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Abstract. We propose a neural network model for joint extraction of
named entities and relations between them, without any hand-crafted
features. The key contribution of our model is to extend a BiLSTM-
CRF-based entity recognition model with a deep biaffine attention layer
to model second-order interactions between latent features for relation
classification, specifically attending to the role of an entity in a directional
relationship. On the benchmark “relation and entity recognition” dataset
CoNLL04, experimental results show that our model outperforms previous
models, producing new state-of-the-art performances.

1 Introduction

Extracting entities and their semantic relations from raw text is a key information
extraction task. For example, given the sentence “ David Foster is the AP ’s

Northwest regional reporter , based in Seattle ” in the CoNLL04 dataset [27],
our goal is to recognize “David Foster” as person, “AP” as organization, and
“Northwest” and “Seattle” as location entities, then classifiy entity pairs to
extract structured information: Work For(David Foster, AP), OrgBased In(AP,
Northwest) and OrgBased In(AP, Seattle). Such information is useful in many
other NLP tasks. Especially in IR applications such as entity search, structured
search and question answering, it helps provide end users with significantly better
search experience [11,29,6].

A common relation extraction approach is to construct pipeline systems
with separate sub-systems for the two tasks of named entity recognition and
relation classification [2]. More recently, end-to-end systems which jointly learn to
extract entities and relations have been proposed with strong potential to obtain
high performance [26]. Traditional joint approaches are feature-based supervised
learning methods which employ numerous syntactic and lexical features based
on external NLP tools as well as knowledge base resources [12,20,18].

State-of-the-art relation extraction performance has been obtained by end-
to-end models based on neural networks. Specifically, Gupta et al. (2016) [9]
proposed a RNN-based model which achieved top results on the CoNLL04 dataset.
Their approach relies on various manually extracted features. Other neural models
employ dependency parsing-based information [19,23,31]. In particular, Miwa
and Bansal (2016) [19] applied bottom-up and top-down tree-structured LSTMs
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Fig. 1. Illustration of our model. Linear transformations are not shown for simplification.

to model dependency paths between entities. Zhang et al. (2017) [31] integrated
implicit syntactic information by using latent feature representations extracted
from a pre-trained BiLSTM-based dependency parser. Zheng et al. (2017) [32]
used a softmax layer on top of a BiLSTM for entity recognition, and a CNN on
top of the BiLSTM for classifying relations [22]. Adel and Schütze (2017) [1]
assumed that entity boundaries are given, and trained a CNN to extract context
features around the entities, and using these features for entity and relation
classification. Recently, Wang et al. (2018) [30] formulated the joint entity and
relation extraction problem as a directed graph and proposed a BiLSTM- and
transition-based approach to generate the graph incrementally. Bekoulis et al.
(2018) [4] extended the multi-head selection-based joint model [5] with adversarial
training. In [5,33,13], the joint task is formulated as a sequence tagging problem,
and a BiLSTM with a softmax output layer can then be used for joint prediction.

In this paper, we present a novel end-to-end neural model for joint entity
and relation extraction. As illustrated in Figure 1, our model architecture can
be viewed as a mixture of a named entity recognition (NER) component and a
relation classification (RC) component. Our NER component employs a BiLSTM-
CRF architecture [10] to predict entities from input word tokens. Based on both
the input words and the predicted NER labels, the RC component uses another
BiLSTM to learn latent features relevant for relation classification. In most
previous neural joint models, the relation classification part relies on a common
“linear” concatenation-based mechanism over the latent features associated with
entity pairs, i.e. the latent features are first concatenated into a single feature
vector which is then linearly transformed before being fed into a softmax classifier.
In contrast, our RC component takes into account second-order interactions over
the latent features via a tensor. In particular, for relation classification we propose
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a novel use of the deep biaffine attention mechanism [7] which was first introduced
in dependency parsing.

Experimental results on the benchmark “relation and entity recognition”
dataset CoNLL04 [27] show that our model outperforms previous models, obtain-
ing new state-of-the-art scores. In addition, using the biaffine attention improves
the performance compared to using the linear mechanism significantly. We also
provide an ablation study to investigate effects of different contributing factors
in our model.

2 Our proposed model

This section details our end-to-end relation extraction model. Given an input
sequence of n word tokens w1, w2, ..., wn, we use a vector vi to represent each

ith word wi by concatenating word embedding e
(w)
wi and character-level word

embedding e
(c)
wi :

vi = e(w)
wi
◦ e(c)

wi
(1)

Here, for each word type w, we use a one-layer BiLSTM (BiLSTMchar) to

learn its character-level word embedding e
(c)
w [3].

Named entity recognition (NER): The NER component feeds the sequence
of vectors v1:n with an additional context position index i into another BiLSTM
(BiLSTMNER) to learn a “latent” feature vector representing the ith word token.
Then the NER component performs linear transformation of each latent feature
vector by using a single-layer feed-forward network (FFNNNER):

hi = FFNNNER

(
BiLSTMNER(v1:n, i)

)
(2)

The output layer size of FFNNNER is the number of BIOLU-based NER labels
[25]. The NER component feeds the output vectors h1:n into a linear-chain CRF
layer [16] for NER label prediction. A cross-entropy loss LNER is computed during
training, while the Viterbi algorithm is used for decoding. Our NER component
thus is the BiLSTM-CRF model [10] with additional LSTM-based character-level
word embeddings [17].

Relation classification (RC): Assume that t1, t2, ..., tn are NER labels pre-
dicted by the NER component for the input words. We represent each ith predicted
label by a vector embedding eti . We create a sequence of vectors x1:n in which
each xi is computed as:

xi = eti ◦ vi (3)

As for NER, the RC component also uses a BiLSTM (BiLSTMRC) to learn
another set of latent feature vectors, but from the sequence x1:n:

ri = BiLSTMRC(x1:n, i) (4)
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The RC component further uses these latent vectors ri for relation classification.
We propose a novel use of the deep biaffine attention mechanism [7] for relation

classification. The biaffine attention mechanism was proposed for dependency
parsing [7], helping to produce the best reported parsing performance to date
[8]. First, to encode the directionality of a relation, we use two single-layer feed-
forward networks to project each ri into head and tail vector representations
which correspond to whether the ith word serves as the head or tail argument of
the relation:

h
(head)
i = FFNNhead(ri) (5)

h
(tail)
i = FFNNtail(ri) (6)

Following [19], our RC component incrementally constructs relation candidates
using all possible combinations of the last word tokens of predicted entities, i.e.
words with L or U labels. We assign an entity pair to a negative relation class
(NEG) when the pair has no relation or when the predicted entities are not correct.
For example, for Figure 1, we would have two relation candidates: NEG(Paris,
International) and OrgBased In(International, Paris). Then for each head-tail
candidate pair (wj , wk), we apply the biaffine attention operator:

sj,k = Biaffine
(
h
(head)
j ,h

(tail)
k

)
(7)

Biaffine
(
y1,y2

)
= yT

1 Uy2︸ ︷︷ ︸
Bilinear

+ W(y1 ◦ y2) + b︸ ︷︷ ︸
Linear

(8)

where U, W, b are a m× l ×m tensor, a l × (2 ∗m) matrix and a bias vector,
respectively. Here, m is the size of the output layers of both FFNNhead and
FFNNtail, while l is the number of relation classes (including NEG). Next, the
RC component feeds the output vectors sj,k of the biaffine attention layer into
a softmax layer for relation prediction. Another cross-entropy loss LRC is then
computed during training.

Joint learning: The objective loss of our joint model is the sum of the NER and
RC losses: L = LNER + LRC. Model parameters are then learned to minimize L.

3 Experiments

3.1 Experimental setup

Evaluation scenarios: We evaluate our joint model on two evaluation setup
scenarios: (1) NER&RC: A realistic scenario where entity boundaries are not
given. (2) EC&RC: A less realistic scenario where the entity boundaries are
given [26,12,20]. Thus the NER task which identifies both entity boundaries and
classes reduces to the entity classification (EC) task. Following [20], we encode
the gold entity boundaries in the BILOU scheme. Then we represent each B, I,
O, L or U boundary tag as a vector embedding. As a result, the vector vi in
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Equation 1 now also includes the boundary tag embedding in addition to the
word embedding and character-level word embedding.

Dataset: We use the benchmark “entity and relation recognition” dataset
CoNLL04 from [27]. Following [4,5], we use the 64%/16%/20% training/developme-
nt/test pre-split available from Adel and Schütze (2017) [1], in which the test set
was previously also used by Gupta et al. (2016) [9].

Implementation: Our model is implemented using DyNet v2.0 [21]. We opti-
mize the objective loss using Adam [14], no mini-batches and run for 100 epochs.
We compute the average of NER/EC score and RC score after each training epoch.
We choose the model with the highest average score on the development set,
which is then applied to the test set for the final evaluation phase. More details
of the implementation as well as optimal hyper-parameters are in the Appendix.
Our code is available at: https://github.com/datquocnguyen/jointRE

Metric: Similar to previous works in Table 1, we use the macro-averaged F1-score
over the entity classes to score NER/EC and over the relation classes to score
RC. More details of the metric are also in the Appendix. Unlike previous neural
models, we report results as mean and standard deviation of the scores over 10
runs with 10 random seeds.

3.2 Main results

End-to-end results: The first six rows in Table 1 compare our results with
previous state-of-the-art published results on the same test set. In particular,

Table 1. Comparison with the previous state-of-the-art results on the test set. Recall
that Setup 2 uses gold entity boundaries while Setup 1 does not. The subscript denotes
the standard deviation. (F) refers to the use of extra feature types such as POS tag-
based or dependency parsing-based features. Although using the same test set, Gupta
et al. (2016) [9] reported results on a 80/0/20 training/development/test split rather
than our 64/16/20 split. Results in the last two rows are just for reference, not for
comparison, due to a random sampling of the test set. In particular, Miwa and Sasaki
(2014) [20] used the 80/0/20 split for Setup 1 and performed 5-fold cross validation
(i.e. sort of equivalent to 80/0/20) for Setup 2, while Zhang et al. (2017) [31] used a
72/8/20 split.

Model
Setup 1 Setup 2

NER RC EC RC

Gupta et al. (2016) [9] 88.8 58.3

Gupta et al. (2016) [9] (F) 92.4 69.9

Adel and Schütze (2017) [1] 82.1 62.5

Bekoulis et al. (2018) [4] 83.6 62.0 93.0 68.0

Bekoulis et al. (2018) [5] 83.9 62.0 93.3 67.0

Our joint model 86.20.5 64.40.6 93.80.4 69.60.7

Miwa and Sasaki (2014) [20] (F) 80.7 61.0 92.3 71.0

Zhang et al. (2017) [31] (F) 85.6 67.8

https://github.com/datquocnguyen/jointRE
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our model obtains 2+% absolute higher NER and RC scores (Setup 1) than
the BiLSTM-CRF-based multi-head selection model [5]. We also obtain 7+%
higher EC and RC scores (Setup 2) than Adel and Schütze (2017) [1]. Note that
Gupta et al. (2016) [9] use the same test set as we do, however they report final
results on a 80/0/20 training/development/test split rather than our 64/16/20,
i.e. Gupta et al. (2016) use a larger training set, but producing about 1.5% lower
EC score and similar RC score against ours. These results show that our model
performs better than previous state-of-the-art models, using the same setup.

In Table 1, the last two rows present results reported in [20] and [31] on the
dataset CoNLL04. However, these results are not comparable due to their random
sampling of the test set, i.e. using different train-test splits. Both Miwa and Sasaki
(2014) [20] and Zhang et al. (2017) [31] employ additional extra features based
on external NLP tools and use larger training sets than ours. Specifically, Zhang
et al. (2017) integrate syntactic features by using a pre-trained BiLSTM-based
dependency parser to extract BiLSTM-based latent feature representations for
words in the input sentence, and then using these latent representations directly
as part of the input embeddings in their model. We plan to extend our model with
their syntactic integration approach to further improve our model performance
in future work.

Ablation analysis: We provide in Table 2 the results of a pipeline approach
where we treat our two NER and RC components as independent networks,
and train them separately. Here, the RC network uses gold NER labels when
training, and uses predicted labels produced by the NER network when decoding.
We find that the joint approach does slightly better than the pipeline approach
in relation classification, although the differences are not significant. A similar
observation is also found in [19]. Also, in preliminary experiments, we do not
find any significant difference in performance of our joint model when feeding
gold NER labels instead of predicted NER labels into the RC component during
training. This is not surprising as the training NER score is at 99+%.

Table 2 also presents ablation tests over 5 factors of our joint model on the
development set. In particular, Setup 1 performances significantly degrade by
4+% absolutely, when not using the character-level word embeddings. The per-
formances also decrease when using a softmax classifier for NER label prediction
rather than a CRF layer (here, the decrease is significant). In contrast, we do
not find any significant difference in Setup 2 scores when not using either the
character-level embeddings or the CRF layer, clearly showing the usefulness of
the given gold entity boundaries. The 3 remaining factors, including removing
NER label embeddings and not taking either the Bilinear or Linear part (in
Equation 8) into the Biaffine attention layer, do not affect the NER/EC score.
However, they significantly decrease the RC score. This is reasonable because
those 3 factors are part of the RC component only, thus helpful in predicting
relations. More specifically, using the Biaffine attention produces about 1.5% sig-
nificant improvements to a common Linear transformation mechanism in relation
classification, i.e., “w/o Bilinear” results against the full results in Table 2: 65.4%
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Table 2. Ablation results on the development set. * and ** denote the statistically
significant differences against the full results at p < 0.05 and p < 0.01, respectively (using
the two-tailed paired t-test). (a) Without using the character-level word embeddings. (b)
Using a softmax layer for NER label prediction instead of the CRF layer. (c) Without
using the NER label embeddings in our RC component, i.e. Equation 3 would become
xi = vi. (d) Without using the Bilinear part in Equation 8, i.e., Biaffine would be
a common Linear mechanism. (e) Without using the Linear part in Equation 8, i.e.,
Biaffine reduces to Bilinear.

Model
Setup 1 Setup 2

NER RC EC RC

Pipeline 87.30.6 66.30.8 93.40.6 72.90.6

Joint model (full) 87.10.5 66.90.8 93.30.5 73.30.6

(a) w/o Character 82.7∗∗
0.5 63.0∗∗

0.7 93.10.6 73.40.8

(b) w/o CRF 86.4∗
0.5 66.0∗

0.8 93.50.4 73.20.6

(c) w/o Entity 87.10.5 64.7∗∗
0.9 93.30.6 72.1∗∗

0.7

(d) w/o Bilinear 86.60.5 65.4∗∗
0.7 93.40.5 72.0∗∗

0.7

(e) w/o Linear 86.80.6 65.9∗
0.7 93.30.5 72.6∗

0.5

vs. 66.9% and 72.0% vs. 73.3% (although using Biaffine increases training time
over using Linear by 35%, relatively).

4 Conclusion

In this paper, we have presented an end-to-end neural network-based relation
extraction model. Our model employs a BiLSTM-CRF architecture for entity
recognition and a biaffine attention mechanism for relation classification. On
the benchmark CoNLL04 dataset, our model produces new state-of-the-art
performance.

Acknowledgments: This work was supported by the ARC projects DP150101550
and LP160101469.

Appendix

Implementation details: We apply dropout [28] with a 67% keep probability
to the inputs of BiLSTMs and FFNNs. Following [15], we also use word dropout to
learn an embedding for unknown words: we replace each word token w appearing
#(w) times in the training set with a special “unk” symbol with probability
punk(w) = 0.25

0.25+#(w) .

Word embeddings are initialized by the 100-dimensional pre-trained GloVe
word vectors [24], while character and NER label embeddings are initialized
randomly. All these embeddings are then updated during training. For learning
character-level word embeddings, we set the size of LSTM hidden states in
BiLSTMchar to be equal to the size of character embeddings. Here, we perform
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a minimal grid search of hyper-parameters for Setup 1, resulting in the Adam
initial learning rate of 0.0005, the character embedding size of 25, the NER
label embedding size of 100, the size of the output layers of both FFNNhead and
FFNNtail at 100, the number of BiLSTMNER and BiLSTMRC layers at 2 and the
size of LSTM hidden states in each layer at 100. These optimal hyper-parameters
for Setup 1 are then reused for Setup 2 where we additionally use the boundary
tag embedding size of 100.

Metric: Similar to the previous works, when computing the macro-averaged
F1 scores, we omit the entity label “Other” and the negative relation “NEG”.
Here, for NER an entity is predicted correctly if both the entity boundaries and
the entity type are correct, while for EC a multi-token entity is considered as
correct if at least one of its comprising tokens is predicted correctly. In all cases,
a relation is scored as correct if both the argument entities and the relation type
are correct.
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