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We study algebraic computational effects and their handlers in the dependently typed setting. We describe

computational effects using a generalisation of Plotkin and Pretnar’s effect theories, whose dependently

typed operations allow us to capture precise notions of computation, e.g., state with location-dependent store

types and dependently typed update monads. Our treatment of handlers is based on an observation that their

conventional term-level definition leads to unsound program equivalences being derivable in languages that

include a notion of homomorphism. We solve this problem by giving handlers a novel type-based treatment

via a new computation type, the user-defined algebra type, which pairs a value type (the carrier) with a set of

value terms (the operations), capturing Plotkin and Pretnar’s insight that effect handlers denote algebras. We

then show that the conventional presentation of handlers can be routinely derived, and demonstrate that this

type-based treatment of handlers provides a useful mechanism for reasoning about effectful computations.

We also equip the resulting language with a sound denotational semantics based on families fibrations.
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1 INTRODUCTION

An important feature of many widely-used programming languages is their support for computa-
tional effects (e.g., raising exceptions, accessing memory, performing I/O), which allows program-
mers to write more efficient and conceptually clearer programs. Therefore, if dependently typed
languages are to live up to their promise of providing a lightweight means for integrating formal
verification and practical programming, we must first understand how to properly account for com-
putational effects in such languages. While there already exists a range of work on combining these
two fields (e.g., Ahman et al. [2016, 2017]; Brady [2013]; Casinghino [2014]; Hancock and Setzer
[2000]; McBride [2011]; Nanevski et al. [2008]; Pédrot and Tabareau [2017]; Pitts et al. [2015]), there
is still a gap between the rigorous and comprehensive understanding we have of computational
effects in the simply typed setting, and what we know about them in the presence of dependent
types. For example, in the mentioned works, either the mathematical foundations of the languages
developed are not settled, the available effects are limited, or they lack a systematic treatment of
(equational) effect specification. In this paper we contribute to the intersection of these two fields
by investigating how to combine dependent types with algebraic effects and their handlers.

Algebraic effects form a wide class of computational effects that lend themselves to specification
using operations and equations; examples include exceptions, state, input-output, nondeterminism,
probability, etc. Their study originated with the pioneering work of Plotkin and Power [2001, 2002];
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and they have since been successfully applied to, e.g., modularly combining different effects [Hyland
et al. 2006] and effect-dependent program optimisations [Kammar and Plotkin 2012]. A key insight
of Plotkin and Power was that most of Moggi’s monads [Moggi 1989, 1991] are determined by
algebraic presentations, with the notable exception of continuations, which are not algebraic.

A major role in the recent rise of interest in algebraic effects can be attributed to their handlers.
These were introduced by Plotkin and Pretnar [2013] as a generalisation of exception handlers to
all algebraic effects, based on the insight that handlers denote user-defined algebras for the given
notion of computation, and the handling construct denotes the homomorphism induced by the
universal property of the free algebra. From a programming language perspective, an effect handler

{opx (x
′) 7→ Nop}op∈Seff

provides redefinitions of the algebraic operations in the signature Seff, and the handling construct

M handled with {opx (x
′) 7→ Nop}op∈Seff to y :A in Nret

then recursively traverses the given programM , replacing each algebraic operation op with the
corresponding user-defined computation term Nop, e.g., as illustrated by the following β-equation:

Γ ⊢ (opFAV (y ′.M )) handled with {opx (x
′) 7→ Nop}op∈Seff to y :A in Nret

= Nop[V /x , λy
′ :O[V /x].thunk H/x ′] : C

where, for better readability, we abbreviate the recursive call to the handling construct as

H
def
= M handled with {opx (x

′) 7→ Nop}op∈Seff to y :A in Nret

Plotkin and Pretnar [2013] also showed that handlers can be used to neatly implement timeouts,
rollbacks, stream redirection, etc. More recently, handlers have also gained popularity as a practical
and modular programming language abstraction, allowing one to write programs generically
in terms of algebraic operations, and then use handlers to modularly provide different fit-for-
purpose implementations for these programs. A prototypical example of this approach involves
implementing the state operations (get and put) using their natural representation as state-passing
functions St→ A × St. In order to support this style of programming, existing languages have
been extended with algebraic effects and their handlers [Hillerström and Lindley 2016; Kammar
et al. 2013; Leijen 2017], and new languages have been built around them [Bauer and Pretnar 2015;
Lindley et al. 2017]. However, being simply typed, these languages do not allow the programmer
to (equationally) specify the intended behaviour of the computational effects at hand, and thus
provide no guarantees that the defined handlers satisfy these specifications, a gap we aim to fill.

The main contributions of this paper are: i) a dependently typed generalisation of Plotkin and
Pretnar’s effect theories (ğ3.1); ii) an observation that the conventional term-level definition of
effect handlers leads to unsound program equivalences being derivable in languages that include a
notion of homomorphism (ğ4.1); iii) a new computation type, the user-defined algebra type, giving a
type-based treatment of handlers and solving the above-mentioned problem with unsound program
equivalences (ğ4.2); iv) a derivation of the conventional term-level definition of handlers from our
type-based treatment (ğ4.3); v) a demonstration that such handlers provide a useful mechanism
for reasoning about effectful computations (ğ7); and vi) a natural denotational semantics for the
resulting language based on families fibrations and models of countable Lawvere theories (ğ8).

This paper is based on ğ6 and ğ7 of the author’s PhD thesis [Ahman 2017] in which variants of
these contributions are presented in a system where the equational proof obligations used in the
type-based treatment of handlers are given by definitional equations instead of propositional ones.
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2 EMLTT: THE UNDERLYING EFFECTFUL DEPENDENTLY TYPED LANGUAGE

We begin with an overview of the language we use as a basis for studying algebraic effects and
their handlers in the dependently typed setting, namely, the effectful dependently typed language
proposed by Ahman et al. [2016]. This language is a natural extension of Martin-Löf’s [1975]
intensional type theory (MLTT) with computational effects. It makes a clear distinction between
values and computations, both at the level of types and terms, analogously to simply typed languages
such as Call-By-Push-Value (CBPV) [Levy 2004] and the Enriched Effect Calculus (EEC) [Egger et al.
2014]. Specifically, we base our work in this paper on a minor extension of Ahman et al.’s language,
as explained below. Following Ahman [2017], we refer to this extended language as eMLTT.
As usual for dependently typed languages, eMLTT’s types and terms are defined mutually

inductively. First, one assumes countable sets of value variables x ,y, . . . and computation variables
z, . . .. Next, the grammar of value types A,B, . . . and computation types C,D, . . . is given by

A ::= Nat | 1 | 0 | A + B | Σx :A.B | Πx :A.B | V =AW | UC | C ⊸ D

C ::= FA | Σx :A.C | Πx :A.C

Analogously to Ahman et al. [2016], we omit general inductive types and use natural numbers
as a representative example. Compared to op. cit., our value types also include the empty type 0,
the sum type A + B, and the homomorphic function type C ⊸ D. We include the first two as to
specify signatures of algebraic effects (see ğ3.2); and the latter as it is useful for writing effectful
code without excessive thunking and forcing, and because it enables us to eliminate values into
homomorphism terms, as discussed later in this section. Further, as standard, we write A × B and
A→ B for Σx :A.B and Πx :A.B when the value variable x does not appear free in B. Finally, we
note that FA is the type of possibly effectful computations that return values of type A.
Next, the grammar of eMLTT’s value terms V ,W , . . . is given by

V ::= x | ⋆ | zero | succ V | nat-elimx .A (Vz ,y1.y2.Vs ,V ) | case V ofx .A ()

| inlA+B V | inrA+B V | case V ofx .B (inl(y1 :A1) 7→W1, inr(y2 :A2) 7→W2)

| ⟨V ,W ⟩(x :A).B | pm V as (x1 :A1,x2 :A2) iny .B W | λx :A.V | V (W )(x :A).B | λz :C .K

| refl V | eq-elimA (x1.x2.x3.B,y.W ,V1,V2,Vp ) | fun-ext(x :A).B (V1,V2,Wp ) | thunkM

Observe that in addition to the introduction and elimination forms for the types inherited from
MLTT, value terms also include thunks of computations and homomorphic lambda abstractions.
Compared to Ahman et al. [2016] and Ahman [2017], in this paper we further include the axiom of
function extensionality, so as to enable reasoning about proof obligations given by propositional
equalities between functions, e.g., as used in ğ4.2 for our type-based treatment of effect handlers.

Regarding effectful programs, eMLTT makes a distinction between computation terms M,N , . . .
and homomorphism terms K ,L, . . .. The grammar of these two kinds of terms is given by

M ::= forceC V | return V | M to x :A inC N K ::= z | K to x :A inC M

| ⟨V ,M⟩(x :A).C | M to (x :A, z :C ) inD K | ⟨V ,K⟩(x :A).C | K to (x :A, z :C ) inD L

| λx :A.M | M (V )(x :A).C | V (M )C,D | λx :A.K | K (V )(x :A).C | V (K )C,D

Computation terms include standard term formers: returning a value, sequential composition,
lambda abstraction, and function application. They also include forcing of thunks, introduction
and elimination forms for the computational Σ-type, and homomorphic function applications.
Homomorphism terms differ from computation terms in two respects: on the one hand, they do not
include forceC V and return V ; on the other hand, they include computation variables z, which
have to be used i) linearly and ii) in a way that ensures that the computation bound to z łhappens
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Value types: Computation types:

⊢ Γ

Γ ⊢ Nat
Γ ⊢ V : A Γ ⊢W : A

Γ ⊢ V =A W

Γ ⊢ C

Γ ⊢ UC

Γ ⊢ C Γ ⊢ D

Γ ⊢ C ⊸ D
Γ ⊢ A
Γ ⊢ FA

Γ,x :A ⊢ C

Γ ⊢ Σx :A.C

Γ,x :A ⊢ C

Γ ⊢ Πx :A.C

Value terms:

Γ ⊢ V : A
Γ ⊢ refl V : V =AV

Γ,x1 :A,x2 :A,x3 :x1 =A x2 ⊢ B Γ ⊢ V1 : A Γ ⊢ V2 : A

Γ ⊢ Vp : V1 =A V2 Γ,y :A ⊢W : B[y/x1,y/x2, refl y/x3]

Γ ⊢ eq-elimA (x1.x2.x3.B,y.W ,V1,V2,Vp ) : B[V1/x1,V2/x2,Vp/x3]

Γ ⊢ M : C

Γ ⊢ thunkM : UC

Γ ⊢ V1 : Πx :A.B Γ ⊢ V2 : Πx :A.B Γ ⊢Wp : Πx :A.(V1 (x )(x :A).B =B V2 (x )(x :A).B )

Γ ⊢ fun-ext(x :A).B (V1,V2,Wp ) : V1 =Πx :A.B V2

Γ | z :C ⊢ K : D

Γ ⊢ λz :C .K : C ⊸ D

Computation terms:

Γ ⊢ V : UC

Γ ⊢ forceC V : C
Γ ⊢ V : A

Γ ⊢ return V : FA

Γ ⊢ M : FA Γ ⊢ C Γ,x :A ⊢ N : C

Γ ⊢ M to x :A inC N : C

Γ ⊢ V : C ⊸ D Γ ⊢ M : C

Γ ⊢ V (M )C,D : D

Homomorphism terms:

Γ ⊢ C

Γ | z :C ⊢ z : C

Γ | z :C ⊢ K : FA Γ ⊢ D Γ,x :A ⊢ M : D

Γ | z :C ⊢ K to x :A inD M : D

Γ ⊢ V : A Γ,x :A ⊢ D Γ | z :C ⊢ K : D[V /x]

Γ | z :C ⊢ ⟨V ,K⟩(x :A).D : Σx :A.D

Γ | z1 :C ⊢ K : Σx :A.D1 Γ ⊢ D2 Γ,x :A | z2 :D1 ⊢ L : D2

Γ | z1 :C ⊢ K to (x :A, z2 :D1) inD2
L : D2

Γ ⊢ C Γ,x :A | z :C ⊢ K : D

Γ | z :C ⊢ λx :A.K : Πx :A.D

Γ,x :A ⊢ D Γ | z :C ⊢ K : Πx :A.D Γ ⊢ V : A

Γ | z :C ⊢ K (V )(x :A).D : D[V /x]

Γ ⊢ V : D1 ⊸ D2 Γ | z :C ⊢ K : D1

Γ | z :C ⊢ V (K )D1,D2
: D2

Fig. 1. Selected formation and typing rules for eMLTT’s types and terms.

first" in a term containing it. Omitting the two term formers and using computation variables in
this way guarantees that every K denotes a homomorphism in the models we consider in ğ8.

As such, homomorphism terms were crucial for Ahman et al. [2016] in enabling the elimination
form for the computational Σ-type Σx :A.C to be defined correctly. Namely, a term of this type is
eliminated into a pair of variables, one denoting a value and the other a computation. To preserve
the intended left-to-right evaluation order of one’s program, it is crucial that the variable denoting
a computation is evaluated first, and not discarded or duplicated arbitrarily, which is guaranteed
by how homomorphism terms are defined and how computation variables are used in them.

The well-formed syntax of eMLTT is defined using judgements (see Fig. 1) of well-formed value
contexts ⊢ Γ, value types Γ ⊢ A, and computation types Γ ⊢ C ; and well-typed value terms Γ ⊢ V : A,
computation terms Γ ⊢ M : C , and homomorphism terms Γ | z :C ⊢ K : D. Contexts Γ are lists of
distinct value variables, each annotated with a value type; and with the empty context written as ⋄.
As one can readily use thunking and forcing (and homomorphic functions) to eliminate values

into computation terms (resp. homomorphism terms), these elimination forms are not included
primitively. For example, one can eliminate natural numbers into computation terms as follows:

nat-elimx .C (Mz ,y1.y2.Ms ,V )
def
= forceC[V /x ]

(

nat-elimx .UC (thunkMz ,y1.y2.thunkMs ,V )
)

and (non-dependently) into homomorphism terms as follows:

nat-elimC (Kz ,y.Ks ,V )
def
=

(

nat-elimx1 .C ⊸C (λz :C .Kz ,y.x2.λz :C .Ks [x2 z/z],V )
)

z
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Value terms:

Γ ⊢ A Γ,x1 :A,x2 :A,x3 :x1 =A x2 ⊢ B Γ ⊢ V : A Γ,y :A ⊢W : B[y/x1,y/x2, refl y/x3]

Γ ⊢ eq-elimA (x1.x2.x3.B,y.W ,V ,V , refl V ) =W [V /y] : B[V /x1,V /x2, refl V /x3]

Γ ⊢ V : UC

Γ ⊢ thunk (forceC V ) = V : UC

Γ ⊢ V : C ⊸ D

Γ ⊢ V = λz :C .V (z)C,D : C ⊸ D

Computation terms:

Γ ⊢ V : A Γ ⊢ C Γ,x :A ⊢ M : C

Γ ⊢ (return V ) to x :A inC M = M[V /x] : C

Γ ⊢ M : FA Γ ⊢ C Γ | z :FA ⊢ K : C

Γ ⊢ M to x :A inC K[return x/z] = K[M/z] : C

Γ ⊢ M : C

Γ ⊢ forceC (thunkM ) = M : C

Γ ⊢ M : C Γ | z :C ⊢ K : D

Γ ⊢ (λz :C .K ) (M )C,D = K[M/z] : D

Homomorphism terms:

Γ ⊢ V : A Γ | z1 :C ⊢ K : D1[V /x] Γ ⊢ D2 Γ,x :A | z2 :D1 ⊢ L : D2

Γ | z1 :C ⊢ ⟨V ,K⟩(x :A).D1
to (x :A, z2 :D1) inD2

L = L[V /x][K/z2] : D2

Γ,x :A ⊢ D1 Γ | z1 :C ⊢ K : Σx :A.D1 Γ ⊢ D2 Γ | z3 :Σx :A.D1 ⊢ K : D2

Γ | z1 :C ⊢ K to (x :A, z2 :D1) inD2
L[⟨x , z2⟩(x :A).D1

/z3] = L[K/z3] : D2

Γ ⊢ C Γ,x :A | z :C ⊢ K : D Γ ⊢ V : A

Γ | z :C ⊢ (λx :A.K ) (V )(x :A).D = K[V /x] : D[V /x]

Γ,x :A ⊢ D Γ | z :C ⊢ K : Πx :A.D

Γ | z :C ⊢ K = λx :A.K (x )(x :A).D : Πx :A.D

Fig. 2. Selected definitional equations from eMLTT’s equational theory.

where we assume that FCV (Kz ) = FCV (Ks ) = z, and where x1 and x2 are chosen fresh.1

Analogously to Ahman et al. [2016], we decorate value, computation, and homomorphism terms
with a number of type annotations. We use these annotations to define the denotational semantics
of eMLTT on raw expressions, so as to avoid well-known coherence problems arising in the inter-
pretation of dependently typed languages; this is a standard technique in the literature [Hofmann
1997; Streicher 1991]. For better readability, we often omit these type annotations in examples.

The well-formed syntax of eMLTT is defined mutually inductively with its equational the-
ory (see Fig. 2), consisting of a collection of mutually defined equivalence relations given by
definitional equations between well-formed value contexts, written ⊢ Γ1 = Γ2; well-formed types,
written Γ ⊢ A = B and Γ ⊢ C = D; and well-typed terms, written Γ ⊢ V =W : A, Γ ⊢ M = N : C , and
Γ | z :C ⊢ K = L : D. These equations interact with well-formed syntax via conversion rules, such as

⊢ Γ1 = Γ2 Γ1 ⊢ V : A1 Γ1 ⊢ A1 = A2

Γ2 ⊢ V : A2

⊢ Γ1 = Γ2 Γ1 ⊢ M : C1 Γ1 ⊢ C1 = C2

Γ2 ⊢ M : C2

Note that as eMLTT is based on Martin-Löf’s intensional type theory, the elimination form for
propositional equality V =AW supports a β-equation but not an η-equation (see Fig. 2). Similarly,
the elimination form for natural numbers also only supports β-equations. In both cases, this is done
so as to avoid known sources of undecidability for typechecking and the equational theoryÐfor
more details, see the analysis by Hofmann [1995], and by Okada and Scott [1999], respectively.

Regarding the meta-theory of eMLTT, one can readily prove standard weakening and substitution
results, the latter for both value and computation variables. For example, we write A[V /x] for the
substitution of V for x in A. Analogously, we write K[M/z] for the substitution of M for z in K .

1FCV (K ) denotes the free computation variable of the homomorphism term K .
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The definitions of both kinds of substitution are straightforward: they proceed by recursion on the
structure of the given type or term, making use of the standard convention of identifying types
and terms that differ only in the names of bound variables, and assuming that in any definition,
etc., the bound variables of types and terms are chosen to be different from any free variables.

We conclude by recalling from Ahman et al. [2016] that one of the notable features of eMLTT is
the computational Σ-type Σx :A.C . This computation type provides a uniform means to account for
type-dependency in sequential composition, allowing one to łclose-off" the type of the the second
computation with Σx :A.C before using the typing rule for sequential composition that prohibits x
to appear free in the type of the second computation. A similar restriction on free variables also
appears in other typing rules for effectful programs. As a consequence, eMLTT lends itself to a very
natural general denotational semantics based on fibred adjunctions, as studied in detail in Ahman
[2017]; Ahman et al. [2016]. Thus, one says that the computational effects in eMLTT are fibred.

3 FIBRED ALGEBRAIC EFFECTS

In this section we develop a formal means for specifying computational effects in eMLTT using
operations and equations, based on a natural dependently typed generalisation of the effect theories
of Plotkin and Pretnar [2013]. We note that while algebraic effects were already discussed by the
author in the context of eMLTT in Ahman et al. [2016], they were treated much more informally
compared to this paper, e.g., without making precise any particular notion of effect theory.

3.1 Fibred Effect Theories

We begin by identifying the fragment of eMLTT which we use to define the types of our operations.
A value type is pure if it is built up from only Nat, 1, Σx :A.B, Πx :A.B, 0, A + B, and V =AW ,

whereV ,W , and A are all pure in propositional equalityV =AW . A value term is pure if it does not
contain thunks of computations and homomorphic lambda abstractions, and all its type annotations
are pure. This notion of pureness extends straightforwardly to contextsÐa value context Γ is pure if
Ai is pure for every xi :Ai ∈ Γ. Note that this fragment of eMLTT corresponds precisely to MLTT.

Assuming a countable set of effect variables w, . . ., we now define our notion of fibred effect
theory. We begin by defining corresponding signatures of operation symbols and then add equations
between derivable effect terms, so as to specify both the effects at hand and their behaviour.

A fibred effect signature Seff consists of a finite set of typed operation symbols op : (x : I ) −→ O ,
where ⋄ ⊢ I and x : I ⊢ O are required to be pure value types, called the input and output type of op.

The effect terms T that one can derive from the given fibred effect signature Seff are given by

T ::= w (V ) | opV (y.T ) | pm V as (x1 :A1,x2 :A2) in T

| case V of (inl(x1 :A1) 7→ T1, inr(x2 :A2) 7→ T2)

with the involved value types and value terms all required to be pure. We follow the convention of
omitting V in opV (y.T ) when the input type of op is 1, and y when the output type of op is 1. In
future, if one were to discover computationally interesting examples needing the elimination forms
of other value types (e.g., Nat), then these can be accommodated in effect terms straightforwardly.
An effect context ∆ is a list of distinct effect variables annotated with pure value types. We say

that ∆ is well-formed in a pure value context Γ, written Γ ⊢ ∆, if ⊢ Γ and Γ ⊢ Ai for everywj :Aj ∈ ∆.
Intuitively, each effect variablew :A denotes a continuation that expects a value of type A.

Well-formed effect terms are then defined using the judgement Γ | ∆ ⊢ T as follows:

Γ ⊢ ∆1,w :A,∆2 Γ ⊢ V : A

Γ | ∆1,w :A,∆2 ⊢ w (V )

Γ ⊢ V : I Γ ⊢ ∆ Γ,y :O[V /x] | ∆ ⊢ T

Γ | ∆ ⊢ opV (y.T )
(op : (x : I ) −→ O ∈ Seff)
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Γ ⊢ V : Σx1 :A1.A2

Γ ⊢ ∆ Γ,x1 :A1,x2 :A2 | ∆ ⊢ T

Γ | ∆ ⊢ pm V as (x1 :A1,x2 :A2) in T

Γ ⊢ V : A1 +A2

Γ ⊢ ∆ Γ,x1 :A1 | ∆ ⊢ T1 Γ,x2 :A2 | ∆ ⊢ T2

Γ | ∆ ⊢ case V of (inl(x1 :A1) 7→ T1, inr(x2 :A2) 7→ T2)

Finally, a fibred effect theory Teff = (Seff, Eeff) is given by a fibred effect signature Seff and a finite
set Eeff of equations Γ | ∆ ⊢ T1 = T2 between well-formed effect terms Γ | ∆ ⊢ T1 and Γ | ∆ ⊢ T2.

In order to simplify the presentation of typing rules involving fibred effect theories, we assume
Γ = x1 :A1, . . . ,xn :An and ∆ = w1 :A

′
1, . . . ,wm :A′m when quantifying over the variables of Γ, ∆.

3.2 Examples of Fibred Effect Theories

As our fibred effect theories are a natural dependently typed generalisation of Plotkin and Pretnar’s
effect theories, we can capture all the effects they can, e.g., assuming a pure value type ⋄ ⊢ Exc of
exception names, the theory TEXC of exceptions is given by one operation symbol raise : Exc −→ 0

and no equations. Another standard example is the theory TND of nondeterminism, which is given by
one operation symbol or : 1 −→ 1 + 1 and three equations that make or into a semilattice operation.

On the other hand, as the operation symbols of our fibred effect theories are dependently typed,
compared to Plotkin and Pretnar’s, we can naturally capture more precise notions of computation.
We discuss two such examples below: i) a variant of Plotkin and Power’s [2002] theory of global
state in which the type of stored values is allowed to be dependent on memory locations; and ii)
Ahman and Uustalu’s [2014] dependently typed update monads that model state in which the store
is changed not by overwriting but instead by applying (store-dependent) updates to it, examples of
which include non-overflowing buffers and non-underflowing stacksÐsee op. cit. for details.

Global state. First, assume given pure value types of memory locations and values stored at them:

⋄ ⊢ Loc x :Loc ⊢ Val

such that the propositional equality on Loc is decidable, i.e., we assume given a pure value term:

⋄ ⊢ isDecLoc : Πx :Loc.Πx
′ :Loc.(x =Loc x

′) + (x =Loc x
′ → 0)

We use this assumption below to specify the two fibred effect theory equations that describe the
commutativity of reading and writing at different memory locations (4th and 5th equation below).
We also use this assumption, and results one can derive from it, to construct proofs of equational
proof obligations when we define predicates on effectful computations using effect handlers in ğ7.
The fibred effect signature SGS of global state is then given by the two operation symbols

get : (x :Loc) −→ Val put : Σx :Loc.Val −→ 1

The idea here is that get denotes an effectful command that returns the current value of the store
at the given location; and put denotes a command that overwrites the store at the given location.

The corresponding fibred effect theory TGS is then given by the following five equations:

x :Loc |w : 1 ⊢ getx (y.put⟨x,y⟩ (w (⋆))) = w (⋆)

x :Loc,y :Val |w :Val ⊢ put⟨x,y⟩ (getx (y
′.w (y ′))) = put⟨x,y⟩ (w (y))

x :Loc,y1 :Val,y2 :Val |w : 1 ⊢ put⟨x,y1⟩ (put⟨x,y2⟩ (w (⋆))) = put⟨x,y2⟩ (w (⋆))

x1 :Loc,x2 :Loc |w :Val[x1/x] × Val[x2/x] ⊢ getx1 (y1.getx2 (y2.w (⟨y1,y2⟩)))

= getx2 (y2.getx1 (y1.w (⟨y1,y2⟩))) (x1 , x2)
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x1 :Loc,x2 :Loc,y1 :Val[x1/x],y2 :Val[x2/x] |w : 1 ⊢ put⟨x1,y1⟩ (put⟨x2,y2⟩ (w (⋆)))

= put⟨x2,y2⟩ (put⟨x1,y1⟩ (w (⋆))) (x1 , x2)

where the last two equations include a side-condition that requires the locations x1 and x2 to be
different. Similarly to Plotkin and Pretnar’s effect theories, this is simply an informal shorthand
notation. Formally, the right-hand sides of these two equations are written using case analysis on
the assumed term isDecLoc x1 x2, e.g., the right-hand side of the last equation is formally given by

case (isDecLoc x1 x2) of (inl(yp :x1 =Loc x2) 7→ put⟨x1,y1⟩ (put⟨x2,y2⟩ (w (⋆))),

inr(yp :x1 =Loc x2 → 0) 7→ put⟨x2,y2⟩ (put⟨x1,y1⟩ (w (⋆))))

Observe how these five equations describe the expected behaviour of get and put: trivial store
changes are not observable (1st equation); get returns the most recent value the store has been
set to (2nd equation); put overwrites the content of the store (3rd equation); and gets and puts at
different locations are independent and commute with each other (4th and 5th equation).

Dependently typed update monads. To begin with, we assume given pure value types

⋄ ⊢ St x :St ⊢ Upd

of store values and store updates, respectively, together with well-typed closed pure value terms

↓ : Πx :St.Upd→ St o : Πx :St.Upd ⊕ : Πx :St.Πy :Upd.Upd[x ↓ y/x]→ Upd

satisfying the following propositional equalities (for better readability, we omit the type annotations
on these equations, and write the first argument to ⊕ as a subscript; we also leave implicit the use of
the standard transport operation (e.g., see ğ7.1) in transportingW andW3 in the last two equations
along the first two equations so as to ensure that both sides of these equations are well-typed):

V ↓ (oV ) = V V ↓ (W1 ⊕V W2) = (V ↓W1) ↓W2

W ⊕V (o (V ↓W )) =W (oV ) ⊕V W =W (W1 ⊕V W2) ⊕V W3 =W1 ⊕V (W2 ⊕V ↓W1
W3)

In the literature, this structure is commonly called a directed container [Ahman et al. 2014]. For
dependently typed update monads, the high-level idea is that (Upd, o, ⊕) forms a dependently
typed monoid of store updates which can be applied to the store values via its action ↓ on St.

The signatureSUPD of a dependently typed update monad is then given by two operation symbols:

lookup : 1 −→ St update : Πx :St.Upd −→ 1

The idea here is that lookup denotes an effectful command that returns the current value of the
store; and update denotes a command that applies an appropriate update to the current store (from
the family of updates given as its input). The dependency of Upd on St provides fine-grain control
over which updates are applicable to which store values, and allows this to be enforced statically.
The corresponding fibred effect theory TUPD is then given by the following three equations:

⋄ |w : 1 ⊢ lookup(x .updateλy :St.oy (w (⋆))) = w (⋆)

x : (Πx ′ :St.Upd[x ′/x]) |w :St × St ⊢ lookup(y.updatex (lookup(y
′.w (⟨y,y ′⟩)))

= lookup(y.updatex (w (⟨y,y ↓ (x y)⟩))))

x : (Πx ′ :St.Upd[x ′/x]),y : (Πy ′ :St.Upd[y ′/x]) |w : 1 ⊢ updatex (updatey (w (⋆)))

= updateλx ′′.(x x ′′) ⊕x ′′ (y (x ′′ ↓ (x x ′′))) (w (⋆))
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Lw j (V ) M
def
= V ′j (V [

−→
Vi/
−→xi ])

L opV (y.T ) M
def
= Wop ⟨V [

−→
Vi/
−→xi ], λy :O[V [

−→
Vi/
−→xi ]/x].LT M⟩

L pm V as (y1 :B1,y2 :B2) in T M
def
= pm V [

−→
Vi/
−→xi ] as (y1 :B1[

−→
Vi/
−→xi ],y2 :B2[

−→
Vi/
−→xi ]) in LT M

L case V of (inl(y1 :B1) 7→ T1, inr(y2 :B2) 7→ T2) M
def
= case V [

−→
Vi/
−→xi ] of (inl(y1 :B1[

−→
Vi/
−→xi ]) 7→ LT1 M,

inr(y2 :B2[
−→
Vi/
−→xi ]) 7→ LT2 M)

Fig. 3. Translation of effect terms into value terms.

These equations are similar to the first three equations of the global state theory TGS, but instead
of an overwriting behaviour, they describe how the store is changed using updates. In particular,
observe how ⊕ is used to combine subsequent updates, and how o gives us łdo nothing" updates.

3.3 Extending eMLTT with Fibred Algebraic Effects

Next, we show how to extend eMLTT with algebraic effects given by a fibred effect theory Teff.
First, we extend the grammar of eMLTT’s computation terms with algebraic operations:

M ::= . . . | op
C

V
(y.M )

for all operation symbols op : (x : I ) −→ O ∈ Seff and computation types C .
Next, in order to extend the well-formed syntax of eMLTT with a corresponding typing rule and

definitional equations, we first define a translation of effect terms into value terms. In particular,
given an effect term Γ | ∆ ⊢ T , a value type A, value terms Vi (for all xi :Ai ∈ Γ), value terms V ′j (for

allwj :A
′
j ∈ ∆), and value termsWop (for all op : (x : I ) −→ O ∈ Seff), we define the translation of T

into a value term LT M
A;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

by recursion on the structure of T , as given in detail in Fig. 3. For

better readability, we write
−→
Vi for {V1, . . . ,Vn } in the translation, and similarly for

−→
V ′j and

−−→
Wop.

While we omit the subscripts in Fig. 3 so as to improve readability, it is important to note that

in the cases where the given effect term involves variable bindings, the set of value terms
−→
Vi is

extended with the corresponding variables in the right-hand side, e.g., in the second case we have

L opV (y.T ) MA;−→Vi ;
−→
V ′j ;
−−−→
Wop

def
=Wop ⟨V [

−→
Vi/
−→xi ], λy :O[V [

−→
Vi/
−→xi ]/x].LT M

A;
−→
Vi ,y ;

−→
V ′j ;
−−−→
Wop
⟩

While it might be more intuitive and natural to translate effect terms directly into eMLTT’s
computation terms, giving the translation from effect terms into value terms allows us to later
reuse this translation in ğ4 when we extend eMLTT with handlers of fibred algebraic effects.
We only translate well-formed effect terms Γ | ∆ ⊢ T because it makes it easier to account for

substituting value termsV ′j (denoting continuations) for effect variablesÐvarious subsequent results

refer to substituting value terms for all variables in ∆, not just for the free ones appearing in T .
Using this translation of effect terms into value terms, we can now define the typing rule

and definitional equations for algebraic operations, as given in Fig. 4. It is worth noting that for
presentational convenience, we include the equations given in Eeff as definitional equations between
value terms. The corresponding equations between computation terms are easily derivable, e.g.,

Γ ⊢ get
C

V
(y.put

C

⟨V ,y⟩
(M )) = M : C

can be derived from the translation of the corresponding equation in the global state theory TGS.
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Typing rule for algebraic operations:

Γ ⊢ V : I Γ ⊢ C Γ,y :O[V /x] ⊢ M : C

Γ ⊢ op
C

V
(y.M ) : C

(op : (x : I ) −→ O ∈ Seff)

Congruence equations:

Γ ⊢ V =W : I Γ ⊢ C = D Γ,y :O[V /x] ⊢ M = N : C

Γ ⊢ op
C

V
(y.M ) = op

D

W
(y.N ) : C

(op : (x : I ) −→ O ∈ Seff)

General algebraicity equations:

Γ ⊢ V : I Γ,y :O[V /x] ⊢ M : C Γ | z :C ⊢ K : D

Γ ⊢ K[op
C

V
(y.M )/z] = op

D

V
(y.K[M/z]) : D

(op : (x : I ) −→ O ∈ Seff)

Equations from the given fibred effect theory:

Γ′ ⊢ Vi : Ai [V1/x1, . . . ,Vi−1/xi−1] (1 ≤ i ≤ n)

Γ′ ⊢ C Γ′ ⊢ V ′j : A′j [
−→
Vi/
−→xi ]→ UC (1 ≤ j ≤ m)

Γ′ ⊢ LT1 M
UC ;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

= LT2 M
UC ;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

: UC
(Γ | ∆ ⊢ T1 = T2 ∈ Eeff)

where the well-typed value terms Γ′ ⊢Wop : (Σx : I .O → UC ) → UC are defined as follows:

Wop
def
= λx ′ : (Σx : I .O → UC ). pm x ′ as (x : I ,y :O → UC ) in thunk (op

C
x (y
′.forceC (y y′)))

for all op : (x : I ) −→ O ∈ Seff.

Fig. 4. Rules for extending eMLTT with fibred algebraic effects.

4 HANDLERS VIA THE USER-DEFINED ALGEBRA TYPE

4.1 A Problem with Adding Conventional Handlers to eMLTT

Before we show how to extend eMLTT with handlers of fibred algebraic effects using the user-
defined algebra type, we first explain how extending eMLTT with the conventional term-level
definition of handlers quickly leads to unsound program equivalences becoming derivable.
First, recall from ğ1 that Plotkin and Pretnar (and others since) include handlers in effectful

languages by extending the syntax of computation terms with the following handling construct:

M handled with {opx (x
′) 7→ Nop}op∈Seff to y :A in Nret

whose semantics is given using the mediating homomorphism from the free algebra over A to
the algebra denoted by the handler {opx (x

′) 7→ Nop}op∈Seff . However, when extending a language
that includes a notion of homomorphism, such as eMLTT with its homomorphism terms, this
algebraic understanding of handlers suggests that one ought to also extend the given notion of
homomorphism with a corresponding handling construct. Unfortunately, if one simply adds

K handled with {opx (x
′) 7→ Nop}op∈Seff to y :A in Nret

to eMLTT, the combination of i) the β-equations associated with the handling construct (see ğ1)
and ii) the general algebraicity equations (see Fig. 4) gives rise to unsound definitional equations.

To explain this problem in more detail, let us consider the theory TI/O of interactive input-output of
bits, given by two operation symbols, read : 1 −→ 1 + 1 and write : 1 + 1 −→ 1, and no equations.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 7. Publication date: January 2018.



Handling Fibred Algebraic Effects 7:11

Next, we define a handler that negates all bits read from the input and written to the output:

read(x ′) 7→ readF 1 (y.force (x ′ ¬y)) writex (x
′) 7→ writeF 1¬x (force (x ′⋆))

where ¬ : 1 + 1→ 1 + 1 denotes negation of bits, swapping the left and right injections into 1 + 1.
Now, let us consider handling a simple program, writeF 1

inl⋆
(return ⋆), using the handler we

defined above.2 On the one hand, using the β-equations for handling (see ğ1), we can prove that

Γ ⊢ (writeF 1
inl⋆

(return ⋆)) handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆

= writeF 1
¬(inl⋆)

((return ⋆) handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆)

= writeF 1
¬(inl⋆)

(return ⋆)

= writeF 1
inr⋆

(return ⋆) : F1

On the other hand, using the general algebraicity equations (see Fig. 4), which ensure that homo-
morphism terms indeed behave as if they were algebra homomorphisms, we can prove that

Γ ⊢ (writeF 1
inl⋆

(return ⋆)) handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆

= (z handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆)[writeF 1

inl⋆
(return ⋆)/z]

= writeF 1
inl⋆

((z handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆)[return ⋆ /z])

= writeF 1
inl⋆

((return ⋆) handled with {opx (x
′) 7→ Nop}op∈SI/O to y : 1 in return ⋆)

= writeF 1
inl⋆

(return ⋆) : F1

Finally, by combining these two sequences of equations using transitivity, we can prove that

Γ ⊢ writeF 1inr⋆(return ⋆) = writeF 1inl⋆(return ⋆) : F1

which is clearly only valid in trivial models of interactive output, and thus should not be derivable.
The source of this problem lies in the term-level definition of handlers in their usual presentation.

In particular, while the homomorphic behaviour of homomorphism terms is determined exclusively
by the computation types involved (via the general algebraicity equations), the type of the above
handling construct contains no trace of the algebra denoted by the handler {opx (x

′) 7→ Nop}op∈SI/O .
It is worth noting that this problem is not inherent to eMLTT but also arises in the simply typed

setting, e.g., when combining handlers of algebraic effects with CBPV and its stack terms, or with
EEC and its linear (computation) terms. For example, CBPVwith stack terms and exception handlers
has been investigated by Levy [2006]. However, compared to the solution we propose in this paper,
Levy follows the opposite direction: namely, while we aim to simultaneously accommodate effect
handlers and make sure that homomorphism terms still denote algebra homomorphisms, Levy
changes the syntax and equational theory of stack terms so that they can accommodate exception
handlers, but with the cost of stack terms not denoting algebra homomorphisms any more.
Finally, we note that the reason why Plotkin and Pretnar [2013] were able to give a sound

denotational semantics to their language was precisely due to their choice of using CBPV without
stack terms, i.e., without a notion of homomorphism, only with value and computation terms.

4.2 Extending eMLTT with the User-Defined Algebra Type

In this section we solve the problems of ğ4.1 by giving handlers a novel type-based treatment that
internalises Plotkin and Pretnar’s insight that they denote algebras for the given effect theory.

2Note that for this illustrative example, we could have omitted read and only considered the signature of interactive output.
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First, given a fibred effect theory Teff, we extend eMLTT with the user-defined algebra type:

C ::= . . . | ⟨A;
−−→
Vop;
−−→
Weq⟩

which pairs a value type A (the carrier) with two sets of value terms,
−−→
Vop (the operations) and

−−→
Weq

(the proofs of equational proof obligations showing that
−−→
Vop satisfy the equations given in Eeff).

We also extend eMLTT’s computation and homomorphism termswith two composition operations:

M ::= . . . | M as x :UC in−−−→
Wop;D

N

K ::= . . . | K as x :UC in−−−→
Wop;D

N

where
−−→
Wop are proofs of equational proof obligations showing that the computation term N behaves

as if it was a homomorphism termÐwe discuss this in detail below. These term formers also provide

elimination forms for the user-defined algebra type whenC is ⟨A;
−−→
Vop;
−−→
Weq⟩; we also note that terms

of this type are introduced by forcing thunks of typeU ⟨A;
−−→
Vop;
−−→
Weq⟩, i.e., value terms of type A.

For better readability, we write
−−−→
refl for

−−→
Weq and

−−→
Wop in the rest of this paper when all the proof

witnesses are given by reflexivity, i.e., when the corresponding equational proof obligations hold

definitionally. Also for better readability, we write ⟨A;
−−→
Vop⟩ for ⟨A;

−−→
Vop; ∅⟩ when Eeff is empty.

It is worth noting that in principle we could have restricted these composition operations to only

the user-defined algebra type ⟨A;
−−→
Vop;
−−→
Weq⟩, but then we would not have been able to derive a useful

isomorphism of computation types to coerce computations between a general C and its canonical
representation as a user-defined algebra typeÐsee Prop. 4.1 for details of this type isomorphism.

Conceptually, these composition operations are a form of explicit substitution of thunked compu-
tations for value variables. For example, in this extension of eMLTT we will be able to show that
M as x :UC in−−−→

Wop;D
N is definitionally equal to N [thunkM/x]. As such, the value variable x refers

to the whole of (the thunk of)M , compared to, e.g., sequential compositionM to x :A in N , where
the value variable x is used to bind only the value produced by M . However, it is also important to
note that we do not allow arbitrary computation terms to be used in these composition operations.
In particular, the typing rules ofM as x :UC in−−−→

Wop;D
N and K as x :UC in−−−→

Wop;D
N require that the

value variable x is used in the computation term N as if it was a computation variable, in that x
must not be duplicated or discarded arbitrarily. We do this in order to ensure that N behaves as if
it was a homomorphism term, so that in N [thunkM/x] the effects ofM would be guaranteed to
łhappen before" those of N . However, rather than trying to extend eMLTT further with some form
of linearity for such value variables, we impose these requirements via equational proof obligations,
requiring that N commutes with algebraic operations (when substituted for x via thunking). As

mentioned earlier, the proofs of these proof obligations are given by the value terms
−−→
Wop.

We make this discussion formal in Fig. 5 by giving the rules for extending eMLTT’s well-formed
syntax and equational theory with the user-defined algebra type and composition operations, using
the following auxiliary judgement in the rules concerning the two composition operations:

Γ,y :UC ⊢
hom

N : D witnessed by
−−→
Wop

which holds iff N behaves like a homomorphism from the algebra denoted by C to that denoted by

D, witnessed by
−−→
Wop, i.e., Γ,y :UC ⊢ N : D and we have for each op : (x : I ) −→ O ∈ Seff a proof

Γ ⊢Wop : λx : I .λx
′ :O → UC .thunk (N [thunk (op

C
x (x

′′.forceC (x ′ x ′′)))/y]) =

λx : I .λx ′ :O → UC .thunk (op
D
x (x

′′.N [x ′ x ′′/y]))
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Formation rule for the user-defined algebra type:

Γ′ ⊢ A Γ′ ⊢ Vop : (Σx : I .O → A) → A (op : (x : I ) −→ O ∈ Seff and Γ | ∆ ⊢ T1 = T2 ∈ Eeff)

Γ′ ⊢Weq :
−−−−−−→
λx ′i :Âi .

−−−−−−−−−−−−−→
λxwj :Â

′
j → A. LT1 M

A;
−→
x ′i ;
−−→xwj ;
−−→
Vop

=

−−−−−−→
λx ′i :Âi .

−−−−−−−−−−−−−→
λxwj :Â

′
j → A. LT2 M

A;
−→
x ′i ;
−−→xwj ;
−−→
Vop

Γ′ ⊢ ⟨A;
−−→
Vop;
−−→
Weq⟩

where Âi
def
= Ai [x

′
1/x1, . . . ,x

′
i−1/xi−1] and Â

′
j

def
= A′j [x

′
1/x1, . . . ,x

′
n/xn]; and where we write

−−−−−−→
λx ′i :Âi .,

−−−−−−−−−−−−−→
λxwj :Â

′
j → A.,

−−−−−−→
Πx ′i :Âi , and

−−−−−−→
Â′j → A for sequences of lambda abstractions and function types.

Typing rules for the composition operations:

Γ ⊢ M : C Γ ⊢ D

Γ,x :UC ⊢
hom

N : D witnessed by
−−→
Wop

Γ ⊢ M as x :UC in−−−→
Wop;D

N : D

Γ | z :C ⊢ K : D1 Γ ⊢ D2

Γ,x :UD1 ⊢homN : D2 witnessed by
−−→
Wop

Γ | z :C ⊢ K as x : UD1 in−−−→Wop;D2

N : D2

Congruence equations:

Γ ⊢ ⟨A;
−−→
Vop;
−−→
Veq⟩ Γ ⊢ ⟨B;

−−→
Wop;

−−→
Weq⟩ Γ ⊢ A = B

Γ ⊢ Vop =Wop : (Σx : I .O → A) → A (op : (x : I ) −→ O )

Γ ⊢ ⟨A;
−−→
Vop;
−−→
Veq⟩ = ⟨B;

−−→
Wop;

−−→
Weq⟩

plus similar equations for composition operations (note the proof irrelevant treatment of
−−→
Veq and

−−→
Weq).

β-equation for the user-defined algebra type:

Γ ⊢ ⟨A;
−−→
Vop;
−−→
Weq⟩

Γ ⊢ U ⟨A;
−−→
Vop;
−−→
Weq⟩ = A

capturing the intuition that A denotes the carrier of the algebra denoted by ⟨A;
−−→
Vop;
−−→
Weq⟩.

β- and η-equations for the composition operations:

Γ ⊢ V : UC Γ ⊢ D Γ,x :UC ⊢
hom

M : D witnessed by
−−→
Wop

Γ ⊢ (forceC V ) as x :UC in−−−→
Wop;D

M = M[V /x] : D

Γ ⊢ M : C Γ | z :C ⊢ K : D

Γ ⊢ M as x :UC in−−−→
refl;D

K[forceC x/z] = K[M/z] : D

Γ | z1 :C ⊢ K : D1 Γ | z2 :D1 ⊢ L : D2

Γ | z1 :C ⊢ K as x :UD1 in−−−→refl;D2

L[forceD1
x/z2] = L[K/z2] : D2

capturing the intuition that composition operations are a form of explicit substitution of thunks.

η-equation for algebraic operations:

Γ ⊢ V : I Γ ⊢ ⟨A;
−−→
Vop;
−−→
Weq⟩ Γ,y :O[V /x] ⊢ M : ⟨A;

−−→
Vop;
−−→
Weq⟩

Γ ⊢ op
⟨A;
−−→
Vop;
−−−→
Weq⟩

V
(y.M )

= force
⟨A;
−−→
Vop;
−−−→
Weq⟩

(Vop ⟨V , λy :O[V /x].thunkM⟩) : ⟨A;
−−→
Vop;
−−→
Weq⟩

(op : (x : I ) −→ O ∈ Seff)

capturing the intuition that
−−→
Vop denote the operations of the algebra denoted by ⟨A;

−−→
Vop;
−−→
Weq⟩.

Fig. 5. Rules for extending eMLTT with the user-defined algebra type and the composition operations.
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It is worth noting that by defining this extension of eMLTT using propositional proof obligations
instead of definitional ones, as in Ahman [2017], we introduce a form of equality reflection into the
language. Namely, in any model of this extension of eMLTT, the propositional proof obligations

proved by
−−→
Weq and

−−→
Wop have to also ensure that the corresponding definitional equations are

validated in the given model, so as to validate the definitional equations given for algebraic effects
in Fig. 4. Based on this extensional nature of these proof obligations, we have naturally chosen
to treat them as proof irrelevant in the user-defined algebra type and the composition operations,
namely, by not comparing their proofs for definitional equality in the congruence rules (see Fig. 5).
It is also useful to note that if one works exclusively with equation-free fibred effect theories,

e.g., as used in the various simply typed languages mentioned in ğ1 that support algebraic effects

and their handlers, then the equational proof obligations used in the typing rule of ⟨A;
−−→
Vop;
−−→
Weq⟩

hold vacuously, and thus do not put any additional burden on the programmer. However, the
possibility of also being able to specify effects using equations ensures that the fit-for-purpose
handler implementations of the given notion of computation, say, global state, are indeed correct.

We conclude this section by highlighting that we have not included anη-equation for ⟨A;
−−→
Vop;
−−→
Weq⟩.

We do so because it does not hold in the Lawvere theories based semantics we give to this extension
of eMLTT in ğ8. Instead, as promised earlier, we can construct a corresponding type isomorphism.

Proposition 4.1. Given a computation type Γ ⊢ C , there exists a computation type isomorphism

Γ ⊢ C � ⟨UC;
−−→
Vop;
−−−→
refl⟩, where each value term Γ ⊢ Vop : (Σx : I .O → UC ) → UC is given by

Vop
def
= λy : (Σx : I .O → UC ).pm y as (x : I ,x ′ :O → UC ) in thunk (op

C
x (y

′.forceC (x ′y ′)))

Proof. This type isomorphism is witnessed by the following two homomorphic functions:

Γ ⊢ λz :C . z as x :UC in force
⟨UC ;

−−→
Vop;
−−−→
refl⟩

x : C ⊸ ⟨UC;
−−→
Vop;
−−−→
refl⟩

Γ ⊢ λz : ⟨UC;
−−→
Vop;
−−−→
refl⟩. z as x :U ⟨UC;

−−→
Vop;
−−−→
refl⟩ in forceC x : ⟨UC;

−−→
Vop;
−−−→
refl⟩⊸ C

□

4.3 Deriving the Conventional Term-Level Definition of Handlers

We now show how to derive the conventional term-level definition of handlers from our type-based
treatment. In particular, we define the handling construct using sequential composition as follows:

M handled with ({opx (x
′) 7→ Nop}op∈Seff ;

−−→
Weq) to y :A inC Nret

def
=

forceC (thunk (M to y :A in force
⟨UC ;

−−→
Vop;
−−−→
Weq⟩

(thunk Nret)))

where the value terms Vop are defined as follows:

Vop
def
= λx ′′ : (Σx : I .O → UC ). pm x ′′ as (x : I ,x ′ :O → UC ) in thunk Nop

Observe that compared to the work of Plotkin and Pretnar [2013], who do not enforce the
correctness of their handlers during typechecking and therefore have to give semantics to their
language using Kleene equality, we require the set of user-defined computation terms Nop to satisfy

the equations given in Eeff (as witnessed by the value terms
−−→
Weq), so as to statically ensure that

the given computation terms Nop indeed form an algebra. In particular, Plotkin and Pretnar do not
enforce the correctness of their handlers during typechecking because it is in general an undecidable
problem [Plotkin and Pretnar 2013, ğ6]. In contrast, by having defined the corresponding equational
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proof obligations in this paper using propositional equality, we can naturally accommodate manual
user-provided proofs of equations that one cannot establish through automatic means.
The expected typing rule and definitional β-equations are then routinely derivable for this

definition of the handling construct.

Proposition 4.2. The following typing rule is derivable:

Γ ⊢ M : FA Γ ⊢ ⟨UC;
−−→
Vop;
−−→
Weq⟩ Γ,y :A ⊢ Nret : C

Γ ⊢ M handled with ({opx (x
′) 7→ Nop}op∈Seff ;

−−→
Weq) to y :A inC Nret : C

where each value term Vop is derived from the corresponding computation term Nop as defined above.

Proposition 4.3. The following definitional β-equations are derivable:

Γ ⊢ V : I Γ,y ′ :O[V /x] ⊢ M : FA Γ ⊢ ⟨UC;
−−→
Vop;
−−→
Weq⟩ Γ,y :A ⊢ Nret : C

Γ ⊢ (opFAV (y ′.M )) handled with ({opx (x
′) 7→ Nop}op∈Seff ;

−−→
Weq) to y :A inC Nret

= Nop[V /x , λy
′ :O[V /x].thunk H/x ′] : C

Γ ⊢ V : A Γ ⊢ ⟨UC;
−−→
Vop;
−−→
Weq⟩ Γ,y :A ⊢ Nret : C

Γ ⊢ (return V ) handled with ({opx (x
′) 7→ Nop}op∈Seff ;

−−→
Weq) to y :A inC Nret

= Nret[V /y] : C

where

H
def
= M handled with ({opx (x

′) 7→ Nop}op∈Seff ;
−−→
Weq) to y :A inC Nret

and each value term Vop is derived from the corresponding computation term Nop as defined above.

4.4 Handling Computations into Values

We conclude this section by noting that in addition to the standard łhandle into computation terms"
handling construct we derived in ğ4.3, we can also use the user-defined algebra type and sequential
composition to define a handling construct that allows computations to be handled directly into
value terms, e.g., as briefly discussed in Ahman and Staton [2013] in the context of Levy’s [2004]
fine-grain call-by-value language. This łhandle into value terms" handling construct is given by

M handled with ({opx (x
′) 7→ Vop}op∈Seff ;

−−→
Weq) to y :A inB Vret

def
=

thunk (M to y :A in force
⟨B;
−−−→
Wop;
−−−→
Weq⟩

Vret)

where the value termsWop are defined as follows:

Wop
def
= λx ′′: (Σx : I .O → B). pm x ′′ as (x : I ,x ′:O → B) in Vop

and it satisfies the expected typing rule and definitional β-equations:

Γ ⊢ M : FA Γ ⊢ ⟨B;
−−→
Wop;

−−→
Weq⟩ Γ,y :A ⊢ Vret : B

Γ ⊢ M handled with ({opx (x
′) 7→ Vop}op∈Seff ;

−−→
Weq) to y :A inB Vret : B

Γ ⊢ V : I Γ,y ′ :O[V /x] ⊢ M : FA Γ ⊢ ⟨B;
−−→
Wop;

−−→
Weq⟩ Γ,y :A ⊢ Vret : B

Γ ⊢ (opFAV (y ′.M )) handled with ({opx (x
′) 7→ Vop}op∈Seff ;

−−→
Weq) to y :A inB Vret

= Vop[V /x , λy
′ :O[V /x].H/x ′] : B
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Γ ⊢ V : A Γ ⊢ ⟨B;
−−→
Wop;

−−→
Weq⟩ Γ,y :A ⊢ Vret : B

Γ ⊢ (return V ) handled with ({opx (x
′) 7→ Vop}op∈Seff ;

−−→
Weq) to y :A inB Vret

= Vret[V /y] : B

where

H
def
= M handled with ({opx (x

′) 7→ Vop}op∈Seff ;
−−→
Weq) to y :A inB Vret

In the case the set of equations Eeff is empty, we write this handling construct simply as

M handled with {opx (x
′) 7→ Vop}op∈Seff to y :A inB Vret

5 BASIC META-THEORY

We now discuss some properties of our extension ofeMLTTwith algebraic effects and their handlers.

5.1 Weakening and Substitution

We begin by noting that, as expected, weakening is admissible for value variables.

Theorem 5.1 (Weakening). Given Γ1, Γ2 ⊢ B, Γ1 ⊢ A, and x such that x < Vars (Γ1) ∪Vars (Γ2), then
Γ1,x :A, Γ2 ⊢ B, and similarly for all other judgements of types, terms, and definitional equations.

Next, we note that, as also expected, substitution is admissible for both value and computation
variables. As various typing rules and definitional equations now include (translations of) effect
terms, we also need to prove the corresponding property for the translation of effect terms.

Proposition 5.2. Given Γ | ∆ ⊢ T , a value type A, value terms Vi (for all xi :Ai ∈ Γ), V ′j (for all

w j :A
′
j ∈ ∆), andWop (for all op : (x : I ) −→ O ∈ Seff), a value variable y, and a value termW , then

LT M
A;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

[W /y] = LT M
A[W /y];

−−−−−−−−→
Vi [W /y];

−−−−−−−−→
V ′j [W /y];

−−−−−−−−−−→
Wop[W /y]

Theorem 5.3 (Substitution).

• Given Γ1,x :A, Γ2 ⊢ B and Γ1 ⊢ V : A, then Γ1, Γ2[V /x] ⊢ B[V /x], and similarly for other judge-
ments of types, terms, and definitional equations.

• Given Γ | z :C ⊢ K : D and Γ ⊢ M : C , then Γ ⊢ K[M/z] : D.

• Given Γ | z2 :D1 ⊢ L : D2 and Γ | z1 :C ⊢ K : D1, then Γ | z1 :C ⊢ L[K/z2] : D2.

Finally, we note that judgements of well-formed types, etc. only refer to well-formed contexts,
etc. To this end, we also need to show that under suitable assumptions, LT M

A;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

is well-typed.

Proposition 5.4. Given Γ | ∆ ⊢ T and Γ′, such that Γ′ ⊢ A and the value terms in the subscripts
are well-typed in Γ′ (as required in Fig. 4), then we have Γ′ ⊢ LT M

A;
−→
Vi ;
−→
V ′j ;
−−−→
Wop

: A.

Proposition 5.5. Given Γ | ∆ ⊢ T and Γ′, such that Γ′ ⊢ A = B and the corresponding value terms
in the subscripts are definitionally equal in Γ′ (analogously to the typing in Fig. 4), then we have

Γ′ ⊢ LT M
A;
−→
Vi ;
−→
V ′j ;
−−→
Vop
= LT M

B;
−−→
Wi ;
−−→
W ′

j ;
−−−→
Wop

: A

Theorem 5.6. Given Γ ⊢ V : A, then ⊢ Γ and Γ ⊢ A, and similarly for all other judgements.
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5.2 Derivable Definitional Equations

To begin with, one can derive specialised versions of the general algebraicity equations from Fig. 4.

Proposition 5.7. We can derive the following specialised algebraicity equations:

Γ ⊢ V : I Γ,y :O[V /x] ⊢ M : FA Γ ⊢ C Γ,y ′ :A ⊢ N : C

Γ ⊢ opFAV (y.M ) to y ′ :A in N = op
C

V
(y.M to y ′ :A in N ) : C

(op : (x : I ) −→ O ∈ Seff)

and analogously for other homomorphism term formers.

Next, we present some useful derivable equations for the composition operations.

Proposition 5.8. We can derive the following unitality and associativity equations:

Γ ⊢ M : C

Γ ⊢ M as x :UC in forceC x = M : C

Γ ⊢ M : C1 Γ ⊢ C2 Γ ⊢ D

Γ,x1 :UC1 ⊢homN1 : C2 witnessed by
−−→
Wop Γ,x2 :UC2 ⊢homN2 : D witnessed by

−−→
W ′

op

Γ ⊢M as x1 :UC1 in (N1 as x2 :UC2 in N2) = (M as x1 :UC1 in N1) as x2 :UC2 in N2 : D

and analogously for the composition operation for homomorphism terms.

Proposition 5.9. We can derive the following interaction equations:

Γ ⊢ M : FA Γ ⊢ C Γ ⊢ D Γ,x1 :A ⊢ N1 : C Γ,x2 :UC ⊢homN2 : D witnessed by
−−→
Wop

Γ ⊢M to x1 :A in (N1 as x2 :UC in N2) = (M to x1 :A in N1) as x2 :UC in N2 : D

Γ ⊢ M : C Γ,x1 :UC ⊢homN1 : FA witnessed by
−−→
Wop Γ ⊢ D Γ,x2 :A ⊢ N2 : D

Γ ⊢M as x1 :UC in (N1 to x2 :A in N2) = (M as x1 :UC in N1) to x2 :A in N2 : D

and analogously for computational pattern-matching, and the corresponding homomorphism terms.

Proposition 5.10. The composition operations commute with computational pairing, computational
lambda abstraction, and computational and homomorphic function applications, e.g., we have

Γ ⊢ M : C Γ ⊢ V : A Γ,y :A ⊢D

Γ,x :UC ⊢
hom

N : D[V /y] witnessed by
−−→
Wop

Γ ⊢ M as x :UC in ⟨V ,N ⟩

= ⟨V ,M as x :UC in N ⟩ : Σy :A.D

Γ ⊢ M : C Γ ⊢ V : D1 ⊸ D2

Γ,y1 :UC ⊢homN : D1 witnessed by
−−→
Wop

Γ ⊢ M as y1 :UC in V N

= V (M as y1 :UC in N ) : D2

To improve the readability of the last three propositions, we have omitted the proofs of the
equational proof obligations from the terms in the conclusions. These proofs are all constructed
straightforwardly, by combining equational reasoning using definitional equations with the axiom
of function extensionality fun-ext(x :A).B (V1,V2,Wp ), the transitivity and congruence rules we can
derive from the elimination form for propositional equality, and the proofs given in the premises.

6 ALTERNATIVE PRESENTATIONS OF THE LANGUAGE

We now briefly discuss some alternative presentations of eMLTT and our extensions to it.
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6.1 Different Definition of the Auxiliary Judgement

First, for typing the composition operations, we could have defined the auxiliary judgement

Γ,y :UC ⊢
hom

N : D witnessed by
−−→
Wop

not using a set of proof witnesses
−−→
Wop typed as

Γ ⊢Wop : λx : I .λx
′ :O → UC .thunk (N [thunk (op

C
x (x

′′.forceC (x ′ x ′′)))/y]) =

λx : I .λx ′ :O → UC .thunk (op
D
x (x

′′.N [x ′ x ′′/y]))

but instead using a single witnessW based on Munch-Maccagnoni’s [2013] notion of linearity:3

Γ ⊢W : λx :UFA.λx ′ :A→ UC .thunk (N [thunk ((forceFA x ) to x
′′ :A inC forceC (x ′ x ′′))/y]) =

λx :UFA.λx ′ :A→ UC .thunk ((forceFA x ) to x
′′ :A inD N [x ′ x ′′/y])

The former definition of this auxiliary judgement follows from the latter by straightforward
equational reasoning (taking A to be equal to O), while latter definition can be shown to follow
from the former by using Plotkin and Pretnar’s principle of computational induction for algebraic
computational effects, which states that every computation term of type FA is either a returned
value or built from computation terms using algebraic operations [Plotkin and Pretnar 2008].

While the latter definition is also applicable in languages with computational effects other than
algebraic (e.g., as used by Levy [2017] to characterise general isomorphisms between computation
types), we chose the former due to its more intuitive reading in the setting of algebraic effects.

6.2 Replacing Homomorphism Terms with the Auxiliary Judgement

Second, note that we could have omitted computation variables and homomorphism terms from
eMLTT altogether. Instead, we could have used value variables and the auxiliary judgement

Γ,x :UC ⊢
hom

N : D witnessed by
−−→
Wop (see ğ4.2 and ğ6.1) to define and type the elimination form for

the computational Σ-type, analogously to the composition operations introduced in ğ4.2. In more
detail, this alternative presentation would involve the following elimination form for Σx :A.C:

Γ ⊢ M : Σx :A.C Γ ⊢ D Γ,x :A,y :UC ⊢
hom

N : D witnessed by
−−→
Wop

Γ ⊢ M to (x :A,y :UC ) in−−−→
Wop;D

N : D

whereM is now eliminated into a pair of values, with the auxiliary judgement ensuring that the
computation term N behaves in the value variable y as if it was a homomorphism term. To add
to this, we would also need to include specialised algebraicity equations from Prop. 5.7 in the
equational theory of the language, so as to replace the general algebraicity equations from Fig. 4.

In this paper we chose to include both homomorphism terms and the above-mentioned auxiliary
judgement for two reasons. First, as one of the main aims of this paper was to show how to extend
the language in Ahman et al. [2016] with handlers of fibred algebraic effects, we wanted to keep the
underlying language close to op. cit. Second, aesthetically, using homomorphism terms provides a
cleaner presentation of the elimination form for Σx :A.C , compared to equational proof obligations.

7 USING HANDLERS TO REASON ABOUT EFFECTFUL COMPUTATIONS

In this section we demonstrate that in addition to being a practical programming abstraction,
handlers also provide a useful mechanism for reasoning about effectful computations. Namely,
we show that the łhandle into value terms" handling construct we defined in ğ4.4 provides the
programmer with a convenient alternative to using propositional equality on thunks for defining

3Note that the value variables x , x ′, and x ′′ are assigned different types in the two definitions of the auxiliary judgement.
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predicates on effectful computations. Specifically, we consider two kinds of natural examples of this
approach: i) lifting predicates from return values to effectful computations (ğ7.1); and ii) specifying
patterns of allowed effects (ğ7.2). These examples are also accompanied by a formalisation4, based
on a shallow embedding of the relevant value fragment of eMLTT in Agda [The Agda Team 2017].
In order to facilitate reasoning based on the łhandle into value terms" handling construct, we

first introduce a universe à la Tarski [Martin-Löf 1984] by extending eMLTT with a universe U of
value types, a corresponding decoding function El(V ), and the corresponding codes of value types:

A ::= . . . | U | El(V )

V ::= . . . | nat-c | one-c | zero-c | sum-c(V, W) | sig-c(V ,x .W ) | pi-c(V ,x .W )

We also extend eMLTT with corresponding typing rules and definitional equations, e.g., we include

Γ ⊢ V : U Γ,x :El(V ) ⊢W : U

Γ ⊢ pi-c(V ,x .W ) : U

Γ ⊢ V : U Γ,x :El(V ) ⊢W : U

Γ ⊢ El(pi-c(V ,x .W )) = Πx :El(V ).El(W )

Using this universe, we can now define predicates on effectful computations (of type FA) as
value terms of the form Γ ⊢ V : UFA→U , with the aim of using these predicates to refine (thunks
of) computations using the value Σ-type, i.e., as Σx :UFA.El(Vx ). In detail, we define the predicates
Γ ⊢ V : UFA→U by i) equippingU (or a type we define using it) with an algebra for the given
effect theory, and ii) by using the łhandle into value terms" handling construct we defined in ğ4.4.

It is worth noting that our approach of defining type-theoretic predicates on effectful computa-
tions by equipping the universeU with an algebra structure (essentially, we are defining types
that depend on effectful computations in a łwell-behaved" manner) is reminiscent of the recent
work by Pédrot and Tabareau [2017]. In particular, their monadic translation of dependent type
theories crucially relies on equipping universes with an algebra structure for a given monad.

7.1 Lifting Predicates from Return Values to Effectful Computations

Input-output. Lifting predicates from return values to computations is easiest when the given
effect theory does not contain equations. Thus, let us consider the theory TI/O of input-output of bits
from ğ4.1 for our first example; other equation-free fibred algebraic effects admit similar reasoning.
Assuming given a predicate Γ ⊢ VP : A→U on A, we can lift VP to a predicate V

P̂
onUFA by

V
P̂

def
= λy :UFA. (forceFA y) handled with {opx (x

′) 7→ Vop}op∈SI/O to y ′ :A inU (VP y
′)

where we define the code of bits as bit-c
def
= sum-c(one-c, one-c), and where

x : 1,x ′ : 1 + 1→U ⊢ Vread
def
= sig-c(bit-c,y ′. x ′y ′) : U

x : 1 + 1,x ′ : 1→U ⊢ Vwrite
def
= x ′⋆ : U

On closer inspection, we can see that V
P̂
agrees with the possibility modality from Evaluation

Logic [Pitts 1991], in that a computation term satisfies V
P̂
if there exists a return value that satisfies

the given predicate VP . Further, observe that if we were to replace sig-c (code for value Σ-type, i.e.,
existential quantification) with pi-c (code for value Π-type, i.e., universal quantification), we would
get a necessity modality that holds when all the return values of the given computation satisfy VP .

Global state. For our second example of lifting predicates from return values to computations,
we consider an effect theory that also includes equations, the theory TGS of global state from ğ3.2.

4The Agda formalisation of the examples presented in ğ7 is available at https://github.com/danelahman/POPL18/
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In particular, when we define the type of stores as S
def
= Πx :Loc.Val, then assuming given a

predicate Γ ⊢ VQ : A→ S→U on return values and final stores, we can define a predicate

V
Q̂

def
= λy :UFA. λxS :S. fst

(

(

(forceFA y) handled with ({opx (x
′) 7→ Vop}op∈SGS ;

−−→
Weq) to y

′ :A inS→U × S Vret
)

xS
)

on (thunks of) computations and initial stores, with Vget, Vput, and Vret defined as follows:

Γ,x :Loc,x ′ :Val→ S → U × S ⊢ Vget
def
= λxS :S. x

′ (selxS x ) xS : S → U × S

Γ,x : (Σx :Loc.Val),x ′ : 1→ S → U × S ⊢ Vput
def
= λxS :S. x

′ ⋆ (updxS x ) : S → U × S

Γ,y ′ :A ⊢ Vret
def
= λxS :S. ⟨VQ y ′ xS ,xS ⟩ : S → U × S

and where we define the selection and update operations on stores as selVS V
def
= VS V and

updVS V
def
= pm V as (x :Loc,y :Val) in

λx ′ :Loc. case (isDecLoc x x
′) of (inl(yp :x =Loc x

′) 7→ transportVal x x
′yp y,

inr(yp :x =Loc x
′ → 0) 7→ selVS x

′)

with transportVal : Πxl :Loc.Πx
′
l
:Loc.Πyp :xl =Loc x

′
l
.Val[xl/x]→ Val[x ′

l
/x] being the standard

transport operation for propositional equality that one can derive from its elimination principle.
While we omit details of the witnesses of the proof obligations corresponding to the equa-

tions given in ğ3.2, referring the interested reader to the Agda formalisation for details, we
want to highlight that the use of transportVal in the definition of upd means that in order to
construct the proof witnessWeq for the second of the five global state equations, namely, for
put⟨x,y⟩ (getx (y

′.w (y ′))) = put⟨x,y⟩ (w (y)), we need Loc to be a set in the sense of Homotopy Type

Theory [The Univalent Foundations Program 2013]. That is, we need there to be a pure value term

⋄ ⊢ isSetLoc : Πx :Loc.Πx
′ :Loc.Πy :x =Loc x

′.Πy ′ :x =Loc x
′.y =x=Locx ′ y

′

Using Hedberg’s theorem [Hedberg 1998], we can readily derive this property from isDecLoc that
we assumed in ğ3.2. Returning to the proof witnessWeq, we note that its definition amounts to
having to prove transportVal x x yp y =Val y for an arbitrary equality proofyp : x =Loc x , which we
can do using the derived property isSetLoc, i.e., using isSetLoc x x yp (refl x ) : yp =x=Locx refl x .

From the perspective of programming with computational effects, having to require Loc to have
decidable equality (and thus to be a set) is not a significant drawback because the natural choice
for Loc, namely, the finite coproduct of 1s denoting a finite set of memory locations, can be easily
shown to have decidable equality. It is also worth noting that if Valwere not dependent on Loc, then
we could define the case of upd that currently uses transportVal simply as inl(yp :x =Loc x

′) 7→ y.
Finally, on closer inspection, we can see that V

Q̂
corresponds to Dijkstra’s weakest precondition

semantics of stateful programs [Dijkstra 1975], e.g., the following definitional equations hold:

Γ ⊢ V
Q̂

(thunk (return V )) VS = VQ V VS : U

Γ ⊢ V
Q̂
(thunk (getFAVl

(y.M )))VS = VQ̂ (thunkM[selVS Vl/y])VS : U

Γ ⊢ V
Q̂
(thunk (putFA

⟨Vl ,V ⟩
(M )))VS = VQ̂ (thunkM ) (updVS ⟨Vl ,V ⟩) : U

That is, e.g., V
Q̂
holds of the term putFA

⟨Vl ,V ⟩
(M ) in state VS iff it holds ofM in state updVS ⟨Vl ,V ⟩.

7.2 Specifying Patterns of Allowed Effects in Computations

Analogously to lifting predicates from return values to effectful computations, specifying patterns
of allowed effects is easiest when the given fibred effect theory does not contain any equations.
Thus, for simplicity, we again consider the theory TI/O of input-output of bits for our examples.
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Disallowing writes. We begin by considering a coarse grained example of disallowing all writes:

Vno-w
def
= λy :UFA. (forceFA y) handled with {opx (x

′) 7→ Vop}op∈SI/O to y ′ :A inU one-c

where Vread and Vwrite are defined as follows:

x : 1,x ′ : 1 + 1→U ⊢ Vread
def
= pi-c(bit-c,y ′. x ′y ′) : U

x : 1 + 1,x ′ : 1→U ⊢ Vwrite
def
= zero-c : U

For example, the computation term readFA (x .writeFAV (M )) does not satisfyVno-w because we have

Γ ⊢ El(Vno-w (thunk (read
FA (y.writeFAV (M ))))) = Πy : 1+1.0 � 0

Patterns of reads and writes. As a more fine grained example, we consider specifications on
effectful computations in the style of session types [Honda et al. 1998], given by allowed patterns
of I/O-effects. First, we assume an inductive type Protocol with the following three constructors:

r : (1+1→ Protocol) → Protocol w : (1+1→U ) → Protocol→ Protocol e : Protocol

describing patterns of allowed I/O-effects. Intuitively, r specifies that the next allowed I/O-effect is
reading; w specifies that the next allowed I/O-effect is writing, with the value written required to
satisfy the predicate given as an argument to w; and e specifies that no further communication
must happen (i.e., end of communication). The Protocol-valued arguments of the constructors r
and w specify how the computation is allowed to evolve after reading and writing, respectively.

Then, given some particular protocol Γ ⊢ Vpr : Protocol, we can define a corresponding predicate

Vp̂r
def
= λy :UFA.

(

(forceFA y) handled with {opx (x
′) 7→ Vop}op∈SI/O to y ′ :A inProtocol→U Vret

)

Vpr

where the value terms Vread, Vwrite, and Vret are defined as follows (for better readability, we give
their structural-recursive definitions by pattern-matching on their arguments of type Protocol):

Γ,x : 1,x ′ : 1 + 1→ Protocol→U ⊢ Vread (r V ′pr)
def
= pi-c(bit-c,y ′.(x ′y ′) (V ′pr y

′)) : U

Γ,x : 1 + 1,x ′ : 1→ Protocol→U ⊢ Vwrite (w VP V
′
pr)

def
= sig-c(VP x ,y

′. x ′ ⋆V ′pr) : U

Γ,y ′ :A ⊢ Vret e
def
= one-c : U

with all other cases defined as zero-c. As a result, a computation satisfies the predicate Vp̂r if and
only if its I/O-effects precisely follow the specific pattern of I/O-effects allowed by the protocol Vpr.
This example can be easily extended to also account for sets of patterns of allowed I/O-effects.

For instance, we could extend the inductive type Protocol with a fourth constructor or, typed
as or : Protocol→ Protocol→ Protocol, and correspondingly extend the above definitions of value

terms V ∈ {Vread,Vwrite,Vret} each with a new case given by V (V ′pr or V
′′
pr )

def
= sum-c(V V ′pr,V V ′′pr ).

Finally, we highlight that it is easy combine these specifications with those discussed in ğ7.1,
namely, by replacing one-c in the definition of Vret with a suitable predicate VP on return values.

8 SEMANTICS

We conclude by describing how to give a natural denotational semantics to our extension of eMLTT

with fibred algebraic effects and their handlers. This semantics is an instance of a more general
class of models, based on fibrations (functors with extra structure for modelling substitution, Σ-
and Π-types, etc.) and adjunctions between them, as studied by Ahman [2017]; Ahman et al. [2016].

We proceed in three steps. First, we recall how the pure fragment of eMLTT is interpreted in the
families of sets fibration, a prototypical model of dependent types. Next, we show how to derive a
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countable Lawvere theory LTeff from the given fibred effect theory Teff. Finally, we show how to
define the interpretation of the rest of our extension of eMLTT using families of models of LTeff .

8.1 Families Fibrations

We begin by giving a brief overview of the kinds of fibrations we use for defining the denotational
semantics of our extension of eMLTT. For a more detailed treatment of fibrations and their use in
modelling various type theories and logics, we refer the reader to the book by Jacobs [1999].
Given a category C, it is well-known that one can define a new category Fam(C) of C-valued

families. Its objects are pairs (X ,A) of a set X and a functor A : X −→ C (treating X as a discrete
category); and themorphisms (X ,A) → (Y ,B) are pairs of a function f : X −→ Y and a natural trans-
formation д : A −→ B ◦ f . The corresponding C-valued families fibration famC : Fam(C) −→ Set

is then defined on objects as famC (X ,A)
def
= X and on morphisms as famC ( f ,д)

def
= f .

Next, for any set X , the category FamX (C) is called the fibre over X ; this is a subcategory
of Fam(C) whose objects and morphisms are of the form (X ,A) and (idX ,д). Given a function
f : X −→ Y , the corresponding reindexing functor f ∗ : FamY (C) −→ FamX (C) is given on objects

by f ∗ (Y ,A)
def
= (X ,A ◦ f ), and analogously on morphisms. As standard in the literature, we write

f (Y ,A)
def
= ( f , (idA(f (x )) )x ) : f

∗ (Y ,A) −→ (Y ,A) for the Cartesian morphism over f : X −→ Y .

We get a prototypical model of dependent types when we take C
def
= Set, the category of sets and

functions. In this case, there also exists a pair of adjunctions famSet ⊣ 1 ⊣ {−}, where the terminal

object functor 1 : Set −→ Fam(Set) is given by 1(X )
def
= (X ,x 7→ {⋆}), and the comprehension functor

{−} : Fam(Set) −→ Set is given by {(X ,A)}
def
=

∐

x ∈X A(x ). The latter functor provides a natural
semantics for context extension, together with the canonical projection maps π(X ,A) : {(X ,A)} −→ X .

8.2 Interpretation of the Pure Fragment of eMLTT

We now recall how the pure fragment of eMLTT (i.e., MLTT) is interpreted in the families of sets
fibration famSet : Fam(Set) −→ Set. For more details about the interpretation of this fragment of
eMLTT, we refer the reader to the relevant sections in Ahman [2017]; Ahman et al. [2016], and to
Streicher [1991] whose treatment of the categorical semantics of MLTT the former two build on.

In detail, the interpretation of the pure fragment of eMLTT is defined as a partial interpretation
function J−K, which, if defined, maps a context Γ to a set JΓK; a context Γ and value type A to
an object JΓ;AK in FamJΓK (Set); and a context Γ and value term V to JΓ;V K : 1(JΓK) −→ (JΓK,A)
in FamJΓK (Set), for some A : JΓK −→ Set. For better readability, we denote the first and second
components of JΓ;AK and JΓ;V K using subscripts 1, 2, i.e., we write (JΓ;AK1, JΓ;AK2) for JΓ;AK.
First, the value types Nat, 1, 0, and A + B are interpreted using the corresponding categorical

structure in the fibres of Fam(Set) as follows, assuming that JΓK, JΓ;AK, and JΓ;BK are defined:

JΓ;NatK
def
= (JΓK,γ 7→ N) JΓ; 1K

def
= (JΓK,γ 7→ {⋆}) = 1(JΓK) JΓ; 0K

def
= (JΓK,γ 7→ ∅)

JΓ;A + BK
def
= JΓ;AK + JΓ;BK = (JΓK,γ 7→ JΓ;AK2 (γ ) + JΓ;BK2 (γ ))

Next, assuming that JΓ;AK and JΓ,x :A;BK are defined, with JΓ,x :A;BK1 =
∐

γ ∈JΓKJΓ;AK2 (γ ), then

JΓ; Σx :A.BK
def
= (JΓK,γ 7→

∐

a∈JΓ;AK2 (γ )JΓ,x :A;BK2 (⟨γ ,a⟩))

JΓ;Πx :A.BK
def
= (JΓK,γ 7→

∏

a∈JΓ;AK2 (γ )JΓ,x :A;BK2 (⟨γ ,a⟩))

Finally, propositional equality is interpreted as the equality between the interpretations of terms:

JΓ;V =AW K
def
= (JΓK,γ 7→ {⋆ | (JΓ;V K2)γ (⋆) = (JΓ;W K2)γ (⋆)})
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assuming that JΓ;V K : 1(JΓK) −→ (JΓ;AK) and JΓ;W K : 1(JΓK) −→ (JΓ;AK) are both defined. In the
rest of this paper, we often leave such routine preconditions to the definedness of J−K implicit.

In ğ8.5, we rely on this extensional nature of the semantics of propositional equality for showing
that the interpretations of the proof witnesses involved in the typing of the user-defined algebra type
and the composition operations are enough to validate the corresponding definitional equations.

Next, the interpretation of the universeU is based on the semantics of induction-recursion [Dy-
bjer and Setzer 1999; Ghani et al. 2013]: we first construct the initial algebra µΦ of an endofunctor Φ
on Fam( |Set|)5 corresponding to the signature of codes of value types given in ğ7, and then define

JΓ;UK
def
= (JΓK,γ 7→ µΦ1) JΓ; El(V )K

def
= (JΓK,γ 7→ µΦ2 ((JΓ;V K2)γ (⋆)))

Finally, as an example of the interpretation of value terms, inlA+B V is interpreted as follows:

JΓ; inlA+B V K1
def
= idJΓK (JΓ; inlA+B V K2)γ

def
= inlJΓ;AK2 (γ )+JΓ;BK2 (γ ) ◦ (JΓ;V K2)γ

The soundness theorems for MLTT and eMLTT then tell us that the a priori partial J−K is in fact
defined on well-formed pure syntax and that it validates the corresponding definitional equations.

8.3 Deriving a Countable Lawvere Theory from a Fibred Effect Theory

Next, we show how to derive a countable Lawvere theory from the given fibred effect theory Teff.
We begin by recalling some basic definitions and results about countable Lawvere theories and

their models. We refer the reader to Power [2006] for a more detailed overview of the area.
A countable Lawvere theory consists of a small category L with countable products and a strict

countable-product preserving identity-on-objects functor I : ℵ
op
1 −→ L, where ℵ1 is the skeleton

of the category of countable sets and all functions between them. In other words, an object of ℵ1 is
either a natural number or the distinguished element ω denoting the cardinality of countable sets.

Amodel of a countable Lawvere theory L in a category C with countable products is a countable-
product preserving functorM : L −→ C. A morphism fromM1 : L −→ C toM2 : L −→ C is
given by a natural transformation h :M1 −→M2. This gives us the category Mod(L,C).

Conceptually, a countable Lawvere theory is nothing but an abstract category-theoretic descrip-
tion of the clone of countable equational theories [Grätzer 1979]. In particular, one often thinks of
the morphisms n −→ 1 in L as terms in n free variables, and of the morphisms n −→m asm-tuples
of terms in n free variables. Analogously, the models of a countable Lawvere theory correspond to
the models of the countable equational theories whose clone this countable Lawvere theory is.
We also recall that there exists a canonical forgetful functor UL : Mod(L,C) −→ C, given on

objects byUL (M)
def
= M (1). It is then well-known that if C is locally countably presentable [Adamek

and Rosicky 1994], the functor UL has a left adjoint FL : C −→ Mod(L,C). Importantly for the
purposes of this paper, the category Set of sets and functions is locally countably presentable.

Next, in order to be able to derive a countable Lawvere theoryLTeff from the given fibred effect the-
ory Teff, we require Teff to be countable. In particular, this means that for all op : (x : I ) −→ O ∈ Seff,
we require Jx : I ;OK2 to be a family of countable sets. Furthermore, we also require JΓ;A′j K2 to be a

family of countable sets, for all equations Γ | ∆ ⊢ T1 = T2 ∈ Eeff and effect variableswj :A
′
j ∈ ∆.

We can then construct LTeff by expanding Teff into a countable equational theory [Grätzer 1979],
analogously to how Plotkin and Pretnar [2013] expanded their effect theories. More specifically,
Seff determines a countable signature consisting of operation symbols opi : |Jx : I ;OK2 (⟨⋆, i⟩) |, for
all op : (x : I ) −→ O ∈ Seff and i ∈ J⋄; IK2 (⋆). Every effect term Γ | ∆ ⊢ T then naturally determines
terms ∆γ ⊢ T γ derivable from this countable signature (for all γ ∈ JΓK), where ∆γ consists of

5 |Set | denotes the discrete variant of Set; it is used to accommodate the contravariance arising from decoding the Π-type.
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variables xawj for allwj :Aj ∈ ∆ and a ∈ JΓ;A′j K2 (γ ). In detail, the terms T γ are defined as follows:

(wj (V ))γ
def
= x

(JΓ;V K2 )γ (⋆)
wj

(opV (y.T ))
γ def

= op(JΓ;V K2 )γ (⋆)
(T ⟨γ ,o⟩)1≤o≤ |Jx :I ;OK2 (⟨⋆, (JΓ;V K2 )γ (⋆)⟩) |

(pm V as (y1 :B1,y2 :B2) in T )γ
def
= T ⟨⟨γ ,b1⟩,b2⟩ (when (JΓ;V K2)γ (⋆) = ⟨b1,b2⟩)

(case V of (inl(y1) 7→ T1, inr(y2) 7→ T2))
γ def
= T

⟨γ ,b⟩
1 (when (JΓ;V K2)γ (⋆) = inlb)

(case V of (inl(y1) 7→ T1, inr(y2) 7→ T2))
γ def
= T

⟨γ ,b⟩
2 (when (JΓ;V K2)γ (⋆) = inrb)

We get a countable equational theory by taking equations ∆γ ⊢ T
γ
1 = T

γ
2 , for all Γ | ∆ ⊢ T1 = T2 ∈ Eeff

and γ ∈ JΓK, and closing them under the standard rules of reflexivity, symmetry, transitivity, etc.
The countable Lawvere theory LTeff is then given by taking the morphisms n −→m in LTeff

to be m-tuples (−→xi ⊢ tj )1≤j≤m of equivalence classes of terms in n variables (in the countable
equational theory defined above). The identity morphisms are given by tuples of variables, while
the composition of morphisms is given by substitution. We define the functor ITeff : ℵ

op
1 −→ LTeff

by ITeff (n)
def
= n and ITeff ( f )

def
= (−→xi ⊢ xf (j ) )1 ≤ j ≤m : n →m. It is then easy to verify both that LTeff has

countable products (given using the cardinal sum in ℵ1) and that ITeff strictly preserves them.

Proposition 8.1. LTeff is a countable Lawvere theory.

For better readability, we writeMod forMod(LTeff , Set) in the rest of this paper. In addition, a
useful well-known property of Mod that we use later is that it is both complete and cocomplete.

We conclude by highlighting that for any setA, one can intuitively think of the free model FLTeff (A)

as being given by the set of equivalence classes of computation trees built from the operations of
the given fibred effect theory Teff, with the leaves of these trees given by elements of the set A.

8.4 Interpretation of the Non-Pure Fragment of eMLTT

Next, we show how to extend the interpretation of the pure fragment of eMLTT to the rest of our
extension of eMLTT with fibred algebraic effects and their handlers, based on the fibred adjunction

Fam(Set)

famSet

''

F

⊥
--
Fam(Mod)

famMod

ww

U

ll

Set

where the two fibred functors F andU are defined (on objects) as

F (X ,A)
def
= (X , FLTeff ◦A) U (X ,C )

def
= (X ,ULTeff ◦C )

That the functors F and U indeed form a fibred adjunction suitable for modelling eMLTT is an
instance of a more general result about the models of eMLTTÐsee Ahman et al. [2016, Thm. 3].
Using this fibred adjunction, we can now extend the definition of J−K that we gave in ğ8.2 so

that, if defined, it maps a context Γ and a computation typeC to an object JΓ;CK in FamJΓK (Mod); a
context Γ and a computation termM to a morphism JΓ;MK : 1(JΓK) −→ U (JΓK,C ) in FamJΓK (Set),
for someC : JΓK −→ Mod; and a context Γ, a variable z, a computation typeC , and a homomorphism
term K to a morphism JΓ; z :C;KK : JΓ;CK −→ (JΓK,D) in FamJΓK (Mod), for some D : JΓK −→ Mod.
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In particular, the interpretation of the types C ⊸ D,UC , and FA is defined as follows:

JΓ;C ⊸ DK
def
=

(

JΓK,γ 7→ HomMod

(

JΓ;CK2 (γ ), JΓ;DK2 (γ )
))

JΓ;UCK
def
= U (JΓ;CK) JΓ; FAK

def
= F (JΓ;AK)

The computational Π- and Σ-types are interpreted similarly to their value counterparts, using the
set-indexed products and coproducts inMod, which exist becauseMod is complete and cocomplete.

We omit the definition of J−K for the cases (of computation and homomorphism terms) that are
already covered in great detail in Ahman et al. [2016], and instead concentrate on demonstrating
how to define the interpretation function J−K for algebraic operations, the user-defined algebra
type, and the two composition operations. Diagrammatic and more detailed treatment of these
cases of the definition of J−K can be found in ğ6 and ğ7 of the author’s PhD thesis [Ahman 2017].

First, we define J−K on algebraic operations op
C

V
(y.M ) as follows:

(JΓ; op
C

V
(y.M )K2)γ

def
= op

JΓ;CK2 (γ )

(JΓ;V K2 )γ (⋆)
◦
∏

o

(

(JΓ,y :O[V /x];MK2)⟨γ ,o⟩
)

◦ ⟨id1⟩o : 1 −→ ULTeff (JΓ;CK2 (γ ))

where op
JΓ;CK2 (γ )

(JΓ;V K2 )γ (⋆)
is the corresponding operation of JΓ;CK2 (γ ), given by the following composite:

(JΓ;CK2 (γ )) (
−→xo ⊢ op(JΓ;V K2 )γ (⋆)

(xo )o ) ◦ ι :
∏

o∈JΓ;O[V /x ]K2 (γ ) (JΓ;CK2 (γ )) (1) −→ (JΓ;CK2 (γ )) (1)

where ι is the canonical countable-product preservation isomorphism
∏

o∈JΓ;O[V /x ]K2 (γ ) (JΓ;CK2 (γ )) (1) � (JΓ;CK2 (γ )) ( |JΓ;O[V /x]K2 (γ ) |)

Next, we define J−K on the user-defined algebra type ⟨A, {Vop}op∈Seff⟩ as follows:

JΓ; ⟨A;
−−→
Vop;
−−→
Weq⟩K

def
= (JΓK,γ 7→ Mγ )

where the functorsMγ : LTeff −→ Set are defined on morphisms of the form n −→ 1 as follows:6

Mγ (n)
def
=

∏

1≤j≤n JΓ;AK2 (γ ) Mγ (−→x j ⊢ x j )
def
= projj

Mγ (∆ ⊢ opi (to )1≤o≤ |Jx :I ;OK2 (⟨⋆,i⟩) | )
def
= f

γ
opi
◦ ⟨Mγ (∆ ⊢ to )⟩o∈Jx :I ;OK2 (⟨⋆,i⟩)

where the function f
γ
opi

is derived from JΓ;VopK as follows:

f
γ
opi

def
= f 7→ proj⟨i,f ⟩

(

(JΓ;VopK2)γ (⋆)
)

:
∏

o∈Jx :I ;OK2 (⟨⋆,i⟩)JΓ;AK2 (γ ) −→ JΓ;AK2 (γ )

It is worth noting that eachMγ extends straightforwardly tom-tuples of terms, so as to account
for all morphisms in LTeff , i.e., those of the form n −→m for a generalm. Specifically, we have that

Mγ ((∆ ⊢ t )1≤j≤m ) = ⟨Mγ (∆ ⊢ t )⟩1≤j≤m

We also note that for JΓ; ⟨A;
−−→
Vop;
−−→
Weq⟩K to be defined, we additionally require thatMγ validates

the equations given in Eeff. Namely, we require for all Γ′ | ∆ ⊢ T1 = T2 ∈ Eeff and γ ′ ∈ JΓ′K that

Mγ (∆γ
′

⊢ T
γ ′

1 ) =Mγ (∆γ
′

⊢ T
γ ′

2 )

Finally, we define J−K on the two composition operations as follows:

(JΓ;M as x :UC in−−−→
Wop;D

N K2)γ
def
= f γ ◦ (JΓ;MK2)γ : 1 −→ ULTeff (JΓ;DK2 (γ ))

(JΓ; z :C ′;K as x :UC in−−−→
Wop;D

N K2)γ
def
= hom( f γ ) ◦ (JΓ; z :C ′;KK2)γ : JΓ;C ′K2 (γ ) −→ JΓ;DK2 (γ )

6We use the notation
∏

1≤j≤n JΓ;AK2 (γ ) to mean the finite product JΓ;AK2 (γ ) × . . . × JΓ;AK2 (γ ) when n is a natural

number, and
∏

m∈N JΓ;AK2 (γ ) when n is the distinguished symbol ω . In particular, we haveMγ (1) = JΓ;AK2 (γ ).
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where the function f γ is derived from JΓ,x :UC;N K as follows:

f γ
def
= c 7→ (JΓ,x :UC;N K2)⟨γ ,c⟩ (⋆) : ULTeff (JΓ;CK2 (γ )) −→ ULTeff (JΓ;DK2 (γ ))

and where hom( f γ ) is a morphism of models of LTeff , given by components

(hom( f γ ))n
def
= ιJΓ;DK2 (γ ) ◦

∏

1≤j≤n ( f
γ ) ◦ ι−1

JΓ;CK2 (γ )
: (JΓ;CK2 (γ )) (n) −→ (JΓ;DK2 (γ )) (n)

where ιJΓ;CK2 (γ ) and ιJΓ;DK2 (γ ) are the canonical countable-product preservation isomorphisms
∏

1≤j≤n (JΓ;CK2 (γ )) (1) � (JΓ;CK2 (γ )) (n)
∏

1≤j≤n (JΓ;DK2 (γ )) (1) � (JΓ;DK2 (γ )) (n)

We note that for these two cases of J−K to be defined, we require that f γ commutes with the
operations of JΓ;CK2 (γ ) and JΓ;DK2 (γ ), for all i ∈ J⋄; IK2 (⋆), as depicted in the following diagram:

∏

o (JΓ;CK2 (γ )) (1)

∏

o∈Jx :I ;OK2 (⟨⋆,i⟩) (f
γ )

//

op
JΓ;CK2 (γ )

i

��

∏

o (JΓ;DK2 (γ )) (1)

op
JΓ;DK2 (γ )

i

��

(JΓ;CK2 (γ )) (1)
f γ

// (JΓ;DK2 (γ )) (1)

8.5 Soundness

In order to establish the soundness of the interpretation J−K we defined above in ğ8.2 and ğ8.4, we
first formulate and prove standard semantic weakening and substitution results. In particular, we
begin by defining standard a priori partial semantic projection and substitution morphisms

projΓ1;x :A;Γ2 : JΓ1,x :A, Γ2K −→ JΓ1, Γ2K substΓ1;x :A;Γ2;V : JΓ1, Γ2[V /x]K −→ JΓ1,x :A, Γ2K

by induction on the size of Γ2 as follows:

projΓ1;x :A;⋄
def
= πJΓ1;AK projΓ1;x :A;Γ2,y :B

def
= {projΓ1;x :A;Γ2 (JΓ1, Γ2;BK)}

substΓ1;x :A;⋄;V
def
= JΓ;V K substΓ1;x :A;Γ2,y :B;V

def
= {substΓ1;x :A;Γ2;V (JΓ1,x :A, Γ2;BK)}

Next, we show that both morphisms are defined if the interpretations of the involved contexts,
types, and terms are defined; and that reindexing along them models weakening and substitution.
These results also extend to account for weakening and substitution with multiple value variables.

Proposition 8.2. Given value contexts Γ1 and Γ2, a value type A, and a value variable x such that
JΓ1, Γ2K ∈ Set and JΓ1,x :A, Γ2K ∈ Set, then i) the semantic projection morphism projΓ1;x :A;Γ2 is defined;

and ii) given a value type B such that JΓ1, Γ2;BK ∈ FamJΓ1,Γ2K (Set), we have

JΓ1,x :A, Γ2;BK = proj∗Γ1;x :A;Γ2 (JΓ1, Γ2;BK)

and similarly for computation types, and value, computation, and homomorphism terms.

Proposition 8.3. Given value contexts Γ1 and Γ2, a value type A, a value variable x , and a value
termV such that JΓ1;V K : 1(JΓ1K) −→ JΓ1;AK, JΓ1,x :A, Γ2K ∈ Set, and JΓ1, Γ2[V /x]K ∈ Set, then i) the
semantic substitution morphism substΓ1;x :A;Γ2;V is defined; and ii) given a value type B such that
JΓ1,x :A, Γ2;BK ∈ FamJΓ1,x :A,Γ2K (Set), we have

JΓ1, Γ2[V /x];B[V /x]K = subst∗Γ1;x :A;Γ2;V (JΓ1,x :A, Γ2;BK)

and similarly for computation types, and value, computation, and homomorphism terms.

In addition, we show that substituting computation and homomorphism terms for computation
variables corresponds to the composition of the morphisms that the given terms denote.
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Proposition 8.4. Given a value context Γ, a computation variable z, a computation type C , a
computation term M , and a homomorphism term K such that JΓ;MK : 1(JΓK) −→ U (JΓ;CK) and
JΓ; z :C;KK : JΓ;CK −→ (JΓK,D), for some D : JΓK −→ Mod, then

JΓ;K[M/z]K = U (JΓ; z :C;KK) ◦ JΓ;MK

Proposition 8.5. Given a value context Γ, computation variables z1 and z2, computation types
C1 and C2, and homomorphism terms K and L such that JΓ; z1 :C1;KK : JΓ;C1K −→ JΓ;C2K and
JΓ; z2 :C2;LK : JΓ;C2K −→ (JΓK,D), for some D : JΓK −→ Mod, then

JΓ; z1 :C1;L[K/z2]K = JΓ; z2 :C2;LK ◦ JΓ; z1 :C1;KK

Finally, we prove the main soundness theorem for our language.

Theorem 8.6 (Soundness). J−K is defined on all well-formed contexts, well-formed types, and
well-typed terms, and it identifies definitionally equal contexts, types, and terms.

Proof. We prove this theorem by induction on the given derivations. For the definitional equa-
tions that correspond to the equations given in Eeff (see Fig. 4), we recall that these equations
hold in the countable Lawvere theory LTeff by construction. Therefore, all models of LTeff validate
them, including those modelling our computation types. For computation types, we prove that

JΓ; ⟨A;
−−→
Vop;
−−→
Weq⟩K is defined by observing that the interpretations of the proof witnesses

−−→
Weq ensure

that eachMγ validates the equations given in Eeff, as required in ğ8.4. For computation terms, we
prove that JΓ;M as x :UC in−−−→

Wop;D
N K is defined by observing that the interpretations of the proof

witnesses
−−→
Wop ensure that the functions f

γ derived from JΓ,x :UC;N K commute with the operations
of JΓ;CK2 (γ ) and JΓ;DK2 (γ ), as required in ğ8.4; the homomorphism term case is analogous. □

9 CONCLUSION AND FUTURE WORK

In this paper we have given a comprehensive account of algebraic effects and their handlers in
the dependently typed setting. In particular, we gave handlers a novel type-based treatment and
demonstrated that being able to handle computations into values provides a useful mechanism for
reasoning about effectful computations. We also showed how to equip the resulting language with
a denotational semantics based on families fibrations and models of countable Lawvere theories.

In future, we plan to combine our type-based treatment of handlers with effect-typing [Kammar
et al. 2013] and multi-handlers [Lindley et al. 2017]. We also plan to investigate extending eMLTT

with local effects, such as local state (e.g., Staton [2013]). In particular, while we could use our
fibred effect theories to express the operations and equations of the theory of local state, our
current strategy of giving semantics to our language using the corresponding countable Lawvere
theories and their (set-theoretic) models would not give a desired result for local effects. Namely, it
is well-known that there are no non-trivial set-theoretic models of the theory of local state [Staton
2013, Prop. 6]. Instead, we plan to generalise from fibrations based on models of countable Lawvere
theories to fibrations based on the presheaf models of Staton’s parameterised algebraic theories.
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