
How to avoid Go gotchas
by learning internals

Ivan Danyliuk, Codemotion Milano  
26 Nov 2016

https://twitter.com/idanyliuk

Gotchas
• Go has some gotchas

• Good examples:

• 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New
Golang Devs

• Go Traps

• Golang slice append gotcha

mailto:no_reply@apple.com?subject=http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html
https://go-traps.appspot.com
https://medium.com/@Jarema./golang-slice-append-gotcha-e9020ff37374#.xvfl7r4ti

Gotchas
• Luckily, Go has very few gotchas

• Especially in comparison with other languages

Go

C++

0 75 150 225 300

Gotchas

• So, what is gotcha?

• “a gotcha is a valid construct in a system, program or
programming language that works as documented but is counter-
intuitive and almost invites mistakes because it is both easy to
invoke and unexpected or unreasonable in its outcome”

Gotchas

• Two solutions:

• “fix” the language

• fix the intuition.

• Let’s build some intuition to fight gotchas then.

Gotchas

• Let’s learn some internals and in memory representations

• It worked for me, should work for you as well.

basic types
Code:

i := 1234
j := int32(4)
i64 := int64(999)
f := float32(3.14)

Code:

i := 1234
j := int32(4)
i64 := int64(999)
f := float32(3.14)

1234

i

4

j

3.14

fi64

999

int int32

float32int64

basic types

structs
Code:

type Point struct {
 X, Y int
}

p1 := Point{10, 20}

10

int

20

int

p1

Code:

type Point struct {
 X, Y int
}

p1 := Point{10, 20}
p2 := &Point{10, 20}

10

int

20

int

p1

10

int

20

int

p2

0x..

*Point

basic types

structs
Code:

func Foo(p Point) {
 // ...
}

p1 := Point{10, 20}
Foo(p1)

10

int

20

int

p1

10

int

20

int

Foo() copy

structs
Code:

func Foo(p *Point) {
 // ...
}

p2 := &Point{10, 20}
Foo(p2)

Foo()

copy 10

int

20

int

p2

0x..

*Point

0x..

array

var arr [5]int
Code:

array

var arr [5]int

Go code: src/runtime/malloc.go
// newarray allocates an array of n elements of type typ.
func newarray(typ *_type, n int) unsafe.Pointer {
 if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
 panic(plainError("runtime: allocation size out of range"))
 }
 return mallocgc(typ.size*uintptr(n), typ, true)
}

Code:

https://golang.org/src/runtime/malloc.go#L793

array

var arr [5]int
Code:

int

Memory:

array

var arr [5]int
Code: 4 or 8 bytes blocks

(32 or 64 bit arch)

int

Memory:

array

var arr [5]int
Code:

int
0 1 2 3 4

Memory:

array

var arr [5]int
Code:

int
0 1 2 3 4

0 0 0 0 0
Memory:

array
Code:

Memory:

int
0 1 2 3 4

0 0 0 0 42

var arr [5]int
arr[4] = 42

slice

var foo []int
Code:

slice

var foo []int
Code:

Go code: src/runtime/slice.go
type slice struct {
 array unsafe.Pointer
 len int
 cap int
}

https://golang.org/src/runtime/malloc.go#L793

slice

var foo []int
Code:

Go code: src/runtime/slice.go

array

len

cap

0 1 2 3 4

foo

type slice struct {
 array unsafe.Pointer
 len int
 cap int
}

https://golang.org/src/runtime/slice.go#L11

slice
Code:

array

len

cap

0 1 2 3 4

nil

0

0

var foo []int
foo

slice

var foo []int
foo = make([]int, 5)

Code:

array

len

cap

000 0 0
0x..

5

5
0 1 2 3 40 1 2 3 4

foo

slice

var foo []int
foo = make([]int, 3, 5)

Code:

array

len

cap

00 0
0x..

3

5
0 1 2 3 40 1 2 3 4

foo

slice

var foo []int
foo = make([]int, 5)
foo[3] = 42
foo[4] = 100

Code:

array

len

cap

4200 0 100
0 1 2 3 4

0x..

5

5
0 1 2 3 40 1 2 3 4

foo

slice
Code:

array

len

cap

0x..

5

5

var foo []int
foo = make([]int, 5)
foo[3] = 42
foo[4] = 100

bar := foo[1:4]

4200 0 100
0 1 2 3 40 1 2 3 40 1 2 3 4

foo

slice
Code:

array

len

cap

4200 0 100

0

1 2 3 4
0x..

5

5
0

1 2 3 40 1 2 3 4

var foo []int
foo = make([]int, 5)
foo[3] = 42
foo[4] = 100

bar := foo[1:4] array

len

cap

bar

0x..

3

3

foo

slice
Code:

array

len

cap

42990 0 100

0

1 2 3 4

foo

0x..

5

5
0

1 2 3 40 1 2 3 4

var foo []int
foo = make([]int, 5)
foo[3] = 42
foo[4] = 100

bar := foo[1:4]
bar[1] = 99

array

len

cap

bar

0x..

3

3

0 1 2

slice
Code:

var digitRegexp = regexp.MustCompile("[0-9]+")

func FindDigits(filename string) []byte {
 b, _ := ioutil.ReadFile(filename)
 return digitRegexp.Find(b)
}

slice

array

len

cap

32r 1 $

0

b

0x..

10^6 0

array

len

cap

digitRegexp.Find

0x..

3

3

10^6

xa b c d …

10MB slice

append
Code:

a := make([]int, 32)
a = append(a, 1)

append
Code:

a := make([]int, 32)
a = append(a, 1)
fmt.Println("len:", len(b), "cap:", cap(b))

len: 33 cap: 64
Output:

append

array

len

cap

000 0 0
a

0x..

32

32

0 1 2 3 40 1 2 30 31

…

32 ints

a = append(a, 1)

array

len

cap

000 0 0

a

0x..

33

64
0 1 2 3 40 1 2 30 31

… 1
32 33 34

…
35 62 63

32 ints more

32 + 1

doubling 32

000 0 0
0 1 2 3 40 1 2 30 31

…

32 ints

append

array

len

cap

000 0 0

a

0x..

34

64
0 1 2 3 40 1 2 30 31

… 1 2
32 33 34

…
35 62 63

33 + 1 a = append(a, 2)

64 ints

interfaces
Code:

type error interface {
 Error() string
}

interfaces
Code:

Go code: src/runtime/runtime2.go

type iface struct {
 tab *itab
 data unsafe.Pointer
}

type error interface {
 Error() string
}

https://golang.org/src/runtime/runtime2.go#L143

type iface struct {
 tab *itab
 data unsafe.Pointer
}

type error interface {
 Error() string
}

interfaces
Code:

Go code: src/runtime/runtime2.go itab = interface table

https://golang.org/src/runtime/runtime2.go#L143

type iface struct {
 tab *itab
 data unsafe.Pointer
}

type error interface {
 Error() string
}

interfaces
Code:

Go code: src/runtime/runtime2.go

type itab struct {
 inter *interfacetype
 _type *_type
 link *itab
 bad int32
 unused int32
 fun [1]uintptr
}

https://golang.org/src/runtime/runtime2.go#L143

interfaces
Code:

tab

data

type error interface {
 Error() string
}

data

tab

nil

0x..

interfaces
Code:

inter

type

nil

error

fun

itab

…

type error interface {
 Error() string
}

var err error

err

nil interface

interfaces
Code:

type error interface {
 Error() string
}

func foo() error {
 return nil
}

data

tab

nil

0x..
inter

type

nil

error

fun

itab

…

err

interfaces
Code:

data

tab

nil

0x..
inter

type

nil

error

fun

itab

…

err
func foo() error {
 var err error
 // err == nil
 return err
}

err := foo()
if err != nil { // false
}

interfaces

func foo() error {
 var err *os.PathError
 // err == nil
 return err
}

err := foo()
if err != nil { // ???
}

Code:

interfaces

func foo() error {
 var err *os.PathError
 // err == nil
 return err
}

err := foo()
if err != nil { // true
}

Code:

interfaces

func foo() error {
 var err *os.PathError
 // err == nil
 return err
}

err := foo()
if err != nil { // true
}

Code:

tab
0x..

inter

type

*os.Path
Error

error

fun

itab

…

err

data

os.PathError

err

nil

0x..

tab

interfaces

func foo() error {
 err := &os.PathError{
 "open", name, e
 }
 return err
}

err := foo()
if err != nil { // true
}

Code:

data
0x..

0x..
inter

type

*os.Path
Error

error

fun

itab

…

err

os.PathError

err
“open”

…

interfaces

func foo() error {
 var err *os.PathError
 // err == nil
 return err
}

func foo() error {
 var err error
 // err == nil
 return err
}

data

tab

nil

0x..
inter

type
nil

error

fun

itab

…

err

data

tab
0x..

inter

type

*os.Path
Error

error

fun

itab

…

err

0x..

os.PathError

nil

err

interfaces

tab
0x..

inter

type

*os.Path
Error

error

fun

itab

…

err

data

os.PathError

err

nil

0x..
data

tab

nil

0x..
inter

type

nil

error

fun

itab

…

err

!=

type eface struct {
 _type *_type
 data unsafe.Pointer
}

type empty interface{}

interfaces
Code:

Go code: src/runtime/runtime2.go

_type

data

https://golang.org/src/runtime/runtime2.go#L148

interfaces

int64

0x..

int64

42

empty

foo

var foo int64 = 42

func bar() interface{} {
 return foo
}

Code:

interfaces

func bar() interface{} {
 return int64(42)
}

Code:

interfaces

func bar() []interface{} {
 return []int64{1,2,3,4}
}

Code:

interfaces

func bar() []interface{} {
 return []int64{1,2,3,4}
}

Code:

$ go build
cannot use []int literal (type []int) as type
[]interface {} in return argument

array

len

cap

[]int

0x..

32

32

4

3131 2 32
0 1 2 30 1 2 30 31

…

32 ints

array

len

cap

0x..

32

32

0
…

32 interfaces{}[]interface{}

int

0x..

int

1

empty

data

int

0x..

int

2

empty

data

int

0x..

int
3

empty

data

0
int

0x..

int

31

empty

data

int

0x..

int

32

empty

data

If you want to do something
expensive - do it explicitly

Links

https://divan.github.io/posts/avoid_gotchas/

https://divan.github.io/posts/avoid_gotchas/

Links
• Must read:

• Go Data Structures

• Go Data Structures:
Interfaces

• Go Slices: usage and
internals

• Gopher Puzzlers

• And, of course:

• Go source code

• Effective Go

• Go spec

http://research.swtch.com/godata
http://research.swtch.com/interfaces
https://blog.golang.org/go-slices-usage-and-internals
http://talks.godoc.org/github.com/davecheney/presentations/gopher-puzzlers.slide
https://golang.org/src/
https://golang.org/doc/effective_go.html
https://golang.org/ref/spec

Thank you
@idanyliuk

https://twitter.com/idanyliuk

