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computational effects using a generalisation of Plotkin and Pretnar’s effect theories, whose dependently
typed operations allow us to capture precise notions of computation, e.g., state with location-dependent store
types and dependently typed update monads. Our treatment of handlers is based on an observation that their
conventional term-level definition leads to unsound program equivalences being derivable in languages that
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value terms (the operations), capturing Plotkin and Pretnar’s insight that effect handlers denote algebras. We
then show that the conventional presentation of handlers can be routinely derived, and demonstrate that this
type-based treatment of handlers provides a useful mechanism for reasoning about effectful computations.
We also equip the resulting language with a sound denotational semantics based on families fibrations.
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1 INTRODUCTION

An important feature of many widely-used programming languages is their support for computa-
tional effects (e.g., raising exceptions, accessing memory, performing I/0), which allows program-
mers to write more efficient and conceptually clearer programs. Therefore, if dependently typed
languages are to live up to their promise of providing a lightweight means for integrating formal
verification and practical programming, we must first understand how to properly account for com-
putational effects in such languages. While there already exists a range of work on combining these
two fields (e.g., Ahman et al. [2016, 2017]; Brady [2013]; Casinghino [2014]; Hancock and Setzer
[2000]; McBride [2011]; Nanevski et al. [2008]; Pédrot and Tabareau [2017]; Pitts et al. [2015]), there
is still a gap between the rigorous and comprehensive understanding we have of computational
effects in the simply typed setting, and what we know about them in the presence of dependent
types. For example, in the mentioned works, either the mathematical foundations of the languages
developed are not settled, the available effects are limited, or they lack a systematic treatment of
(equational) effect specification. In this paper we contribute to the intersection of these two fields
by investigating how to combine dependent types with algebraic effects and their handlers.
Algebraic effects form a wide class of computational effects that lend themselves to specification
using operations and equations; examples include exceptions, state, input-output, nondeterminism,
probability, etc. Their study originated with the pioneering work of Plotkin and Power [2001, 2002];

Author’s address: Danel Ahman, Prosecco Team, Inria Paris, 2 rue Simone Iff, Paris, 75012, France, danel.ahman@inria.fr.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/1-ART7
https://doi.org/10.1145/3158095

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 7. Publication date: January 2018.



https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095

7:2 Danel Ahman

and they have since been successfully applied to, e.g., modularly combining different effects [Hyland
et al. 2006] and effect-dependent program optimisations [Kammar and Plotkin 2012]. A key insight
of Plotkin and Power was that most of Moggi’s monads [Moggi 1989, 1991] are determined by
algebraic presentations, with the notable exception of continuations, which are not algebraic.

A major role in the recent rise of interest in algebraic effects can be attributed to their handlers.
These were introduced by Plotkin and Pretnar [2013] as a generalisation of exception handlers to
all algebraic effects, based on the insight that handlers denote user-defined algebras for the given
notion of computation, and the handling construct denotes the homomorphism induced by the
universal property of the free algebra. From a programming language perspective, an effect handler

{0px(x,) = NOP}OPESeﬁ‘
provides redefinitions of the algebraic operations in the signature S.g, and the handling construct
M handled with {op, (x") = NoplopesSs t0 y:A in Nt

then recursively traverses the given program M, replacing each algebraic operation op with the
corresponding user-defined computation term Ny, e.g., as illustrated by the following S-equation:

I + (opi(y’.M)) handled with {op, (x") - Noplopes.s t0 y:A in Niet
= Nop[V/x,Ay":O[V /x].thunk H/x"] : C
where, for better readability, we abbreviate the recursive call to the handling construct as

H = M handled with {op,(x") = Noplopes.y t0 y:A in Nigt

Plotkin and Pretnar [2013] also showed that handlers can be used to neatly implement timeouts,
rollbacks, stream redirection, etc. More recently, handlers have also gained popularity as a practical
and modular programming language abstraction, allowing one to write programs generically
in terms of algebraic operations, and then use handlers to modularly provide different fit-for-
purpose implementations for these programs. A prototypical example of this approach involves
implementing the state operations (get and put) using their natural representation as state-passing
functions St — A X St. In order to support this style of programming, existing languages have
been extended with algebraic effects and their handlers [Hillerstrom and Lindley 2016; Kammar
et al. 2013; Leijen 2017], and new languages have been built around them [Bauer and Pretnar 2015;
Lindley et al. 2017]. However, being simply typed, these languages do not allow the programmer
to (equationally) specify the intended behaviour of the computational effects at hand, and thus
provide no guarantees that the defined handlers satisfy these specifications, a gap we aim to fill.

The main contributions of this paper are: i) a dependently typed generalisation of Plotkin and
Pretnar’s effect theories (§3.1); ii) an observation that the conventional term-level definition of
effect handlers leads to unsound program equivalences being derivable in languages that include a
notion of homomorphism (§4.1); iii) a new computation type, the user-defined algebra type, giving a
type-based treatment of handlers and solving the above-mentioned problem with unsound program
equivalences (§4.2); iv) a derivation of the conventional term-level definition of handlers from our
type-based treatment (§4.3); v) a demonstration that such handlers provide a useful mechanism
for reasoning about effectful computations (§7); and vi) a natural denotational semantics for the
resulting language based on families fibrations and models of countable Lawvere theories (§8).

This paper is based on §6 and §7 of the author’s PhD thesis [Ahman 2017] in which variants of
these contributions are presented in a system where the equational proof obligations used in the
type-based treatment of handlers are given by definitional equations instead of propositional ones.
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2 EMLTT: THE UNDERLYING EFFECTFUL DEPENDENTLY TYPED LANGUAGE

We begin with an overview of the language we use as a basis for studying algebraic effects and
their handlers in the dependently typed setting, namely, the effectful dependently typed language
proposed by Ahman et al. [2016]. This language is a natural extension of Martin-L6f’s [1975]
intensional type theory (MLTT) with computational effects. It makes a clear distinction between
values and computations, both at the level of types and terms, analogously to simply typed languages
such as Call-By-Push-Value (CBPV) [Levy 2004] and the Enriched Effect Calculus (EEC) [Egger et al.
2014]. Specifically, we base our work in this paper on a minor extension of Ahman et al’s language,
as explained below. Following Ahman [2017], we refer to this extended language as EMLTT.

As usual for dependently typed languages, EMLTT’s types and terms are defined mutually
inductively. First, one assumes countable sets of value variables x, y, . . . and computation variables
z,.... Next, the grammar of value types A, B, . .. and computation types C, D, ... is given by

A =
C =

Nat | 1|0 | A+B | Sx:AB | Ix:AB | V=4W | UC | C — D
FA | Sx:AC | TIx:A.C

Analogously to Ahman et al. [2016], we omit general inductive types and use natural numbers
as a representative example. Compared to op. cit., our value types also include the empty type 0,
the sum type A + B, and the homomorphic function type C —o D. We include the first two as to
specify signatures of algebraic effects (see §3.2); and the latter as it is useful for writing effectful
code without excessive thunking and forcing, and because it enables us to eliminate values into
homomorphism terms, as discussed later in this section. Further, as standard, we write A X B and
A — Bfor Xx:A.B and IIx: A.B when the value variable x does not appear free in B. Finally, we
note that FA is the type of possibly effectful computations that return values of type A.

Next, the grammar of EMLTT’s value terms V, W, . .. is given by

V u=x | % | zero | succV | nat-elimy a(V,,y1.y2.Vs,V) | case V ofyx 4 ()
| inlaygV | inrayp V | case V ofy g (inl(y;:A1) - Wi, inr(yz:Az) — W)
| (V,W)ia).B | pmV as (x1:A1,x2:A2) ing g W | Ax:AV | V(W)(x.a).8 | Az:C.K
| reflV | eg-elim,(x1.x2.x3.B,y.W, V1, V3, V,,) | fun-extx.a).5(V1, Vo, Wp) | thunk M

Observe that in addition to the introduction and elimination forms for the types inherited from
MLTT, value terms also include thunks of computations and homomorphic lambda abstractions.
Compared to Ahman et al. [2016] and Ahman [2017], in this paper we further include the axiom of
function extensionality, so as to enable reasoning about proof obligations given by propositional
equalities between functions, e.g., as used in §4.2 for our type-based treatment of effect handlers.

Regarding effectful programs, EMLTT makes a distinction between computation terms M, N, . . .
and homomorphism terms K, L, . . .. The grammar of these two kinds of terms is given by

M == forcecV | returnV | Mtox:Ainc N K:u=z ]| Ktox:Ainc M
| <V7M>(x:A).Q | Mto (x:A,z:C) inp K | <V7K>(x:A).Q | K to (x:A,z:C) inp L
| Ax:A.M | M(V)(x:A).g | V(M)Q,Q | Ax:AK | K(V)(x:A).Q | V(K)Q’Q
Computation terms include standard term formers: returning a value, sequential composition,
lambda abstraction, and function application. They also include forcing of thunks, introduction
and elimination forms for the computational ¥-type, and homomorphic function applications.
Homomorphism terms differ from computation terms in two respects: on the one hand, they do not

include forcec V and return V; on the other hand, they include computation variables z, which
have to be used i) linearly and ii) in a way that ensures that the computation bound to z “happens
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Value types: Computation types:
FT  TrV:A Trw:A I'tC T+C T'tD rra Lx:ArC Lx:ArRC
I' - Nat F'r V=4 Ww 'ty T+rC—oD I'rFA TrZEx:AC TrIIx:AC

Value terms:
I,x1:A,x0:A,x3:x1=ax2+B T+HVI:A TrHV:A
THV:A LrVp:Vi=aVy T.y:ArW:B[y/x1.y/xz. refl y/xs] THM:C
FTrreflV:V=4V T+ eq—elimA(xl.xg.xg.B,y.W, V1,V2,Vp) :B[V1/X1,V2/X2,VP/X3] T+ thunk M : UQ

T'rVi:IIx:AB T+Vy:1Ix:AB T+ WP : Hx:A.(Vl(x)(x:A).B =B Vz(x)(x:A).B) T'lz:C+K:D

T'r fun—eXt(x:A).B(Vl,Vz,Wp) V1 =Mx:Aa.B V2 I'tAz:CK:C—D
Computation terms:
r+v.ucC TFV:A IT'FM:FA T+C TI,x:A+rN:C T+rV:C—oD THM:C
'+ forcecV:C TrreturnV:FA FFMtox:Ainc N:C C'rV(M)e,p:D
Homomorphism terms:
r'vC I'z:CFrK:FA T+D T,x:A+M:D T+rV:A T,x:ArD T|z:CrK:D[V/x]
I'z:Crz:C I['|z:CrKtox:Ainp M:D I'z:CH(V,K)(x:4).p : Zx:A.D

Iz:CrK:3x:AD; TrD, T,x:Alzp:D;+L:D, T+C TI,x:Alz:C-K:D
Flzlzgl—Kto(x:A,ZZ:Ql)inQZL:QZ I'z:C+ Ax:AK : TIx:A.D

I'x:A+rD T|z:CrK:IIx:AD TrV:A T+V:D, —D, T|z:C+K:D,
Ilz:Ck K(V)(x:A).Q : D[V /x] I'lz:C+ V(K)Ql’gz :D,

Fig. 1. Selected formation and typing rules for EMLTT’s types and terms.

first" in a term containing it. Omitting the two term formers and using computation variables in
this way guarantees that every K denotes a homomorphism in the models we consider in §8.

As such, homomorphism terms were crucial for Ahman et al. [2016] in enabling the elimination
form for the computational X-type Xx:A.C to be defined correctly. Namely, a term of this type is
eliminated into a pair of variables, one denoting a value and the other a computation. To preserve
the intended left-to-right evaluation order of one’s program, it is crucial that the variable denoting
a computation is evaluated first, and not discarded or duplicated arbitrarily, which is guaranteed
by how homomorphism terms are defined and how computation variables are used in them.

The well-formed syntax of EMLTT is defined using judgements (see Fig. 1) of well-formed value
contexts + I, value types I' F A, and computation types I' F C; and well-typed value terms ' V : A,
computation terms I' - M : C, and homomorphism terms I'|z:C + K : D. Contexts I' are lists of
distinct value variables, each annotated with a value type; and with the empty context written as <.

As one can readily use thunking and forcing (and homomorphic functions) to eliminate values
into computation terms (resp. homomorphism terms), these elimination forms are not included
primitively. For example, one can eliminate natural numbers into computation terms as follows:

nat-elim, c(M;,y;.y2.M;, V) «f forceciy/x (nat-elimx.UQ(thunk M, y1.y2.thunk M, V))
and (non-dependently) into homomorphism terms as follows:

nat-elimc (K., y.Ks, V) o (nat—elimxl.g_og(/lzzg.l(z,y.xg.Az:Q.Ks[xz z/z],V)) z
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Value terms:
I'rA T,x1:Ax2:Ax3:x1 =ax2+B TrV:A T,y:A+ W :Bly/x1,y/x2,refl y/x3]
T+ eg-elimg(x1.x2.x3.B,y.W,V,V,refl V) = W[V /y] : B[V/x1,V/x2,refl V/x3]

r+v:0cC r+v:C—D
[+ thunk (forcec V) =V :UC T+V =2z2:CV(z)c,p:C—D

Computation terms:
TFV:A T+C T,x:ArM:C TFM:FA T+C T|z:FAFK:C
Tk (returnV)tox:Ainc M=M[V/x]:C T+ Mtox:Ainc K[returnx/z] = K[M/z] :

10

I'eM:C I'tM:C T|z:C-rK:D
[+ forcec (thunk M) =M :C T+ (Az:C.K)(M)c,p = K[M/z] : D

Homomorphism terms:
I'tV:A T|z1:CrK:Dy[V/x] T+D, T,x:Alzz:D;+L:D,
I'lz;:CFr <V’K>(x:A).Ql to (x:A,2z2:Dy) ian L=L[V/x][K/z]:D,

Ix:Ar Dy Tl|z1:CrK:3x:AD; TrD, T|z3:3x:A.D;+K:D,
['|z1:Cr K to (x:A z2:Dy) inp, L[{x,22)(x:a).D, /23] = L[K/2z3] : D,

I'rC T,x:A|lz:C+rK:D TFrV:A I'x:ArD T|z:C+rK:IIx:AD
[z:Cr (Ax:AK)(V)(x.a).p = K[V/x] : D[V/x] T|z:CtK = Ax:A.K(x)(x:a).p : [Ix:A.D

Fig. 2. Selected definitional equations from EMLTT’s equational theory.

where we assume that FCV(K,) = FCV(K) = z, and where x; and x;, are chosen fresh.'
Analogously to Ahman et al. [2016], we decorate value, computation, and homomorphism terms
with a number of type annotations. We use these annotations to define the denotational semantics
of EMLTT on raw expressions, so as to avoid well-known coherence problems arising in the inter-
pretation of dependently typed languages; this is a standard technique in the literature [Hofmann
1997, Streicher 1991]. For better readability, we often omit these type annotations in examples.
The well-formed syntax of EMLTT is defined mutually inductively with its equational the-
ory (see Fig. 2), consisting of a collection of mutually defined equivalence relations given by
definitional equations between well-formed value contexts, written I I} = I;; well-formed types,
writtenI' F A = Band I + C = D; and well-typed terms, written' F V=W : AT+ M = N : C, and
I'|z:C+ K = L: D. These equations interact with well-formed syntax via conversion rules, such as

FI =, MrV:A LA =4 FO=L LEM:C LG =G
le—VSAZ FZI—M:QZ

Note that as EMLTT is based on Martin-L6f’s intensional type theory, the elimination form for
propositional equality V=4 W supports a f-equation but not an r-equation (see Fig. 2). Similarly,
the elimination form for natural numbers also only supports f-equations. In both cases, this is done
so as to avoid known sources of undecidability for typechecking and the equational theory—for
more details, see the analysis by Hofmann [1995], and by Okada and Scott [1999], respectively.

Regarding the meta-theory of EMLTT, one can readily prove standard weakening and substitution
results, the latter for both value and computation variables. For example, we write A[V /x] for the
substitution of V for x in A. Analogously, we write K[M/z] for the substitution of M for z in K.

1FCV(K) denotes the free computation variable of the homomorphism term K.
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7:6 Danel Ahman

The definitions of both kinds of substitution are straightforward: they proceed by recursion on the
structure of the given type or term, making use of the standard convention of identifying types
and terms that differ only in the names of bound variables, and assuming that in any definition,
etc., the bound variables of types and terms are chosen to be different from any free variables.
We conclude by recalling from Ahman et al. [2016] that one of the notable features of EMLTT is
the computational 2-type Ex:A.C. This computation type provides a uniform means to account for
type-dependency in sequential composition, allowing one to “close-off" the type of the the second
computation with Xx:A.C before using the typing rule for sequential composition that prohibits x
to appear free in the type of the second computation. A similar restriction on free variables also
appears in other typing rules for effectful programs. As a consequence, EMLTT lends itself to a very
natural general denotational semantics based on fibred adjunctions, as studied in detail in Ahman
[2017]; Ahman et al. [2016]. Thus, one says that the computational effects in EMLTT are fibred.

3 FIBRED ALGEBRAIC EFFECTS

In this section we develop a formal means for specifying computational effects in EMLTT using
operations and equations, based on a natural dependently typed generalisation of the effect theories
of Plotkin and Pretnar [2013]. We note that while algebraic effects were already discussed by the
author in the context of EMLTT in Ahman et al. [2016], they were treated much more informally
compared to this paper, e.g., without making precise any particular notion of effect theory.

3.1 Fibred Effect Theories

We begin by identifying the fragment of EMLTT which we use to define the types of our operations.
A value type is pure if it is built up from only Nat, 1, ¥x:A.B,IIx: A.B,0, A+ B,and V=4 W,
where V, W, and A are all pure in propositional equality V =4 W. A value term is pure if it does not
contain thunks of computations and homomorphic lambda abstractions, and all its type annotations
are pure. This notion of pureness extends straightforwardly to contexts—a value context I is pure if
Aj; is pure for every x;:A; € T. Note that this fragment of EMLTT corresponds precisely to MLTT.
Assuming a countable set of effect variables w, . . ., we now define our notion of fibred effect
theory. We begin by defining corresponding signatures of operation symbols and then add equations
between derivable effect terms, so as to specify both the effects at hand and their behaviour.
A fibred effect signature S.g consists of a finite set of typed operation symbols op : (x:I) — O,
where ¢ + I and x:I - O are required to be pure value types, called the input and output type of op.
The effect terms T that one can derive from the given fibred effect signature S.g are given by

T == w(V) |opy(y.T) | pmV as (x1:A1,x2:A5) in T
| case V of (inl(x1:A;) b Ty, inr(xz:Ay) — Tp)

with the involved value types and value terms all required to be pure. We follow the convention of

omitting V in opy, (y.T) when the input type of op is 1, and y when the output type of op is 1. In

future, if one were to discover computationally interesting examples needing the elimination forms

of other value types (e.g., Nat), then these can be accommodated in effect terms straightforwardly.
An effect context A is a list of distinct effect variables annotated with pure value types. We say

that A is well-formed in a pure value context I', written " - A, if - " and I + A; for every w;: A; € A.

Intuitively, each effect variable w:A denotes a continuation that expects a value of type A.
Well-formed effect terms are then defined using the judgement I' | A + T as follows:

TrAL,w:AA, TrV:A TrV:I THA Ty:OV/x]|AFT
TIAL,w:A Ay - w (V) I'lA+opy(y.T)

(op: (x:I) — O € Serr)
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TV :3x1:A1.A; TV A +A
TFA T,x1:ALx0: Ay |AFT THFA T,x1:A1|A+T] T,x:A|A+ T

TF|ArpmVas (x1:A;,x2:A2) inT T |AF case V of (inl(x1:A1) - Ty, inr(xy:Az) — T3)

Finally, a fibred effect theory Tegr = (Seft, Eefr) is given by a fibred effect signature Seg and a finite
set Ei of equations I' | A + T; = T, between well-formed effect terms T |A + Ty and T' | A + To.

In order to simplify the presentation of typing rules involving fibred effect theories, we assume
I'=x1:A;,...,xp:Apand A = wi: A}, ..., Wy A}, when quantifying over the variables of T, A.

3.2 Examples of Fibred Effect Theories

As our fibred effect theories are a natural dependently typed generalisation of Plotkin and Pretnar’s
effect theories, we can capture all the effects they can, e.g., assuming a pure value type o + Exc of
exception names, the theory Tgxc of exceptions is given by one operation symbol raise : Exc — 0
and no equations. Another standard example is the theory 7np of nondeterminism, which is given by
one operation symbol or : 1 — 1 + 1 and three equations that make or into a semilattice operation.
On the other hand, as the operation symbols of our fibred effect theories are dependently typed,
compared to Plotkin and Pretnar’s, we can naturally capture more precise notions of computation.
We discuss two such examples below: i) a variant of Plotkin and Power’s [2002] theory of global
state in which the type of stored values is allowed to be dependent on memory locations; and ii)
Ahman and Uustalu’s [2014] dependently typed update monads that model state in which the store
is changed not by overwriting but instead by applying (store-dependent) updates to it, examples of
which include non-overflowing buffers and non-underflowing stacks—see op. cit. for details.

Global state. First, assume given pure value types of memory locations and values stored at them:
o+ Loc x:Loc + Val
such that the propositional equality on Loc is decidable, i.e., we assume given a pure value term:
o F isDeciqc : IIx:Loc.IIx”: Loc.(x =Loc X7) + (X =Loc X" — 0)

We use this assumption below to specify the two fibred effect theory equations that describe the

commutativity of reading and writing at different memory locations (4th and 5th equation below).

We also use this assumption, and results one can derive from it, to construct proofs of equational

proof obligations when we define predicates on effectful computations using effect handlers in §7.
The fibred effect signature Sgs of global state is then given by the two operation symbols

get : (x:Loc) — Val put : 2x:Loc.Val — 1

The idea here is that get denotes an effectful command that returns the current value of the store
at the given location; and put denotes a command that overwrites the store at the given location.
The corresponding fibred effect theory 7gs is then given by the following five equations:

x:Loc|w:1F getx(y.put<x’y>(w (%)) = w (%)
x:Loc,y:Val | w:Val + put<x’y>(getx(y’.w y)) = put(, (W (y))

x:Loc,y;:Val,yp:Val [w:1F put<x’y1>(put<x’y2>(w (%)) = put<x’yz>(w (%))

x1:Loc, xp:Loc| w:Val[x;/x] X Val[xa/x] F get, (y1-get,, (y2.w ((y1,y2))))
= get,, (y2.get,, (y1.w (Y1, 92)))) (1 # x2)
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7:8 Danel Ahman

x1:Loc, x3:Loc, y1 : Val[x1/x], y2: Val[xz/x] | w:1 + put<xl’yl>(put<x2’yz>(w (*)))
= pUt(xz,yz)(pUt(xl,y1>(W (*))) (xl * xz)
where the last two equations include a side-condition that requires the locations x; and x; to be
different. Similarly to Plotkin and Pretnar’s effect theories, this is simply an informal shorthand
notation. Formally, the right-hand sides of these two equations are written using case analysis on
the assumed term isDecy o x1 X2, €.g., the right-hand side of the last equation is formally given by
case (isDecioc x1 x2) of (inl(yp:x1 =Loc X2) - put<xl’y1>(put<x2’y2>(w (%)),
inr(yp5x1 =Loc X2 — O) and pUt<x2,y2>(pUt<x1’yl>(W (*))))
Observe how these five equations describe the expected behaviour of get and put: trivial store
changes are not observable (1st equation); get returns the most recent value the store has been

set to (2nd equation); put overwrites the content of the store (3rd equation); and gets and puts at
different locations are independent and commute with each other (4th and 5th equation).

Dependently typed update monads. To begin with, we assume given pure value types
o+ St x:StF Upd
of store values and store updates, respectively, together with well-typed closed pure value terms
l:x:St.Upd — St o : IIx:St.Upd @ : IIx: St.IIy:Upd.Upd[x | y/x] — Upd

satisfying the following propositional equalities (for better readability, we omit the type annotations
on these equations, and write the first argument to @ as a subscript; we also leave implicit the use of
the standard transport operation (e.g., see §7.1) in transporting W and Wj in the last two equations
along the first two equations so as to ensure that both sides of these equations are well-typed):

Vi@V)=V VIiWey W)= (V]W)|W
Weoy o(VIW) =W (oVyeyW=W (W &y Wy) ©y W3 = Wy ©y (W) ®v w, Wa)

In the literature, this structure is commonly called a directed container [Ahman et al. 2014]. For
dependently typed update monads, the high-level idea is that (Upd, o, ®) forms a dependently
typed monoid of store updates which can be applied to the store values via its action | on St.

The signature Supp of a dependently typed update monad is then given by two operation symbols:

lookup : 1 — St update : ITx:St.Upd — 1

The idea here is that lookup denotes an effectful command that returns the current value of the
store; and update denotes a command that applies an appropriate update to the current store (from
the family of updates given as its input). The dependency of Upd on St provides fine-grain control
over which updates are applicable to which store values, and allows this to be enforced statically.
The corresponding fibred effect theory 7upp is then given by the following three equations:

o|lw:ltk lookup(x.updately:St_oy(w (%)) = w (%)

x:(IIx":St.Upd[x"/x]) | w:St X St + lookup(y.update_ (lookup(y’.w ({y,y"))))
= lookup(y.update, (w ((y,y | (xy))))))

x:(Ix":St.Upd[x"/x]),y: Ty’ : St.Upd[y’/x]) | w:1 updatex(updatey(w (*)))
= update) e () o, (y (o L ey (W (%))
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(wi (V) v (v

(opy (y.T)) & Wop (VIVi/E). Ay:O[V[Vi/&})/x]1.T))

(pm V as (y1:B1,yz:Bz) in T)) L on VIVi/x}] as (y1:B1[Vi/xi] y2:Bo[V/x3]) in (T)
(case V of (inl(y1:B1) > Ty.inr(yz:B2) > To) ) & case V[Vi/x]] of (inl(ys:Bi| V/—’ - (T1),

lnr(yz~Bz[Vi/xi]) (T2))

Fig. 3. Translation of effect terms into value terms.

These equations are similar to the first three equations of the global state theory 7Gs, but instead
of an overwriting behaviour, they describe how the store is changed using updates. In particular,
observe how @ is used to combine subsequent updates, and how o gives us “do nothing" updates.

3.3 Extending EMLTT with Fibred Algebraic Effects

Next, we show how to extend EMLTT with algebraic effects given by a fibred effect theory 7eg.
First, we extend the grammar of EMLTT’s computation terms with algebraic operations:

C
M == ... | opy(y.M)

for all operation symbols op : (x:I) — O € Ser and computation types C.

Next, in order to extend the well-formed syntax of EMLTT with a corresponding typing rule and
definitional equations, we first define a translation of effect terms into value terms. In particular,
given an effect term I' | A + T, a value type A, value terms V; (for all x;: A; € T), value terms XG’ (for
all w; Aj' € A), and value terms W, (for all op : (x:I) — O € Scyr), we define the translation of T

into a value term (T [)A T by recursion on the structure of T, as given in detail in Fig. 3. For

-

ViV W

better readability, we write Vi for {V1,...,V,} in the translation, and similarly for V]' and Wop.
While we omit the subscripts in Fig. 3 so as to improve readability, it is important to note that

—
in the cases where the given effect term involves variable bindings, the set of value terms V; is
extended with the corresponding variables in the right-hand side, e.g., in the second case we have

(opy (D)), 52757 E Wop (VIVi/%), y:O[V Vi /%]/x].( )

[)A;V;y;V;;W_O,D>
While it might be more intuitive and natural to translate effect terms directly into EMLTT’s

computation terms, giving the translation from effect terms into value terms allows us to later

reuse this translation in §4 when we extend EMLTT with handlers of fibred algebraic effects.

We only translate well-formed effect terms I' | A + T because it makes it easier to account for
substituting value terms V" (denoting continuations) for effect variables—various subsequent results
refer to substituting value terms for all variables in A, not just for the free ones appearing in T.

Using this translation of effect terms into value terms, we can now define the typing rule
and definitional equations for algebraic operations, as given in Fig. 4. It is worth noting that for
presentational convenience, we include the equations given in &g as definitional equations between
value terms. The corresponding equations between computation terms are easily derivable, e.g.,

Fkgetv(y putw >( )=M:C

can be derived from the translation of the corresponding equation in the global state theory 7gs.
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7:10 Danel Ahman

Typing rule for algebraic operations:

T+V:I TrC T,y:0[V/x]FM:C
= = (op: (x:I) — O € Sef)

'k op%(y.M) :C
Congruence equations:

T+V=W:I T+C=D TLy:0[V/x]FM=N:C
== = (op: (x:I) — O € Sef)

C D
I'+ opy;(y.-M) = opy, (y.N) : C

General algebraicity equations:

I'vVvV:I TLy:OV/x]rM:C T|z:CrK:D

c 5 (op: (x:I) — O € Sefr)
'+ K[opy, (y.M)/z] = opy, (y.K[M/z]) : D

Equations from the given fibred effect theory:
I+ Vit Ai[Vi/x1, ... Vier /xi-1] (1<i<n
I'+C rw\g’;@f[ﬁ/ﬁ]ﬁug (1<j<m)

r,l—(]TlD —>—>—>:(]T2D >——:UC
UCVisV/sWop UCVisV/ i Wop -

TIAFT = T; € Eer)

where the well-typed value terms I + Wy : (2x:1.0 = UC) — UC are defined as follows:

Wop o Ax":(Zx:1.0 - UC).pmx’ as (x:1,y:0 — UC) in thunk (op%(y’.forceg(y y’)))

forall op : (x:I) — O € S

Fig. 4. Rules for extending EMLTT with fibred algebraic effects.

4 HANDLERS VIA THE USER-DEFINED ALGEBRA TYPE
4.1 A Problem with Adding Conventional Handlers to EMLTT

Before we show how to extend EMLTT with handlers of fibred algebraic effects using the user-
defined algebra type, we first explain how extending EMLTT with the conventional term-level
definition of handlers quickly leads to unsound program equivalences becoming derivable.

First, recall from §1 that Plotkin and Pretnar (and others since) include handlers in effectful
languages by extending the syntax of computation terms with the following handling construct:

M handled with {op,(x") = NoplopesS.; t0 y:A in Niet

whose semantics is given using the mediating homomorphism from the free algebra over A to
the algebra denoted by the handler {op, (x") = Nop}opes.q- However, when extending a language
that includes a notion of homomorphism, such as EMLTT with its homomorphism terms, this
algebraic understanding of handlers suggests that one ought to also extend the given notion of
homomorphism with a corresponding handling construct. Unfortunately, if one simply adds

K handled with {op,(x) = Noplopes,s t0 Y: A in Nigt

to EMLTT, the combination of i) the f-equations associated with the handling construct (see §1)
and ii) the general algebraicity equations (see Fig. 4) gives rise to unsound definitional equations.

To explain this problem in more detail, let us consider the theory 7j,0 of interactive input-output of
bits, given by two operation symbols, read : 1 — 1+ 1 and write : 1 + 1 — 1, and no equations.
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Next, we define a handler that negates all bits read from the input and written to the output:
read(x’) = read™!(y.force (x' ~y))  write,(x’) — writefl(force (x’ x))

where = : 1+ 1 — 1 + 1 denotes negation of bits, swapping the left and right injections into 1 + 1.
Now, let us consider handling a simple program, writef!, (return x), using the handler we

defined above.? On the one hand, using the f-equations for handling (see §1), we can prove that

[+ (writef?

inl«(return %)) handled with {op,(x) = Noplopes,o toy:1in return

= writefginl*)((return x) handled with {op, (x") - Noplopesyo to y:1 in return %)

= writefginl*)(return *)

=writefl (returnx):F1

On the other hand, using the general algebraicity equations (see Fig. 4), which ensure that homo-
morphism terms indeed behave as if they were algebra homomorphisms, we can prove that

I+ (writef&l*(return %)) handled with {op,(x") = Noplopes,o toy:1in return %

= (z handled with {op,(x’) = Noplopes,o toy:1in return *)[writel®

inl(return %)/z]

=writell

in1« ((z handled with {op,(x") = Noplopesyo to y:1 in return x)[return * /z])

=writell

in1« ((return %) handled with {op,(x’) = Noplopes,, to y:1in return x)

=writef}  (return*):F1
Finally, by combining these two sequences of equations using transitivity, we can prove that

(return %) = writel?

.. _F1
T'+write; inl

inr %

L(returnx) : F1

which is clearly only valid in trivial models of interactive output, and thus should not be derivable.
The source of this problem lies in the term-level definition of handlers in their usual presentation.
In particular, while the homomorphic behaviour of homomorphism terms is determined exclusively
by the computation types involved (via the general algebraicity equations), the type of the above
handling construct contains no trace of the algebra denoted by the handler {op, (x”) = Noplopesyo-
It is worth noting that this problem is not inherent to EMLTT but also arises in the simply typed
setting, e.g., when combining handlers of algebraic effects with CBPV and its stack terms, or with
EEC and its linear (computation) terms. For example, CBPV with stack terms and exception handlers
has been investigated by Levy [2006]. However, compared to the solution we propose in this paper,
Levy follows the opposite direction: namely, while we aim to simultaneously accommodate effect
handlers and make sure that homomorphism terms still denote algebra homomorphisms, Levy
changes the syntax and equational theory of stack terms so that they can accommodate exception
handlers, but with the cost of stack terms not denoting algebra homomorphisms any more.
Finally, we note that the reason why Plotkin and Pretnar [2013] were able to give a sound
denotational semantics to their language was precisely due to their choice of using CBPV without
stack terms, i.e., without a notion of homomorphism, only with value and computation terms.

4.2 Extending EMLTT with the User-Defined Algebra Type

In this section we solve the problems of §4.1 by giving handlers a novel type-based treatment that
internalises Plotkin and Pretnar’s insight that they denote algebras for the given effect theory.

ZNote that for this illustrative example, we could have omitted read and only considered the signature of interactive output.
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7:12 Danel Ahman

First, given a fibred effect theory Tef, we extend EMLTT with the user-defined algebra type:
— —
Q = | A Vop§ Vveq>

— —
which pairs a value type A (the carrier) with two sets of value terms, V;, (the operations) and W,
—
(the proofs of equational proof obligations showing that V,, satisfy the equations given in Ecf).
We also extend EMLTT’s computation and homomorphism terms with two composition operations:

M = ... | Masx:UCing> N

op>LZ2.

K == ... |Kasx:UQinW>.DN

op>Z

—
where W, are proofs of equational proof obligations showing that the computation term N behaves
as if it was a homomorphism term—we discuss this in detail below. These term formers also provide

elimination forms for the user-defined algebra type when C is (A; \Zp); V\Teq)); we also note that terms
of this type are introduced by forcing thunks of type U(A; Wp; W;;), i.e., value terms of type A.

For better readability, we write refl for W_)eq and VTO,: in the rest of this paper when all the proof
witnesses are given by reflexivity, i.e., when the corresponding equational proof obligations hold
definitionally. Also for better readability, we write (A; wp) for (A; lz)p; 0) when E.¢ is empty.

It is worth noting that in principle we could have restricted these composition operations to only
the user-defined algebra type (A4; ‘Z)p; W_)eq>, but then we would not have been able to derive a useful
isomorphism of computation types to coerce computations between a general C and its canonical
representation as a user-defined algebra type—see Prop. 4.1 for details of this type isomorphism.

Conceptually, these composition operations are a form of explicit substitution of thunked compu-
tations for value variables. For example, in this extension of EMLTT we will be able to show that
Masx:UC inT,:- p N is definitionally equal to N[thunk M/x]. As such, the value variable x refers

to the whole of (thgthunk of) M, compared to, e.g., sequential composition M to x:A in N, where
the value variable x is used to bind only the value produced by M. However, it is also important to
note that we do not allow arbitrary computation terms to be used in these composition operations.

In particular, the typing rules of M as x:UC in.> N and K as x:UC ing> N require that the
op>Z op>

value variable x is used in the computation term N as if it was a computation variable, in that x
must not be duplicated or discarded arbitrarily. We do this in order to ensure that N behaves as if
it was a homomorphism term, so that in N[thunk M/x] the effects of M would be guaranteed to
“happen before" those of N. However, rather than trying to extend EMLTT further with some form
of linearity for such value variables, we impose these requirements via equational proof obligations,
requiring that N commutes with algebraic operations (when substituted for x via thunking). As

mentioned earlier, the proofs of these proof obligations are given by the value terms MTOP).

We make this discussion formal in Fig. 5 by giving the rules for extending EMLTT’s well-formed
syntax and equational theory with the user-defined algebra type and composition operations, using
the following auxiliary judgement in the rules concerning the two composition operations:

—

[,y:UCk N :D witnessed by W,
which holds iff N behaves like a homomorphism from the algebra denoted by C to that denoted by
D, witnessed by VTO;, ie,T,y:UC+ N : D and we have for each op : (x:I) — O € S.f a proof

Ik Wop: Ax:LAX":0 — Ug.thunk(N[thunk(op%(x”.forceg (x"x" MW /y]) =
Ax:I1.Ax":0 — Ug.thunk(opxg(x”.N[x’ x"[y]))
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Formation rule for the user-defined algebra type:

I"FA T+ Vop:(Ex:1.0 » A) > A (op: (x:I) — O €S and T|AF Ty =Ty € Eefp)

T/ F Weq : Ax] A;. Axyy, AL _)A(]TIDAxﬁWp Ax] A Axyy, A —>A(]Tg[)A Q_W)W.p

T'+ (4 Vop§Weq>
T def ’ ’ 7 def ey ’ : ’AL
where A; = Aj[x]{/x1,...,x]_;/xi-1] and Aj = Aj [x{/x1,..., %, /xn]; and where we write Ax;:A;.,

Ay A\; — A, x| :A;, and :4\} — A for sequences of lambda abstractions and function types.

Typing rules for the composition operations:

T't+M:C T+D I'z:C+rK:D; TrD,
— . —
[x:UCk N :D witnessed by Wop [x:UDy kN :D, witnessed by Wop
I'tMasx:UCin— N:D I'lz: CkKasx UD,in—  N:D,
-  Wop:D - opsDy

Congruence equations:

— — —
TF(A;VopsVeq) TH(B;Wop;Weq) THA=B
Tk Vop=Wop:(Bx:1.O—>A) > A (op:(x:I) —0)

— — —_—
T+ (A; Vop; Veq) = (B; Wop; Weq)

— —
plus similar equations for composition operations (note the proof irrelevant treatment of Veq and Weq).
p-equation for the user-defined algebra type:

— —
T+ (A; Vop; Weq?

— —
T+ U(A; Vop; Weq) = A
— —
capturing the intuition that A denotes the carrier of the algebra denoted by (A; Vop; Weq)-
f- and n-equations for the composition operations:

T+V:UC T+D T,x:UCk M:D witnessed by Wop
T+ (forcecV)asx:UCin— M= M[V/x]:D
- - WopiQ -

I'eM:C T|z:C-rK:D
I'tMasx:UC 1nm;g K[forcec x/z] = K[M/z] : D

['|z1:C+K:D; Tlz2:D;+L:D,

I'z1:CrKasx:UD, 1n—ﬂ>D [1"orce21 x/z2] = L[K/z2] : D,

capturing the intuition that composition operations are a form of explicit substitution of thunks.
n-equation for algebraic operations:

— — — —
TRV Tk (A Vop; Weq) I,y:0[V/x] F M : (A; Vop; Weq)
(op: (x:I) — O € Sefp)

(AsVop:Weq)
I'+opy, (y.M)
— —
=force  — — (Vop (V,Ay:O[V/x].thunk M)) : (A; Vop; Weq)
(A;Vop; Weq)

capturing the intuition that Wp denote the operations of the algebra denoted by (A4; Wp; W_>eq>~
Fig. 5. Rules for extending EMLTT with the user-defined algebra type and the composition operations.
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It is worth noting that by defining this extension of EMLTT using propositional proof obligations
instead of definitional ones, as in Ahman [2017], we introduce a form of equality reflection into the
language. Namely, in any model of this extension of EMLTT, the propositional proof obligations

proved by Wq and M_/O_; have to also ensure that the corresponding definitional equations are
validated in the given model, so as to validate the definitional equations given for algebraic effects
in Fig. 4. Based on this extensional nature of these proof obligations, we have naturally chosen
to treat them as proof irrelevant in the user-defined algebra type and the composition operations,
namely, by not comparing their proofs for definitional equality in the congruence rules (see Fig. 5).

It is also useful to note that if one works exclusively with equation-free fibred effect theories,
e.g., as used in the various simply typed languages mentioned in §1 that support algebraic effects

and their handlers, then the equational proof obligations used in the typing rule of (A; Wp ; Mz;)
hold vacuously, and thus do not put any additional burden on the programmer. However, the
possibility of also being able to specify effects using equations ensures that the fit-for-purpose
handler implementations of the given notion of computation, say, global state, are indeed correct.

— —

We conclude this section by highlighting that we have not included an 7-equation for (A; Vyp; Weg).
We do so because it does not hold in the Lawvere theories based semantics we give to this extension
of EMLTT in §8. Instead, as promised earlier, we can construct a corresponding type isomorphism.

PROPOSITION 4.1. Given a computation typeT + C, there exists a computation type isomorphism
rrC= (UQ;\Z;; refl), where each value termT + Vo, : (3x:1.0 — UC) — UC is given by

Vop dzef/ly:(Zx:I.O — UC).pmy as (x:[,x":0 - UC) in thunk(op%(y’.ForceQ (x"vy")))
Proor. This type isomorphism is witnessed by the following two homomorphic functions:

— —
I'+Az:C.zas x:UC in force x: C—o(UC; Vop; refl)

—_—
(UGC;Vop;refl)

—_— — — — — —
I'+ Az:{UC; Vop; refl). z as x :UUGC; Vop; refl) in forcec x : (UC; Vops refl) — C

4.3 Deriving the Conventional Term-Level Definition of Handlers

We now show how to derive the conventional term-level definition of handlers from our type-based
treatment. In particular, we define the handling construct using sequential composition as follows:

M handled with ({opy(x”) = NoplopeS.ss W—>eq) toy:Ainc Nt

def

forcec (thunk (M to y:A in force N (thunk Nyet)))
- q

<UQ§V_0|;:§W—e>
where the value terms V;, are defined as follows:

Vop = Ax”:(Sx:1.0 = UC). pn x” as (x:1,x":0 — UC) in thunk Nop
Observe that compared to the work of Plotkin and Pretnar [2013], who do not enforce the
correctness of their handlers during typechecking and therefore have to give semantics to their
language using Kleene equality, we require the set of user-defined computation terms No, to satisfy

the equations given in E.g (as witnessed by the value terms VE;), so as to statically ensure that
the given computation terms N, indeed form an algebra. In particular, Plotkin and Pretnar do not
enforce the correctness of their handlers during typechecking because it is in general an undecidable
problem [Plotkin and Pretnar 2013, §6]. In contrast, by having defined the corresponding equational
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proof obligations in this paper using propositional equality, we can naturally accommodate manual
user-provided proofs of equations that one cannot establish through automatic means.

The expected typing rule and definitional f-equations are then routinely derivable for this
definition of the handling construct.

ProprosITION 4.2. The following typing rule is derivable:

— —
T+M:FA T+ (UG Vop; Wee) T.y:AF Nyt : C
I'+ M handled with ({op,(x') = Noplopes,yi Weq) t0 y:A ing Niet : C

where each value term Vy, is derived from the corresponding computation term No, as defined above.

ProprosITION 4.3. The following definitional f-equations are derivable:

—_— —
THV:I Ty:0V/x]tM:FA T+ {(UC:Voy:Wer) T.y:At+ Nygt:C
I+ (opf(y"M)) handled with ({opy(x") > Noplopes,ss Weq) t0 y:A ine Nieg
= Nop[V/x,Ay":O[V/x].thunk H/x"] : C

— —
THV:A TF{(UGCVop;Weq) Toy:Ak Net:C

I + (return V) handled with ({op,(x’) Nop}opesw;vm) toy:Aing Nt

= ret[V/y] : Q
where
def . ’ e 4 .
H = M handled with ({op,(x") — Nop}opeseﬁ; Weq) toy:Aing Niet

and each value term Vy, is derived from the corresponding computation term N, as defined above.

4.4 Handling Computations into Values

We conclude this section by noting that in addition to the standard “handle into computation terms"
handling construct we derived in §4.3, we can also use the user-defined algebra type and sequential
composition to define a handling construct that allows computations to be handled directly into
value terms, e.g., as briefly discussed in Ahman and Staton [2013] in the context of Levy’s [2004]
fine-grain call-by-value language. This “handle into value terms" handling construct is given by

M handled with ({op(x") > Vaplopesus: Weq) t0 YA ing Viet
def

thunk (M toy:A in force<8;m;m> Viet)

where the value terms W, are defined as follows:

Wop € Ax”:(Ex:1.0 - B).pmx” as (x:I,x":0 — B) in Vop

and it satisfies the expected typing rule and definitional f-equations:

— —>
FFM:FA TF(B;Wop;Weq) T,y:AF Vit : B

Tk M handled with ({opy (x') - Voplopesuy Weq) t0 y:A ing Vier : B

— —
FrV:I Ty :O[V/x]r M:FA T {(B;Wop;Weq) T,y:Ar Vier: B

s ’ = .
T+ (Op{/A(y/.M)) handled with ({op,(x") = VoplopeSy: Weq) tO y: A ing Viet
= Vop[V/x,Ay’:O[V/x].H/x'] : B
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— —>
FrV:A THB;Wops Weq) TLy:ArVier: B

I' + (returnV) handled with ({op,(x’) — Vop}opeseﬁ;m) toy:Aing Viet
= ret[V/y] B
where

H % Mhandled with ({op, (x”) = %p}opeseﬁ;w;[)) toy:Aing Vie

In the case the set of equations Eeg is empty, we write this handling construct simply as
M handled with {op,(x") = Voplopes.s to y:A ing Vet

5 BASIC META-THEORY

We now discuss some properties of our extension of EMLT T with algebraic effects and their handlers.

5.1 Weakening and Substitution

We begin by noting that, as expected, weakening is admissible for value variables.

THEOREM 5.1 (WEAKENING). GivenI|,I; + B, I} + A, and x such that x ¢ Vars(I7) U Vars(I3), then
I, x:A, T, v B, and similarly for all other judgements of types, terms, and definitional equations.

Next, we note that, as also expected, substitution is admissible for both value and computation
variables. As various typing rules and definitional equations now include (translations of) effect
terms, we also need to prove the corresponding property for the translation of effect terms.

PROPOSITION 5.2. GivenT'|A + T, a value type A, value terms V; (for all x;: A; € T), V/ (for all
wj:A;. € A), and Wy, (forallop : (x:1) — O € S.p), a value variable y, and a value term W, then

T - = — W = T
( DA;v,-;v_,.';wop[ fy1=1 DA[W/yJ;vi[W/yJ;v;[W/y];wop[W/yJ

THEOREM 5.3 (SUBSTITUTION).
o GivenI,x:A, I, F BandI1 + V : A, then 1, I;[V/x] + B[V /x], and similarly for other judge-
ments of types, terms, and definitional equations.
e GivenT'|z:C+K:DandT'+ M :C, thenT + K[M/z] : D.
o GivenT'|z;:D, v L:D, andT'|z;:C+ K :D,, thenT |z;:C+ L[K/z3] : D,.

Finally, we note that judgements of well-formed types, etc. only refer to well-formed contexts,

etc. To this end, we also need to show that under suitable assumptions, (T DAV-V’-W is well-typed.
sVis j > VVop

ProPosSITION 5.4. GivenT' | A+ T andT’, such that T’ + A and the value terms in the subscripts

are well-typed in I’ (as required in Fig. 4), then we have’ + (T DAV P A
ViV s Wop

ProposITION 5.5. GivenI'| A+ T andI’, such thatI’ + A = B and the corresponding value terms
in the subscripts are definitionally equal in T’ (analogously to the typing in Fig. 4), then we have

I+ (T), o — = (T) A

= = — = —
AsVisViVop B;Wi; Wi Wop

THEOREM 5.6. GivenT +V : A, then+ T andT + A, and similarly for all other judgements.
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5.2 Derivable Definitional Equations
To begin with, one can derive specialised versions of the general algebraicity equations from Fig. 4.

PROPOSITION 5.7. We can derive the following specialised algebraicity equations:

T+V:I T,y:0[V/x]FM:FA T+C T,y:ArN:C

e (op: (x:I) — O € Sep)
I +opfA(y.M) toy’:Ain N = opy;(y.M toy’:Ain N) : C

and analogously for other homomorphism term formers.
Next, we present some useful derivable equations for the composition operations.

PROPOSITION 5.8. We can derive the following unitality and associativity equations:

'eM:C
I'tMasx:UCin forcecx =M:C

reM:C, T+C, T+D
—> —>
[x:UC K Ni:C, witnessed by Wy, T',x,:UC, komNz: D witnessed by WO'p
I'tMasx;:UC, in (N; as x3:UC, in Np) = (M as x;:UC, in Ny) as x:UC, in Ny : D

and analogously for the composition operation for homomorphism terms.

PROPOSITION 5.9. We can derive the following interaction equations:

'rM:FA T+C T+D T,x:ArN;:C I“,xz:UQFhomNg:QwitnessedbyVTc,p)
IF'rMtox;:Ain (N as x:UCin Np) = (M tox;:Ain Nj)asx;:UCin Nz : D

r-M:C I“,xleQImeNl:FAwitnessedbyMTO)p I'tD T,x2:ArN;:D
I'rMasx;:UCin (N; toxz:Ain Np) = (M as x1:UC in Ny) tox;:Ain N; : D

and analogously for computational pattern-matching, and the corresponding homomorphism terms.

PROPOSITION 5.10. The composition operations commute with computational pairing, computational
lambda abstraction, and computational and homomorphic function applications, e.g., we have

TrM:C T+V:A T,y:ArD T+M:C T+V:D, —D,
[,x:UCk N :D[V/y] witnessed by W—>op [,y :UCk N :D, witnessed by VTO;

T+ Masx:UC in (V,N) T'+Masy;:UCin VN

=(V,Mas x:UC in N): Zy:A.D =V(Masy,:UCinN):D,

To improve the readability of the last three propositions, we have omitted the proofs of the
equational proof obligations from the terms in the conclusions. These proofs are all constructed
straightforwardly, by combining equational reasoning using definitional equations with the axiom
of function extensionality fun-ext x.a).5(V1, V2, W},), the transitivity and congruence rules we can
derive from the elimination form for propositional equality, and the proofs given in the premises.

6 ALTERNATIVE PRESENTATIONS OF THE LANGUAGE

We now briefly discuss some alternative presentations of EMLTT and our extensions to it.
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6.1 Different Definition of the Auxiliary Judgement

First, for typing the composition operations, we could have defined the auxiliary judgement
I,y:UCk N :D witnessed by Wo_p)
—
not using a set of proof witnesses W, typed as

Ik Wop: Ax:[AX":0 — UQ.thunk(N[thunk(op%(x”.forceg (x"x"MWM/y]) =
Ax:I.Ax":0 — UQ.thunk(opr(x".N[x’ x"[y]))
but instead using a single witness W based on Munch-Maccagnoni’s [2013] notion of linearity:
't W:Ax:UFAAx":A — UC.thunk (N[thunk ((forcegs x) to x”: A inc forcec (x" x"))/y]) =
Ax:UFA.Ax":A — UC.thunk((forceps x) tox”:Ainp N[x"x"/y])

The former definition of this auxiliary judgement follows from the latter by straightforward
equational reasoning (taking A to be equal to O), while latter definition can be shown to follow
from the former by using Plotkin and Pretnar’s principle of computational induction for algebraic
computational effects, which states that every computation term of type FA is either a returned
value or built from computation terms using algebraic operations [Plotkin and Pretnar 2008].

While the latter definition is also applicable in languages with computational effects other than

algebraic (e.g., as used by Levy [2017] to characterise general isomorphisms between computation
types), we chose the former due to its more intuitive reading in the setting of algebraic effects.

6.2 Replacing Homomorphism Terms with the Auxiliary Judgement

Second, note that we could have omitted computation variables and homomorphism terms from
EMLTT altogether. Instead, we could have used value variables and the auxiliary judgement

[,x:UCk N :D witnessed by VTOP) (see §4.2 and §6.1) to define and type the elimination form for
the computational >-type, analogously to the composition operations introduced in §4.2. In more
detail, this alternative presentation would involve the following elimination form for Xx:A.C:
[FM:3x:AC TrD T,x:Ay:UCk N :D witnessed by M—/o_;
I'FMto (x:Ay:UC) in‘Top;Q N:D

where M is now eliminated into a pair of values, with the auxiliary judgement ensuring that the
computation term N behaves in the value variable y as if it was a homomorphism term. To add
to this, we would also need to include specialised algebraicity equations from Prop. 5.7 in the
equational theory of the language, so as to replace the general algebraicity equations from Fig. 4.

In this paper we chose to include both homomorphism terms and the above-mentioned auxiliary
judgement for two reasons. First, as one of the main aims of this paper was to show how to extend
the language in Ahman et al. [2016] with handlers of fibred algebraic effects, we wanted to keep the
underlying language close to op. cit. Second, aesthetically, using homomorphism terms provides a
cleaner presentation of the elimination form for ¥x:A.C, compared to equational proof obligations.

7 USING HANDLERS TO REASON ABOUT EFFECTFUL COMPUTATIONS

In this section we demonstrate that in addition to being a practical programming abstraction,
handlers also provide a useful mechanism for reasoning about effectful computations. Namely,
we show that the “handle into value terms" handling construct we defined in §4.4 provides the
programmer with a convenient alternative to using propositional equality on thunks for defining

3Note that the value variables x, x’, and x” are assigned different types in the two definitions of the auxiliary judgement.
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predicates on effectful computations. Specifically, we consider two kinds of natural examples of this
approach: i) lifting predicates from return values to effectful computations (§7.1); and ii) specifying
patterns of allowed effects (§7.2). These examples are also accompanied by a formalisation®, based
on a shallow embedding of the relevant value fragment of EMLTT in AGpA [The Agda Team 2017].

In order to facilitate reasoning based on the “handle into value terms" handling construct, we
first introduce a universe a la Tarski [Martin-Lof 1984] by extending EMLTT with a universe U of
value types, a corresponding decoding function EI(V), and the corresponding codes of value types:

A= ... |U|EV)

V == ... | nat-c | one-c | zero-c | sum-c(V,W) | sig-c(V,x.W) | pi-c(V,x.W)
We also extend EMLTT with corresponding typing rules and definitional equations, e.g., we include

rr+v:4U T,x:E(V)FW:U Tr+V:U T,x:EIV)FrW:U
T+pi-c(V,x.W): U T+ El(pi-c(V,x.W)) = IIx: E(V).EI(W)

Using this universe, we can now define predicates on effectful computations (of type FA) as
value terms of the form I' + V : UFA — U, with the aim of using these predicates to refine (thunks
of) computations using the value >-type, i.e., as Xx:UFA.EI(Vx). In detail, we define the predicates
I' -V :UFA — U by i) equipping U (or a type we define using it) with an algebra for the given
effect theory, and ii) by using the “handle into value terms" handling construct we defined in §4.4.

It is worth noting that our approach of defining type-theoretic predicates on effectful computa-
tions by equipping the universe U with an algebra structure (essentially, we are defining types
that depend on effectful computations in a “well-behaved" manner) is reminiscent of the recent
work by Pédrot and Tabareau [2017]. In particular, their monadic translation of dependent type
theories crucially relies on equipping universes with an algebra structure for a given monad.

7.1 Lifting Predicates from Return Values to Effectful Computations

Input-output. Lifting predicates from return values to computations is easiest when the given

effect theory does not contain equations. Thus, let us consider the theory 7y of input-output of bits

from §4.1 for our first example; other equation-free fibred algebraic effects admit similar reasoning.
Assuming given a predicate I' - Vp : A — U on A, we can lift V5 to a predicate V5 on UFA by

V5 o Ay:UFA. (forcera y) handled with {op,(x") = Voplopesyo to y":Aing (Vo y')

where we define the code of bits as bit-c & sum-c(one-c, one-c), and where

x:1,x":1+1 > U F Viead Cléfsig-c(bit-c,y’. x'y) U
x:1+1,x’:1—>"L{|—Vwrited§fx’* U
On closer inspection, we can see that V5 agrees with the possibility modality from Evaluation
Logic [Pitts 1991], in that a computation term satisfies V5 if there exists a return value that satisfies
the given predicate Vp. Further, observe that if we were to replace sig-c (code for value -type, i.e.,
existential quantification) with pi-c (code for value II-type, i.e., universal quantification), we would
get a necessity modality that holds when all the return values of the given computation satisfy Vp.

Global state. For our second example of lifting predicates from return values to computations,
we consider an effect theory that also includes equations, the theory 7Gs of global state from §3.2.

4The Acpa formalisation of the examples presented in §7 is available at https:/github.com/danelahman/POPL18/
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In particular, when we define the type of stores as S “ Ix: Loc.Val, then assuming given a
predicate I' - Vp : A — S — U on return values and final stores, we can define a predicate

Vs £ Ay:UFA. Jxs:S. fst (
((forceFA y) handled with ({op,(x’) — Vop}opESGs;We_q)) toy :Ains_ qrxs Vret) xS)
on (thunks of) computations and initial stores, with Vget, Vput, and Ve defined as follows:
I,x:Loc,x":Val = S — U X S+ Vg d:Efxle:S.x’ (selxsx)xs :S > U XS
I,x:(Zx:Loc.Val),x":1 =S — U X S+ Vpyu d:ef/le:S.x’*(updxsx) :S > U XS
[,y :A+ Viet d=Ef/1xs:5.(VQy’xs,xs) :S> U XS
and where we define the selection and update operations on stores as sel Vs V £ VsV and

upd Vg V «f pmV as (x:Loc,y:Val) in
Ax’:Loc. case (isDecioc x x”) of (inl(yp:x =Loc x”) = transporty, xx’y,y,
inr(yp:x =Loc ' = 0) > sel Vs x’)

with transporty, : IIx; : Loc.ITx; : Loc.Ily, : x; =1oc x;.Val[x;/x] — Val[x]/x] being the standard
transport operation for propositional equality that one can derive from its elimination principle.
While we omit details of the witnesses of the proof obligations corresponding to the equa-
tions given in §3.2, referring the interested reader to the AcpA formalisation for details, we
want to highlight that the use of transporty, in the definition of upd means that in order to
construct the proof witness W, for the second of the five global state equations, namely, for
put, ,(get, y'w(y'))) = put, (W (y)), we need Loc to be a set in the sense of Homotopy Type
Theory [The Univalent Foundations Program 2013]. That is, we need there to be a pure value term

ok isSetyqe : x:Loc.IIx":Loc.Ily:x =g x".IIy :x =10 XY =x=poox’ Y’

Using Hedberg’s theorem [Hedberg 1998], we can readily derive this property from isDecy,. that
we assumed in §3.2. Returning to the proof witness W4, we note that its definition amounts to
having to prove transporty, x x y, y =va y for an arbitrary equality proof y;, : x = o x, which we
can do using the derived property isSeti, i.e., using isSetioc x x yp (refl x) : y, =x=,x refl x.
From the perspective of programming with computational effects, having to require Loc to have
decidable equality (and thus to be a set) is not a significant drawback because the natural choice
for Loc, namely, the finite coproduct of 1s denoting a finite set of memory locations, can be easily
shown to have decidable equality. It is also worth noting that if Val were not dependent on Loc, then
we could define the case of upd that currently uses transporty, simply as inl(y,:x =Loc X’) = y.
Finally, on closer inspection, we can see that 5 corresponds to Dijkstra’s weakest precondition
semantics of stateful programs [Dijkstra 1975], e.g., the following definitional equations hold:

I'eVs (thunk (returnV)) Vs = VoV Vs : U
I+ V5 (thunk (getf,lA(y.M))) Vs = V5 (thunk M[sel Vs Vi/y]) Vs : U

T + V5 (thunk (put(y |, (M))) Vs = V5 (thunk M) (upd Vs (Vi, V) : U

That is, e.g., VQ holds of the term putf‘fl‘ V>(M) in state Vg iff it holds of M in state upd Vs (V}, V).

7.2 Specifying Patterns of Allowed Effects in Computations

Analogously to lifting predicates from return values to effectful computations, specifying patterns
of allowed effects is easiest when the given fibred effect theory does not contain any equations.
Thus, for simplicity, we again consider the theory 7j0 of input-output of bits for our examples.
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Disallowing writes. We begin by considering a coarse grained example of disallowing all writes:
Voo-w < Ay:UFA. (forcers y) handled with {op,(x") = Voplopes,o to y': A ings one-c
where Vieaq and Vi ite are defined as follows:
x:1,x":1+1 > U Viaq d:efpi—c(bit—c, y.x'y) U
x:1+1,x':1—>"L{rVwrited=Efzero-c U

For example, the computation term read” A(x.writef,A (M)) does not satisfy V., because we have

I+ El(Vnow(thunk (read™ (y.writel4(M))))) = My:1+1.0 = 0

Patterns of reads and writes. As a more fine grained example, we consider specifications on
effectful computations in the style of session types [Honda et al. 1998], given by allowed patterns
of I/O-effects. First, we assume an inductive type Protocol with the following three constructors:

r: (1+1 — Protocol) — Protocol w: (1+1 — U) — Protocol — Protocol e : Protocol

describing patterns of allowed I/O-effects. Intuitively, r specifies that the next allowed I/O-effect is
reading; w specifies that the next allowed I/O-effect is writing, with the value written required to
satisfy the predicate given as an argument to w; and e specifies that no further communication
must happen (i.e., end of communication). The Protocol-valued arguments of the constructors r
and w specify how the computation is allowed to evolve after reading and writing, respectively.
Then, given some particular protocol I' + V,,, : Protocol, we can define a corresponding predicate

def . , , .
Vs = Ay:UFA. ((forceFA y) handled with {op,(x) = Voplopesyo t0 ¥ : A inprotocolsu V,et) Vor
where the value terms Viead, Virite, and Vit are defined as follows (for better readability, we give
their structural-recursive definitions by pattern-matching on their arguments of type Protocol):

[,x:1,x":1+1 — Protocol & U + Viead (r Vp,) < pi-c(bit-c,y".(x"y") (V;,y)) U

’ 7y def . ’ ’ ’
I,x:1+1,x":1 — Protocol > U + Viyite (W Vp Vpr) =sig-c(x,y’.x" % Vpr) U
[Ly:Ar Ve e < one-c U

with all other cases defined as zero-c. As a result, a computation satisfies the predicate Vg if and
only if its I/O-effects precisely follow the specific pattern of I/O-effects allowed by the protocol V.

This example can be easily extended to also account for sets of patterns of allowed I/O-effects.
For instance, we could extend the inductive type Protocol with a fourth constructor or, typed

as or : Protocol — Protocol — Protocol, and correspondingly extend the above definitions of value

terms V' € {Viead, Vawrite> Vret} €ach with a new case given by V (Vp’r or Vp'r’) o sum-c(V VP’,, \%4 Vp’r’ .

Finally, we highlight that it is easy combine these specifications with those discussed in §7.1,
namely, by replacing one-c in the definition of V,¢; with a suitable predicate Vp on return values.

8 SEMANTICS

We conclude by describing how to give a natural denotational semantics to our extension of EMLTT
with fibred algebraic effects and their handlers. This semantics is an instance of a more general
class of models, based on fibrations (functors with extra structure for modelling substitution, -
and II-types, etc.) and adjunctions between them, as studied by Ahman [2017]; Ahman et al. [2016].

We proceed in three steps. First, we recall how the pure fragment of EMLTT is interpreted in the
families of sets fibration, a prototypical model of dependent types. Next, we show how to derive a
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countable Lawvere theory Lg; from the given fibred effect theory 7cg. Finally, we show how to
define the interpretation of the rest of our extension of EMLTT using families of models of L.

8.1 Families Fibrations

We begin by giving a brief overview of the kinds of fibrations we use for defining the denotational
semantics of our extension of EMLTT. For a more detailed treatment of fibrations and their use in
modelling various type theories and logics, we refer the reader to the book by Jacobs [1999].
Given a category C, it is well-known that one can define a new category Fam(C) of C-valued
families. Its objects are pairs (X, A) of a set X and a functor A : X — C (treating X as a discrete
category); and the morphisms (X, A) — (Y, B) are pairs of a function f : X — Y and a natural trans-

formation g : A — B o f. The corresponding C-valued families fibration fam¢ : Fam(C) — Set

is then defined on objects as fam¢ (X, A) ' X and on morphisms as fam¢(f, g) & f.

Next, for any set X, the category Famx(C) is called the fibre over X; this is a subcategory
of Fam(C) whose objects and morphisms are of the form (X, A) and (idx, g). Given a function

f : X — Y, the corresponding reindexing functor f* : Famy(C) — Famx(C) is given on objects

by f*(Y,A) o (X, Ao f), and analogously on morphisms. As standard in the literature, we write

7(Y, A) o (f> (idagg))x) + f7(Y,A) — (Y, A) for the Cartesian morphism over f : X — Y.

We get a prototypical model of dependent types when we take C &' Set, the category of sets and

functions. In this case, there also exists a pair of adjunctions famset 4 1 4 {—}, where the terminal

object functor 1 : Set — Fam(Set) is given by 1(X) o (X, x = {x}), and the comprehension functor

def

{—} : Fam(Set) — Set is given by {(X, A)} = [[xex A(x). The latter functor provides a natural
semantics for context extension, together with the canonical projection maps m(x 4y : {(X,A)} — X.

8.2 Interpretation of the Pure Fragment of EMLTT

We now recall how the pure fragment of EMLTT (i.e., MLTT) is interpreted in the families of sets
fibration fams, : Fam(Set) — Set. For more details about the interpretation of this fragment of
EMLTT, we refer the reader to the relevant sections in Ahman [2017]; Ahman et al. [2016], and to
Streicher [1991] whose treatment of the categorical semantics of MLTT the former two build on.
In detail, the interpretation of the pure fragment of EMLTT is defined as a partial interpretation
function [-], which, if defined, maps a context I to a set [[']; a context ' and value type A to
an object [I'; A] in Fampry(Set); and a context I and value term V to [I; V] : 1([T']) — ([T], A)
in Fampry(Set), for some A : [I'] — Set. For better readability, we denote the first and second
components of [I'; A] and [T'; V] using subscripts 1, 2, i.e., we write ([T'; A, [T; A]2) for [T; A].
First, the value types Nat, 1, 0, and A + B are interpreted using the corresponding categorical
structure in the fibres of Fam(Set) as follows, assuming that [I'], [T; A], and [T; B] are defined:

def def def

[[sNat] = ([T, y » N)  [[1] = ([T]y = &) = ([T [T50] = ([T].y = 0)

def

[T;A+ B] = [[3A] + [T B] = ([T, y = [T5 Al2(y) + [T B]2(y))

Next, assuming that [T'; A] and [T, x:A; B] are defined, with [T, x:A; B]; = Ly ey [T; A]2(y), then

def

[T 2x:A.B] = ([T].y = Haerap)[F:x:A;B[2((y. a)))

def

[T3Tx: A.B] = ([T].y = [aeqriap. [T x:4; Bl2((y, @)

Finally, propositional equality is interpreted as the equality between the interpretations of terms:

def

[CV=aW] = ([T].y = {x [ ([T V]2)y (0) = ([T W]2)y ()D)
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assuming that [I; V] : 1([T]) — ([T; A]) and [T; W] : 1(JT]) — ([T; A]) are both defined. In the
rest of this paper, we often leave such routine preconditions to the definedness of [-] implicit.

In §8.5, we rely on this extensional nature of the semantics of propositional equality for showing
that the interpretations of the proof witnesses involved in the typing of the user-defined algebra type
and the composition operations are enough to validate the corresponding definitional equations.

Next, the interpretation of the universe U is based on the semantics of induction-recursion [Dy-
bjer and Setzer 1999; Ghani et al. 2013]: we first construct the initial algebra p® of an endofunctor ®
on Fam(|Set|)” corresponding to the signature of codes of value types given in §7, and then define

def def

[U) = ([rl.y = p@1)  [GEV)] = ([CL.y = @2 ([T V]2)y (3)))

Finally, as an example of the interpretation of value terms, inl 4.p V is interpreted as follows:

[Tsinlaws V] & idry ([T;inlass VI2)y = inlpr;ag, () +[rBla () © ([0 VI2)y

The soundness theorems for MLTT and EMLTT then tell us that the a priori partial [—] is in fact
defined on well-formed pure syntax and that it validates the corresponding definitional equations.

8.3 Deriving a Countable Lawvere Theory from a Fibred Effect Theory

Next, we show how to derive a countable Lawvere theory from the given fibred effect theory 7.

We begin by recalling some basic definitions and results about countable Lawvere theories and
their models. We refer the reader to Power [2006] for a more detailed overview of the area.

A countable Lawvere theory consists of a small category £ with countable products and a strict
countable-product preserving identity-on-objects functor I : N;’p —> L, where N is the skeleton
of the category of countable sets and all functions between them. In other words, an object of N is
either a natural number or the distinguished element w denoting the cardinality of countable sets.

A model of a countable Lawvere theory £ in a category C with countable products is a countable-
product preserving functor M : L — C. A morphismfrom M; : L — Cto My : L — Cis
given by a natural transformation h : M; — M,. This gives us the category Mod(Z, C).

Conceptually, a countable Lawvere theory is nothing but an abstract category-theoretic descrip-
tion of the clone of countable equational theories [Gratzer 1979]. In particular, one often thinks of
the morphisms n — 1in £ as terms in n free variables, and of the morphisms n — m as m-tuples
of terms in n free variables. Analogously, the models of a countable Lawvere theory correspond to
the models of the countable equational theories whose clone this countable Lawvere theory is.

We also recall that there exists a canonical forgetful functor Uy : Mod(L,C) — C, given on
def

objects by Up (M) = M(1). 1t is then well-known that if C is locally countably presentable [Adamek
and Rosicky 1994], the functor U, has a left adjoint Fy : C — Mod(ZL, C). Importantly for the
purposes of this paper, the category Set of sets and functions is locally countably presentable.

Next, in order to be able to derive a countable Lawvere theory L, from the given fibred effect the-
ory Tefr, we require T to be countable. In particular, this means that for all op : (x:I) — O € S,
we require [x:I; O] to be a family of countable sets. Furthermore, we also require [I'; /], to be a
family of countable sets, for all equations I' | A + T; = T; € Ecq and effect variables w; A]’ € A.

We can then construct Lg; by expanding ¢ into a countable equational theory [Gratzer 1979],
analogously to how Plotkin and Pretnar [2013] expanded their effect theories. More specifically,
Seir determines a countable signature consisting of operation symbols op; : |[x:; O]z ((x, i), for
allop : (x:I) — O € Segand i € [o;1], (%). Every effect term T'| A + T then naturally determines
terms AY + TV derivable from this countable signature (for all y € [I']), where AY consists of

5|Set| denotes the discrete variant of Set; it is used to accommodate the contravariance arising from decoding the II-type.
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variables xy, forall w;:Aj € Aanda € [T3 A/J2(y)- In detail, the terms T" are defined as follows:

(w (V)Y &t X%F?Vﬂz)y(*)

(opy (y.T))" def OP([r:v1,), (%) (TY), <o 0T, (0 [TV Iy ()
(pm V' as (41:B1,2:B2) in )Y =ity (when ([T3V]2)y (%) = (b, b2)
(case V of (inl(y1) > T, inr(y,) - T)) < 1,77 (when ([T;V]2), (x) = inlb)
(case V of (inl(y1) > Ty, inr(y,) - T))¥ < 1, (when ([T; V]2), (%) = inrb)

We get a countable equational theory by taking equations AY + T} = T) forallT |A+ Ty = T; € Eqr
and y € [I'], and closing them under the standard rules of reflexivity, symmetry, transitivity, etc.
The countable Lawvere theory Lq; is then given by taking the morphisms n — m in L
to be m-tuples &+ ti)i<j<m of equivalence classes of terms in n variables (in the countable
equational theory defined above). The identity morphisms are given by tuples of variables, while
the composition of morphisms is given by substitution. We define the functor Iz, : N}* — Lo,
by Iz, (n) & 1 and I (f) o " Xf(j))1<j<m : 1 — m.Itis then easy to verify both that £g;; has
countable products (given using the cardinal sum in N;) and that Iz, strictly preserves them.

PropoSITION 8.1. L7 is a countable Lawvere theory.

For better readability, we write Mod for Mod(L7;, Set) in the rest of this paper. In addition, a
useful well-known property of Mod that we use later is that it is both complete and cocomplete.

We conclude by highlighting that for any set A, one can intuitively think of the free model F Ly (A)
as being given by the set of equivalence classes of computation trees built from the operations of
the given fibred effect theory 74, with the leaves of these trees given by elements of the set A.

8.4 Interpretation of the Non-Pure Fragment of EMLTT
Next, we show how to extend the interpretation of the pure fragment of EMLTT to the rest of our
extension of EMLTT with fibred algebraic effects and their handlers, based on the fibred adjunction

F
e ——

Fam(Set) 1 Fam(Mod)
v

famget fampod

Set

where the two fibred functors F and U are defined (on objects) as

FX,A)E (X, Fr04)  UK.O)E (X.Ug,,00)

That the functors F and U indeed form a fibred adjunction suitable for modelling EMLTT is an
instance of a more general result about the models of EMLTT—see Ahman et al. [2016, Thm. 3].

Using this fibred adjunction, we can now extend the definition of [-] that we gave in §38.2 so
that, if defined, it maps a context I and a computation type C to an object [I'; C] in Fam[rj(Mod); a
context I' and a computation term M to a morphism [I'; M] : 1([T']) — U([I'], C) in Famyry(Set),
for some C : [T] — Mod; and a context T, a variable z, a computation type C, and a homomorphism
term K to a morphism [I';z:C; K] : [I; C] — ([I'], D) in Famrj(Mod), for some D : [T — Mod.
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In particular, the interpretation of the types C — D, UC, and FA is defined as follows:

[:C — D] = ([r].y = Homea([T: Cl(y). [T: Dl(y)))
def def

[T;uc) = (€l [ FA] = F([T;A])

The computational IT- and 2-types are interpreted similarly to their value counterparts, using the
set-indexed products and coproducts in Mod, which exist because Mod is complete and cocomplete.

We omit the definition of [—] for the cases (of computation and homomorphism terms) that are
already covered in great detail in Ahman et al. [2016], and instead concentrate on demonstrating
how to define the interpretation function [-] for algebraic operations, the user-defined algebra
type, and the two composition operations. Diagrammatic and more detailed treatment of these
cases of the definition of [—] can be found in §6 and §7 of the author’s PhD thesis [Ahman 2017].

First, we define [-] on algebraic operations op%(y.M) as follows:
C e R .
(Irs 0Py (y-M)]2)y £ opgy iy ) o Tlo (I, y: 0LV /x: Ml2)iy.) @ Cidu)o 2 1 — Uy ([T Cla(y)

[T;CT2(y)
([TsV12)y (%)

([T5Cl(n)) o + op([[r;V]]Z)y(*)(xo)o) ot: [Toeprsorv/<L(r) (IT: Cl2(y)) (1) — ([T Cl2(y))(1)
where 1 is the canonical countable-product preservation isomorphism
[Toegrsorv/x11. ) (T3 Cl2 (1)) (1) = ([T5 Cla(y) ([T OV /x]1]2(y) 1)
Next, we define [-] on the user-defined algebra type (A, {VopJopes.s) as follows:

where op is the corresponding operation of [['; C]2(y), given by the following composite:

def

— —
[[r; (4 VopQ‘/Vveq>]] = ([[rﬂ,}/ = MY)
where the functors MY : Lg, — Set are defined on morphisms of the form n — 1 as follows:*

def

MY (1) E hejen [DALGY) MG+ x;) S proj;
def
MY (A F op;(to)1 <o<|[x:1:0]; (ki) = fop, © (MY (A F t0))oe[x:;0], (5 )

where the function fy, is derived from [I'; Vo, ] as follows:

fop, Zfe Pr0J<i,f>(([[r§V<:p]]2)y(*)) : [Toepx:r;01, ((xin [T All2(y) — [T5 Al2(y)

It is worth noting that each MY extends straightforwardly to m-tuples of terms, so as to account
for all morphisms in L, i.e., those of the form n — m for a general m. Specifically, we have that

MY((AF thigjcm) = MY(AF Dhicicm

We also note that for [T; (A; lZp); W;)ﬂ to be defined, we additionally require that MY validates
the equations given in E.g. Namely, we require for all T’ |[A+ Ty = T, € Eeg and y’ € [I'] that

MYAY Ty = MY (A T
Finally, we define [-] on the two composition operations as follows:

def

= fY o ([T3M]y)y : 1 — Uy, ([T;Dl2(y))

def

([Is2:C% K as x:UC ing ) N]z)y = hom(f7) o ([[32:C5K]2)y : [[:C7Ta(v) — [T Dl (y)

([T M as x:UC inge  NTa)y

®We use the notation [];<;<n [I; AJ2(y) to mean the finite product [I; AJ2(y) X . .. X [T; A]2(y) when n is a natural
number, and [],,en [I; A]2(y) when n is the distinguished symbol w. In particular, we have MY (1) = [T; A]2(y).
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where the function f7 is derived from [T, x:UC; N] as follows:

fY € e ([0x:UC N2)y.0 (%) : U, (T3 Cla(y)) — Us,, ([T: D]2(y))
and where hom(f Y) is a morphism of models of Lg, given by components
(hom (P & 1) © Thyen() © gy * (I L)) () — (T D)) ()
where 1[r.c],(,) and {[r;pj,(y) are the canonical countable-product preservation isomorphisms

[Ti<j<n ([T Cl2 () (1) = ([ €1 () (M) Tlhigj<n ([T Dl2(1))(1) = (T3 D]2(y)) (n)

We note that for these two cases of [-] to be defined, we require that f¥ commutes with the
operations of [I'; C2(y) and [T'; D]2(y), for all i € [o;I]2(%), as depicted in the following diagram:

[oegx:ron, (. iy )

o([T5 Cl2(y)) (1) [To([T5 DI2(y))(1)

r.C ;D
op! ]]z(y)j Lopg l2(r)

(IT; Cl2(r)) (1) ([T: D2 (1)) (1)

fY
8.5 Soundness

In order to establish the soundness of the interpretation [—] we defined above in §38.2 and §38.4, we
first formulate and prove standard semantic weakening and substitution results. In particular, we
begin by defining standard a priori partial semantic projection and substitution morphisms

PrOjL xoaT, © [0}, x:A L] — [, 2] substr, x.anv : [[1, R[V/x]] — [[1, x:A L]

by induction on the size of I, as follows:

. def . def ————
prOJl"l;x:A;o = T1;A] projl"l;x:A;l"g,y:B = {projl"l;x:A;l"z ([[rl’ I3 B]])}
def dof —0——————
SUbStrl;x:A;o;V = [[r: Vﬂ SUbStrl;x:A;rz,y:B;V = {SUbStrl;x:A;rz;V([[rh x:A, FZ; BH)}
Next, we show that both morphisms are defined if the interpretations of the involved contexts,

types, and terms are defined; and that reindexing along them models weakening and substitution.
These results also extend to account for weakening and substitution with multiple value variables.

ProposITION 8.2. Given value contexts I} and I3, a value type A, and a value variable x such that
[Ty, T2] € Set and [T, x:A, T3] € Set, then i) the semantic projection morphism projp. ... 41, is defined;
and ii) given a value type B such that [}, Ty; B] € Famyr, 1, (Set), we have

[T1, x:A,To; B] = projp, y.arr, ([T1, 25 B)
and similarly for computation types, and value, computation, and homomorphism terms.

ProrosITION 8.3. Given value contexts Iy and I3, a value type A, a value variable x, and a value
term V such that [I1; V] : 1([I1]) — [T1; A], [T, x: A, ] € Set, and [I}, [V /x]] € Set, then i) the
semantic substitution morphism substr,.x.ar,.v is defined; and ii) given a value type B such that
[T, x:ATy;B] € Famr, x:a,1,] (Set), we have

[T, T2[V/x]; BV /x]] = substy, ... op,.v ([T, x: A, I; B])
and similarly for computation types, and value, computation, and homomorphism terms.
In addition, we show that substituting computation and homomorphism terms for computation

variables corresponds to the composition of the morphisms that the given terms denote.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 7. Publication date: January 2018.



Handling Fibred Algebraic Effects 7:27

PrROPOSITION 8.4. Given a value context I', a computation variable z, a computation type C, a
computation term M, and a homomorphism term K such that [I; M] : 1([T]) — U([T;C]) and
[[;2:C;K] : [T;C] — ([T], D), for some D : [T] — Mod, then

[T;K[M/z]] = U([T;2:C;K]) o [T; M]

PrROPOSITION 8.5. Given a value context I', computation variables z, and z,, computation types
C, and C,, and homomorphism terms K and L such that [I';z,:C;K] : [I[;C,] — [I;C,] and
[T;2;:Cy; L] : [I5C,] — ([T'], D), for some D : [I] — Mod, then

[T;21:C s L[K/22]] = [T 22:C,; L] o [T521:C1; K]
Finally, we prove the main soundness theorem for our language.

THEOREM 8.6 (SOUNDNESS). [—] is defined on all well-formed contexts, well-formed types, and
well-typed terms, and it identifies definitionally equal contexts, types, and terms.

Proor. We prove this theorem by induction on the given derivations. For the definitional equa-
tions that correspond to the equations given in &g (see Fig. 4), we recall that these equations
hold in the countable Lawvere theory Lg. by construction. Therefore, all models of Lq; validate
them, including those modelling our computation types. For computation types, we prove that

— — —>

[T; (A Vops Weq »] is defined by observing that the interpretations of the proof witnesses Weq ensure

that each MY validates the equations given in Eeg, as required in §8.4. For computation terms, we

prove that [[F Mas x:UC ing— Nﬂ is defined by observing that the interpretations of the proof
P

witnesses WOp ensure that the functions f¥ derived from [[I, x :UC; N]| commute with the operations
of [T;C]2(y) and [T; D]2(y), as required in §8.4; the homomorphism term case is analogous. O

9 CONCLUSION AND FUTURE WORK

In this paper we have given a comprehensive account of algebraic effects and their handlers in
the dependently typed setting. In particular, we gave handlers a novel type-based treatment and
demonstrated that being able to handle computations into values provides a useful mechanism for
reasoning about effectful computations. We also showed how to equip the resulting language with
a denotational semantics based on families fibrations and models of countable Lawvere theories.
In future, we plan to combine our type-based treatment of handlers with effect-typing [Kammar
et al. 2013] and multi-handlers [Lindley et al. 2017]. We also plan to investigate extending EMLTT
with local effects, such as local state (e.g., Staton [2013]). In particular, while we could use our
fibred effect theories to express the operations and equations of the theory of local state, our
current strategy of giving semantics to our language using the corresponding countable Lawvere
theories and their (set-theoretic) models would not give a desired result for local effects. Namely, it
is well-known that there are no non-trivial set-theoretic models of the theory of local state [Staton
2013, Prop. 6]. Instead, we plan to generalise from fibrations based on models of countable Lawvere
theories to fibrations based on the presheaf models of Staton’s parameterised algebraic theories.
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