fibrational setting. In addition,
there exists an analogous definition of a split r-parameterised fibred monad, naturally
generalising the notion of a W-parameterised monad 7 : WP x W x V — V.

Regarding the corresponding extension of eMLTT, such split r-parameterised fi-
bred adjoints would give rise to corresponding eMLTT types, namely, Fiy A and Uy C,
where W is a value term of some specified closed pure value type World. For example,
to model file-based 1/0, World could be an inductive type with two constructors, called
open and closed. Intuitively, Fiy A would be the type of computations that return val-
ues of type A and finish evaluating in the world denoted by W; and Uy C would be the
type of thunks that can only be forced in a world denoted by W. In addition, we plan
to develop a fibred generalisation of Atkey’s W/ -parameterised algebraic theories, and
investigate the corresponding extensions of eMLTT . and eMLTTZfo.

As discussed in Section [I.4] Brady has previously used the corresponding split fi-
bred parameterised monads Ty, w, A to extend Idris with computational effects. As
also mentioned in op. cit., Brady has more recently proposed extending split fibred
parameterised monads with additional type-dependency, so as to enable the postcondi-
tion world W5 to depend on the return values of the given computation. In more detail,

this extension can be illustrated with the following type formation rule:

I'EW;:World T'HFA T',x:AF W, : World
' Tw, xw, A

This additional type-dependency enabled Brady to accommodate generic effects whose
postcondition world crucially depends on the outcome of the effect. A prototypical

example of such an effect is the possibly erroneous file opening operation, typed as

't open-file: Tclosed,x. case x of (inl()q:1)r—>open,inr(x2:1)r—>closed)(1 + 1)

334 Chapter 8. Conclusion and future work

However, as part of our preliminary work on extending eMLTT with fibred parame-
terised effects, we have noticed that there does not seem to be a category-theoretically
natural notion of adjunction corresponding to Tw, r.w,A. In particular, the beautiful
symmetries involved in the definition of split r-parameterised fibred adjunctions are
lost because the functor corresponding to F, wA would be “dependently typed”, while
the functor corresponding to Uy C remains split fibred as before. A similar loss of sym-
metry also affects the unit 1 and the counit €, where the components of the unit become
“dependently typed” morphism This has led us to conclude that Ty, »w, A does not
in fact denote some more dependently typed version of a split r-parameterised fibred
monad. Instead, it can be shown that Ty, ,.w, A corresponds to the composition of split
r-parameterised fibred adjoints (as defined earlier in this section) with the dependent
sum functor that models our computational X-type. In particular, in an extension of
eMLTT based on a split r-parameterised adjunction, we can define Ty, »w, A as

def

Tw, xw, A = Uw, (Xx:A. (Fy,1))

and also derive the correspondingly typed combinators for returning values and se-
quential composition. This is further evidence that the clear distinction between values
and computations, together with the computational X-type, have an important and fun-

damental role to play in combining dependent types and computational effects.

8.1.3 Fibrational account of Dijkstra monads

In addition to type-and-effect systems based on graded and parameterised adjunctions,
we plan to investigate extending eMLTT’s type system with ideas based on how Di-
jkstra monads are used in F*. To this end, we first need to find an appropriate notion
of adjunction corresponding to F*’s Dijkstra monads. As a starting point, we note that
in the fibrational setting, Dijkstra monads can be understood as certain relative mon-

ads [14], with respect to the monad of weakest precondition predicate transformers.
Specifically, this relative monads based axiomatisation of a Dijkstra monad on a

split comprehension category with unit p : 7/ — B, indexed by a split fibred (weakest

preconditions) Kleisli triple (WP,1, (—)T) on p, involves giving the following data:

IThe components of the unit | would correspond to terms I',x: A - return x : Twix/y).».w A, Whose
type (the codomain of the morphism) crucially depends on the variable x (the domain of the morphism).

8.1. Future work directions 335

e afunctor 7 : 1V — ¥/ such that T strictly preserves Cartesian morphisms and
vV
v N
v vV
{k« /
B

e aunitn}: {A} — {T(A)} in B, for every A in 7V, such that

T

(A} L (T(A)}

id{A} T (A)
A WP(A
(A} ————— (WP))
e and for every commuting square of the form
f
{A} {T(B)}
idgay r (B)
A WP(B
{A) ————— (WP®)

a Kleisli extension f; :{T(A)} — {T(B)} in B such that

(T(A)} i (T(B)}
Tr(4) r(B)
(WP(A)} - (WP(B)}

g’}

such that the natural laws for the interaction of the unit and the Kleisli extension hold.
From a programming language perspective, the functors WP and 7', and their inter-

action in the above diagram, can be described using two type formation rules:

C-A I'cA x¢Vars(D)
I'FwWPA I'x:WPAFTA

The unit N} and Kleisli extension f; correspond to F*’s typing rules for returning

values and sequential composition. For example, the unit n} : {A} — {T(A)} in B

336 Chapter 8. Conclusion and future work

can be shown to correspond to a global element 174, — {N4}*(7(A)) in V4;, which

in turn corresponds to (an idealised version of) F*’s typing rule for returning values:

I'cv:A
I'FreturnV :T A [WP.returnV /x|

On closer inspection, the above data corresponds exactly to the definition of a rel-
ative monad from 7’ to a certain subcategory of the arrow category B, relative to a
functor that maps an object A in 4/ to the identity morphism id4, : {A} — {A}.

Based on these observations, we plan to investigate whether the corresponding
relative adjunctions can be used to extend eMLTT with weakest precondition based
reasoning about computational effects. In addition, we plan to explore an algebraic

account of F*’s Dijkstra monads, so as to specify them using operations and equations.

8.1.4 Allowing types to depend on effectful computations

Recall the two key design choices we made when developing eMLTT. These were:
1) allowing types to depend only on values, and ii) fixing the typing rule for sequential
composition by restricting the free variables in the type of the second computation. In
future, we plan to extend eMLTTEI so as to lift both these restrictions. In particular,
we plan to develop a version of eMLTT in which types could depend on effectful
computations directly rather than via thunks. While type-dependency on computations
is an intriguing question in itself, these future work plans are also motivated by the
problems that arise in the recent work of Vakar, as discussed in Section

In particular, recall from op. cit. that Vakar investigates a dependently typed ver-

sion of CBPV built around a dependently typed version of sequential composition:

Fl FM:FA Fl,yZUFA,FQ I—Q
['),x:A,T[thunk (return x)/y| = N : C[thunk (return x)/y]
I'),I2[thunk M/y| =M to x:A in N : C[thunk M /y]

While this typing rule solves the problem of simultaneously allowing the type of N
to depend on x and restricting it from appearing free in the conclusion, and also enables
Vékar to define call-by-value and call-by-name translations from a dependently typed
A-calculus into his language, it introduces new problems in the presence of fibred al-
gebraic effects, as discussed in Section[I.4] We conjecture that the root cause of these

problems is the thunks-based type-dependency on computations.

2In this section, we use eMLTT to jointly refer to eMLTT, eMLTTq,,, and eMLTTf[[ff.

8.1. Future work directions 337

Consequently, we plan to investigate how to extend eMLTT with computation types
that can depend directly on effectful computations via computation variables. In order
to avoid the problems arising from the thunks-based type-dependency in Vakar’s work,
we anticipate that the computation variables must be treated in computation types sim-
ilarly to the way they are currently used in homomorphism terms. Consequently, in
addition to computation types C, D, ... that are dependent on only values, we plan to
include homomorphic computation types C, D, ... that further depend on computation
variables, with well-formed such types defined using a judgement I'|z:C - D. We can

then equip sequential composition with naturally dependent typing rules, given by

[FM:FA T|z:FAFC T,x:AFN:(Clreturnx/z]
ICEMtox:Ain N:C[M/7]

[|z1:CFK:FA T|z:FAFD T,x:AFN:Dreturn x/z]
[[z1:CHKtox:Ain N:D[K/z)]

We further speculate that other elimination rules for computation types, such as com-
putational pattern matching, can be given analogous naturally dependent typing rules.

In order that computation variables can be used as they are used in homomorphism
terms, we speculate that both kinds of computation types will need to include elimi-
nation forms such as sequential composition, computational pattern matching, and the

composition operations. In particular, we anticipate their grammar to be given by

C o= ...|Mtox:AinC | Mto (x:A,z:C)inD | Masx:UC in D

lle)
I

Ktox:AinC | Kto (x:A,z:C)inD | Kasx:UCin D

While so far it might seem that this extension of eMLTT is going to be straightfor-
ward, we expect significant challenges regarding its equational theory and category-
theoretic denotational semantics. Based on the author’s joint work with Plotkin on
refinement types for algebraic effects [11], we speculate that the natural choice for
modelling such computation types is to use families of subsets (more generally, subob-
jects) of carriers of models of the given fibred effect theory. If we think of these carri-
ers as sets of computation trees, a computation type get/ >t (y.returny) tox:Stin C

would denote a family of sets of computation trees each with the following shape:

I

get

on

338 Chapter 8. Conclusion and future work

where ¢;; would be an element of the set of computation trees denoted by Cls;/x].
However, it is important to point out that one cannot naively lift all equations from the
term level to the type level in this setting. In particular, for general ¢+ St and I'F C, this

semantics of computation types would not validate the following definitional equation:
[+ C=get"™(y.returny) tox:Stin C

Namely, compared to the corresponding definitional equation between computation
terms, a general computation type C would denote a non-trivial family of sets of com-
putation trees. As a result, the computation trees ¢y, in the above diagram can all be
different, meaning that the composite tree might not be in the family denoted by C.
This is an instance of a general phenomenon that only linear equations can be lifted
from a carrier of an algebra to the powerset of the carrier—see the work of Gautam [37]]
for more details. However, it is worth noting that while the semantics in question would

not validate the above equation, it would validate the following subtyping inequality:
['FCC get"™(y.returny) tox:Stin C

This suggests that we probably have to extend eMLTT with a subtyping relation. For

refinement types, a general schema for valid such subtyping rules can be found in [11]].

8.1.5 Normalisation and implementation

We also plan to develop a prototype implementation of eMLTTEI and its extensions.
As a first step towards implementing a prototype, we plan to develop a normali-
sation algorithm for the equational theory of eMLTT, using the well-known technique
of normalisation-by-evaluation (NBE) [34]. More specifically, we plan to combine the
existing work on NBE for dependent types [15] with the author’s previous work on
NBE for simply typed languages with algebraic effects [12]. Regarding the normalisa-
tion algorithm, we could start by normalising the types and terms of eMLTT modulo
the given fibred effect theory, and then specialise the normalisation algorithm to spe-
cific important computational effects, such as state, analogously to [[12, Section 5.2].
We expect that we would have to weaken the equational theory of eMLTT so as
to ensure that its type- and term-equality are decidable. In particular, while part of
the equational theory is already set up so as to avoid known sources of undecidability,

e.g., we use intensional propositional equality and we omit the n-equation for primitive

3In this section, we again use eMLTT to jointly refer to eMLTT, eMLTTq,,, and eMLTT;[t_f.

8.1. Future work directions 339

recursiorﬂ other parts of the equational theory might pose further problems, e.g., the
Mn-equation for the coproduct type [19]. Furthermore, the decidability of the equations
corresponding to the composition operations is an altogether unknown territory.

Regarding other sources of undecidability of typechecking, it is worthwhile to re-
call that checking the correctness of handlers of algebraic effects is an undecidable
problem in general [95, §6]. Accordingly, the same would hold for verifying the well-
formedness of the user-defined algebra type in eMLTT. As discussed in Section [/.4]
one way to tackle this problem would be to require programmers to manually prove
equational proof obligations that cannot be established automatically. To enable this
kind of interaction with programmers, we could replace definitional equations in proof
obligations with propositional equalities, and annotate the user-defined algebra type
and the composition operations with the corresponding proof terms.

Note that by changing the proof obligations from definitional equations to proposi-
tional equalities, we raise interesting questions regarding the soundness of the denota-
tional semantics of eMLTT. In particular, while definitional and propositional equality
conveniently coincide in fibred adjunction models based on the families of sets fibra-
tion, the former is usually only included in the latter in more general models of (higher)
dependent types, e.g., see [24]. Consequently, we have to be careful about which proof
terms we allow to witness these proof obligations, so as to ensure that the interpretation
of the user-defined algebra type and the composition operations remains sound.

Regarding the implementation, we also need to equip eMLTT with a suitable oper-
ational semantics. As a starting point, we plan to investigate an operational semantics
based on Lindley and Hillerstrom’s [43] abstract machine based semantics for han-
dlers of algebraic effects (in the simply typed setting). Regarding eMLTT, we expect
that the most challenging problem will be accommodating the unfolding of algebraic

operations at the user defined algebra type (see the equation in Definition[7.3.2)).

4Already in the simply typed setting, the term-equality in Godel’s System T becomes undecidable
when one introduces the 1-equation (i.e., a uniqueness axiom) for primitive recursion [80].

Appendix A

Dependently typed parsing example

mentioned in Chapter (1|

In this appendix we present details of the dependently typed monadic parsing example
we alluded to in [9], and that we also mentioned in the end of Section [I.I] As high-
lighted in the latter, then similarly to other computationally interesting examples we
are aware of, this example also only requires computation types Xx:A.C where C is of
the form F B, or equivalently, computation types of the form F(Xx:A.B). As a result,
as we only need computation types of the form FB for this example, we can present
it using a shallow embeddin of Moggi’s monadic metalanguage in Agda [79], using
the standard parser monad from [47] (written P in the code below). By observing that
P is nothing but the tensor product of the global state monad with the lists-based non-
determinism monad (see [49]), we can give the parser combinators we use high-level
definitions in terms of the algebraic operations that determine these two monads.

To keep the example as simple as possible, we consider a very small simply typed

language in this appendix, whose terms ¢ are given by the following grammar:

tou= clfh ..ty

where ¢ and f range over typed constant and function symbols; for simplicity, n > 0.
The code for our parser is given below. For better readability, we parameterise it
over tokens, types, and constant and function symbols; and conversion functions taking
tokens to types, and constant and function symbols. We also assume that the given
representation of types has decidable equality (decTypeEq). If it succeeds, the parser
will produce as its output a pair of a type ty : Types and a typed term tm : Terms ty.

IThe full code is available at|https://www.github.com/danelahman/Dep-Mon-Parsing/|

341

https://www.github.com/danelahman/Dep-Mon-Parsing/

342 Appendix A. Dependently typed parsing example mentioned in Chapter(1]

module Parser
(Token : Set) (Types : Set) (ConstSym: Set) (FunSym: Set)
tokenToType : Token — Types + One)
decTypeEq : (tyl ty2: Types) — (Id tyl ty2)+ (Id tyl ty2 — Zero))

type0fConst : ConstSym — Types)

(
(
(tokenToConstSym : Token — ConstSym -+ One)
(
(tokenToFunSym : Token — FunSym + One)

(

type0fFun : FunSym — (NEList Types) X Types) where

Tokens : Set

Tokens = List Token

P:Set — Set

P A =Tokens — List (Tokens X A)

Pf:{AB:Set} »(A—B)—-PA—PB
Pf f p tok =map (\x — ((fst x),f (snd x))) (p tok)

return: {A:Set} - A—PA

return a tok = listReturn (tok,a)

bind: {A:Set} {B:Set} >PA— (A—>PB)>PB
bind p f tok = listBind (p tok) (\x — f (snd x) (fst x))

1kp : P Tokens
1kp toks = (toks,toks) :: []

put : Tokens — P One

put toksl toks2 = (toksl,x) :: []

or:{A:Set} »PA—>PA—PA

or pl p2 tok = append (pl tok) (p2 tok)
fail:{A:Set} —PA

fail tok = |]

343

parseToken : P Token

parseToken = bind 1kp (\{[] = fail;
(tok :: toks)— bind (put toks)
(\- — return tok)})

parseAndConvert : {X:Set} — (Token — X) - PX

parseAndConvert f = bind parseToken (\ tok — return (f tok))

parseAndTest : {X:Set} — (Token — X+ 0One) - PX

parseAndTest f = bind (parseAndConvert f)
(\b— +-elimb (\x — returnx) (\ . — fail))

mutual
data Terms : Types — Set where
const : (c: ConstSym) — Terms (typeOfConst c)

app : (f : FunSym) — NEArgumentList (fst (typeOfFun f))
— Terms (snd (typeOfFun f))

data NEArgumentList : NEList Types — Set where
[-] : {ty : Types} — Terms ty — NEArgumentList [ty |
u:{ty:Types} {tys:NEList Types} — Terms ty
— NEArgumentList tys
— NEArgumentList (ty :: tys)

mutual

{-# TERMINATING #-}

parser : P (Sigma Types Terms)

parser = or parseConst parseFunApp

parseConst : P (Sigma Types Terms)

parseConst = bind (parseAndTest tokenToConstSym)
(\ ¢ — return (typeOfConst c,const c))

344

Appendix A. Dependently typed parsing example mentioned in Chapter(1]

parseFunApp : P (Sigma Types Terms)

parseFunApp =
bind (parseAndTest tokenToFunSym)
(\f — bind (parseNEArgumentList (fst (typeOfFun f)))
(\args — return (snd (typeOfFun f),app f args)))

parseNEArgumentList : (tys: NEList Types) — P (NEArgumentList tys)

parseNEArgumentList [ty | = bind (parseTerm0fGivenType ty)
(\tm — return [tm])
parseNEArgumentList (ty :: tys) =
bind (parseTerm0fGivenType ty)
(\tm — bind (parseNEArgumentList tys)
(\tms — return (tm :: tms)))

parseTermOfGivenType : (ty: Types) — P (Terms ty)

parseTerm0fGivenType ty =
bind parser (\p — +-elim (decTypeEq (fst p) ty)
(\q — return (transport q (snd p)))
(\.— fail))

where we highlight that in parseFunApp, the sub-parser for the arguments of a func-

tion application (parseNEArgumentList) crucially depends on the type of the partic-

ular parsed function. The types and functions we use above are defined as follows:

data Id {A:Set} (a:A):A— Set where

refl:Idaa

transport: {A:Set} {B:A—Set} {ala2:A} - Idala2—~>Bal —+Ba2

transport reflb=0>

dataList (A:Set): Set where

[]:List A

u:A—ListA—List A

map:{XY:Set} - (X—Y) »List X —ListY
map £ [] =]

map f (x :: xs)=fx :: mapf xs

append : {X:Set} — List X — List X — List X
append [| ys = ys

append (x :: xs) ys =x :: append Xs ys
listReturn: {X:Set} - X — ListX

listReturnx =x :: ||

listBind: {XY:Set} — List X — (X — List Y) > List ¥
listBind [| £ =]
listBind (x :: xs) f = append (f x) (1istBind xs f)

data NEList (A: Set): Set where
[]:A— NEList A
_i_tA—NEList A — NEList A

data One : Set where

* : One

data Zero : Set where

data Sigma (A:Set) (B: A — Set) : Set where

,-:(a:A)— (b:Ba) —> Sigma AB

fst:{A:Set} {B:A—>Set} —»SigmaAB—A
fst (a,b)=a

snd:{A:Set}{B:A— Set} — (p:Sigma AB) — B (fst p)
snd (a,b) =b

X:Set — Set — Set

AxB=SigmaA (_—B)

345

346 Appendix A. Dependently typed parsing example mentioned in Chapter(1]

data _+_(AB:Set): Set where
inl:A—A+B
inr:B—A+B

+-elim: {AB:Set} {C:A+B—Set} — (ab: A+B)
(a:)
((b:B)
— Cab

(inl a))

— —C
— — C (inr b))
+-elim (inla)fg=1fa
+-elim (inrb) fg=gb

Appendix B

Proofs for Chapter 4

B.1 Proof of Proposition

Proposition 4.1.19} Let us assume a full split comprehension category with unit
p V' — B that has split fibred strong colimits of shape D, a diagram of the form
J: D — YV, and an object A in ’V{m(])}. Then, given a family of vertical mor-
phisms fp: 1gpy — {inh}*(A), for all objects D in ‘D, such that for all morphisms
g:Di— Djin Dwe have {J(8) }*(fp;) = fb;, there exists a unique vertical morphism

[fplpen : icolimyy —> Ain 'V{M(J)} satisfying the following “B-equations”:
{inh,}* (Ifolpen) = fi;: Ly — {inh,}*(4)

for all objects D; in D.

Proof. In order to give the definition of [fp|pcp, we first define an auxiliary “pairing

functor” (oy) : (8 L>(1>) — lim(J), using the universal property of the limit

prf: A(lim(J)) — J for a cone Cr: A(g = (15) — J that is defined as follows:

def

(60)p(0) = Ly (Sp)p(1) = {inp} (A) (o7)p(s) = fo

In detail, (o) arises as a unique mediating morphism because for all g : D; — D;

347

348 Appendix B. Proofs for Chapter[4

in D, the outer triangle commutes in the following diagram:

051
O O

{/(e)}"
because our assumptions about the fibration p and the morphisms fp give us
{V(@) Y (Lyuwm)) = 1umy
{J(8)}*({inp, }*(4)) = {inp, }*(4)
{J()}*(/p;) = fo,

Next, our aim is to define [fp]pecp using the fully-faithfulness of ({in}}*)pep on

the morphism () (s). However, before we can do so, we have to show that

(67)(0) = ({inp})pen(Licolimr)y) (6£)(1) = ({inp}) pen(A)

in order to ensure that (G¢)(s) is in

lim(7) ({in}*) e (L colim(z)})+ ({ih}) e (4))

To this end, we use the universal property of of the limit prf :Alim(J)) — J.
The left-hand equation follows from observing that for all g : D; — D; in D, the

following diagram commutes:

B.1. Proof of Proposition 349

~

when the unlabelled mediating functor 1 — lim(J) is given by either x — () (0) or
* = ({inh) 1) pen(l {colim(s)})- As aresult, these functors must be equal to the unique
such functor induced by the universal property of prf and, therefore, be equal to each
other.

The right-hand equation is proved analogously. In particular, we observe that for

all g: D; — Dj in D, the following diagram commutes:

1

Vi, = J(D;)) J(D) = Vi)

when the unlabelled mediating functor 1 — lim(J) is given by either x — (o) (1)
or % — ({in})}*)pen(A). As a result, these functors must be equal to the unique such
functor induced by the universal property of prf and, therefore, be equal to each other.

Now, based on the above observations, we can use the fully-faithfulness of

{{in},}*) pep and define the required vertical morphism [fp]pep as

[fplpen = ({inh}) ptn((55)(5)) : Lcolimry — A
Finally, we prove that this morphism [fp]pcop satisfies the required “B-equations”
{i_nél_}*([fplpep) = fp,, for all D; in D, and also that it is a unique such morphism.

First, the “B-equations” are proved as follows:

for all objects D; in D, using the definitions of ({in},}*) pcp and (6 ¢), in combination

with the fully-faithfulness of the former.

350 Appendix B. Proofs for Chapter[4

In order to show that [fp|peop is the unique such morphism, we assume that there
exists another vertical morphism £ : 1cojim(s)y —> A In ‘V{CO”m(J)}» satisfying the “B-
equations” {i_n{)i}*(h) = fp, for all objects D; in D.

Next, we observe that a functor / : (8 RN (15) — Iim(/(\J)), given by

h(0) £ ({inh}) pen(Licolimyy) A1) Z ({inh}) pen(A) h(s) = ({inh}") pen(h)

makes the following diagram commute:

01
O O
n
. lim(J)
R
@@}

for all morphisms g : D; — D in D.

Therefore, 7 must be equal to the unique such functor, namely, (G7). As a result,

({inp})pen(h) = (o7)(s)

from which it follows that

lpen = ({inp}*) pen((07)(s) = ({inp}) pen (({inh}) pen(h) = h

using the definition of [fp]pecyp and the fully-faithfulness of ({in}}*)pen. O

B.2 Proof of Proposition

Proposition Let us assume a full split comprehension category with unit
p V' — B that has split fibred strong colimits of shape D. Then, given a diagram
of the form J : D — Vk, the cocone in’ : J — A(colim(J)), induced by the existence
of split fibred strong colimits of shape D, is a colimit of J in V in the standard sense,

i.e., the cocone in’ : J — A(colim(J)) is initial amongst the cocones over J in V.

B.2. Proof of Proposition 351

Proof. We prove this proposition by appropriately instantiating Proposition 4.1.19
Namely, given another cocone o : J — A(A) in Vx, we choose the object in ’V{co“m(N}

tobe T . colim(J)() and define the morphisms fp using op as the following composites:

1850 147}) (@) })
Loy L o (00} N) ()}
14{-}
enj(D)(A)
{inh}* (R (4) =) (A)

where 0;(p) is a diagonal morphism, as defined in Definition 4.1.25; and where the
last equality follows from applying P to mD, i.e., from Tegfim(s) © {mD} idx 0Ty (p).

Furthermore, that fp is vertical over id;(p) follows from the commutatwlty of

p(fp)

def. of fD

{/(D)} {m)p)(J(D))} oy @) {7} p)(A)} m {/(D)}
def. of BJ(D) /P

def. of T[n;(D) (A)

G P(m)p) (@) _—
TJ(D)

{V(D)}

id(s(p)}

Next, to be able to use Proposition 4.1.19] we also have to check that for all mor-
phisms g : D; — D;, we have {J(g)}"(fp;) = fp;, We do so by recalling that the
reindexing {J(g)}*(fp,) is defined as the unique mediating morphism induced by the
Cartesian morphism m(njwﬂ (A)). As a consequence, proving that the equation

{J(g)}*(fp;) = fp; holds amounts to showing that fp, satisfies the same universal

352 Appendix B. Proofs for Chapter[4,

property as {J(g)}*(fp,). i.e., we have to show that the following diagram commutes:

I,
" —_—
L 40} REE Ty (A)

Ly, 1yp Ny —————————>

{J(D))} 18(p;)) {nj(Di)<-l(Dx))} 1({1\:7(01_)(011)[.)}) N
J(D;)

p is a split fibration _

@) @, @)
L@y @, 0oy~ Tty) @40 (@)} (mp,(4))

@ def. of {J()}*(~) nat. of el ()

1{J(@)}) ORGP

T) (4)

{/(8)}(1{1(1)/-)})

L5,y 00} 1, (@)

nat. of o

15, I(&)))
14{-}
gn_”;(Dl_) (A)

1({“}(0].)(“[)/-)}
S T2 Wiy A)

18)))
e B
o) Lm0 Hw,
W
Ip;

J

where we prove the commutativity of the subdiagram marked with (@) by showing that

M) (D)) —= {7} m)p, (T(D)))}

{J(Di)}

* D.
{mp,) (D))} {0, (&)}

and

8)p-
o)y —" 0y " {my, (D)}

satisfy the same universal property as the unique mediating morphism in the following

B.2. Proof of Proposition 353

pullback situation (i.e., they make the two triangles involving {J(g)} commute):

{V(e)}

10, (D)) {/(Dj)}
_
)V P)) P 0, (D;)) o))
{J(Dj)} X

(D))

We omit the details of these proofs because they consist of straightforward diagram
chasing, based on using the definitions of the diagonal morphisms J(p;) and 0 J(D;) &
unique mediating morphisms into certain pullback squares (see Definition 4.1.25]).

Now, using Proposition 4.1.19, we get that there exists a unique vertical morphism

[fplpen : Licolim(1)} — Teglim(r) (A)

such that for all D; in D the following “B-equation” holds:

{inp, }* (fplpen) = foi

Based on this, we define the candidate mediating morphism [ct] from in’ to o using

the fully-faithfulness of 2 on the following morphism in B/X from Teolim(J) tO TA:

H{ } _
. {c0|m {[f] c } " { colim(J
feolim(7)} — 0 (1}~ ey T

P([fplpen) P(Teolim(z)(A))

' s iso.

id{colim(s)}

{colim(J)} X

Teolim(J)

As p = codg o P, the fully-faithfulness of P also gives us that [a] is vertical over idy.

Next, we check that [0 is indeed a morphism of cocones from in’ to «, i.e., we
prove that [0] oin}, = atp holds, for all D in 9. We do so by making use of the fully-
faithfulness of © and instead prove that P([®t] oin%,) = P(0p) holds in B/X, for all D

354 Appendix B. Proofs for Chapter[4,

in D, which amounts to showing that the following diagram commutes:

{in})} ﬂ}lﬁ.m}() {Ifplpent {Teolim(7) (4)
YD)} — = {colim()} ——— {l{climu)} } T olim() }—>{A}

def. of s([fplpen)
S s([fplpen) pis a split fib.
Proposition[2-2.34] {{lnD}(ncoth (AN} {7 p)(A

{{inh Y (Rl gy (A} <= {0} (4)

{/p}

nat. of g' (-}

def. of fp

{1y}

{7‘;(1)) (ap)}

def. of 75, (atp)

(S g ()1}
nat. of 1) {168y0))} /)P

14{-
{S * J(,)))}

}} — {m)p) (U (D))}

sy O}

def. of 8;(p) Ty (D))}

Finally, we prove that o] is the unique morphism from in’ to o. Namely, assuming
another morphism of cocones 4 from inJ to o, we show that [a] = h. To this end, we

first define a morphism h: Licolim()} — Tolim colim(J)(A) as the following composite:

14{-}
1(Scollm()) ({nzolnm()(h)}) enzohm()(A> N
Neolim()) = 1o (olim))y — Lmz, o)) = Feglim()(A)

which is vertical over id{c.lim(7)} because the following diagram commutes:

8co im zoim (h)}
{colim(J)} e {ﬂ&ﬂm(M(]))} et {n:‘;oﬂ(J)(A)}

def. of Sm(J)

T zollm()(COIim(])) fP(colim(J (h)) nna@(])<A)

id{colim(/)}

{colim(J)} {colim(J)}

id{colim(/)}

Next, as we can show that for all D in D we have {in},}*(k) = fp (we omit the
proofs of these equations as they are analogous to the proofs of {J(g)}*(fb;) = /b,
given earlier), then the uniqueness of [fp|pcp means that we have h= [fplpen- Fi-

nally, we prove that [a] = & holds by making use of the fully-faithfulness of 2 and

B.3. Proof of Proposition 355

instead show that P([a]) = P(h) holds in B/X, which amounts to proving that the

following holds:
14 {{fplpen}
i Mol T T {Teotim(sy)}
{eolim(/)} ———— {l{m(])}} uniq. of [fp]pen {T‘Zﬂ(/)(A)} —= W
_
nat. of 0! 7=} {Z}
- {nZoim ()}
Scolim() {18colim())} - (et } w! Colim(J)
def. of h ‘colim(J)

144)

"t) (c2lim()}

{nzo@(n (colim(J))} {l{ﬂzo“mu) (c

. -
olim(/))} } e (017 @}

gt c0lim) 14 {-} nat, of ¢! (-}

id{colim(s)}
14{-}

€
t Teolim(J)

(colim(]))}

def. of S¢olim(s)

{{Tegim) (colim(1))}} (% i (cOlim (7))}

id. law

{Teolim(s) (celim(4))

{colim(/)} s

B.3 Proof of Proposition

Proposition 4.1.23, Let us assume a full split comprehension category with unit
p:V — B such that B has a terminal object and p has weak split fibred strong
natural numbers. Then, each fibre of p has a weak NNO and this structure is preserved

on-the-nose by reindexing.

Proof. Given any object X in B, we claim that the diagram

1% (zero) 1% (succ)

Ix % (N) % (N)

defines a weak NNO in 7.

To show that this is the case, we assume another diagram in V%, given by

1x fa A s A

356 Appendix B. Proofs for Chapter[4

Next, we observe that the morphisms f; and f; induce two composite morphisms

TCTX (f2) {% (zero)}(ﬂ:?‘; () (4))

*
T
D'

(N) (A)

4) TR0 (%, 1y (4)
Ty (A) —— Tz oy (4) — {x(suce) (1 vy (4)) T o (A)

X

which we denote in the rest of this proof by fz and fy respectively.

It is easy to see that f; and f; are over {!%(zero) } and {!} (succ)}, respectively. As

a result, we can use the existence of weak split fibred strong natural numbers in p to

get a section of Ty () which we denote by rec(fs, f;) : {(N)} — {n?}(™) (A)}.
X

Using rec(]?z, fs), we can derive a vertical morphism in 7%, denoted by

recx (fz, fn) :'x(N) — A

and defined using the fully-faithfulness of 2 on the next commuting diagram in B/X.

* rec(fz.fs) ¥ {7 (N) (A)}
{'x(N)} = {7,) (4)} X (A}

def. of rec(f., f,) Tk

T () @)

Next, we proceed by showing that the two standard diagrams describing the inter-

action of recx (f, fi) with !% (zero) and !§ (succ) commute.

B.3. Proof of Proposition 357

First, we show the commutativity of

Iy 1% (zero) ‘;} (N)
idiy recx (fz.fs)
Ix 3 A

by using the fully-faithfulness of 2 on a diagram in B/X between m;, : {1x} — X

and s : {A} — X that is given between the domains of 7}, and 4 by

{!% (zero)}

{1x} {1 (N}
nzi}:;} def. of rec(ﬁ,f:) rec(fAz,fx)
{1{1X}} 7 {WT;(N)(A)}
i {5 (zero)}(m () (4))
) def. of f
| TR A ({15 (zer0)}* (1, (4))}
My = T pis a split fibration {7‘!}) (A}
— {niy ()}
1 is split fibred {ﬂ:?x (IX)} e —— {TETX (A)}
def. of i, (. O
A} il (T)
1) — }
Second, we show the commutativity of
1% (succ)
* X *
(N ()
recx (f2,fs) recx (fz.fs)
A A
s

by using the fully-faithfulness of ? on a commuting diagram in B/X between
T X (N)} — X andmy : {A} — X thatis given between the domains of Ty)

and 4 by

358 Appendix B. Proofs for Chapter[4
. {!% (succ)} i
{R(N)} {1x(N)}
rec(ﬁ.ﬁ-) def. of rec(fz,f;) rec(_fz,fl\-)
{WT}(N) (A4)} 3 {ETX(N) (4}
{{!x (succ) } (mys 1) (4))
def. of f, {% (succ)}* (n?}((N) (A))
{"!3‘((N) (A} T = 1 s a split fibration {7[!;‘(™)@}
{mye oy ()}
id. law * X S "
{TE!}(N) A} {n!;((N) A}
def. of)) (£5)
e o @)} Ty @)}
{A} {A}

{fs}

Finally, we show that this weak NNO structure is preserved on-the-nose by rein-

dexing. In particular, for all morphisms f: Y — X in B, we have

= (x o f)"(N)

The proofs of preservation are analogous for !} (zero), !% (succ), and recx (f, fi)-

[(% (N)) =y ()

O

B.4 Proof of Proposition

Proposition d.1.24, Let us assume a full split comprehension category with unit

p:V — B such that B has a terminal object. Then, p having weak split fibred

strong natural numbers is equivalent to p supporting weak natural numbers as in [9],

i.e., for every object X in ‘B, every object A in ‘V{,;((N)}, every morphism

(zero)))"(A)

foilx — (s(lx
in Vx, and every morphism
fs: Tay — ma({x (succ) }(A))
in Vi), there exists a morphism
ia(f2 fs) Loy

}—>A

in ‘V{;* N)} such that

(s("x (zero)))*(ia(fz, i) = f2
{!x (succ) }*(ia(fz, f5) = (s(ia(fz f:)))* (f5)

B.4. Proof of Proposition 359

Proof. In both directions, we assume an object X in B and an object A in 'V{!;;(N)}-

Weak natural numbers in [9] imply Definition |4.1.22

Given a pair of morphisms

fs

gy
in 9, with
pA) ={x(N)} p(fr) ={'x(zero)} p(fs) ={lx(succ)}
we aim to define a morphism
rec(fz, f5) : {!x(N)} — {4}

that must be a section of 4 : {A} — {Ix(N)}.

First, we define vertical morphisms

8z Iy — (s(!x(zero)))"(4) g : 1pay — my({!x(succ)}*(A4))

in Vx and V4, respectively, by
et o TA{=}\k/ 0 ef g FN % Ta T
T N I AT EE AR s
where the two vertical morphisms (in ‘V{l) and ‘V{!;((N)}, respectively)
f; iy — {!x(zero)}*(A) f; :A — {!x(succ)}*(A)
arise from using the universal properties of the following two Cartesian morphisms:

{!% (zero) }(A) : {!x(zero)}*(A) — A {"% (succ) }(A) : {!x(succ)}*(A) — A

on the given morphisms f; and f;, respectively, as discussed in Definition [2.2.9]

360 Appendix B. Proofs for Chapter[4

Next, we recall that the existence of weak natural numbers in the sense of [9] means

that g, and g, induce a vertical morphism
ia(82:85) s Ly — A
in V4, which we can in turn use to define rec(f;, f;) by letting

rec(fz, fs) = s(ia(gz,8s))

Finally, we prove that rec(f, f;) makes the next diagram commute in B.

{!% (zero)} N {!% (succ)} .
{Ix} — {xMN)} — {'x(N)}
) (a) rec(fefs) (b) rec(foofi)
1 A A
o {f:} Ay {£5} Ay

In order to show that the square marked with (a) commutes, we recast the equation

(s(x(zero)))"(ia(8z-85)) = &:

in B using Proposition[2.2.34] As a result, the outer perimeter of the next diagram (i.e.,
one of the triangles of the pullback situation in Proposition 2.2.34) commutes in B.

1-4{-}
. Moz o0y
{1x(N)} - {Log ot
s(1% (zero))
def. of s(!} (zero)) {!% (zero)}
{1x} © {ia(8:.8)}
n)1(4{*}
def. of s(g;) {82}
X s(!%(zero)))* (A A
— (s (zer0)) ()} = {4}
{-}

Further, as T])lﬁ is an epimorphism (because it is an isomorphism according
to Proposition [2.2.35)), the commutativity of the outer perimeter of this diagram also

implies that the square marked with (¢) commutes on its own.

B.4. Proof of Proposition 361

Based on this last observation, the required commutativity of (a) now follows from

the commutativity of the following diagram:

rec(fe.fs)

def. of rec(fs, f;)

{x(N)} {Li ooyt

{4}

{s(1% (zero))(A

{1% (zero)} (o)

{s:}
{ix} {(s(x (zero)))"(A)}

(5 (zero)omy (1))

def. of s(!% (zero))

= def. of g. =

(g Thry B
(O (1,0 — (T ({15 (zero))7 (A))} mrm———

([Gero)} ()}
my T def. of (ny") (1) iy T ero)) (4)))

{Ley} {({!x (zero)})"(A)}

AN

and by observing that we have the following equations:

fo={xGeo)@o sl {ny gyt =1y Oy =ny)

where the two equations on the right follow from 1 being a split fibred functor, n)lﬁ =)
being an isomorphism, and '~ -} being a natural transformation.
In order to show that the square marked with (b) commutes, we again use Proposi-

tion [2.2.34]to recast the equation

{!x (succ)}*(ia (g g5)) = (s(ia(fz, f5)))" ()

in B. As a result, we get that the next diagram, marked with (d), commutes in B.

14{-}
. M o0
{% (succ)} {'X(N)} - {1{‘;((N)}}
(@) {ia(gz.85)}
{'x(N)} {{!x (succ)}*(A)} {A}

s((s(ia(gzgs)))* (gs)) {{'x (succ) }(A)}

362

Appendix B. Proofs for Chapter[4,

Based on this observation, the commutativity of (») now follows from that of

rec(fz.fs)
{1 ()}
{1 (succ)}(A)}
{!% (succ)} (d)
s((s(ia(8z:85)))* (g5))
{1x(N)} {{1x(succ)}*(4)} def. of £
o) def. of ((5(ia (2:))) (&) -
{(s(ia(g2:85)))" (g5)} .
{Tps oy {(s(ia(gz:85)))" (m3 ({!x (succ) }*(4)))}

def. of (s(ia(g:,8s)))"(gs)

{s(ia (g2.25)) (3 ({ ! (suce) } (A)))}

{4}

pisas. fib.

{ma({!x (succ)}*(4))}

_ {s(ia(gzgs))(1ga))} {gs}
{(s(alezr8s)) (Lay)y — {ljay} {3 ({!x (succ)}* (A))}
P(s(ia(8:,85))(1{a})) = def. of g
{Tpz oy} {mi (Lo o)} {m () def. of (1)

iy o)) ef. of Ky T

" w0 00} 9o of Kamtgom) Mgy o

nla{’} is iso. {my (fst)} {ma(A)}

e {m Za(mi (Lo o))} {ma(A)} {A}

def. of m} (fst)
{fst}
{Ta (Za () (1 {5} N}

{Za(my (Lpg oy)}

def. of fst
KAY“;(I(';((N))) is iso.

—1
Ky
AT o)

s(ia(82.85))

{%x(N)}

Definition 4.1.22|implies weak natural numbers in [9]:

Given vertical morphisms

foilx — (s(zer0) (A) fy: 1y — Ta({t(succ) Y (4)

B.4. Proof of Proposition 363

in V% and ‘V{ A} respectively, we aim to define a vertical morphism

(fz;fs) 1{'* N)} —A

in Vi)

First, we define morphisms
8z lyyy —A gs:A—A
in v, over {!%(zero)} and {!} (succ)}, respectively, by
8- = [ero)J(A)omiy (£) g = {R(ucoHA)og k(i 0 0Ta(fi) o (ida,)
Next, according to Definition 4.1.22] g, and g, induce a morphism

rec(gz,s) : {!x(N)} — {A}

in B, that is the section of ©4 and makes the following two squares commute:

(zero)} . {!% (succ) .
{1x} {'x(N)} {Ix(N)}
e rec(gz:8s) rec(g:.8x)
i {s:} A} {5})

As a result, we can now use rec(g;, gs) to define iz (f3, f5) as

(fz»fv) = (rec(gZags))

Finally, we need to prove that this definition of i4 (17, f5) satisfies the two equations

(s('x (zero)))"(ia(f2, /i) = fo {!x(succ)} (ia(fe, £5)) = (s(ia Sz f)))" (fs)

in V% and ‘V{y* N)}s respectively, which we use later in Section to show that the
interpretation of eMLTT validates the B-equations for primitive recursion.

In order to prove that the first of these equations holds in %%, namely,

(s(1x (zero)))*(ia(fzs f5)) = [

we first recast the left-hand side of this equation in B, using Proposition [2.2.34|and the
definition of i4 (fz, fs) from above. In particular, we get that s((s(!% (zero)))*(ia(fz, fs)))

364 Appendix B. Proofs for Chapter[4,

is equal to the unique (unnamed) mediating morphism in the next pullback situation.

Mos)
{Ix(MN)} Ty
(il (e) s (rec(gz.8:)}
(zer0)))"(4)} — L (4
K
(s (1% (zer0)))* (4) P(s(1% (zero))(A)) A
X S (7o) {Ix(N)}

Now, recalling that s is an isomorphism, it suffices to show that the equation

s((s('x (zero)))"(ia(fe, £5))) = s(f2)

holds in ‘B, in order to prove that the required equation holds in 7%. We note that
this equation holds because s(f;) satisfies the same universal property as the unique
unnamed mediating morphism in the above pullback situation, i.e., setting the unnamed
morphism to be s(f;) makes (¢) and (f) commute.

First, we show the commutativity of (e) by

14{-}
Mg oy

1% (N} {Lm ooy}

def. of s(s™" (rec(g:,&s)))

property of rec(g:, ;)

rec(gz,8s)

{1y (zer0)}

{s7" (rec(sz.85))}

s(!y (zero))

{miy (1x)}

{ri, (R}
def. of m{, (f:) def. of g

{1x} {7, ((s('x (zero)))"(4))}
iy ((s(15 (zer0))) " (4))}

def. of s(!y (zero))

1+4{-
ny =1
pisas. fib.
def. of s(f;)

{s(!}}(zero))onlx (A)}

X oy {(s(x (zero)))"(A)} ey {A}

B.4. Proof of Proposition 365

where we show the commutativity of (g) by

{111} = {m, (1x)}

1 is split fibred

1(m
(<} {1(my)}
nat. of'r]{lx}

X
Ty T])1(4{*}
n,l(*{f} is an iso.

id{1yy

14{-}

LIS {miy (1x)}

{1x}

{1x}

Second, the commutativity of (f) follows directly from the definition of s. Namely,
by definition, the morphism s(f;) : X — {(s(!}(zero)))*(A)} is a section of the pro-

jection morphism T((: (zero)))*(4) : {(S(!x (zer0)))*(A4)} — X, giving us the equation
TU(s(1% (zero)))*(4) ©S(f2) = idx
In order to prove that the second required equation holds in 'V{!;;(N)}’ namely,

{!x (succ)}*(ia(fz, f5)) = (s(ia(fe, £5))) " (f5)

we first recast the left-hand side of this equation in B, using Proposition [2.2.34|and the
definition of i (f;, fs) from above. In particular, we get that s({!% (succ) }*(ia(fz, fs)))

is equal to the unique (unnamed) mediating morphism in the next pullback situation.

14(-)
0N} ——)
tiloucel} ®) 5 rec(g20))
(A)
A

366 Appendix B. Proofs for Chapter[4,

Next, recalling that s is an isomorphism and combining this fact with the definition

of ia(f, fs) from above, it suffices to show that the equation

s({!x(succ)}*(ia(fz, f5))) = s((rec(gz, 85))" (/)

holds in B, in order to prove that the required equation holds in ‘V{,;(N)}. We note that

this equation holds because s((rec(g;,gs))*(fs)) satisfies the same universal property as

the unique unnamed mediating morphism in the above pullback situation, i.e., setting

the unnamed morphism to be s((rec(g;,gs))*(fs)) makes (k) and (i) commute.

First, we show the commutativity of (/) by

14(-}
REI)

{%x(N)}

def. of s(s™! (rec(g:,&s)))

x
((suce)} property of rec(g:,gx)

{A}

{14y}

{rec(gz.e5)(144})}

{(rec(gz,85))" (L{ap)} {ma ({1 (succ)}*(A))}
def. of (rec(g., &))" (fs)

= {"ec(gz-&)(T‘Z({!)*((SUCC)}*(A)))}{'W(M}

Tyt {(rec(g:, gs))" (w3 ({1 (succ)}*(A)))}

14{-}

g a0y {(rec(gz.85)" (£)}

= p is a split fibration

def. of s((rec(g.,g5))" (f5))

{57! (rec(gz.85))}

ey}

(N 1 “(A
(5@} s((rec(ge8)" (%)) {t (suce) " (4)} (T Geco}(a)

{A}

B.4. Proof of Proposition|4.1.24 367

where we show the commutativity of (j) by

rec(gz,8s) {&s}
{5 (N} {A} {a}
{Za(m@ (L o)}
n;,;({&})} nat. of n' - = def. of g,
14{-} ® T,
o) {Za(lap)} % GucaT()
{Za(fo)}
{Tog oy} {Za (3 ({1% (succ) }*(4)))}
B 1(rec(gz,8s))} 5, At
N Liss. fib. {E{‘;}((s\ﬁ:c)}*(A)}
{(rec(gz,85))" (1)} It {1y} 7 {m({x (sucd)} ()} ey oy Uk (suco)} ()}
and the commutativity of (k) by
{(ida,)}
{A} {Za(my (L)}

R A 0 g)

14{-} 14{-}

Niay Mgy satisfies same univ. prop. as h {TCZ(I{!} (N)})} def. of Kz (11,) {ZA (ﬂ:(l{v;((N)}))}

("Z(l{!j((l\!)})}} A A (W (Lo)}

{14y} 1is split fibred {ms Ca (i (g o))} 1is split fibred {Za(lpayp)}

Ty

{nl(A}"r\} {Ta(Za(1gay))}

) {mi (Za(lay))}

nat. of n* ™
{m3 (Za(fs))} def. of 3 (Za (£5)) {Za(fs)}
DIRE

et (@ sucopan?

{my ({x (suce) }*(A)} ——— {my(Ba(my({!x (succ)}(4)))}}

£ S
y def. of 7} €k stceyy-a))
{7} ({1 (succ) }*(4))}

TR0 om0 {8 (5 (5 ({1 (suc)}* (4)))}
1T ({5 (suco)} ()}~ {{t(suea) (4)) =—— {Za (5 ({8 (suce)} (4)}

‘A
s feucoy)

368 Appendix B. Proofs for Chapter[4

and where £ is defined as the unique mediating morphism into the pullback square

given by P(Ta(1; (v)y)), for {1} : {A} — {1y)y} and idgay : {A} — {A}. The

proof that T]}L;}{_} is equal to 4 can be found in the proof of Proposition 4.1.8|

Finally, we note that the commutativity of (i) follows directly from the definition

of s. In particular, we know by definition that the morphism

s((rec(gz,85))"(5)) : {%% (N)} — {{!x(succ)}"(4)}

is a section of Ty (succ)}+(a)» g1Ving us the required equation

T(1s (suce))*(4) © S((rec(gz,85)) " (fs)) = id g)y

B.5 Proof of Proposition

Proposition4.3.23\ Given a split comprehension category with unit p : ‘V — B with
strong split dependent sums and a split fibred monad T = (T,m,u) on it, then there

exists a family of natural transformations
Cp:2xp0T —>ToXy (AErV)
collectively called the dependent strength of T, satisfying the diagrams (1)—(4).

Proof. Before proving that the four diagrams (1)—(4) given in the proposition com-
mute, we first show that the natural transformation o4 g given in the proposition
is indeed a natural isomorphism. To this end, we first define its candidate inverse
Oc;}g :Xp0Xpo KX p — Xx,(p) as the following composite natural transformation:

ng

b3
XA OZBOKZBon Z:A<B) A(B)
* » * *
ZAOZBOKAB ZAOZBOKABOTCEA(B)OZEA(B)

oYpomhomt o
Lr4(B) Taoty o, 24 0Lp oMy oMy 0Ly, (B)
€ OZEA(B)

B.5. Proof of Proposition 369

For better readability, we often omit the subscripts from « ; and (KX};)* in the
diagrams given below. For the same reason, we also often abbreviate the four functors

% * * * ES !/ s
TpoT,, Xp0Lp, TCZA(B)’ and ZZA(B) as T, X, ", and ¥, respectively.

We also note that most of the equality morphisms used in the diagrams given below

are induced by reindexing along the following commuting diagram:

Ka,p 1S an iso.

KA,B

def. of k4 p

(B) — o M)} g (4B

Mg

Py ™)

T (24 (B)) P(Ta(Za(B))) Tz4(B)

{A} o p(A)

We now return to proving that o4 p is a natural isomorphism, by showing that the

following two equations hold:

-1 .
Uy po0AB = IdZZA(B)

1 .
04800y p=1idy,oxs0xi,

We prove these equations by showing that the following two diagrams commute:

370

idy

Z/

Appendix B. Proofs for Chapter[4,

Yo (Kfl)* OTIZ#TE* oKt

p is a split fibration

nZ'%n’* ox!

¥ A n*

It
ez 471*02/

Z/O (K—l)* oKt

Yo(k) orfoXok*

Y40 (Kil)* oK*onZH’Tl*

nat. of =™

! ot
Z’O(Kil)*on*OZOK*OnZ +Hn*

Z'O(Kil)*ol{*on’*off

Yo (Kil)* 01’]24”* ok*om* oY/

ZIO(K_l)*OTC*O Zlon/*oZoK*
ZOK* OTC/* OZI

p is a split fibration
X AT oy et

pisas. fib.

Z/OTE/*O
ZOK*OTC/*OZI

! ol
SE —r oYoKk* o oY/

pisas. fib.
Z/OTE/*O
Yom oY

R
EOK*OT]): -

%
Y om'* 08):—175 3

Z/OTE/*OZI ZOK*OTC/*OZ/

nat. of €= 17"

e
X 1T oY ot oY/

YomtoY

£
8):—<1t o/

B.5. Proof of Proposition 371
Yox*onE _
Yox* n Yok*om* oY Yomr oY
p is a split fibration
(a) = =" oy
ZOR*OZ/O(K_l)*OK* Z/
p is a split fibration
SZAR*OZ/O(Kil)*OK*
nat. of e¥'™
Zon*oZ’o(K‘l)*onE*"* ok*
Yom*oYo
(K*I)*o E'O(Kfl)*oK*
mfoXok"
idy o it
Yom
Z/O (Kil)* Oﬂ* oY ox*
pisas. fib.
Y Ar
Yom*oXoxk* =
] nat. of €= eZAT O o oY ot
& oy ot
Yokt — Yom*oXok*
82 - OZOK*

We conclude the proof of these two isomorphism equations by showing that the subdi-

372

Appendix B. Proofs for Chapter[4,

agram marked with (a) commutes. Its commutativity is proved as follows:

Yok*om* oYX/ —

Tok* onxl*"/*

Yox

TonZ i okt

Yom*oXok*

Next, we show that the four diagrams (1)—(4) commute. We again omit the sub-

Yom*oX o
(1) ok
p is a split fibration
p is a split fibration
. Yok*om*o
Yo (k) ok
Tok* onz/”‘/* o(k 1) ox*
Yok*o
(k"1 ok
Tok* o oX o (k1) onZ i oxc*
nat. of nzw”'
p is a split fibration p is asplit fibration

Tok*o(k 1)*on® T o i

! Sk
Lok on® 1T o(k 1) on* oZok*

Tom*oX o (k1) onE okt

pisas. fib.
Yox*o Yok*om*o
n*oXok* Yo(k)*om*oLox*

Yokt On):’%n’* o* 0T oK*
Yox*o YomroX o
n*oX om*oTok* (k" H*om*oXox*

idyo it on oxokt

. _
Lok* o oe™ 1™ oXok*

Yoxk*o -
EI*OEOK*

p is a split fibration

Yomr oY o

! el
Tom*oe 1T oXoxk* n*oXok*

scripts from k; p and (K;}B)*, and abbreviate the functors Ty 0y, X5 0 Xp, T3 . and

Xy, (B) @s 7*, ¥, ¥, and ¥, respectively. In order to further optimise the size of the

B.5. Proof of Proposition 373

proof of diagram (2), we instead prove the commutativity of an equivalent diagram, in
which we have replaced o, g 7(c) and T (o g,c) with their respective inverses.

First, diagram (1) commutes because we have

0'|p<A>.1t’l‘p(A) (A)
*

Eiy (T, (T(A)) —————> %1, (T(x] |, (4)) ——————> T(E1,,(x] , (4)

def. of 61,4 2, ()) ™M)
T(EIP(A) ("‘,;(A) (1))
Iy -t

" p(A) "p(a)

Zip Ty EIP(A) (T(T]HTP(A) @))

* *
ZIP(A) (T(Tclp(A)(_ Elp(A) (nlp(A) (7(
iy (R () (51 ()

I —Hnt

(4)
B <T(ﬂ:lp(A) (85
A T(e
7, (4)

T is split fibred

.
ooty ®) TAD

I
« p(A
i) (nlp(A) (T(ea

o)
T(4)

—ny
p(A)

;.

T
nat. of € 7 i)

oL M)
@)

T(A)
Next, diagram (3), which we prove before diagram (2) for better layout, commutes

because we have

Z4(np)
Za(B) Za(T(B))

PPEE A
Za (T]BA A)

nat. of n

T (Za(B) S T Za(T(mi(Za(B))))

Za M (24(8)))

m is split fibred OA.B

) def. of 64 5
Za(my (s, (8)))

nat. of €% '™

Ny (B) T(ZA (B))

374 Appendix B. Proofs for Chapter[4,

Next, diagram (2) commutes because we have

(rmg ") _ o)
(T(C) — = X ([T (" (X'(0)) — = Y@ (T(T'(0) — = T(T'(0))

eIt
nat. of €% T is split fibred nat. of &% T(X(C))
el e Lo I(n
T(1(C) (T (C))) T (@"(T((0)))

= (€)

TR D oy (r(= R (X (.
¥(1(C)))) (Z'(C))) T(Z'(C)))
2K (7 (€ e,
= p is a split fibration = T is split fibred =

e ¥/ 4n'*
Z(K* (nl* (Z(K (7\3 (2 <T(nC))))E(K* (n/*(= Z(K* (n/* (El(nl*(
X(T(0))))) (T (@ (Z'(C))))))) (X))
2 0 o)) e (e (1 (0)))
nat. of n¥ 1% T is split fibred
(e () =0 O T)

k * J¥
2(x(1(C) ———=>= I ——— I T(E(n (Z(C)))
£ (g) W (E(0))))) T(Z(0)))))
def. of “/ﬁ?‘c
(®) = (o3)
I(T(my(———— Z(mp(T(Sa(my (T((x7(C))))) T(S(x(m* (2 (C))))
S5(x*(C))))) S5(x*(C))))) A
T (Sifzt@* ©n)
pimp Ta(T (my (T(E(x (nE 7))
E(T(Me))) h C
) (x*(C)))))
T(Z(x*(C)))
g -y def. of G, .
ZA(T (Mg, (o) A Za(x (C)
def. of S c) A O)

T (K (C) 5o Za(T(Es(x"(C))))

Z4(opx*(c)) OAxp(x*(C))

B.5. Proof of Proposition 375

Finally, diagram (4) commutes because we have

T(04,8)

def. of 64 p
T3 (Za(B))))) ———=——> T(Za(n}(T(Z4(B))))) ﬁ T(T(Z4(B)))
T (75, (3

T(XA(T(B))) — > T(Za(T(

TE(T gt ™)
T, Anh . Ty AT)) 4 Anh
€115, (1)) nat, of €5 1% 7l (1w (54 8)) Tis split fibred 75 (0 (124 3)
" ZA%n;
)y T(ZA(T _
£ (g (AT D (g (7(Za(= £ (15 (T (S
7(B))))) B)N))
= T is split fibred nat. of €% T
A (T AT)
TA(T(ri (VA8 P8 (T (e (B EA(NZ(T(EZAﬁ(:) My (B)
7(B))))) T(m;(24(B))))))) TEAB) e
Er(1(Z4)
T
ok o T4y
oarm\ | BATgly ™) (et | nrmld)
T is split fibred
4(T(T(B))) o Ta(T(T((2a(8)))) ——=> Za(my(T(T(Za(B))))
LA(T(T(g")
nat. of > 1T
Sa(up) nat. of otz (x4 (8)) wis split fibred Za(m) (s, (5)))
* T4k
T (r(n?‘) i - i 81@)
TA(T(B) > Za(T(m(Za(B)) ————— Za(m(T(Za(B)))) ———————= T(Z(B))
GA.B

We conclude by noting that the subdiagram marked with (b) in the proof of diagram

(2) commutes because we have

376 Appendix B. Proofs for Chapter[4,

eZAm*
. , T(¥(C)) ,
L (T(Z'(0)))) T(Z'(C))
nat. of €™ T(eg/?g;*)

E(n (T (e)

©))

p is a split fibration

((T(E(x" (0" (Z'(C)))))

p is a split fibration

T is split fibred

(e (g)
Hn
T(X(x*(C)))
def. of €=
;o Ip ATy N
T is split fibred St (T(E(e* mE 7)) ep (Z(x*(0)))
nat. of €%

ﬁﬁ{&*c(igﬂ)() B (T (O)) 5 ZA T T EaE((C))

% (120 (0))))

= T is split fibred =

P =(m; (T(n*(ZA(%?“?’;%(K*(C»»)
(k" (™ (T (X(C))))) = BV AL —— La(T(m3 (Za (Zp(x7(0))))))

- T is split fibred _ nat. of %% AT (");2 (t??c))))
p is a split fibration
(T ——» E(T(k((T(x (Z(x*(C))))) LA(T (p(K*
. = . A(T (Zp(*(C))))
" (2'(0))))) T (Z'(0)))))
def. of 17"
S (T) S

—_ T is split fibred ok

% ks kY
T is split fibred (T (mp (Mg (ot A €7z (e c))

N IpAmy
2(7(e (nF 7)) p— (T Msp ey

i T (Es(<(C))) = Z(m(T(Es("(C))))

(k" (T(C)) ——=— X(T(x*(0)))
Z(T(WK*(C))

B.6. Proof of Theorem[4.3.24 377

B.6 Proof of Theorem

Theorem 4.3.24, Given a split comprehension category with unit p : V — B with
split dependent products and a split fibred monad T = (T,M,u) on it, then the corre-
sponding EM-fibration p* : V¥ — B has split dependent p-products.

Proof. Given an object A in ¥/, the functor I} : ‘V{Tq} e ‘V;E 4) is given on objects by

H}(B7B) = (HA(B)a BH})

where the candidate EM-algebra structure map BH} : T(T14(B)) — T14(B) is defined

as the following composite morphism:

) — - METmE)
AT (3 (T4 (5))))
A(B) o T (T(B) i ™)

using the split dependent products in p, i.e., the adjunction 1} 11, : ’V{ A} — ‘Vp(A)>
and making use of Proposition 4.3.22|to ensure that 3 is a vertical morphism.
Next, we prove that the morphism BH} : T(I14(B)) — I14(B) is indeed a structure

map of an EM-algebra, by showing that the next two diagrams commute in ‘Vp(A)-

M, (B)

I14(B) T(I14(B))

*
1L, TEA%HA

™
nat. of n N7, (8)

4 (3 (N, 8)))

[(3 (T (A (B))))

7 is split fibred

A (T (;(TIa(B)))) | Put

I4(ng)

(B,B) is an EM-algebra

378 Appendix B. Proofs for Chapter[4,

M1y (B)
T(T(I4(B))) T(T1x(B))
T(nyl%‘?;A) nat. of n™ " nat. of 7™ n?él:ﬁg))
3 Ty Y WAL
T(Ia (75 ("l sy @) 0 (0 (T ety (my(r()
T(1a(B))))) T (w3 (T (T14(B))))))) T(Ia(B))))) T(Ta(B))))
Ty AT,
= T is split fibred = = u is split fibred =
T is split fibred
T is split fibred
nn‘j‘ﬂTA . En‘f\inA Ty o)
T(I4 (T () (T4 (B))))) . - . T(wy (T4 (B))) A (T4 (B))
TMN(T(2 % SV T (m (T(Ta(— =5 Ma(T(m(Ma(—2 "5 IW(T(T(— 2 % 5 T(T(
7, (T4 (B))))) T (w3 (1a(B))))))) T(m;(Ma(B))))))) m; (T4 (B))))) 7, (T4 (B))))
" w11,
Ty () (T (T4 (T(sBA A N)) 715 split fbred nat. of £% T nat. of u
mat.of % ML (T (AT) (T ™) myrE)
TArEg ™)

T(IL(1(B)) ——— M (——— (T ——— 1, (7(7(B))) ———— IL(T(B))

g U IMEE)) T ITE)) merEh,™) Tl 1)
Iy () (T(TL4 (B)))) T is split fibred nat. of €% 1k (B,B) is an EM-algebra
nat. of % 1 I, (T () (TT4 (B)))) A (T(B)) 4 (B)
T(T4(B))

T((B) ——— Wam(— -~ IL(T(> 11,(7(B))

S M) %ILB) mreh ™ e
N7y (8) A A\ T, (T (e)

The functor IT} is defined on morphisms 4 : (B,B) — (B',p’) simply by letting

B.6. Proof of Theorem[4.3.24 379
def

I} (h) = T4 (h). It is easy to see that this gives us an EM-algebra homomorphism:

T (4 (h))

T(T1s(B)) T(Tl4(B"))
Ty ih) cai ot g ";%r?;(z‘a’n
T (114 (B I (7% (T (T14 (B’
(T (4(3)) e TG (T ()
= T is split fibred =
Py T MAB)) AT EILE)) | F
(Tl ™)
nat. of €% e, @i B;TI
(e ™)
TA(T (B)) Tw) TA(T (B"))
T4 (B)
h is an EM-algebra homomorphism
4 (B)

I14(B) 4 (B')

4 (R)

Further, it is also easy to see that HX preserves identities and composition—these prop-

erties follow directly from the functoriality of I14. We therefore omit these proofs.

We proceed by proving that we have an adjunction 7} HX : ‘Vg;} — ‘VI}E Ay

First, we note that the components of the unit and counit natural transformations

* T . * T .
% idyr — Hiom;, e giolll — idyr
p(A A
are given simply by
T AT er 4 T4 T AL qer 75 ALy
Np ~MNs “p) T

Next, we prove that these components are indeed EM-algebra homomorphisms, by

380 Appendix B. Proofs for Chapter[4,

showing that the next two diagrams commute, in ‘Vplz) and ‘Vg‘}, respectively.

T(B) T (I4(my (B)))
nat. of n% 1l 1 Ml

def. of (3 (B))ny

A (T (3 (TTa (74 (B)))))

N s split fibred
B My (T (s A 4y | AT A CAI
ITA(T (10
ITa(my (T'(B)))
nat. of % 1 I (3 (8))
B TI4(m; (B))

Mg

B.6. Proof of Theorem4.3.24 381

) T(Snz#HA)
7 (1, (TTA(B)) : 7(8)
_ nat. of €% Tl
(T(I1A(B)))
2 o 11
o5 A T1, Sr?nj(IqA(B)>)
oy (Ha (73 (T (T4 (B)))))
T is split fibred
nj(ﬁH}) def. of mj (Brrr) = P
4 (Ma(T (7 (T1a(B))))) s,
ST/?B)
T (7 (e ™))
Ty (A (T (B)))
i (T4 (B)) nat. of €™ 'l
7 (T4 (B B
A(A()) egjﬁnA

The naturality of 4 and €™ T, and the two unit-counit laws follow directly
from the corresponding properties of the adjunction 1), =1l : ’V{ A} — ‘Vp(A)-

We conclude by noting that the adjunction 7t < I1} : ‘V{Tf;} — ‘VI}E 4) also satis-
fies the split Beck-Chevalley condition from Definition 4.1.10}—similarly to the other

properties, it also follows directly from the corresponding property of) —11,4. [

382 Appendix B. Proofs for Chapter[4

B.7 Proof of Theorem

Theorem Given a split comprehension category with unit p : ‘V — B with
strong split dependent sums and a split fibred monad T = (T,n,u) on it, then the cor-
responding EM-fibration p* : VT — B has split dependent p-sums if the dependent
strength of T is given by a family of natural isomorphisms, i.e., if for every A in V,
Cp : Xp0T — T o Xy is a natural isomorphism. Furthermore, these split dependent
p-sums are preserved on-the-nose by UY, i.e., we have UT (XX (B,B)) = Z4(UT (B, B)).

Proof. Given an object A in 7/, the functor X7 : ’V{};} o ’VPT(4) is given on objects by

Z}(Ba B) = (ZA(B)7BE})

where the candidate EM-algebra structure map Bzg : T(Z4(B)) —> X4(B) is defined

as the following composite morphism:

using the split dependent sums in p, i.e., the adjunction £, 47} : ‘Vp(A) — ‘V{ A); and
making use of Proposition to ensure that 3 is a vertical morphism.
Next, we prove that the morphism [32} :T(24(B)) — X4(B) is indeed a structure

map of an EM-algebra, by showing that the next two diagrams commute in ‘Vp(A)-

Mz, (B)

Z4(B)

(@)

def. of ﬁZ}

(B,B) is EM-alg.
ZA(B)

YA(B)

B.7. Proof of Theorem4.3.26 383

T(Byr)
T(T(Xa(B))) : T(XA(B))
def. of Pyr
T(c,p) T(Za(B))
T(£4(T(B))) %
GX,IT(B) nat. of 6;1
Mz, (B) (b) YA(T(T(B))) 2T A(T(B)) defioffyr |Byr

Y4 (up) (B,B) is an EM-algebra

Cup def. of Byr Za(B)

T(Za(B))

We conclude the proof that Bz} : T(24(B)) — Z4(B) is an EM-algebra structure
map by noting that as idy, (p). 6;7}5,, and GX,IT(B) el T(G;}S,) are all isomorphisms, it
suffices to show that the subdiagrams marked with (@) and (b) commute when these
morphisms are replaced with their inverses. However, after replacing these morphisms
with their inverses, we see that the corresponding diagrams are exactly diagrams (3)
and (4) from Proposition governing the interaction of 64 with 1 and p.

Next, the functor X} is defined on morphisms / : (B,B) — (B',p’) simply by let-
ting X1 (h) = 4 (h). It is easy to see that this gives us an EM-algebra homomorphism:

384

Appendix B. Proofs for Chapter[4,

T(Za(h))

T(Za(B)) T(Za(B)
oY (©) Y
>A(T(B)) EAT) XA(T(B"))
ZA(B) h is an EM-algebra homomorphism | 24 (B')
4 (B) TA(B')

Za(h)

We show that the square marked with (¢) commutes by observing that 6, and

o, }g, are both isomorphisms. As a result, it suffices to show that the next diagram com-

mutes, where we have replaced these two morphisms with their respective inverses.

T(Za(h))

T(Z(B)) T(Z4(B'))
) nat. of g5 % Si?zﬁ'»
. ZA(my (T(Za(R)))) N
Fa (T (T (Za(B)))) — it A (T (T(Za(B'))))
CA.B def. of o4 5 = T is split fibred = def. of 64 p Gy g/
ZA(T (3 (Za(h))))
A (T (1 (24 (B)))) — A ZA(T (5 (Za(B))))
sA(T (A ™)
nat. of n™ '™
sA(T(™)
YA(T(B YA(T (B
A(T(B)) SRCT) A(T(B))

. T * T * . . .
The naturality of n* "™ and €™ "™, and the two unit-counit laws follow directly

from the corresponding properties for the adjunction 4 47y : V,4) — Via}-

We conclude by noting that the adjunction £} - 7t} : ‘VPT(4 ‘V{TA} also satis-

fies the split Beck-Chevalley condition from Definition 4.1.10}—similarly to the other

properties, it also follows directly from the corresponding property of ¥4 4 7}.

]

B.8. Proof of Theorem4.3.28 385

B.8 Proof of Theorem

Theorem 4.3.28, Given a split comprehension category with unit p : V — ‘B with
strong split dependent sums and a split fibred monad T = (T,m,u) on it, then the
corresponding EM-fibration p* : V¥ — B has split dependent p-sums if p* has split

fibred reflexive coequalizers.

Proof. Given an object A in Y/, the functor Z;l; : ‘V{E} — ‘VI}E) is given on an object

(B,B) of ‘V{TA} as the reflexive coequalizer

€A,(B.B)

(T(Za(B)) s,y (8) —— ZA(B,p)
of the following pair of morphisms in ‘VPT(4y given by

T(ZA(B))

(T(Za(T(B))) s, (7 (B))) (T(Za(B)),uz,(8))

and

T(Ea(rm ™)

(T (ZA(T(B))), 1z, (1(8))) (T (Za(T (13 (£a(B))))) My, (7((24(B)))))

(T (Za(my (T (24(B)))))s My (s (1(a(B)))))

Iy ATy

T(&r (s, (n))

(T(Za(B)),uz,(8))) (T(T(Za(B)));Hr(z4(B)))

using the split dependent sums in p, i.e., the adjunction X4 -} : ‘Vp(A) — ‘V{ A); and
making use of Proposition[4.3.22]to ensure that f is a vertical morphism. In the rest of
this proof, we systematically refer to these two morphisms as (1) and (2), respectively.
Further, as a notational convenience, we often write (U (21 (B, B)), BE}) for £} (B, B).

It is easy to see that both (1) and (2) are in ‘VPT(4)- On the one hand, all mor-
phisms used in the definitions of (1) and (2) are vertical over id,4). On the other
hand, all morphisms used in the definitions of (1) and (2) are EM-algebra homomor-
phisms because i) we know from the definition of the Eilenberg-Moore resolution that
FY(f) = T(f), and ii) it follows from the definition of monads that the components of

p are EM-algebra homomorphisms, i.e., we have uy, (g) 07 (5, (B)) = M, (B) © T (us, (B)).

386 Appendix B. Proofs for Chapter[4,

The final ingredient we need to construct the reflexive coequalizer ey (g g) 18

(T(2A(B)) iz,) —2) (T (24 (T(B))) s, (75)

that forms the common section of (1) and (2), as shown by the commutativity of the
next diagram. In order to minimise the space taken by this diagram, we present it (and
other diagrammatic proofs below) in 9/ rather than in 9T, working directly with the

underlying morphisms of the EM-algebra homomorphisms involved.

T(2a(B)) TEate) T(ZA(T(B)))

)
T(Za(T(my(24(B)))))

7 is split fibred

T (Za(my(Nxy) =

T) T(Za (3 (T (24(B)))))
T(Xa(ng)) nat. of % 1T T(S?(\E:rz%)))
T(n)
T(24(B)) i T(T(Za(B)))

(T,m,u) is a monad

idT(ZA(B)) 'u):A<B)

(B,P) is an EM-algebra

T(Za(T(B))) T(2a(B))

B.8. Proof of Theorem[4.3.28 387

Next, we define the action of Z} on morphisms of ’V{TA} using the universal property
of reflexive coequalizers. In detail, given a morphism % : (B,B) — (B',p’), we define

the corresponding morphism X} (/) in ‘VI}E 4) as the unique mediating morphism in

(T (Za(T(B))) 1z, (r(5y) 2 (T(Za(B)),u5,5)) ——— Z4(B,B)

A

|
T(2a(T(h))) T(S4(h)) 12} ()

|

) '
(T(Za(T(B)))t5 () ————= (T(Za(B))stisa8) —2r 5 X1 (B,B)

In order for Z}(h) to exist and to be the unique such morphism, we need to prove

eap)oT (Za(h)o (1) =es @ p)oT(Ea(h))o(2)

We prove this equation by first observing that we have

eamp)o(l) =eamp)o(2)

because e4 (p p) is the reflexive coequalizer of (1) and (2)'. As a result, it suffices to

show that the two left-hand squares given in the above diagram commute.

The left-hand square involving (1) and (1)’ commutes because 4 is a EM-algebra

homomorphism—this is best seen when we rotate this square by 90 degrees:

T(za(T(B))) ~2TL (5, (7(8)))
T(Z4(B)) T(Za(B))
T(Za(B)) T(Za(B)

388

Appendix B. Proofs for Chapter[4,

The other left-hand square, involving (2) and (2)’, commutes due to naturality:

T(Za(T(h)))

T(XA(T(B))) T(Z4(T(B")))
TEAT A ™)) nat. of n* % TEAT g ™))
T(2a(T (3 (24(B))))) AT A T(Xa(T (13 (Z4(B')))))
- T is split fibred =
T (Z4(my (T (24(B))))) A T T(Za(m3(T(Z4(B)))))
) nat, of €547 T)
T(T(Xa(B))) TEEA) T(T(Xa(B')))
s, (8) nat. of s, (8)
T(Xa(B)) T) T(Z4(B'))

We omit the proofs showing that Z} preserves identities and composition—both

properties follow directly from using the universal property of reflexive coequalizers.

We proceed by proving that we have an adjunction Z} a7 ’VPT()

T
—> q/{A}.

B.8. Proof of Theorem|4.3.28 389
T *
First, the underlying morphism of a component n(zg g)n 4 of the unit natural transfor-

mation

T . % T
n4 A.qu/{A}—>TCAOEA

is given by the following composite morphism:

ZA —UE;;

B " m(2a(B))

T (Mx, () T4 (e, .8))

Ty (T (Za(B))) (U (Z1(B,B)))

which we prove to be a EM-algebra homomorphism from (B,) to (1 (B,B)) by

showing that the next diagram commutes in ‘V{ A}

T(n?‘ Mr‘) T(my (g, () T(m} (ea (8p)))

T(B) —————> T(m}(Za(B)) ——— T(Wi(T(%(B)))) —— T(mi(UT(Z}(B.,B))))

(b) = 1 is split fibred = T is split fibred =
S T (T(Mg, (5))) Ty (T(ea,8,8))) -
g T(T(EaB) — > m(T(T(Za(B) — > m(T(UT(Z4(B,B))))

(T.n,12) a monad

et (74 (8)))

h is an EM-algebra homomorphism

T (H):A) T (BEI)

nat. of n* 1%

B “(Z4(B)) — > i (T(Z4(B))) —— > w3 (UT (=Y (B
R T3 (Z4(B)) T (e, 3) T (T(Z4(B)))) T (U (Z4(B,B)))

Here, the subdiagram marked with (a) commutes because e A,(B,p) 18 the coequalizer of

390 Appendix B. Proofs for Chapter[4,

T(X4(B)) and (2); and the subdiagram marked with () commutes because we have

7(8) o T(m} (%4 (B))

DIRE

nT(B) nat. of ™ 1%

7 (gt)

T(ZA(T(B) — MEa(T(m4(2a(B)))))

3 (s (r((54 (8))))) (T.1.41) is a monad
T (M, (7))

n *
e (W (£a (B))

T (T (Z4(T'(B)))) T, (T (Za(B)))
nat. of |
(1T ™) e
T (T (Za(T (T3 (24 (B)))))) T(T (m3 (24 (B))))
w is split fibred
T(”i?n;éf\ ®) Tz)

= T is split fibred T(TE;; (ZA(T(E;‘(EA (B))))))
X Am,

T is split fibred

T (T (Za (3 (T (24 (B)))))) m(T(T(2a(B))))

IpHmy

T (T(ST(ZA(B))))

We omit the proof showing that nE} T4 is natural—it follows directly from the
naturality of 1 and N> "™, combined with the definition of Z} on morphisms.
. . T .
Next, the underlying morphism of a component € (4 B)n 4 of the counit natural trans-

formation

T %
RS W

« .
oy — |der(A)

is given by the unique mediating morphism in

BoT(ey ™) |
|
* ﬂ> * : T px
(T(Za(T (4 (B)))), s,y (1 (5 (B)))) = (T(Za(m3(B))), bz, (s (B))) Eig
|
|
€A% (B,B) :

B.8. Proof of Theorem4.3.28 391

using the universal property of the reflexive coequalizer e A, (B)m; (B))- In order to do

SEA —(RA)

so, we first prove that fo T'(is an EM-algebra homomomorphism, by showing

. T(T(ey ™)) 7(8)
T(T (Za(my(B)))) T(T(B)) T(B)
My, (5 (B)) nat. of u HB (B,B) is an EM-algebra B
T(Zs(mh (B T(B B
(EA(T5(B))) —— (B) ;
i

Further, for g 4 B) to exist and be unique such morphism, we also need to show that
BoT(es' ™o (1) =BoT(es' ™)o(2)

This last equation follows from the commutativity of the next diagram in ‘Vp(A)-

= T(Z4(m3 (B)))

T(Xa(T (73 (B)))) T(Xa(my (T (B)))) T (Z4(m4(B)))
TEAT O) mm——
T (24(T () (Za (3 (B)))))) o T(Za(T (73 (B))))
T(EA(T(w;(e5")
= T is split fibred - m?(x;)"fx) T s
T (Za(m3 (T (Za(mi(B)))))) o T (Z4(m3 (T (B))))
T(Ea(my (T(eg")
Crizyiagon) nat. of €54 % Ty ™)
T(T(Xa (7 (B))))) T(T(B))) T(B)
B
Hgq (4 (B)) nat. of u B (B,B) is an EM-algebra B
T (Za(my(B))) T(B) B

DI
T ™) B

392 Appendix B. Proofs for Chapter[4,

T ® o, . . .
Next, we prove that € ™ is a natural transformation: given a morphism

h:(B,p) — (B',p) in ‘Vp 12 4)» We show that the following diagram commutes in Vo(ay:

82:{—“:2
U (=X (5 (B,B)) - B
en s (B.5) def. of e} 1™ 8
EA ‘H'ng
T(e)
A(B))) > T(B)
h is EM-alg. hom.
Th(mi(h) | def. of EX(wj(h)) |7 (Za(m;(h))) @ nat. of e 1% T (h) h
5(8))) e T(8)
€y o (B/ B/) def ofez’%"”; B/
A B -OLEp g
Ut (zi(m,(B,B))) T B
i 47:;
&5)

and then recall an important property of coequalizers—they are epimorphisms. As
€A (m; (B).m;(B)) is a coequalizer and thus an epimorphism, the outer square starting

at UT(ZT(m; (B),m}(B))) commutes because epimorphisms are right-cancellative.

. . T * T *
Next, we prove that the two unit-counit laws hold for n™ "™ and e¥4 ™, by show-

ing that the next two diagrams commute in ¥4, and V), 4, respectively.

B.8. Proof of Theorem4.3.28

T
“nﬁw,[?) . T(yT
T (B) T (U7 (24 (4 (B, B))))

nig (Z)‘A def. of =4 7 T (eans (8,8))
T3 (Za (w3 (B))) " T, (T (Za (T4 (B))))
T (M (s (8))
ides 8) TyAm w (e ™)) | | def of et
nat. of n
et ™) T, (T(B))

(B,B) is an EM-algebra

4 (B)

ides 8)

b
E}\‘(ﬂ([}_p) A)

UT(ZX(B,B))

def. of £ (n{a ™)

€A,(B.B) am; (=X (8))

T
T(Z4 (ﬂ(,ﬁﬁ)nA)

T(Za(B)) ——— T(Za(my (UT(Z}(B.B)))))

dyT s ()

T(Za(my (ea (5,p))))

Sm| | 7@y)
def. of &% 1%
T(ZA (TC;; (ZA (B)))) def. of n™ ™

Iy Amy
€Tt g

)

T(Za (w3 Ny, (8)))

T(Za(my (T (24(B)))))

Tp Ty
€ ()

nat. of g% '™

nat. of g% % T(

T(T(Za(B) —

T(ea,) T(UT(z}(B.B))

ea (p.p) is an EM-alg. hom.
(T,m,p) is a monad

T(2a(B))

idr(z, ()

€A,(B.B)

Ut(zi(B.B))

393

UT (2 (m3 (25 (B.B))))

E} 41:1’;
=1 Bp)

dyT (T 3.6

Ut (z}(B.B))

.. . T o . .
Similarly to the naturality proof of €% "™, the outer square in the second diagram com-
mutes because ey (g g) is a coequalizer, and thus an epimorphism and right-cancellative.
We conclude our proof of the existence of split dependent p-sums by proving that

the functors Z} satisfy the split Beck-Chevalley condition. In particular, we show that

394 Appendix B. Proofs for Chapter[4,

for any Cartesian morphism f(A) : f*(A) — A, the next diagram commutes.

T 7[
£L. oy (FA (g ™))

UT(EL. (T(A4)}*(B.))) UT(EL.) (F(A))* (x5 (Z1(8.5)))))

id .
uT <f* () (F@YBB)) . B Sz - e
(A){F(A)} (B.B) def. of 7.) ({F(4)}* (35 *)) FH) {Fa)}* (x5 (24 (B.p)))

T ok
T(2 e) (FAY (g ™)) o
i T(Zpea)({£(A)}

m (UT(Z1(B,B)))))

TEp
{f(4)}"(8))

def. of ™ 1M

T(Zpe oy (FAN (™))
p is a split fibration = pisas. fib. =
T(E e) (AN (15 (e 5.5))

T(Zpa){F(A)}(
T (Za(B)))))

Ty ({FAY (3 (g, 8)))))

split BC = p is a split fibration

/ [H }_ (BB
(e a) (e) (€W W (7l
f*(Za(B))))) Frwtaiep) f* B)))))
(4)
T(Zpxa
nat. of €5 W T)
W T(Zpa)
744 ®) (T (Za(B
nat. of €@ % T(Ei{ZT)):;T;)))A))
T EAB) — e T () [
T(f*(ng, s)) A(B
T is split fibred
FH(T(Z4(B -
((())) f (T(TIZA(B))) ¢4 (.p) is an EM-alg. hom.
y Iz, (8)) £ Br) | | et o e =i
1A (T(24(B)))

FH(T(Za(B)))

4 (s.p) is a split fibred refl. coequalizer

f*eap))

UT(ZF) ({F(4)}(B.B))) = Ut EL(B.B)

Analogously to the naturality proof of €% 75 and the proof of the second unit-
counit law, the outer square again commutes because e FH(A) AT (A)1(B,B) is a coequalizer,

and therefore an epimorphism and right-cancellative. O

Appendix C

Proofs for Chapter 5

C.1 Proof of Proposition

Proposition (Semantic weakening). Given value contexts I'y and I'>, a value
type A, and a value variable x such that [I'1,I2] € B and [I'1,x:A,I2]] € B, then we

have:

(a) Given a value type B such that [U'1,T2;B] € Vr, r,], then
[T1,x:A4,T2;B] = projr, ea.r, ([C1,T2:B]) € Yr, xa,r]

(b) Given a computation type C such that [I'1,12;C] € Ay 1] then
[T1,%:A,T2;C] = projr, .ar, ([T1,12:C]) € Oy xcamy]

(c) Given avalue termV such that [U1,T2;V] : 1, r,] — B, then

[T1,x:A,T2;V] = projr, e, (IT1,T2: VD) : 1ry ea,r,] — Proir ceasr, (B)
(d) Given a computation term M such that [T'y,To;M] : 1jr, r,) — U(C), then
[T1,x:A,T2;M] = projr, ea.r, (IC1,T2:M]) < Ury 4 my) — U (Projry ear, ()

(e) Given a computation variable z, a computation type C, and a homomorphism term
K such that [T'1,T2;z:C;K] : [I'1,T2;C] — D in (-, ry], then

[T1,x:A,T2;2:C;K] = projp, ., ([T1,12:2: C;K])
: projlt];x:A;Fz([[FhFZ;Q]]) — projl*"l XA, (l—))

395

396 Appendix C. Proofs for Chapter[§

where we use the notation
[[th;A,FQ;B]] = projl*"l ;x:A;Fz([[Flﬂrz;B]]) € {V[[Fl XA D]

to mean that [I'y,x:A,T2; B] is defined and that it is equal to projr-...a.r, ([T1,12; B])

as an object of ‘V[[Fl xA,]- We also use analogous notation for terms and morphisms.

Proof. We prove (a)—(e) simultaneously, by induction on the sum of the sizes of the
arguments to [—]. We omit the cases involving the MLTT fragment of eMLTT because
in the setting of contextual categories these proofs can be found in [107, Chapter III].
The proofs of all the cases (both those covered in op. cit. and the ones discussed
below) follow the same general pattern: they rely on the semantic structures we use in

the definitions being split, 1.e., preserved on-the-nose by reindexing functors.

Type of thunked computations: In this case, we assume that
[T1,T2;:UC] € Vr, 1y
and we need to show that
[T1,x:A,T2;UC] = projr, ar, (IT1,T2;UC]) € Y, xcary]
First, by inspecting the definition of [—] for UC, the assumption gives us that
[T1,T2:C] € (r, 1y
on which we can use () to get that
[T1,x:A,T2;C] = projr.ea.r, ([F1,12:€1) € Cry xary)
Now, by applying the functor U to both sides of this last equation, we get
U([T1,x:A4,T2;C]) = U(projy ea.r, (IT1,12:C))) € Y, xa]
Next, as U is a split fibred functor, we also have that
U([T1,x:A,T2;C]) = projr, ..a:r, (U([T1,12:C))) € Y, vy
Finally, by using the definition of [—] for UC, we get that

[[rl,XZA,Fz;UQ]] = projltl;x:A;Fz([[rlvFz;UQ]]) S r[/[[l"l,x:A,Fz]]

Homomorphic function space: In this case, we assume that

[[1,T2:C — D] € Vir, 1y

C.1. Proof of Proposition 397

and we need to show that
[T1,x:A,T2;C —o D] = projr, .ar, ([T1,12;C — D)) € Yr, xa]
First, by inspecting the definition of [—] for C —o D, the assumption gives us that
[T1,T2:C) € (r, 1y [T1,T2;:D] € O,y
on which we can use (b) to get that
[T1,x:A,T2:C] = projryear, (L1, 12:C1) € (ry xary)

[[Fl,X:A,FQ;Q]] = projltl;xiA;Fz([[Fl7F2;Q]]) E C[[r],xZA,Fzﬂ

Next, by applying the functor —o to both sides of these equations, we get

[T1,x:A,T2;C] —o [[1,x:A,I2;D] =
pr0j1*~1 ;x:A;FZ([[Fhrz;Q]]) —-° projiil ;x:A;Fz([[F17F2;Q]]) S (V[[Fl XA D]

Next, as —o is a split fibred functor, we also have that

[T1,x:A,T5;C] —o [I'y,x:A,T2; D] =
projl*"l;x:A;l"z(HFlaFZ;Q]] - [[rlvrz;Q]]) S {I/[[FI,XIA,Fz]]

Finally, by using the definition of [—] for C — D, we get that

[[Fl XA I C —o Q]] = projl*"l ;x:A;Fz(Hrl ;€ — l—)]]) € ‘V[[l"l XA

Type of free computations over a value type: We omit the proof for this case because

it is analogous to the case for the type of thunked computations.

Computational X-type: In this case, we assume that
[T1,T2;2y:B.C] € (r, 1y
and we need to show that
[Ty, x:A,T2;2y: B.C] = projp, ear, ([F1:,12:Zy:B.C]) € (ry vary)
First, by inspecting the definition of [—] for £y:B.C, the assumption gives us that

[C1,T2:B) € Yy [F1:T2,y:B:C] € Cypry)

on which we can use (a) and the induction hypothesis, respectively, to get that
[T1,x:A,T2;B] = projr, oar, ([F1,T2:B]) € Y, xeary]

IIFDX:A?FZ?)):B;Q]] = proji’i] ;x:A;Fg,y:B([[FhFZ?y:B;Q]]) S C{[[Fl,x:A,Fz;B]]}

398 Appendix C. Proofs for Chapter[§

Now, by using the definition of projr.,.4.r, y:z in the second equation, we get that

[T1,x:A,T2,y:B;C] = ({proir,.ca:r, ([T1,T2: B]) })*([T1,12,y: B;C]) € Cyyr ca,:8])

Next, by applying the functor Xy, .4 ;5] to both sides of this equation, we get
that

2, warys) ([F1,x:A, T, y:B;Cl) =
E[[Fl ,x:A,Fz;B]](({projfl;x:A;Fz<[[rl7F2;B]])})*([[F1ﬂrzvy:B;g]])) € Cﬂf‘] XA L]

Next, by using the equation we got from using (a) above, we get that

Z[[F] ,x:A,Fz;B]]([[Flvx:AaF27y:B;Q]D =
Zprojl*"l;x;A;rz(ﬂFl,Fz;B]])(({projrl ;XIA;Fz([[Fhrz;B]])})*([[Fl’F27y:B;g]])) € C[[F17X1A,F2]]

Now, by using the split Beck-Chevalley condition for Xjr, .4 r,.5], We get that

ey earys) (01,204, T, y: B;Cl)) =
Projr i, (Z[[Fhrz;B]] ([T1,T2,y:B;C])) € Ay A

Finally, by using the definition of [—] for Xy:B.C, we get that

[[Fl,XZA,Fz;ZyZB.Q]] = prOjFl;x:A;Fz([[rl7F2;Zy:B'Q]]) S C[[Fl XA

Computational I1-type: We omit the proof for this case because it is analogous to the

case for the computational X-type.

Thunking a computation: In this case, we assume that
[[Fl,rz;thunk M]] : 1[[F17F2]] — U(Q)

and we need to show that

[Ty, x:A,T2; thunk M] = projr .,.4.r, ([[1,12; thunk M])

: 1[[F1 XA D] — projltl;x:A;l"z (U(g))

First, by inspecting the definition of [—] for thunk M, the assumption gives us
[[F],FZ;M]] : 1[[F17F2ﬂ —>Q
Now, by using (d) on this morphism, we get that

[[Flvx:A7F2;M]] = proj;:];x:A;Fz(HFhFQ;M]]) : 1[[T],x:A,F2]] — projltl;x:A;Fg (Q)

C.1. Proof of Proposition 399

Next, by using the definition of [—] for thunk M, we get that

[T1,x:A,T2; thunk M| = projf .. a.r, ([T'1,T2; thunk M])

: 1[[F1 XA T U(projl*"l;x:A;Fz (Q))
Finally, as U 1is a split fibred functor, we get that

[T1,x:A,T2; thunk M| = projf .. a1, ([T'1,T2; thunk M])

1y A] — PrOjf A, (U(C))

Homomorphic lambda abstraction: In this case, we assume that

[T1,T25Az:C.K] 2 1y,) — [[1,12:C] — D

and we have to show that

[T1,x:A,T2;Az:C. K] = proj, a.r, ([T1,T2;A2: C. K])

: 1[[F1,x:A,F2]] — projl*"l;x:A;l"z ([[FbFZ;Q]] —-° Q)
First, by inspecting the definition of [—] for Az:C. K, the assumption gives us that

[T,T2;2:C;K] : [T'1,I'2;C] — D

Now, by using (e) on this morphism, we get that

[T1,x:A,T2;2:C K] = projp .ear, ([F1,12:2: C:K])

. projl*"l XA, ([[Fl) FZ;Q]]) — projl*"l XA, (l—)>
Finally, we show that

[T1,x:A,T2;Az:C. K] = projf ..ar, ([T1,T25Az: C. K])

1) xAry] — PrOJL e, ([T1,12;C] — D)

by proving that the next diagram commutes, in which we write pr for projr . .4.r,. To

400 Appendix C. Proofs for Chapter[§

improve the readability of this diagram, we aggregate some small proof steps.

[[y,x:A T2 Az:C. K]
Liry Ao 2 pr*([I'1,I2;C] — D)

def. of [I',x:A,T;Az:C.K]

idprt ([Ly:C] —D)

() =

§[7121 XA]pr* ([T, To:C),pr* (D) (pr* ([[Fl T2 ;Z:Q;K]]))

= pr*([I'1,T2:C]) — pr*(D)
&1 is preserved on-the-nose by reindexing
pr* (‘tvﬂ_rll T,1,[T; ,Tp:Cl.D ([[Fl) ;Z:Q;Kﬂ))

/\

Pr(1r, r]) def. of [, 2:Az:C.K] pr*([[',T2;C] —o D)

\—/

pr*([T1,[2;Az:C.K])

Returning a value: In this case, we assume that
[Ty, T2;return V] : 1y,) — U(F(B))

and we need to show that

[T1,x:A, s return V] = projf .ar, ([T'1,T2; return V])
: 1[[F1,x:A,F2]} — U(projltl;xiA;rz (F(B)))

First, by inspecting the definition of [—] for return V, the assumption gives us
[T, T2 V] Uy — B
Next, by using (¢) on this morphism, we get that
[C1,x:4,12:V] = projr eair, (0L, T2: V) < 1y vary) — ProiF eair, (B)
Finally, we show that

[T1,x:A,T2;return V] = projr, .4, ([T1,2; return V)
: 1[[r1,x:A,F2]] — U(projltl;x:A;l"z (F(B)))

C.1. Proof of Proposition 401

by showing that the next diagram commutes.

[['},x:A,p;return V] .
Uy cary] U(projr,.eair, (F(B)))

def. of [['y,x:A,I;;return V] =
[Ty,x:A V]

FAHU
prOJiil XA (B)

U(F (projr, .y (B)))

Proposition

projl*"l XA (B)

()

projlt AT ([[rl ,FZ,V]]) .
o 2 projFl;x:A;Fz (n£4U)

functoriality of projr. ...,

projl*"l XA, (1 [r,I2]) projl’il XA (U(F (B)))

pI’Ojltl WA, (T]F_'U o [[Fl aFZ;Vﬂ)

def. of [['},I;return V]

projl*"] AT, ([[Fl 7F2;I'eturn V]])

Sequential composition for computation terms: In this case, we assume that
[[Fl,rz;M toy:Binc N]] : IHF17F2]] — U([[FI,FZ;Q]])

and we need to show that
[T1,x:A,T2;M to y:B inc N| = projf-, ..a.r, ([L1,12;M to y:B inc NJ)
: 1[[r1,x:A,r2}] — U(projl*"l;x:A;F2([[F17F2;QH))

First, by inspecting the definition of [—] for M to y:B in¢ N, the assumption gives

us that
[[F],Fz;M]] : 1[[1"1,1"21] — U(F([[F],Fz;B]]))

[[F17r27y:B;N]] : 1[[F],F2,y:B]] — U<nﬁrl7r2;3]([[rlvr2;g]])>

Next, by using the induction hypothesis on these morphisms, we get that

[[FI,XZA,FQ;M]] = projl*"l;x;A;rz([[rlal—‘Z;M]])
Ay ear] — UProir, e, (F([T1,T2;B])))
[[Flax:A7F27y:B;N]] = prOjFl;x;A;FZ7y:B([[F17r23y:B;N]])

01 [T1,x:A.,y:B] — U(projl*"l XA, ,y:B(TCEEFI o8] ([[Fl > Fz;g]])))

F(g

402 Appendix C. Proofs for Chapter(§

Finally, we show that

[T1,x:A,T2;M to y:B inc N| = projf, ..a.r, ([['1,12:M to y: B inc NJ)
: 1[[F1,x:A,F2]] — U(projltl;x:A;Fz([[rlaFZQQ]]))
by proving that the next diagram commutes, in which we write prr, for projr,...a.r,

and prr, . for projr...a.r, .5 For better readability, we aggregate small proof steps.

U, xAD] = Prt, (Lqr, rop)
use of the induction hypothesis on [I';,I2;M]
[T} x:A,Ty:M] pr, (IT1.T2:M])
U is split fibred
Ulprr, (F(IT1,T2;B]))) = prr, (U(F([I'1,T2;B])))
= F and U are split fibred

U(F (prr, ([T'1,T2:B]))) pri, (U(F((idgr, 107 :0)

U(F(<idprii2 ([ry.Ip:B]))] the fibred Cartesian products in p are split
U(F(Zprfiz(ﬂrl‘l"z;B]]) (TC’{,,;Z([[F] ry) U reansy) == pri, (U(F (18] (Fr, ryp (L))
def. of projr, .ur, y:8 split Beck-Chevalley

F and U are split fibred

U(F(Eprl’ﬁ2 ([ry,I2:8]) (1[1"] XA y:B])))

= Pr, (U(F (Zqry ry:8) (L, 1y 5:81))))

U@, (Iry 8] ([C1xA T2 y:BN])))

use of the induction hypothesis on [, I, y:B;N]

def. of projr, ..ar, 5 split Beck-Chevalley F and U ares. fib.

it (U(F ([, rys) (01 T2.BND)))

UCF (Spr 11, 5580 (U (P (R, g (I T2CD)))) == bty (UCF (g, 1 (U R,y (0 T25C1))))

def. of projr, .u.r, s split Beck-Chevalley

UCF o 1) (U g, g (P (I T 1))

F and U are split fibred

U(F(Zpr;z([[rI 71"2;8]])(7[;,*1&2([[1"1) U, ([C1T2:CN))))) —== prr, (U(F (S 1387 (T, 1,87 (U ([F1,T2:C1))))))

b -
" pre, ([riree]) pre ([ryrps])
h- X in* ProposmonE l ﬂfors 2] *
prrz([l"l,l"z.B]]) pr?z(ﬂrl'rzzgﬂ)) E|[F1,1"2;B]] 4"[[1"1.1"2;
U(Pfﬁ([ﬂ"] I:Cl))

* B
Pt eyt forg) 1))

def. of projr, ..ar, 5 split Beck-Chevalley

U(F(U(prr, ([T1,T2:C)))))

F and U are s. fib.

= prr, (U(F(U([T1,T2:C]))))

Proposition[2:2.20]for &” ¥
U(

FHU
gprlfz (Iry -,1"2:9]]))

PrT, (U (Eﬁﬁ]lfrz 1))
def. of Projr, u.r, s split Beck-Chevalley

U(prt, ([T, T2:C1))

F and U ares. fib.

= prr, (U([T1,12:€1))

C.1. Proof of Proposition 403

We conclude by observing that the left-hand side top-to-bottom composite mor-
phism is equal to [I';,x:A,I'2;M to y:B in¢ NJ, and that the right-hand side top-to-

bottom composite morphism is equal to projr-, ...a.r, ([I'1,1'2;M to y: B inc N]).

Computational pairing for computation terms: In this case, we assume that

[T1,T25(V,M) y5).cl : 1y ro] — U(Zqr, s ([T1, 12, y:B5C))

and we need to show that

[T1,x:A, L5V, M) (.. cll = Proir, ear, (101, D25 (Vi M) 1. cl)
Uy ear] — UProir, ear, (Ery rop ([T T2,y B5CT)))

First, by inspecting the definition of [—] for (V, M) ,.p) ¢, the assumption gives us

[[Fl,rz;V]] : 1[[F1,F2ﬂ — [[Fl,rz;B]]

[T1,T2sM] : 1pp, ry) — U((s([T1,T2;V]))*([T1,T2,y: B;C))

on which we can use (c) and the induction hypothesis, respectively, to get that

[[F],XIA,Fz;V]] = projltl;x:A;D(ﬂFl 7F2;V]]) : 1[[F1 XA projl*“l;x:A;l"g (B)

[T1,x:A, T2 M] = projp a.r, ([T1, 23 M])
1y war] — UProjrea.r, ((S([F1, T2 VD) " (61, T2, y: B: CT)))

Finally, we show that

Hrl XA, <V5M>(y:B).Q]] = projlt] ;x:A;Fz([[Fl’Fz; <V7M> (y:B).Q]])
ry ears] — U(Proir, sear, (Er, rysp (01, 12,5:B;CT)))

by proving that the next diagram commutes, in which we write prr, for projr,...a.r,

404 Appendix C. Proofs for Chapter(§

and prr,, . for projr ..., y.p- For better readability, we aggregate small proof steps.

*
1T, xA D] P, (Iry, ryp)
use of the induction hypothesis on [I',I>;: M]

[T1.xATy:M] pr, (IT1.T2:M])
U is split fibred

U prt, (01, T2: V1) ([T, T2, :B:C))) ————> pri; (U((S([1, DosV)* (I P2,:B:C1)
= Pmpositionmfor n):[[r‘ ry]] _wllr. |

U((s(pri, ([T, T2: VD)) (Priy, s (101, T2, 2 B:CT)))

Fort, (71 12:81) 4";1&2 ([T .Tp:B])

U(sry T2V (e ey 1)
2. =

(*) split Beck-Chevalley U is split fibred

I[r, Ty:B Hnk T
Py (U(S(IT1 DaV D) (s 2y T2)

U((S(Pff"z([[rl,Fz;V]])))*(n;r;Z([[r,,rz;s]])(= P WISV (R,
Zprl*_z([[rl Tl"z;B]])(prlji‘zkyzB(lll—" ,r27yBsQ]]))))) Zr] .Fz:B(IIFhFLy:B;Q]])))))

s(pri, ([Ty,T2;V])) is a section of "pr;z([[n L]

s(['y,T2;V]) is a section Of T,]

UZpry, (Iry.r0380) (PrT, e (11, T2,y B:) =

= split Beck-Chevalley U is split fibred

U(prt, ((Zr (I Da.y: B:CD))) = ri, (U (S, 1 ([T, T,y:B:CT)))

We conclude by observing that the left-hand side top-to-bottom composite mor-
phism is equal to [I'1,x:A,2; (V,M))]| and that the right-hand side top-to-bottom

composite morphism is equal to projr ...4.r, ([T'1, 125 (V, M) (y.8).c]))-

In the above diagram, and in other cases of this proof, we use (x) to refer to the

C.1. Proof of Proposition 405

following commuting diagram:

s([T'1.T2:v])

def. of s([I'y,I:V])
{Ir v} =
[0, Ta] ———— {5y} ([N T2:Bl) ——————— [[1.LayiB]

ry.r)]

{prr, ([T2:B])}

i def. of pri,, ([T, I2;V])
nat. of n 1iss. fib.

{pre, (U pry oy)}
PIT, {1(prry)}

{prf-z (1 [[1.02])} 5 {prfiz (ITy, T3 B]) } def. of prr, .5 P'T, y:B

_—
{prf, (IT1 T3]

= (c) =

n;[;f,::}/x.rz]]
[Mx:A D] ————— {l[r cany)}

. . N).
oD {[T1,x:A,T2;B]} ———=— [[',x:A,I2,y:B]
def. of s([I'y,x:A,T;V])

s([Ty,x:A,Tp:V])

Computational pattern-matching for computation terms: In this case, we assume
that
[T1,T2;M to (y:B,z:C) inp K] : 1[[1“171“2]] — U([I'1,T2;D])

and we need to show that
[Ty,x:A,T'2;M to (y:B,z:C) inp K| =
projltl;x:A;Fz(HFhFZ;M to (y:B,z:C) inp K])
1, xar) — U(proir, ear, ([T1,12: D))

First, by inspecting the definition of [—] for M to (y:B,z:C) inp K, the assump-
tion gives us that
[T, 02 M] : Uyry ryp — UEqr, ([T, 12, y:B5C))
[C1,T2,y:B:2:C:K] : [[1,T2,y:B:C] — M 1,y ([T1,12:D])
on which we can use the induction hypothesis and (e), respectively, to get that
[T1,x:A, T2 M] = projf“l;x:A;qu[Fhrz;M]])
ey eary] — U(Proir, e, (Eqr, r:ap ([T1,12,y:B;C])))

Hrlvx:A7F27y:B;Z:Q;K]] = projltl;x:A;l—‘z,y:B([[FlaFZ;y:B;Z:Q;K]])
- projltl;x:A;Fz,y:B(ﬂrl7F27y:B;Q]]) E— projl*"l ;x:A;Fz,y:B<nEF17F2;BH([[Fl7r2;l_)]]))

406 Appendix C. Proofs for Chapter[3

Finally, we show that

[Ty,x:A,T'2;M to (y:B,z:C) inp K| =
PFOJFI;X;A;FZ([[FI,FZ;M to (y:B,z:C) inp K])
: 1[[F1,x:A,F2]] — U(projl*"l;x:A;l"z(ﬂrl7F2;Q]]))

by proving that the next diagram commutes, in which we write prr, for projr,...a.r,

and prr,, . for projr, ..., ,.p- For better readability, we aggregate small proof steps.

1T, xA] pri, (1qr, .rap)

use of the induction hypothesis on [I',I>; M]
[T} x:ATpM] Pr?‘z ([T1,02:M])
U is split fibred

U(prt, (Eqry ry87 ([T1,T2,5:B:C1))) —_— pri, (U e) ([T1,T2,y: B C))))

= split Beck-Chevalley U is split fibred

U(Zpry. (Iry r8]) (PMT s (0112, y: B:) prt, (U(E[r, rys (01 D2.5:B:zCK]))

U():prl*_2 (Ir.0o:8])([F] XA T,y:BzCK])) use of the induction hypothesis on [I'y,x:4,T2;y: B;K]

U(Zpr;z([[rl‘rz;B]])(Pr*ﬁz,y;g(ﬂﬁrl) (01, 12:00)))) — P, (U ey sl (T, 1y (01,72, D1))))
def. of pr, .5 P(prr, ([T, B]))

U is split fibred

z g7 Tk .
U(Zpr, (Iry 12:8)) (7t,*,,1*_2 (ry.r2:8)) (P, (IT1.T2:D1)))) b, (U(s[[l[[lrfr‘zgﬁﬂ [ry 028D)

split Beck-Chevalley
Ik BTy T

(prl—z([[rl .2:B]) prrz([[rl .T5:B])

Ule]

pr1t2 (I'y.F:2D) PropositionFT-13]for ¢ Inras] sl

U(prt, (I01.T2: 21)) pri, (U(IT1.T2:D]))

To conclude, we observe that the left-hand side top-to-bottom composite morphism
is equal to [I'1,x:A,T2;M to (y:B,z:C) inp K]}, and that the right-hand side top-to-
bottom composite morphism is equal to projr- ...4.r, ([T'1,[2;M to (y:B,z:C) inp KJ).

Computational lambda abstraction for computation terms: In this case, we assume
that

[T, T2;Ay:B.-M] : 1,] — Uy, ry:81(C))

C.1. Proof of Proposition 407

and we need to show that

[T1,x:A,T2;Ay:B.M] = projr, ..ar, ([T1,T2;Ay: B.M])
. 1HFI»XIA7F2]] — U(projlﬂil;x:A;Fz (H[[Fl JT'2;B] (g)))

First, by inspecting the definition of [—] for Ay:B. M, the assumption gives us that
[T, T2,y:B;M] : 1, 1y 81 — U(C)
Next, by using the induction hypothesis on this morphism, we get that

[[F17X3A;F2,)’ZB§M]] = projltl;x:A;l—‘z,y:B([[rlar27y:B;M]])
: lﬂrl,x:A,Fz,y:B]] — U(projltl;x:A;l"g,y:B(g))

Finally, we show that

[T1,x:A,T2;Ay: B.M] = projp ..a.r, ([T1,T2: Ay : B.M])
. 1HF1 XA] - U(projl*“l XA, (H[[Fl,FZ;B]] (g)))

by proving that the next diagram commutes, in which we write prr, for projr,...a.r,

and prr, . for projr...a.r, .z For better readability, we aggregate small proof steps.

Lr, xa] prr, (1qry ryp)
T, 51 ot ([T T8 ; i AT)
prv, (I01T2:81) prpy ([0 T2381) Proposition@fornn[[f\wﬂ R pr¥(nl[[[[£1-£2ﬁB]] [[F].rz.B]])
12

M [T} ,xA,T5]

Hprl*-2 ([T, 12:8]) (n;rl’:z ([Ty,I2:B]) (1 [Ty xATL])) > prltz (H[[Fl JT:B] (nﬁr] T2:B] (1 [ry.12])))
= split Beck-Chevalley 1 is split fibred =

Mprg (1 Cie]) (Urycaoi6) ————> priy (Tgry va0) (U rae))

use of the induction hypothesis on [I',I,y:B;M]
HP'FZ (Iry .T:87) ([T16:A,T2,y:B:M]) Prr, (e sy ([0 T2,y:B:M]))
split Beck-Chevalley

Mprs (fry.caas) (U (PP s (©)) ——————— pr, (e 1,8 (U (C))

. -1 —1
gl (e i, off gerr-rZ (e el 2 S]
_1 < (r=1
Cripey (1) 0y ort 15 © P, (e ryis1)

split Beck-Chevalley U is split fibred

UMy, (r 1yi81) (PP 25(C))) ——=—> P, (UM, i (©)))

408 Appendix C. Proofs for Chapter[§

We conclude by observing that the left-hand side top-to-bottom composite mor-
phism is equal to [I'1,x:A,I'2;Ay:B.M], and that the right-hand side top-to-bottom
composite morphism is equal to projr-...4.r, ([['1,[2;Ay: B.M]).

Computational function application for computation terms: In this case, we as-

sume that

[C1,T2:M (V) yp).cll = 1y rp — U ((s([T1, T2: V)™ ([T, T, y: B: CT))

and we need to show that

[T1,x:A,T2: M (V) (y.8).c] = proit, ear, (1, T2: M (V) 1.5y .c])
: 1[[F1,x:A,F2]] — U(projltl;x:A;l"z((s([[Fl7F2;V]]))*(HF17r27y:B;Q]])))

First, by inspecting the definition of [—] for M(V),.p).c, the assumption gives us
that

[[F17F2;V]] : 1[[F1,F2ﬂ — [[F17F2,B]]

[Ty, TasM] = 1yry ry) — U, 1y ([0, 12,y B;C))

on which we can use (c¢) and the induction hypothesis, respectively, to get that

[[F17x:A7F2;V]] = projltl;x:A;Fz([[FhFZ;V]]) : 1[[F1,x:A,1"2]] — projltl;x:A;Fz([[Flvrz;B]])

[C1,x:A,T2:M] = projp ., ([T1, T2: M])
1y xary] — U(Proiry ear, (e, sy (01, T2, y: B C)))

Finally, we show that

[[Flax:AaFZ;M(V)(y:B).QH = projl*"l;x:A;l"z([[F17F2;M<V)(y:3).g]]>
1y] — UProir e, (S([T1, T2:V]))* ([0, T2, y: B C])))

by proving that the next diagram commutes, in which we write prr, for projr,...a.r,

C.1. Proof of Proposition 409

and prr., . for projr ..., 1.5 For better readability, we aggregate small proof steps.

prr, (Ury 1)

1, xATs]

s([I'1,x:A,I;V]) is a section Of oy ([, rass])

s([Iy,T2;V]) is a section of T, 1y ua]

(SO ATV g, o) (rsars) —— s, (SO TVD) B,y ()

[Ty x:AT:M]))

CITFATVD (e,)

use of the induction hypothesis on [I',I';: M]]

(*) from above def. of prr, .5 2(pr; ([T, T2:B]))

U is split fibred

pr, (S(IT1 T2:VI))* (), oy ([T T2.20:B:M1)))

(S(HFI7X5A7F2§V]]))*(”;rltz([[rl,rz;s]])(= o prr, (S(IL T2 VD) (R, ryump (
UM, ry1 ([T, 12,y:8:C1)))))

U(prr, (M, 1,67 ([C1,12,y:8:C1)))))

() from above def. of pry, ,.p P(prr, ([T, T2:B]))

U is split fibred

Pt (VST T2V (R, 1,

V(I A VD) B (11, -
i, rysy (01,12, B5C1)))))

Prr, (e, rysp ([T, T2, y:B:CT)))))
(P ([T 12:8])

(*) from above def. of prr, ;.5

U is split fibred

U((s([T1,x:4, 23 V) *(prts, .5 (
ni[f[FlﬁrziBﬂ (HHFLFZ%B]] ([T1,T2,y:B:C))))))

ok "ry.0p:8] Ty Ty:8]
V(ST ATV (0 ypE gt Pty)

w7 -0
Pmpositionmfors [rirps] el

i .8] T[T, B
prt, (U DV D) gl 2 I 2

U((s([T1,x:A,T2:V]))* (prr, g (01, 12,32 B5CY))) ———=—> pr, (U((s([T1,T2: VD))" ([T1,T2,y: B:C1)))

We conclude by observing that the left-hand side top-to-bottom composite mor-

phism is equal to [I'1,x:A,['2;M(V),.p) [, and that the right-hand side top-to-bottom

410 Appendix C. Proofs for Chapter[§

composite morphism is equal to projr- ...a.r, ([['1, T2s M(V) y.5).c])-

Forcing a thunked computation: We omit the proof for this case because it is analo-

gous to the case for thunking a computation.

Homomorphic function application for computation terms: In this case, we assume

that

[T1,T2;V(M)cpl : 1yr, r) — U([T1,T2;D])

and we need to show that

[T1,x:A,T2;V(M)c pll = projf, car, ([T1,T2; V(M) c pl)
: 1[[1"1,x:A,1"2]] — U(projltl;x:A;Q([[F] 7F2;Q]]))

First, by inspecting the definition of [—] for V(M)¢ p, the assumption gives us

[T, T2 V] Ay g — [F1,T25C) — [T1,12; D]

ﬂFl,Fz;M]] . 1[[1“171"2]] — U([[Fl,rz;g]])

on which we can use (c) and the induction hypothesis, respectively, to get that

[T1,x: AT V] e, ear,] — Proif, ear, ([T1,12:C] —o [T, 12 D))

[T1,x: A, TosM] 2 1y ea o] — U(Proiry e, (01, 12:CY))

Finally, we show that

[T1,x:A,T2;V(M)c pll = projt, ar, ([T1,T2; V(M) pl)
: 1[[1"1,x:A,1“2]] — U(projiﬁ‘l;x;A;r‘z([[Fl7F2;Q]]))

C.1. Proof of Proposition 411

by proving that the next diagram commutes, in which we write pr for projr ..4.r,. To

improve the readability of this diagram, we aggregate small proof steps.

[Ty, x:A T2V (M)c pl .
Uy xcars] s U(pr*([T'1,I'2;D]))

def. of [T'y,x:A,T2;V(M)cpl

(c)
[[F17XZA7F2;MH

U (&[r, 0y pr (T Lol pr ([T Ly:n]) (P ([C1.T2:V])))

U(pr*([T'1,2:C)))

= useofih. = U is split fibred € is preserved on-the-nose by reindexing

pr(U([I'1, I2:C]))

Pr*(U(§[r, 1, 1.1y Iy:cliry p:0] ([T1.02:V])))

pri ([, T2:M])

def. of [T}, Ta;V(M)cp]

pr*(1[r,,r,]) pri(U([I'1,I2;D]))

pri(['1,.I2:V(M)c p])

Computation variables: In this case, we assume that

[Ty, Ip52:Cs2) « [T',T2;C] — [T, T2:C]

and we need to show that

[T1,x:A,T2;2:C;z] = projr, ar, ([F1,1252:C3 7))
: projl*"l ;x:A;FZ([[FhFZ;Q]]) — projltl;x:A;Fz([[rlvr2;Q]])

412 Appendix C. Proofs for Chapter[§

First, by inspecting the definition of [—] for z, the assumption also gives us that
[T1,T2;C] € Cr, 1y
Next, by using () on this object, we get that
[T1,x:A,I2;C] = projr, earr, ([T1:12:C1) € Cry xary

Next, by using the functoriality of proj: |eAT, We get that

id[r, xAlic] = projl*"l;x:A;l"z(id[[rhrz;g]])
. projltl;x:A;Fz([[Flar2;Q]]) — projl*"l ;x:A;F2([[F17F2;QH)

Finally, by using the definition of [—] for z, we get that

[T1,x:A,T2;2:C;z] = projr, ear, (N1, T2:2: G5 2])
: projltl;x:A;Fz([[thZ;g]]) — projltl;x:A;Fg([[rl,FZ;Q]])

Other cases for homomorphism terms: We omit the cases for sequential compo-
sition, computational pairing, computational pattern-matching, computational lambda
abstraction, and homomorphic function application for homomorphism terms because

they are analogous to the corresponding cases for computation terms discussed above.
O]

C.2. Proof of Proposition[5.2.7 413

C.2 Proof of Proposition

Proposition 5.2.7} Given value contexts Ty and Ty, value variables x and y, value
types A and B, and a value term V such that [I'1,I3[V/y]] € B, [I'1,y:B,I2] € B,
[T1,x:A,T2[V/y]] € B, [T1,x:A,y:B,I2] € B, and [T'1; V] : 1jr,p — [L'1;B], then

su bStrl;yiB;Fz;V © projrl;x:A;Fl v/y] — projrl;x:A;y:B,Fz o SUbStrl XAy:B IV

Proof. We prove this equation by induction on the length of I';. Both the base case and

the step case of induction are proved similarly, by straightforward diagram chasing.
Base case (with 1y =9):

Projr ixAso substr g0

[[r],x:A]] IIF]]]

def. of projr, .;.x:0

[T1,y:B]

def. of substr, .y.p:0.v
substry a0
T[rp:A]

def. of s([T;V])

{[T:A} Uy — o ([TuBl}
T("[FM]] (IIIrlll)) ! {[[rl ,V]]}

1-4{-}

Ll .
s([T1x:AV]) N[ry 4] [Ty Al

(Tryap (e,)b | defof mpe g ([0 VD)

def. of substr, v.a.y:z:0:v
def. of s([I'y,x: A;V]) {1 [T1 A } —_—> {TEEI—I A] (1[1"1]])}

(T, a [TV}

{[l.x:AV]} {7r ag (IT:BD}

(rcapyy COEEL [ERRORs g (resD) S
7 \ / il
ﬂrlvx:Avy:Bﬂ {prOJl"l;x:A;o([[FlgBﬂ)} {W(HFHBH)}

def. of Projr, .v.x:5 def. of projy.
: 1A

Projl'] weAyB
{projr ;a ([C1:B)}

[T,y:B] = {[T:B]}

414 Appendix C. Proofs for Chapter(§

Step case (with Ty =T%,x,:Ay):

POIT | 1A o :n

[C1,x:A TV /3], x0: A [V /] [0, TV /3]0 An[V /3]

Propositicnm

def. of Projr, .cary 1,4,

{Proir iy) (Ir,T}
WXAS)) \% ;AnV
[0 T3V AV D) ormargup vy T PR

pisas. fib. = Pmpositionm

{projltl WA [V/y](
su bStf‘] BV (
[T oV YAV /5ID)) }
{Proir cary v) (SubstE gy (I DLV /ykAalV 51D)}

ih. =
subst’. .
{ _*1"1 xAyBThV ({su bstl”i1 VBT,V (
ProJr, ;x:A/;y:B.l"’z([Ty,y:B, FIZ;A,,]])}
[T1,y:B,T5:4,4]))}

SUBSEL B Ay

= p is a split fibration induction hypothesis

* -
{substrl TAYBT,Y ({subst’,l-1 VBT, 3 ([T1yBTy:A)} def. of substr, gy x4,

[T'1,x:A,y:B,I';A.])}
def. of substr, vayB1, 1,4,

{substr1 I— ([T x:ATS:A.])}
SUbStFI ,J::A:y:B:I"’2 dn:AnsV

{[7y137F’2;Anﬂ}

{Proip ey (I V:BTSAL])}

(I weay:BTgA L) —=> PO -
[T1,y:B.T5;A4])}

Proposition[5.2:4]

def. of projr, ...a BT Ay

[Ti,x:A,y:B,T%,x,: A, [T1,y:B.Th;x, 1 Ay

PrOIry ceidiyiB T xnidn

C.3. Proof of Proposition 415

C.3 Proof of Proposition

Proposition Given a value context I, value variables x|, x», and y, and
value types Ay, Ay, and B such that x; ¢ Vars(T') U{y}, [I] € B, [[3A] € Yy,
[T, x1:A1;A5] € {V[[l",xl'Al}]’ and [T,y:(£x1:A1.A7);B] € rV[[F,y:(EvayAz)]]’ then we have

[T,x1:Ar,0xp: A, BIxn,x2) /Y]] = Kroa, g rocayap) (5 Y (Ex1: A1 A2); B])

Proof. We begin by noting that both sides of this equation can be rewritten as follows.

On the one hand, the left-hand side of this equation can be rewritten as

(s([Tyx1:A1,x2:A2; (x1,x2)])) *(
(T aa, (I x1 A Ex A Ao) 1(
{TC[[F;AI]]([[F;EXI IAI.AQH)}*([[F,)/Z (le ZAl.Az);B]])))

based on Propositions[5.2.4 and [5.2.6] and the definition of morphisms projr.,.4.r-,-

On the other hand, the right-hand side of this equation can be rewritten as

YA AT N
Mg R Z0 AL A ([T, y: (Zx1:A1.42); B])

based on the definitions of K[r.,] [r.x,:4,:4,] and [I5Xx1:A1.Az].

Now, as a result of p : 1/ — B being a split fibration, it suffices to show

{n[[F,xlel;Az]]([[F7x1 tALExg AL A]) Fos([Txr i A, xa i Ags (x1,x2)])

Y, ATk
|IF*A1 1 [[F;Al]]
e

for the required equation to be true, which follows from the commutativity of the

416

following diagram:

[T, x1,x2]

([T 1 x23(x1,%2)])

{IIIF.XI

{nﬁr=v¥1 iAz] (g

C)

def. of s([I",x1,x2: (x1,x2)])

{(s([[r7x| ’

Elrxn] Mg ma]

LT w2230 D) Moy M

] (o1)}

{Z[[F,,n x23A1] (IIF, X1

{EEF~-¥1 3A2]

Appendix C. Proofs for Chapter(§

14{-}

o 2]

x] }

z —nt
[Txy:A5] Toxp:A
m, A2l 2]]}
[Toxpx2]

(T, 1 ([Cx1:421)}

{TCEFJ] As] ([[Faxl sAZH)}

x;x1]))*(

[T, x1,22, %342 %) /x1]]) }

(%)

{(s([T,x1,2x25x1]))* (
nﬁr~~¥1 X2:A1] (
Zl".xl.xz;A](
[Toxi,x2,23 A2 %) /x1]]))) }

%2, X3 Ao [y /x]]) }

(Eﬂr-xl;z‘\l]](

[T, x1, %5 Aa) /a]]) }

Ty] Eray a1 ([Txx A2 [/x]T)}

{nﬁrﬂlﬂ (Zqra,

{[T,x1;A2]}

z LT
[T:A] "™ [ra]
Mgy)

1([T,x1342])) }

{Z a1 (ICxn 2 Azl /D) ———=— {Rp,) Cpra, (02134205 /0]]) }

C.3. Proof of Proposition[5.2.8

where the subdiagram marked with (x) commutes because we have
[T,x1,%2] = {[Tx1;42]}
n E[;,{{zvz]] nlﬂ:_:y}"z]] and 7 [ranl form an isomorphism (Proposition[Z-2.35)
{1 [Toxpx2] }
o TN
Z|[F.x1 As] AKTIF«*] Ar] K is an iso.
fn [Toxp 2] }
def. of x K[ri;][04,])
id{[rey 4,1}
def. of fst
{7 0] Clra) U ro 1))} s o1t
CTARR N
ATy A] Crayap] O rag)}
g a,7 (PO} {Zra) A)}
def: of nT[r;, 4] 3) \
S|
* . .
Ry s (Dsx1542]) T) {IT,x1:A2]}
and the subdiagram marked with (x*) commutes because we have
{TIr ey ([0x15421)}
{0 o (13421} {[T,x1:42] }
z Any
def. of "IIU::A:]I (M ﬂg:jlz]] [r1)
{(s(ITx1, 22531])) " (
[T, x1,x2, X342 %) /x1]]) } A,]
{"T[F-M:Az]](n[[l'«ml“z]] ' Al]])}
. . E[[rllv’le/‘l]ﬁ"hf[l",x x9iA1]
{s([Coxr w201 1)) (n[[F-xl.xZ,x’]ﬂz[»"l/n]]]l RE)
. *
nj(S([[F,xu(xg,xl]])) (. z[[m]]]ﬂﬁml]]}
[Ty 054,] V=Toxn X234 (Mg az]
[T, x1,22,x): A2 [x) /1]]))) }
Proposition[5-24] Proposition[5.2.6]
{Zra o ([x,20,x75 A2 /0]]) }
split Beck-Chevalley defs. of projr, .., and substr, .cair,v
{REF,XIHZ]] (E[[FJQ AL (

[Tx1, x5 42 [x /x D))

{Zrrma ([Cxx: A2 b /all)}

Proposition[5-24]

{mra, 7 Egraa, ([T, x1:42])) }

Ty Ay] (Va1 ra, 7 ([CxiA2 1))}

{nEF-X1 Az (nﬁF;Al | (
Zra,p ([Fx1342]))) }

split Beck-Chevalley def. of projr, ,car,

Ty] (C ey a1 ([T 2 A2 [/xa]1)}

ra,) Epra g (

[T xp:A20x /i]]))

417

418 Appendix C. Proofs for Chapter[§

To improve the readability of the above proofs, we have omitted the types in value
contexts, writing I',x1,x, for I',x1:A1,x2:A>. We have also omitted details of equali-
ties that follow from the use of the split Beck-Chevalley conditions, Propositions[5.2.4]

and[5.2.6] and the definitions of semantic projection and substitution morphisms, e.g.,

Z[[r,xl,xz;Al]]([[F7x17x2’xll;B[xll /Xl]]]) = Tcﬁ}'}xl;B]] (Z[[FJC];Al]]([[F?xl7x,1;B[xll/x1]]]))

Appendix D

Proofs for Chapter 6

D.1 Proof of Proposition [6.5.6|

Proposition Given a well-formed effect term I'| A= T derived from Sep, a com-
putation type C, value terms V; (for all x;:A; in I'), value terms Vj’ (for all w; :A} inA),

value terms Wop (for all op : (x:1) — O in Sp), and a value context I" such that
o [['] € Set,
o [I:Vi]i =idpry : [['] — [I], and

o ([TsVil2)y : 1 —
i Arxim A Al (O ([T Vi]2)y (9))s), ([F5 Vit J2)y (%)),

together with a value type A and a family of models My : LT%[— Set (for all ¥ in

[T’]) of the Lawvere theory Iys: X7 — Ly (where rz;j;(ﬁ (Sefr0)) such that
o [I":A]y =[],
o [IAL(Y') = My (1),
o [I:V/]i =idpry - [I'] —],
o ([Vil)y : 1= Taergom (I3 AL(Y),
o [I";Wop]i =idppy : [['] — [I']. and

o ([M:Wopl2)y =Ty op, " i O £) e {idugi)
: 1 — |_|<i,f>€|_|ig[[<>;[]]2(*) Hoeﬂx:I;O]]Z(*,i>(HFI;AHZ(YI))([[F/;A]]Z(Y/))’

419

420 Appendix D. Proofs for Chapter|[§
then
HF/;(ITDA;V;@;V@]]I =idppy : [I'] — [T]
and, for all y" in '], the function
(IC5AT), 3 1 By 1 — [TAL(Y)
is defined and equal to the following composite function:

(V] T2y datea / /
1 Hw,:A;eA Hae[[F;AI’-]]z(y) ([:A2(Y))

I

Al (Y) <——=— My(1)

My (AYFTY) My (A7)

where |AY| denotes the length of the context AY; and where we use the abbreviation
Y ({5 (T V2)y (),) (T3 Val2)y (%)

Proof. We prove this proposition by induction on the given derivation of I'|A+ T,
using the eMLTTy versions of Propositions [5.2.4] [5.2.6} [5.2.T1} and [5.2.12] to re-

late syntactic weakening and substitution to reindexing along semantic projection and

substitution morphisms.

We discuss all cases of this proof in detail below. In each of the cases, the proof of

[[F/;(]TDA;?I‘;?/;W—O;Z]M = id[[r/]] : [[F’]] — [[F’]]

is straightforward, by combining our assumptions with the definitions of [—] and (—|).
Effect variables: In this case, the given derivation ends with

Fl—Al,WjIA;,Az r-v IA;-
F|A1,wj:A;~,A2|—Wj(V)

D.1. Proof of Proposition 421

First, according to the definition of (—| for effect variables, we have that

(I 0w 7.0 T v

is equal to

([T V] (VIV. /R) 2)y
which, by unfolding the definition of [—] for function application, is equal to

(IT3V{12)y OJ([r:V]y)y

1 [Maetra o (T3 AL (Y) - - [AL(Y)

where we implicitly make use of the fact that [I3A%]2(y) = [IV;A] ?/ %]
and ([I;V]2)y=([I";V 7 /%1]2)y y'» both of which follow from the definition of y and
the eMLTT,. versions of the results that relate syntactic substitution to its semantic

counterpart (see Propositions[5.2.6|and [5.2.12).

The required equation then follows from the commutativity of the following dia-

gram:

((ne7) BTN

! [Mojiaea Maeragm o (I03 A1) M, (|AY])

1R

w;'th projection preservation of count. prod.
g

(A1)
|_|Wj:A]/»EA I_Iae [mA7 D2 (v) (ﬂ/[y’ (1)

preservation of count. prod.
proj,; Ay (AT oy (V)

sty a1 AV

|—|ae[[r;Aﬂ]2<y) (My (1))

assumption about M,

PrO([Tv 5 hy(x)

Maerarp o (T34 (V) My (1)

assumption about [I;A]»(Y")

(IC'Y} VIV /=DL)y et _
Pro}(rvIn)y(+)

[I;AL(v)

422 Appendix D. Proofs for Chapter|[§

Algebraic operations: In this case, the given derivation ends with

TFA THV:I T,y:0V/+|AFT
['|AF opy(y.T)

(op: (x:I) — O € Setr)

First, according to the definition of (—|) for algebraic operations, we have that

(I (opy 0- 1)), 7zl
is equal to
(T Wop (VIVi /] Ay: OV Vi R4 (T, 5y ol

which, by unfolding the definition of [—] for function application, pairing, and lambda

abstraction, is equal to the following composite function:

([[FI;WOP]]Z)Y/

|—|<l FYeUiefoiny o0 [loerr:o1, (i) (AL (Y ([[F AL(Y)

PO} [Ty 1)y (). (T s OIV 7, /51150 D12) iy oo L:0l, (s (IT:V I by ()
[A2(v")
where, analogously to the case of effect variables, we again implicitly make use of the

fact that [[3A]2(v) = [[7;A] ?/ v') and ([I;V]2)y = ([I';V 7/

The required equation then follows from the commutativity of the following dia-

D.1. Proof of Proposition

gram:

((HF’:‘/,-']]Z)MW/.;A}EA

1R

(id1) i)

(IT"Wopl)y

assumption about Wop

(id1)oe [x:1:0] 5 (o ([TVD2)y()

|_|wj- |_|a€ ﬂF;A;]]Z(y) (HF/;AHZ (Y/))x

|_|nE [x:1:0]2 (x,([T3V]2)y(*)) 1
M7 1)))

M, ([IT":AL(v))

1R

My (|[x: 1002 (&, ([0 VI2)y (o))

My (5 F0P([12]y (x) (X0)o)

(i Moeperop, g (F3A12 (1)

1R

iy (My (I[x: 102 (. 0)1))

def. of op; i,y (M (%o Fopi(x0)o))

i

[y (M (1))

projections from countable products

My (AT ETTD)) o<\ per:0l (o (VT2 ())

functoriality of My

My (A7 0Py (o) (T7)o)

My (T3 ALR(Y))

PRl (I Dy (IO RAATY 12) 1) [t 0T (o (I T o))

423

My (|AT])

[AD2(v")

where, for better readability, we abbreviate some of the indices of countable products.

For the same reason, we also write the value context I, y: O[V[vi /x7]/x] as T, y.

424 Appendix D. Proofs for Chapter[6

In the previous diagram, (x) refers to the following commuting diagram:

(I viD2)y >W,- Aea

—_

My Mae oo (54T ()

X pairing for countable products
(id1)oc [x1:01 ([P T2)y()

090 Pegrarg, o ITAL2 00 e
Mo tetiol, (v |

ML)y)

IR

preservation of countable products

M, M, ML (AL ()

weakening

o (I 12) i1y)

induction hypothesis

(1a*])

2

Mo, M ([T 3342 (Y, 0))

M (AT 2 y1,)

weakening

(idag, (v)o

M, ([T AL2(v")

1R

[, (M (1A7]))

preservation of countable products

[(Miyr o) (1AF)))

weakening

weakening

Mo (M (Alro) piro)y)

[, (M (AT 700

weakening

By (8 7))

weakening

My o) (| 1502 (%, (5 VI2)y ())

My (|[x: 1502 (%, ([T VI2)y()))

D.1. Proof of Proposition 425

Observe that throughout the last diagram, we have extensively used the eMLTT

version of Propositions [5.2.4] and [5.2.11] to relate syntactic weakening to reindexing

along semantic projection morphisms (marked with “weakening”), e.g., to show that
[,y OV[Vi /%) /x]: AT (V- 0) = [T:AL(Y)

Further, as we know from our assumptions that I' = A, analogous equations for all

w;j :A} in A also enable us extend weakening to derived contexts A as follows:

ATl = |

Pattern-matching: In this case, the given derivation ends with

I'EA FI—VZZyIZBl.BQ F,yliBl,ylezlAl—T
[|AFpmV as (y;:B1,y2:B2)in T

First, according to the definition of (—|) for pattern-matching, we have that

(IT";(pm V as (y1:By,y2:B2) in TDA;VEVJ!;@]]Z)Y/

is equal to
/. 5 . I v 1) | ,
(IT:pn VIVi/] 2 2BV /%] ya: BV /R dm (T Tl
which, by unfolding the definition of [—] for pattern-matching and assuming that

_>
(I3 Vi /R L)y (%) = ([T V(%) = (b1, b2)
is equal to
(I BV /By BV BT) ol .

The required equation then follows from the commutativity of the following dia-

426 Appendix D. Proofs for Chapter[6

gram:
(YD) area
1 [, Maerag, i (T3 AL(Y))
weakening
(I 51929 12)) B
My (A7)
weakening
I_ij I_Iae [[F;A‘;]]z(y)(llr‘,’ylﬁyz;Al]Z <<Yl7bl>:b2>)
(1383 'yz;qTDA;V,?.)-I,vz;‘?;v@h)(w'bl”’ﬁ =
M (1)) (16210201
weakening
induction hypothesis 9V[<<Y/>b]>_b2>(A<<7'b|>'b2> FT“V’Z’”'Z’Z))
Mv’ (AY b1 b2))
My 1).2) (1) = My (1)
/ weakening =
[T, y1,y2;A02 (¥, b1), b2) = [T;AT2(Y")

Similarly to the earlier case for algebraic operations, we have again abbreviated

some of the value contexts and indices of countable products for better readability.

Case analysis: In this case, the given derivation ends with

I'tA THV:Bi+B; F,yllBlyAl—Tl F,yQZBz|A|—T2
['|AF case V of (inl(y;:By) — Ti,inr(y2:B2) — T)

First, according to the definition of (—|) for case analysis, we have that
‘. :) :)
([T"; (case V of (inl(y1:By1) — Ti,inr(y2:B2) — T») DA;W;X?;V@]]Z)Y’

is equal to

(IT;case V[V, /%] of (inl(yi:Bi[V,/]) > (T1), inr(ys: Ba[Vi /7)) = (Ta))]a)y

D.1. Proof of Proposition 427

which, by unfolding the definition of [—] for case analysis, is either equal to
_>
(B Vi /3T B
or

. 1.
(T2 BV /3Bl T

depending on whether
(IT:VVi /R]2)y (%) = (ITVD)y(x) = inl by
(I3 VIV /Z)y () = ([T V(%) = inr b

The required equation for the inl by case then follows from the commutativity of the
next diagram, where, similarly to the case for algebraic operations, we again abbreviate

some of the value contexts and indices of countable products for better readability.

<([[F/9V/]]2)y’>w,-:A;.eA

ﬂn!j ﬂae [F;Aj’]]z (v) (HF/ ;A]]z (Y,))

weakening

IR

(213 12) 1, >>w/.:A//_EA

My (|A7])

weakening

|_|wj- |_|a€ [[F;Aj’»]]z(y) ([[FILYI ;A]]Z <Yl7 by >>

(I :qTD/\:V;»'l;‘??Wp]]Z)<Y/'b‘> o
My, (JATP1)
weakening
induction hypothesis M) (AD1) T nbr)y
gygl, (AY T 01))
My) (1) = My (1)
/ weakening =
[T.yi:AL2 (v, 1) = [I:Al2(v)

We omit the proof of the other case (for inr by) because it is proved analogously.
]

[1]
(2]
[3]

[4]

Bibliography

The CompCert project. Website: http://compcert.inria.fr/.
The Everest project. Website: https://project-everest.github.io/.

The multicore OCaml project. Website: https://github.com/ocamllabs/

ocaml-multicore/.

M. G. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In A. D.
Gordon, editor, Proc. of 6th Int. Conf. on Foundations of Software Science and
Computational Structures, FOSSACS 2003, volume 2620 of LNCS, pages 23—
38. Springer, 2003.

F. Abou-Saleh and D. Pattinson. Comodels and effects in mathematical oper-
ational semantics. In F. Pfenning, editor, Proc. of 16th Int. Conf. on Founda-
tions of Software Science and Computational Structures, FoSSaCS 2013, vol-
ume 7794 of LNCS, pages 129-144. Springer, 2013.

S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1-168. Clarendon Press, 1994.

J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories.
Number 189 in London Mathematical Society Lecture Note Series. Cambridge
Univ. Press, 1994.

D. Ahman, J. Chapman, and T. Uustalu. When is a container a comonad? Log-
ical Methods in Computer Science, 10(3), 2014.

D. Ahman, N. Ghani, and G. D. Plotkin. Dependent types and fibred computa-
tional effects. In B. Jacobs and C. Loding, editors, Proc. of 19th Int. Conf. on
Foundations of Software Science and Computation Structures, FoSSaCS 2016,
volume 9634 of LNCS, pages 1-19. Springer, 2016.

429

http://compcert.inria.fr/
https://project-everest.github.io/
https://github.com/ocamllabs/ocaml-multicore/
https://github.com/ocamllabs/ocaml-multicore/

430

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography

D. Ahman, C. Hritcu, K. Maillard, G. Martinez, G. Plotkin, J. Protzenko,
A. Rastogi, and N. Swamy. Dijkstra monads for free. In A. D. Gordon, editor,
Proc. of 44th ACM SIGPLAN Symp. on Principles of Programming Languages,
POPL 2017, pages 515-529. ACM, 2017.

D. Ahman and G. D. Plotkin. Refinement types for algebraic effects (extended
abstract). In T. Uustalu, editor, Book of abstracts of the 21th Meeting " Types for
Proofs and Programs”, TYPES 2015, pages 10-11. Inst. of Cybernetics at TUT,
2015.

D. Ahman and S. Staton. Normalization by evaluation and algebraic effects.
In D. Kozen and M. Mislove, editors, Proc. of 29th Conf. on the Mathematical
Foundations of Programming Semantics, MFPS XXIX, volume 298 of ENTCS,
pages 51-69. Elsevier, 2013.

D. Ahman and T. Uustalu. Update monads: Cointerpreting directed containers.
In R. Matthes and A. Schubert, editors, Post-proc. of the 19th Meeting “Types
for Proofs and Programs”, TYPES 2013, volume 26 of LIPIcs, pages 1-23.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, 2014.

T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors.
Logical Methods in Computer Science, 11(1), 2015.

T. Altenkirch and A. Kaposi. Normalisation by evaluation for dependent types.
In D. Kesner and B. Pientka, editors, Proc. of 1st Int. Conf. on Formal Structures
for Computation and Deduction, FSCD 2016, volume 52 of LIPIcs, pages 6:1—
6:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

R. Atkey. Algebras for parameterised monads. In A. Kurz, M. Lenisa, and
A. Tarlecki, editors, Proc. of 3rd Int. Conf. on Algebra and Coalgebra in Com-
puter Science, CALCO 2009, volume 5728 of LNCS, pages 3—17. Springer,
2009.

R. Atkey. Parameterised notions of computation. J. Funct. Program., 193 &
4):335-376, 2009.

R. Atkey, N. Ghani, and P. Johann. A relationally parametric model of de-
pendent type theory. In S. Jagannathan and P. Sewell, editors, Proc. of 41st

Bibliography 431

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL 2014, pages 503-516. ACM, 2014.

V. Balat, R. D. Cosmo, and M. P. Fiore. Extensional normalisation and type-
directed partial evaluation for typed lambda calculus with sums. In N. D. Jones
and X. Leroy, editors, Proc. of 31st ACM SIGPLAN-SIGACT Symp. on Princi-
ples of Programming Languages, POPL 2004, pages 64-76. ACM, 2004.

M. Barr and C. Wells. Toposes, Triples and Theories. Number 278 in

Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.

M. Barr and C. Wells. Category theory for computing science. Prentice Hall

International Series in Computer Science. Prentice Hall, 1990.

A. Bauer and M. Pretnar. An effect system for algebraic effects and handlers.
In R. Heckel and S. Milius, editors, Proc. of 5th Int. Conf. on Algebra and
Coalgebra in Computer Science, CALCO 2013, volume 8089 of LNCS, pages
1-16. Springer, 2013.

A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. J.
Log. Algebr. Meth. Program., 84(1):108-123, 2015.

M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical sets.
In R. Matthes and A. Schubert, editors, Post-proc. of the 19th Meeting “Types
for Proofs and Programs”, TYPES 2013, volume 26 of LIPIcs, pages 107-128.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

F. Borceux. Handbook of Categorical Algebra, vol. 2: Categories and Struc-
tures. Cambridge Univ. Press, 1994.

E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552-593, 2013.

E. Brady. Programming and reasoning with algebraic effects and dependent
types. In G. Morrisett and T. Uustalu, editors, Proc. of 18th ACM SIGPLAN Int.
Conf. on Functional Programming, ICFP 2013, pages 133—-144. ACM, 2013.

E. Brady. Resource-dependent algebraic effects. In J. Hage, editor, Proc. of
15th Symp. on Trends in Functional Programming, TFP 2014, volume 8843 of
LNCS, pages 18-33. Springer, 2015.

432

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Bibliography

C. Casinghino, V. Sjobergberg, and S. Weirich. Combining proofs and programs
in a dependently typed language. In S. Jagannathan and P. Sewell, editors, Proc.
of 41st Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, POPL 2014, pages 33—45. ACM, 2014.

S. Castellan. Dependent type theory as the initial category with families. Tech-
nical report, Chalmers University of Technology, 2014.

P. Cenciarelli and E. Moggi. A syntactic approach to modularity in denotational
semantics. In Proc. of 5th. Biennial Meeting on Category Theory and Computer
Science, CTCS 1993. CWI Technical report, 1993.

J. Cheney. A dependent nominal type theory. Logical Methods in Computer
Science, 8(1), 2012.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453-457, 1975.

P. Dybjer and A. Filinski. Normalization and partial evaluation. In G. Barthe,
P. Dybjer, L. Pinto, and J. Saraiva, editors, Proc. of Int. Summer School on
Applied Semantics, APPSEM 2000, volume 2395 of LNCS, pages 137-192.
Springer, 2002.

J. Egger, R. E. Mggelberg, and A. Simpson. The enriched effect calculus: syntax
and semantics. J. Log. Comput., 24(3):615-654, 2014.

S. Fujii, S. Katsumata, and P. Melli¢s. Towards a formal theory of graded mon-
ads. In B. Jacobs and C. Loding, editors, Proc. of 19th Int. Conf. on Foundations
of Software Science and Computation Structures, FoSSaCS$ 2016, volume 9634
of LNCS, pages 513-530. Springer, 2016.

N. D. Gautam. The validity of equations of complex algebras. Arch. Math.
Logic, 3(3-4), 1957.

N. Ghani, P. Johann, and C. Fumex. Indexed induction and coinduction, fibra-

tionally. Logical Methods in Computer Science, 9(3), 2013.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott.
Continuous Lattices and Domains. Number 93 in Encyclopedia of Mathematics

and its Applications. Cambridge Univ. Press, 2003.

Bibliography 433

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

G. A. Gritzer. Universal Algebra. Springer, 2nd edition, 1979.

P. Hancock and A. Setzer. Interactive programs in dependent type theory. In
P. Clote and H. Schwichtenberg, editors, Proc. of 14th Ann. Conf. of the EACSL
on Computer Science Logic, CSL 2000, volume 1862 of LNCS, pages 317-331.
Springer, 2000.

C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. Comput., 145(2):107 — 152, 1998.

D. Hillerstrom and S. Lindley. Liberating effects with rows and handlers. In
J. Chapman and W. Swierstra, editors, Proc. of 1st Wksh. on Type-Driven De-
velopment, TyDe 2016, pages 15-27. ACM, 2016.

M. Hofmann. Extensional concepts in intensional type theory. PhD thesis, Lab-

oratory for Foundations in Computer Science, University of Edinburgh, 1995.

M. Hofmann. Syntax and semantics of dependent types. In A. M. Pitts and
P. Dybjer, editors, Semantics and Logics of Computation, pages 79—130. Cam-
bridge Univ. Press, 1997.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. In C. Hankin,
editor, Proc. of 7th European Symp. on Programming, ESOP 1998, volume 1381
of LNCS, pages 122-138. Springer, 1998.

G. Hutton and E. Meijer. Monadic parsing in Haskell. J. Funct. Program.,
8(4):437-444, 1998.

M. Hyland, P. B. Levy, G. Plotkin, and J. Power. Combining algebraic effects
with continuations. Theor. Comput. Sci., 375(1-3):20-40, 2007.

M. Hyland, G. Plotkin, and J. Power. Combining effects: Sum and tensor. Theor:
Comput. Sci., 357(1-3):70-99, 2006.

M. Hyland and J. Power. Discrete Lawvere theories and computational effects.
Theor. Comput. Sci., 366(1-2):144—-162, 2006.

B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. North Holland, 1999.

434

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Bibliography

O. Kammar. An Algebraic Theory of Type-and-Effect Systems. PhD thesis,
School of Informatics, University of Edinburgh, 2014.

O. Kammar, S. Lindley, and N. Oury. Handlers in action. In G. Morrisett
and T. Uustalu, editors, Proc. of 18th ACM SIGPLAN Int. Conf. on Functional
Programming, ICFP 2013, pages 145-158. ACM, 2013.

O. Kammar and G. D. Plotkin. Algebraic foundations for effect-dependent op-
timisations. In M. Hicks, editor, Proc. of 39th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, POPL 2012, pages 349-360. ACM,
2012.

S. Katsumata. Parametric effect monads and semantics of effect systems. In
S. Jagannathan and P. Sewell, editors, Proc. of 41st Ann. ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, POPL 2014, pages
633-646. ACM, 2014.

G. Kelly. Basic Concepts of Enriched Category Theory. Number 64 in Lecture
Notes in Mathematics. Cambridge Univ. Press, 1982.

B. W. Kernighan and D. Ritchie. The C Programming Language. Prentice Hall
Software Series, 2nd edition, 1988.

A. Kock. Strong functors and monoidal monads. Arch. Math., 23:113-120,
1972.

N. R. Krishnaswami, P. Pradic, and N. Benton. Integrating linear and dependent
types. In D. Walker, editor, Proc. of 42nd Ann. ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, POPL 2015, pages 17-30. ACM,
2015.

D. Leijen. Type directed compilation of row-typed algebraic effects. In A. D.
Gordon, editor, Proc. of 44th ACM SIGPLAN Symp. on Principles of Program-
ming Languages, POPL 2017, pages 486—499. ACM, 2017.

P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2

of Semantics Structures in Computation. Springer, 2004.

Bibliography 435

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

P. B. Levy. Monads and adjunctions for global exceptions. In S. Brookes and
M. Mislove, editors, Proc. of 22nd Conf. on Mathematical Foundations of Pro-
gramming Semantics, MFPS XXII, volume 158 of ENTCS, pages 261-287. El-
sevier, 2006.

P. B. Levy. Contextual isomorphisms. In A. D. Gordon, editor, Proc. of 44th
ACM SIGPLAN Symp. on Principles of Programming Languages, POPL 2017,
pages 400-414. ACM, 2017.

S. Lindley, C. McBride, and C. McLaughlin. Do be do be do. In A. D. Gor-
don, editor, Proc. of 44th ACM SIGPLAN Symp. on Principles of Programming
Languages, POPL 2017, pages 500-514. ACM, 2017.

F. Linton. Coequalizers in categories of algebras. In B. Eckmann, editor, Proc.
of Seminar on Triples and Categorical Homology Theory, volume 80 of LNCS,
pages 75-90. Springer, 1969.

S. Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate
Texts in Mathematics. Springer-Verlag, 1971.

E. G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics.

Springer-Verlag, 1976.
S. Marlow. Haskell 2010 Language Report. April 2010.

P. Martin-Lo6f. An intuitionisitc theory of types, predicative part. In E. Rose and
S. J.C,, editors, Proc. of Logic Colloquium 1973, pages 73—118. North-Holland,
1975.

P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

The Coq Development Team. The Cog Proof Assistant Reference Manual. mr?
Project, Version 8.5pl3, October 26, 2016.

C. McBride. Functional pearl: Kleisli arrows of outrageous fortune. J. Funct.

Program. (To appear).

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). The MIT Press, 1997.

436

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Bibliography

E. Moggi. Computational lambda-calculus and monads. In R. Parikh, editor,
Proc. of 4th Ann. Symp. on Logic in Computer Science, LICS 1989, pages 14—
23. IEEE, 1989.

E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92,
1991.

G. Munch-Maccagnoni. Syntax and Models of a non-Associative Composition
of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.

A. Nanevski, G. Morrisett, and L. Birkedal. Hoare Type Theory, polymorphism
and separation. J. Funct. Program., 18(5-6):865-911, 2008.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, 2007.

U. Norell and J. Chapman. Dependently typed programming in agda. Tutorial.

M. Okada and P. J. Scott. A note on rewriting theory for uniqueness of iteration.
Theory Appl. Categ., 6(4):47-64, 1999.

E. Palmgren. On universes in type theory. In G. Sambin and J. M. Smith,
editors, Twenty-five Years of Constructive Type Theory: Proc. of Congress Held
in Venice, October 1995, volume 36 of Oxford Logic Guides, pages 191-204.
Clarendon Press, Oxford, 1998.

E. Palmgren and V. Stoltenberg-Hansen. Domain interpretations of Martin-
Lof’s partial type theory. Ann. Pure Appl. Logic, 48(2):135 — 196, 1990.

R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A realizability model
for impredicative Hoare Type Theory. In S. Drossopoulou, editor, Proc. of
17th European Symp. on Programming, ESOP 2008, pages 337-352. Springer-
Verlag, 2008.

A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order Work-
shop, Banff 1990, Workshops in Computing, pages 162—189. Springer-Verlag,
Berlin, 1991.

Bibliography 437

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

A. M. Pitts. Categorical Logic. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, Volume 5. Alge-
braic and Logical Structures, pages 39—-128. Oxford University Press, 2000.

A. M. Pitts, J. Matthiesen, and J. Derikx. A dependent type theory with ab-
stractable names. In I. Mackie and M. Ayala-Rincon, editors, Proc. of 9th Wksh.
on Logical and Semantic Frameworks, with Applications, LSFA 2014, volume
312 of ENTCS, pages 19-50. Elsevier, 2015.

G. Plotkin. Pisa notes (on domain theory). Available at: http://homepages.
inf.ed.ac.uk/gdp/publications/Domains_a4.ps, 1983.

G. Plotkin and J. Power. Semantics for algebraic operations. In S. Brookes and
M. Mislove, editors, Proc. of 17th Conf. on the Mathematical Foundations of
Programming Semantics, MFPS XVII, volume 45 of ENTCS, pages 332-345.
Elsevier, 2001.

G. Plotkin and J. Power. Algebraic operations and generic effects. Appl. Cate-
gor. Struct., 11(1):69-94, 2003.

G. Plotkin and J. Power. Tensors of comodels and models for operational seman-
tics. In A. Bauer and M. Mislove, editors, Proc. of 24th Conf. on Mathematical
Foundations of Programming Semantics, MFPS XXIV, volume 218 of ENTCS,
pages 295-311. Elsevier, 2008.

G. D. Plotkin. Concurrency and the algebraic theory of effects. Invited talk at
CONCUR 2012.

G. D. Plotkin and J. Power. Notions of computation determine monads. In
M. Nielsen, editor, Proc. of 5th Int. Conf. on Foundations of Software Science
and Computation Structures, FOSSACS 2002, volume 2303 of LNCS, pages
342-356. Springer, 2002.

G. D. Plotkin and M. Pretnar. A logic for algebraic effects. In F. Pfenning,
editor, Proc. of 23th Ann. IEEE Symp. on Logic in Computer Science, LICS
2008, pages 118-129. IEEE, 2008.

G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In G. Castagna,
editor, Proc. of 18th European Symp. on Programming, ESOP 2009, volume
5502 of LNCS, pages 80-94. Springer, 2009.

http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
http://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps

438

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Bibliography

G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in
Computer Science, 9(4:23), 2013.

J. Power. Enriched Lawvere theories. Theory Appl. Categ, 6(7):83-93, 1999.

J. Power. Countable Lawvere theories and computational effects. In A. K. Seda,
T. Hurley, M. Schellekens, M. M. an Airchinnigh, and G. Strong, editors, Proc.
of 3rd Irish Conf. on the Mathematical Foundations of Computer Science and
Information Technology, MFCSIT 2004, volume 161 of ENTCS, pages 59-71.
Elsevier, 2006.

J. Power. Indexed Lawvere theories for local state. In B. Hart, T. G. Kucera,
A. Pillay, P. J. Scott, and R. A. G. Seely, editors, Models, Logics and Higher-
Dimensional Categories: A Tribute to the Work of Mihdly Makkai, volume 53 of
CRM Proceedings & Lecture Notes, pages 213-229. Amer. Math. Soc., 2011.

M. Pretnar. The Logic and Handling of Algebraic Effects. PhD thesis, School
of Informatics, University of Edinburgh, 2010.

M. Pretnar. An introduction to algebraic effects and handlers. Invited tutorial
paper. In D. Ghica, editor, Proc. of 31st Conf. on the Mathematical Foundations
of Programming Semantics, MFPS XXXI, volume 319 of ENTCS, pages 19-35.
Elsevier, 2015.

D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Springer Netherlands, 2002.

U. Schopp. Names and Binding in Type Theory. PhD thesis, School of Infor-
matics, University of Edinburgh, 2006.

U. Schopp and I. Stark. A dependent type theory with names and binding. In
J. Marcinkowski and A. Tarlecki, editors, Proc. of 18th Ann. Conf. of the EACSL
on Computer Science Logic, CSL 2004, volume 3210 of LNCS. Springer, 2004.

M. Shulman. Enriched indexed categories. Theory Appl. Categ, 28:616-695,
2013.

M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM J. Comput., 11(4):761-783, 1982.

Bibliography 439

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

S. Staton. Instances of computational effects: An algebraic perspective. In
O. Kupferman, editor, Proc. of 28th Ann. ACM/IEEE Symp. on Logic in Com-
puter Science, LICS 2013, pages 519-519. IEEE, 2013.

T. Streicher. Semantics of Type Theory. Correctness, Completeness and Inde-

pendence Results. Progress in Theoretical Computer Science. Birkhéduser, 1991.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue, and
S. Zanella-Béguelin. Dependent types and multi-monadic effects in F*. In
R. Majumdar, editor, Proc. of 43rd Ann. ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL 2016, pages 256-270. ACM,
2016.

A. Tarski. The concept of truth in formalized languages. In J. Corcoran, ed-
itor, Logic, Semantics, Metamathematics, pages 152—278. Hackett Publishing,
1983. (Translation of the original 1933 paper published in Polish. Translated by
J. H. Woodger based on a 1936 translation to German.).

M. Vékar. A categorical semantics for linear logical frameworks. In A. Pitts,
editor, Proc. of 18th Int. Conf. on Foundations of Software Science and Com-
putation Structures, FoSSaCS 2015, volume 9034 of LNCS, pages 102-116.
Springer, 2015.

M. Vikar. A framework for dependent types and effects. CoRR,
abs/1512.08009, 2015.

M. Vakér. An effectful treatment of dependent types. CoRR, abs/1603.04298,
2016.

C. Vasilakopoulou. Generalization of Algebraic Operations via Enrichment.
PhD thesis, Department of Pure Mathematics and Mathematical Statistics, Uni-
versity of Cambridge, 2014.

V. Voevodsky. Subsystems and regular quotients of C-systems. CoRR,
abs/1406.7413, June 2014.

P. Wadler. The essence of functional programming. In R. Sethi, editor, Proc. of
19th Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, POPL 1992, pages 1-14. ACM, 1992.

Notation and Subject Index

+ie1 (cardinal sum), [31]

?4 (unique morphism in ‘V{OX} from 1.}
to A),[121]

2 (isomorphism), [21]

= (natural isomorphism), 22]

o (empty value context), [59)

J (action of the monoid of updates on
the set of store values), 241]

{—=} (comprehension functor),

| (Grothendieck construction),

< (less-than-equal order on natural num-
bers),

<x (partial order of a cpo X),

1 (notation for pullback squares),

—o (split fibred functor witnessing split
fibred pre-enrichment),

[—] (interpretation function),

0 (empty type),[50]

Oy (initial object in V),

0 (empty category),

1 (split terminal object functor), 2]

1 (terminal object), [TT0]

1 (unit type), [50]

1x (terminal object in V),

1 (trivial one object category),

2 (discrete two-object category),

(A, o) (Eilenberg-Moore algebra),

A+ B (coproduct type), [50]

441

A +x B (binary coproduct of A and B in
Vx),

A = B (exponential object),

A = C (A-fold V-cotensor),

A =x B (exponential object in V),

A® C (A-fold V-tensor),

A® C (non-dependent computational ten-
sor type), [51]

A x B (Cartesian product of A and B),

A X B (non-dependent value product type),
51

A xx B (Cartesian product of A and B in

(VX)’

A — B (non-dependent value function type),

A — C (non-dependent computational func-

tion type), [51]
A,B,... (value types), [50|

Adisc, Bdisc, - - - (discrete value types),
(A, {Vop }opes.) (user-defined algebra type),
280

—

~

A’j — A (sequence of function types),

283
X,- (A;, with its variables x; replaced with

fresh ones x}),

(o] (unique mediating morphism of co-
cones from in’ to o),

(o) (unique mediating morphism of cones

from o to pr’),
X, (skeleton of the category of count-

442

able sets),

o4 g (natural associativity isomorphism),
146]

B~ (arrow category),

B~ (total category of a codomain fibra-
tion),

Bn} (structure map of IT} (B, B)), [147

Byr (structure map of *T(B,B)), 148

C — D (homomorphic function type),
50]

C —o D (shorthand for C —ox D), [13]]

C —ox D (shorthand for — (X,C,D)),

C.D, ... (computation types), 50|

Cat (2-category of categories, functors,
and natural transformations),

CBPV (Call-By-Push-Value), #]

CCC (Cartesian closed category), [IT]]

CFam(CPO) (total category of the fibra-
tion of continuous families of cpos),

CFam(CPOT) (total category of the fi-
bration of continuous families of
continuous EM-algebras), @]

cfampr (fibration of continuous fami-
lies of continuous EM-algebras),
IRK

cfamcpo (fibration of continuous fami-
lies of cpos),

Chr (type of characters),

codg (codomain fibration),

colim(J) (vertex of the split fibred strong

colimit of J),

colim(J) (vertex of the strong colimit of

J).[120]

NOTATION AND SUBJECT INDEX

colim(J) (vertex of the colimit of J),

LIy (cpo-indexed coproduct),[153]
Ll ex (set-indexed coproduct),

(CPO™)EP (category of embedding-projection

pairs between continuous EM-

algebras), 153

CPO (category of cpos and continuous

functions),

CPO/X (slice category of CPO over an
object X),[159

CPOFP (category of embedding-projection
pairs between cpos), [I[5]]

cpo (®-complete partial order),

CU (universe of codes of computation
types), 290

A (context of variables for well-formed
terms derived from a countable
signature),

A (diagonal functor), [24]

A (effect context), 245]

AY (context of a countable equational the-
ory, derived from an effect con-
text A),

D (shape of a diagram),

&’ (contraction functor),

84 (diagonal morphism), [126]

dcpo (directed-complete partial order),
152

E,... (expressions, collective name for
types and terms of eMLTT), [56]

E[V /x| (substitution of V for x in E),

E[Vi/x1,...,Va/x,) (simultaneous substi-
tution),

E [Vf / 7?] (simultaneous substitution),

E (set of equations of a countable equa-

NOTATION AND SUBJECT INDEX

tional theory),

g, (set of equations of a countable equa-

tional theory derived from a count-

able fibred effect theory Tog),

Fefr (set of equations of a fibred effect
theory),

1N (unit of a monad),

1N (unit of a split fibred adjunction),

1N (unit of a split fibred monad),

M (unit of an adjunction), [21]

€ (counit of a split fibred adjunction),

€ (counit of an adjunction), [21]

e (reflexive coequalizer used to define a
cpo-indexed coproduct of con-
tinuous EM-algebras),

ea,(,p) (reflexive coequalizer used to de-
fine £ (B,B)),

eMLTT (our effectful dependently typed
language), 49|

eMLTTq (extension of eMLTT with fi-
bred algebraic effects),

eMLTT?Tfff (extension of eMLTT . with
handlers of fibred algebraic ef-
fects),

EEC (Enriched Effect Calculus),

EEC+ (extension of EEC with finite prod-

ucts), [133]

El (decoding function for codes of types),
290

EM (Eilenberg-Moore),

Exc (type of exception names),

F - U (adjunction),

F - U (split fibred adjunction), 40|

FT 4 UT (Eilenberg-Moore resolution),
22|

443

F; 4 Uy (canonical adjunction for mod-
els of a countable Lawvere the-

ory L),
Fr - Ut (Kleisli resolution),

[T;A]; (first component of the object [T7;A]),

262]

[I';A]2 (second component of the object
[T:AD),

[T'; V] (first component of the morphism
Ir:v),

[;V]2 (second component of the mor-
phism [I;V]),

FT (lifting of the functor FT),

F (lifting of the functor F),

(f¢, f?) (embedding-projection pair),[151]

[f,g] (unique copairing of vertical mor-
phisms), [122]

[fp]pe s (dependently typed elimination
principle for split fibred strong
colimits), [122]

[filier (unique mediating morphism for
countable coproducts),

(fi)ier (unique mediating morphism for
countable products),

fresh(X) (a choice of a fresh value vari-
able for a finite set X of value
variables), 216]

f(A) (chosen Cartesian morphism in a
cloven fibration), [36]

(f,g) (unique mediating (pairing) mor-
phism for Cartesian products),
111

f* (reindexing functor),

f*(a) (component-wise reindexing of the

cocone o), [123]

444

fT (Kleisli extension),
£ (unique mediating morphism induced
by the chosen Cartesian morphism

p(7)(B)).37]

FA (type of computations that return val-
ues of type A), [50]

Fam(?) (total category of a 7/-valued
families fibration),

famge: (families of sets fibration),

fam,, (7-valued families fibration),

FCV(K) (free computation variable of

K),[54

FEV(T) (set of free effect variables of
T),

Fibspiit (‘B) (2-category of split fibrations
with a base category ‘B, split fi-
bred functors, and split fibred nat-
ural transformations), 40|

fst (first projection, derived from pattern-
matching), [54]

fst (first projection for Cartesian prod-

ucts), [IT1]
FVV(E) (set of free value variables of

E),[57,209

I" (value context),[59]

['[V /x] (substitution of V for x in),

I'1,I (concatenation of value contexts),
60]

gen,,, (generic effect),

I (countable Lawvere theory),

I (input type of an operation symbol),
238

/0 (input/output),

IT (countable Lawvere theory derived from

a countable equational theory T),

NOTATION AND SUBJECT INDEX

I, (countable Lawvere theory derived
from a countable fibred effect the-
ory Tegr),

ia(fz, fs) (elimination principle for weak
split fibred strong natural num-
bers),

ia,8(f) (elimination principle for split in-
tensional propositional equality),

Id4 (split intensional propositional equal-
ity),

in’ (split fibred strong colimit of J),

in’ (strong colimit of J),

in’ (colimit of J),

inl (Ieft injection for binary coproducts),
1211

inr (right injection for binary coproducts),

1211

J (diagram), 23]

J (Cat-valued diagram derived from J),

K,L,... (homomorphism terms), 50|

K[M /7] (substitution of M for z in K),

K4.p (isomorphism witnessing the strength
of split dependent sums),

L[K /7] (substitution of K for z in L),

L (countable Lawvere theory),

L (countable Lawvere theory derived
from a countable equational the-
ory T),

Lq. (countable Lawvere theory derived
from a countable fibred effect the-
ory T,

Ay, AA; — A. (sequence of lambda ab-

NOTATION AND SUBJECT INDEX

stractions),

Law, (category of countable Lawvere the-
ories), [28]

lim(J) (vertex of the limit of J),

Loc (type of memory locations),

M,N,... (computation terms), [50]

M (model of a countable Lawvere the-
ory),

Mia g Fop; Yopesig) (model of a countable
Lawvere theory, derived from a
set A and functions fop,), @

MLTT (Martin-Lo6f’s type theory), [6]

uX.F(X) (least fixed point of the endo-
functor F), 19|

u (multiplication of a monad),

u (multiplication of a split fibred monad),

Mod(L, V) (category of models in ¥ of
a countable Lawvere theory L),
28]

N (weak split fibred strong natural num-
bers),

N (set of natural numbers), [140|

N_ (discrete cpo on the set of natural
numbers),

Ny (cpo of natural numbers with the <
order and a top element), [I59]

Nat (type of natural numbers),

NNO (natural numbers object),

O (output type of an operation symbol),

23§]

Q(4,«) (least zero-ary operation),
ob(?) (class of objects of a category V),

18]

op (operation symbol in a countable sig-

445

nature),

op (operation symbol in a fibred effect

signature), [23§]

5 st o 53

P (comprehension category),

P.q, - .. (fibrations), 36|

pT (split Eilenberg-Moore fibration of a
split fibred monad T on p), 1]

ITx:A.B (value IT-type), [50|

ITx:A.C (computational IT-type), [50|

H} (split dependent p-product in pT),
147

IT, (split dependent p-product), [I16|

I14 (split dependent product),

[y (cpo-indexed product),

[;e; (countable product),

[N,ex (set-indexed product),

T4 (projection morphism),

T, (weakening functor),

pr/ (limit of J),

proj (composition of semantic projection
morphisms), [192]

proj ; (jth projection for countable prod-
ucts),

Projr, .x.4.r, (S€mantic projection morphism),
(183

Y ¢ (vertical isomorphism witnessing the
uniqueness of Cartesian morphisms),
35

q°P (opposite of the split fibration g),

ra (reflexivity of split intensional propo-
sitional equality),

rec(f, fs) (elimination principle for weak

split fibred strong natural num-

bers), [124]

446

(Seft, Eefr) (fibred effect theory),

S (countable signature), 29|

Sq,, (countable signature derived from
a countable fibred effect theory
Tetr)s

Setr (fibred effect signature), 23§

s(f) (section corresponding to a vertical
global element f),

s (continuous successor function asso-
ciated with the discrete cpo of
natural numbers), [154]

s (successor function associated with the
set of natural numbers),

s (successor morphism associated with a
weak NNO), [134]

s(V) (total category of a simple fibra-
tion),

s(V,C) (total category of a simple V-
enriched fibration), [135]

s~!(f) (vertical global element correspond-

ing to a section f),
sy, ¢ (simple V-enriched fibration built

from a V-enriched category C),
135
sq (simple fibration built from a Carte-

sian category V),
SCCompC (split closed comprehension

category), [[10|
Set (category of sets and functions),
Lx:A.B (value X-type), [50]
Zx:A.C (computational Z-type), [50]
Z} (split dependent p-sum in pT),
L4 (split dependent p-sum), [T16]
Y4 (strong split dependent sum),
L4 (weak split dependent sum), [I0§]

NOTATION AND SUBJECT INDEX

G (strength of a monad),

04 (dependent strength of a split fibred
monad), [144]

size(E) (size of an expression E),

size(T") (size of a value context I'),

snd (second projection for Cartesian prod-

ucts),

snd (second projection, derived from pattern-
matching), [54]

(St,Upd, |,0,®) (directed container of
store values and updates),

St (type of store values),

subst (composition of semantic substitu-
tion morphisms),

substr,.x.a.:v (semantic substitution mor-
phism), [184]
succ (successor morphism of weak split

fibred strong natural numbers),

124

(7,m,u) (monad),
(T,m,u) (split fibred monad),
(Tz M., ur) (monad derived from a count-

able Lawvere theory L),

T,... (effect terms), [244]

TY (term of a countable equational the-
ory, derived from an effect term
T),263]

(T) A;W;W;W/-op} (translation of effect terms
into value terms), 250

T (countable equational theory),

Ty, (countable equational theory derived

from a countable fibred effect the-
ory Tegr),

T (monad),
T (split fibred monad), 4]

NOTATION AND SUBJECT INDEX

Teir (fibred effect theory),

T4 (fibred effect theory (Sefr,0)),
419

t,u,... (terms derived from a countable
signature), [29]

t[u/x] (substitution of u for x in ¢),

Terminal (type of terminal names),

ﬁ (lifting of the functor U T,

U (lifting of the functor U),

UC (type of thunked computations), [50|

(Upd,o,®) (monoid of updates),

V =4 W (propositional equality), [50|

V,W,... (value terms), [50]

V, xn (least upper bound of an increas-
ing ®-chain (x,)),

V (A, B) (hom-set between objects A and
Bin V),

V°P (opposite category of V),

'T (Eilenberg-Moore category of a monad

T on V),

Vx (fibre (category) over X),

1 (Kleisli category of a monad T on
V),

75 (shorthand for (V... ,Vn)),

7,- (shorthand for {V1,...,V,}),

Val (type of values stored at memory lo-
cations), 240|

Vars(T') (set of variables in I),

VU (universe of codes of value types),
290}

w,... (effect variables),

(1X], <x) (cpo), 150

|X| (underlying set of a cpo X),

(x,a) (x’th injection into a cpo-indexed
coproduct), [I53]

447

(x,a) (x’th injection into a set-indexed
coproduct), [140]

(xn) (increasing ®-chain x; <y x» <x ...),
150

X,V, ... (value variables),

X,Y,... (variables of terms derived from
a countable signature),

Ex ¢ p (isomorphism witnessing split fi-
bred pre-enrichment),

z (continuous zero function associated
with the discrete cpo of natural
numbers),

z (zero function associated with the set
of natural numbers), [140]

z (zero morphism associated with a weak
NNO), [134]

z: C (computation context), [59

Z,... (computation variables), 49|

zero (zero morphism of weak split fibred
strong natural numbers), [124]

Cr1.4 (natural isomorphism witnessing that
U preserves split dependent prod-
ucts), [11§]

Cx 4 (natural isomorphism witnessing that

F preserves split dependent sums),

A-fold V-cotensor, [133)
A-fold V-tensor, 133

adjoint
left —,
right —,

adjunction,

hom-set presentation of an —, [21]

identity —, [132]

448

lifting of —, [135]

split fibred —, [40]
algebraic effect, [26]

fibred —, 23|
algebraic operation, [249]
algebraicity equation

general —, 251

specialised —, 261}, 303

category

NOTATION AND SUBJECT INDEX

split closed comprehension —, [110]
split comprehension — with unit, 43|
full —, @3]
total —, [36]
cocone, 24
vertex of a —, [24]
coequalizer, [25]
reflexive —, 23]
colimit, 23]
countably directed —, [29]

— of continuous families of continu-
ous EM-algebras, [[55]

— of continuous families of cpos, @

— of cpos and continuous functions,
150

— of embedding-projection pairs be-
tween continuous EM-algebras,
155

— of embedding-projection pairs be-
tween cpos, [I5]]

arrow —, [3§]

base —, [36]
Cartesian closed —, [TT1]

cocomplete —, 23]
complete —, [24]

comprehension —, 43|

Eilenberg-Moore —, 22]
fibre —, [34]

Kleisli —, 22]
locally countably presentable —, [29]
regular —,[26]

skeleton of the — of countable sets,

28]
slice —, [159]
split B-indexed -,

small —,[23)
split fibred strong —, [121]

strong —, [120]
completeness theorem, @]
composition operation, 280]
cone, 23]

vertex of a —, 23

context

— of variables for well-formed terms

derived from a countable signa-

ture, 30|

computation —, [59]
effect —, 245
well-formed —, 245]
value —,[59
pure —,[244]

well-formed —, [6]]

coproduct

cpo-indexed —, [T53} [157]
set-indexed —, [T40)
split fibred strong —, [121]

diagram of given shape, 23]
directed container, 242]

Eilenberg-Moore

NOTATION AND SUBJECT INDEX

— algebra, 23]
carrier of an —, 23
structure map of an —, 23]
— fibration, 4]

split dependent p-products in —,

split dependent p-sums in —, [T48]
split fibred — resolution, 1]
embedding-projection pair, [I51]
epimorphism
regular —, [26]
expression, [56|
extension of eMLTT
— with fibred algebraic effects, 249
— with handlers of fibred algebraic

effects, 280]

fibration, 36|
— of continuous families of continu-
ous EM-algebras, 153
— of continuous families of cpos, @
cloven —,[36
codomain —,
Eilenberg-Moore —, [41]
families —, [38]
families of sets —, [140]
simple V-enriched —, m
simple —, [3§]
split —, [37]
fibred adjunction model, [T31]
— built from families fibration, [142]
— built from identity adjunction, [133]
— built from model of EEC+,[139]
classifying —, [232]
fixed point operation,

function

449

continuous —,

functor
codomain —, [37]
comprehension —, [43]
continuous —,[152]
contraction —, [127]
diagonal —, [24]
families —, 3§
reindexing —, [37]
split fibred —, [39]
split terminal object —, [42]
weakening —, [43]

general recursion, [16]]

generic effect, [273)

global element, [44]
Grothendieck construction, [T30]

handler,
multi—, 27§
handling construct, 276} 286
initial object
split fibred strong —, [T21]
injection
left —, [121]
right —, [121]
interpretation function, [161], [166] [263]
B11]

kernel pair, [24]
Kleisli

— extension, [T§]
— triple, 18]

Lawvere theory
countable —, 28]
model of a —, 28]

450

limit, 24
small —, [24]
limit-colimit coincidence, [I51] [T53]

model of EEC+,[133]
monad, [17]
continuations —, [T9]
exceptions —, [19]
global state, [T9)
1/O —,[T9)
nondeterminism —, 9]
split fibred —, [41]
dependent strength of a —, [144]
strong —, [T9|
update —, [19]
dependently typed —, [T9]
monoid, 241]
morphism
— of cocones, 23]
— of cones, [24]
— of countable Lawvere theories, 28]
— of models of a countable Lawvere
theory, [2§|
Cartesian —, [34]
diagonal —, [126]
projection —, 3]
semantic projection —, [183]
semantic substitution —, [T84]
unique mediating (pairing) —, [IT1]
vertical —, [34]

natural transformation
split fibred —, [39]

object
countably presentable —, 29|
split fibred strong initial —, [T21]

NOTATION AND SUBJECT INDEX

terminal —, [T 10]

partial order

o-complete —, [I50]

discrete —, [130]
directed-complete —, [152]
product

cpo-indexed —, [I54} [156]
set-indexed —, [T40]
projection
first —, [T17]
second —, [IT1]
pullback, 24]
— square, [24]

pushout, 23]

resolution
— of a monad, 22]
Eilenberg-Moore —, [22]
Kleisli —, 22]
split fibred —, [41]
— of the continuations monad, 23]

— of the state monad, 23]

section, 23]
signature
countable —, 29|
fibred effect —, 238
— of a dependently typed update
monad, 247]
— of an update monad, 24T
— of binary nondeterminism, [239]
— of exceptions, 239
— of global state, 239
— of global state with locations, [240]
— of input/output, 24T]
countable —, 263

NOTATION AND SUBJECT INDEX

size
— of expression, [166]
— of value context,

soundness theorem, [T98] 268] 314]
split dependent

— p-products, [TT16]

— p-sums, [T16]

— products, [T08]

strong — sums, [T 10]
weak — sums, [T0§]

split fibred pre-enrichment, [I30]
split intensional propositional equality,
127
substitution
— of a computation term, [57]
— of a homomorphism term, @
— of a value term, [56]
simultaneous —, 208]
substitution theorem
semantic —
— for computation terms, [I8§]
— for homomorphism terms, @
— for value terms,
syntactic —
— for computation terms, 83
— for homomorphism terms, [84]

— for value terms, 210l 256]
295|

term
— derived from a countable signa-
ture, 29
well-formed —, 30|
computation —, [52]

well-typed —, [6]]

451

effect —, [244]
well formed —, 243]

homomorphism —, [53|
well-typed —, [6]]
value —,[52]
pure —, 23§
well-typed —, [6]]
theory
countable equational —, @
— of global state, [33]
fibred effect —, [246]
— of a dependently typed update
monad, 248
— of an update monad, 24§]
— of binary nondeterminism, 246
— of exceptions, 246]
— of global state,
— of global state with locations, [247]
— of input/output, 24§]
countable —, 263
translation of effect terms into value terms,
250
well-typedness of —, 259
type
computation —, [50]
well-formed —, [6]]
input —, 23§
output —, 23]
user-defined algebra —, 280
value —, [50|
discrete —, [16]]
pure —, 23§

well-formed —, [6]]

universe, 290]

452 NOTATION AND SUBJECT INDEX

variable
— convention, 56|
computation —, 49|
effect —, 2473
value —, 49|

weak split fibred strong natural numbers,
124]
weakening theorem
semantic —,
syntactic —,
well-formed syntax, [61] 250} 283

	Introduction
	Two guiding questions
	Contributions
	Organisation
	Related work

	Semantic preliminaries
	Models of computational effects
	Monads
	Adjunctions
	Algebraic treatment of computational effects

	Fibred category theory

	eMLTT: Martin-Löf's type theory with fibred computational effects
	Syntax
	Well-formed syntax and equational theory
	Meta-theory
	Derivable elimination forms
	Derivable equations

	Fibred adjunction models
	Category theory for modelling eMLTT
	- and -types
	Empty type and coproduct type
	Natural numbers
	Propositional equality
	Homomorphic function type

	Fibred adjunction models
	Examples of fibred adjunction models
	Identity adjunctions
	Simple fibrations and models of EEC+
	Families of sets fibration and liftings of adjunctions
	Eilenberg-Moore fibrations of fibred monads
	Continuous families fibration and general recursion

	Denotational semantics of eMLTT
	Interpreting eMLTT in fibred adjunction models
	Soundness
	Completeness

	eMLTTTeff: an extension of eMLTT with fibred algebraic effects
	Fibred algebraic effects
	Fibred effect signatures
	Fibred effect theories

	Extending eMLTT with fibred algebraic effects
	Meta-theory
	Derivable equations
	Interpreting eMLTTTeff in a fibred adjunction model
	Generic effects

	eMLTTTeffH: an extension of eMLTTTeff with handlers
	Handlers of algebraic effects
	Problems with the term-level definition of handlers
	Extending eMLTTTeff with a type-based treatment of handlers
	Deriving the conventional presentation of handlers
	Using handlers to reason about algebraic effects
	Lifting predicates from return values to computations
	Specifying patterns of allowed effects

	Meta-theory
	Derivable equations
	Alternative presentations of eMLTT, eMLTTTeff, and eMLTTTeffH
	Different equational proof obligations
	Omitting homomorphism terms

	Interpreting eMLTTTeffH in a fibred adjunction model

	Conclusion and future work
	Future work directions
	Fibred notions of Lawvere theory
	Extending eMLTT with more expressive computation types
	Fibrational account of Dijkstra monads
	Allowing types to depend on effectful computations
	Normalisation and implementation

	Dependently typed parsing example mentioned in Chapter 1
	Proofs for Chapter 4
	Proof of Proposition 4.1.19
	Proof of Proposition 4.1.20
	Proof of Proposition 4.1.23
	Proof of Proposition 4.1.24
	Proof of Proposition 4.3.23
	Proof of Theorem 4.3.24
	Proof of Theorem 4.3.26
	Proof of Theorem 4.3.28

	Proofs for Chapter 5
	Proof of Proposition 5.2.4
	Proof of Proposition 5.2.7
	Proof of Proposition 5.2.8

	Proofs for Chapter 6
	Proof of Proposition 6.5.6

	Bibliography
	Notation and Subject Index

