How to avoid Go gotchas

by learning internals

lvan Danvyliuk, Codemotion Milano
26 Nov 2016

https://twitter.com/idanyliuk

Gotchas

* (50 has some gotchas
 (Good examples:

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New
Golang Devs

e (GO Traps

» (Golang slice append gotcha

mailto:no_reply@apple.com?subject=http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html
https://go-traps.appspot.com
https://medium.com/@Jarema./golang-slice-append-gotcha-e9020ff37374#.xvfl7r4ti

(Gotchas

* [uckily, Go has very few gotchas

* Especially In comparison with other languages

Go

C++

0 75 150 225 300

Gotchas

* S0, what is gotcha?

e "a gotcha is a valid construct in a system, program or
programming language that works as documented but Is counter-
Intuitive and almost invites mistakes because it Is both easy to
INVOKe and unexpected or unreasonable In its outcome”

Gotchas

Two solutions:
e “fix" the language
e fix the Intultion.

|_et’'s build some intuition to fight gotchas then.

Gotchas

e |et'slearn some internals and in memory representations

* |t worked for me, should work tfor you as well.

pasic types

Code:

1 1= 1234
j 1= int32(4)

i64 = int64(999)
f := float32(3.14)

pasic types

Code:

i
]

= 1234
= 1int32(4)

i64 := int64(999)

.f

= float32(3.14)

i
1234

INt
164
999

INto4

INt32
f

3.14

float32

SIrUucCts

Code:

type Point struct A
X, Y 1nt
}

pl := Point{10, 20}

10

INt

20

INt

pasic types

Code:

type Point struct A
X, Y 1nt

Point{10, 20}
&Point{10, 20}

10

INt

p1

20

INt

0x..

/*Point

10 20

INt INt

SIrUucCts

Code: p1

func Foo(p Point) {
e 10 20

INt INt

h

 copy

pl := Point{10, 20}
Foo(p1l)

SIrUucCts

Code:

func Foo(p *Point) {

[/«
¥

p2 := &Point{10, 20}
Foo(p2)

array

Code:

var arr [5]int

array

Code:

var arr [5]int

Go code: src/runtime/malloc.go

func newarray(typ *_type, n int) unsafe.Pointer {
if n < @ || uintptr(n) > maxSliceCap(typ.size) {

}

return mallocgc(typ.sizexuintptr(n), typ, true)

panic(plainError("runtime: allocation size out of range"))

https://golang.org/src/runtime/malloc.go#L793

array

Code:

var arr [5]int

Memory:

‘!!““““H“““““\“““““‘H“““““\“““““‘\

array

Code: 4 or 8 bytes blocks

var arr [5]int (32 or 64 bit arch)

Memory:

array

Code:

var arr [5]int

Memory:

‘!!““““H“““““\“““““‘H“““““\“““““‘\
0 1 2 3 4

array

Code:

var arr [5]int

Memory:

‘!!““““\""t::""H“"::1“‘H“"::1“‘\““t::““\
0 1 2 3 4

array

Code:
var arr [5]int

arrl4] = 42

Memory:

‘!||||||||||I:I||||||I:’||||||I:’|||||::IE!I|
0 1 2 3 4

slice

Code:

slice

Code:

var foo []lint

Go code: src/runtime/slice.go

type slice struct {
array unsafe.Polnter

Len 1nt
cap 1nt

https://golang.org/src/runtime/malloc.go#L793

slice

Code: foo

var foo []int

Go code: src/runtime/slice.go

type slice struct {
array unsafe.Polnter

Len 1nt
cap 1nt

https://golang.org/src/runtime/slice.go#L11

Code:

slice

Code:
var foo []int

foo = make([]lint, 5)

slice

Code:
var foo []int

foo = make([]int, 3, 5) Bkttt

var foo []lint

foo = make([]int, 5)

foo[3] 42
foo[4] 100

var foo []int

foo = make([]lint, 5)

foo[3] 42
foo[4] 100

bar := foo[1:4]

var foo []int

foo = make([]int, 5)
fool3] = 42

fool[4] 100

bar := foo[1:4]

var foo []lint
foo = make([]int, 5)
fool3] = 42

foo[4] 100

slice

Code:

var digitRegexp = regexp.MustCompile("[0-9]+")

func FindDigits(filename string) [lbyte {

of = joutil.ReadFile(filename)
return digitRegexp.Find(b)

slice

10MB slice
1 [alolelol- [x] KEENENs

digitRegexp.Find

appena

Code:
a := make([]int, 32)

a = append(a, 1)

appena

= make([]int, 32)

= append(a, 1)
fmt.Println("Llen:", len(b), "cap:'", cap(b))

Qutput;

len: 33 cap: 64

appena

32 Ints

0 1 2 30 31

a = append(a, 1)

32 IntsS more

0 1 2 30 31 32 33 34 39 62 03

doubling 32

appena

04 INtS

0 1 2 30 31 32 33 34 39

62 03

)

334 a = append(a, 2)

iNnterfaces

Code:
type error interface {

Error() string

¥

iNnterfaces

Code:
type error interface {

Error() string

¥

Go code: src/runtime/runtime?2.go

type iface struct {
tab x1itab

data unsafe.Polnter

https://golang.org/src/runtime/runtime2.go#L143

iNnterfaces

Code:
type error interface {

Error() string

¥

Go code: src/runtime/runtime?.go Itab = Iinterface table

type iface struct {
tab xitab

data unsafe.Polnter

https://golang.org/src/runtime/runtime2.go#L143

iNnterfaces

Code:

type error interface {
type itab struct {

inter xinterfacetype

Error() string

¥

Go code: src/runtime/runtime?2.go

_type *x_type
link x1tab
bad 1nt32

: I unused 1nt32
type 1face.struct t ur [1]uintptr
tab x1itab

data unsafe.Polnter

https://golang.org/src/runtime/runtime2.go#L143

iNnterfaces

Code:

type error interface {
Error() string

¥

iNnterfaces

Code:

type error interface {
Error() string

h

var err error

nil interface —

iNnterfaces

Code: tab

type error interface {
Error() string

h

func foo() error {
return nil
}

iNnterfaces

Code: tab

func foo() error {
var err error
// err == nil
return err

h

err = fool()
if err '= nil { // false

¥

iNnterfaces

Code:

func foo() error 1
var err *x0Ss.PathError
// err == nil
return err

h

err = fool()
if err '= nil { // 7277

¥

iNnterfaces

Code:

func foo() error 1
var err *x0Ss.PathError
// err == nil
return err

h

err = fool()
if err '= nil { // true

¥

iNnterfaces

Code: arr itab

func foo() error {
var err *xos.PathError
// err == nil

return err

0x..
data

err := fool() err
if err '= nil { // true

¥

nil

os.PathError

iNnterfaces

Code: arr itab

func foo() error {
err := &os.PathError{
‘open'', name, e

h

return err 0x..

data

err

err := fool()
if err '= nil { // true

¥

“Open 79
os.PathError

iNnterfaces

func foo() error { func foo() error {
var err error var err xos.PathError

// err == nil // err == nil
return err return err

err itab err itab

error
Inter

*
o0s.Path
Error

type

fun

iNnterfaces

0x..
data

err
]

n
os.PathError

iNnterfaces

Go code: src/runtime/runtime?.go M

type eface struct {
_type *_type

data unsafe.Polnter

https://golang.org/src/runtime/runtime2.go#L148

iNnterfaces

Code: empty

var foo int64 = m

func bar() interface{} {

return foo

y

iNnterfaces

Code:

func bar() interface{} {
return int64(42)

f

iNnterfaces

Code:

func bar() [linterface{} {
return []int64{1,2,3,4}

f

iNnterfaces

Code:

func bar() [linterface{} {
return []int64{1,2,3,4}

f

$ go build
cannot use []int literal (type []lint) as type
[linterface {} return argument

empty empty empty
C 1 z 30 31

empty empty

[f you want to do something
expensive - do it explicitly

| INKS

https://divan.qithub.io/posts/avoid _gotchas

https://divan.github.io/posts/avoid_gotchas/

| INKS

e Must read: e And, of course:
e (Go Data Structures e (3o source code
e Go Data Structures: o Effective GO
Intertaces
e (50 spec

* (Go Slices: usage and
Internals

o Gopher Puzzlers

http://research.swtch.com/godata
http://research.swtch.com/interfaces
https://blog.golang.org/go-slices-usage-and-internals
http://talks.godoc.org/github.com/davecheney/presentations/gopher-puzzlers.slide
https://golang.org/src/
https://golang.org/doc/effective_go.html
https://golang.org/ref/spec

Ihank you
@idanyliuk

https://twitter.com/idanyliuk

